1,468 research outputs found

    A Comprehensive Framework for Performance Analysis of Cooperative Multi-Hop Wireless Systems over Log-Normal Fading Channels

    No full text
    International audienceIn this paper, we propose a comprehensive framework for performance analysis of multi–hop multi–branch wireless communication systems over Log–Normal fading channels. The framework allows to estimate the performance of Amplify and Forward (AF) relay methods for both Channel State Information (CSI–) assisted relays, and fixed–gain relays. In particular, the contribution of this paper is twofold: i) first of all, by relying on the Gauss Quadrature Rule (GQR) representation of the Moment Generation Function (MGF) for a Log–Normal distribution, we develop accurate formulas for important performance indexes whose accuracy can be estimated a priori and just depends on GQR numerical integration errors; ii) then, in order to simplify the computational burden of the former framework for some system setups, we propose various approximations, which are based on the Improved Schwartz–Yeh (I–SY) method. We show with numerical and simulation results that the proposed approximations provide a good trade–off between accuracy and complexity for both Selection Combining (SC) and Maximal Ratio Combining (MRC) cooperative diversity methods

    Timing synchronization for cooperative wireless communications

    No full text
    In this work the effect of perfect and imperfect synchronization on the performance of single-link and cooperative communication is investigated. A feedforward non- data-aided near maximum likelihood (NDA-NML) timing estimator which is effective for an additive white Gaussian noise (AWGN) channel and also for a flat-fading channel, is developed. The Cramer Rao bound (CRB) and modified Cramer Rao bound (MCRB) for the estimator for a single-link transmission over an AWGN channel is derived. A closed form expression for the probability distribution of the timing estimator is also derived. The bit-error-rate (BER) degradation of the NDA-NML timing estimator with raised cosine pulse shaping for static timing errors over an AWGN channel is characterized. A closed form expression is derived for the conditional bit error probability (BEP) with static timing errors of binary phase shift keying modulation over a Rayleigh fading channel using rectangular pulse shaping. The NDA-NML timing estimator is applied to a cooperative communication system with a source, a relay and a destination. A CRB for the estimator for asymptotically low signal-to-noise-ratio case is derived. The timing complexity of the NDA-NML estimator is derived and compared with a feedforward correlation based data-aided maximum likelihood (DA-ML) estimator. The BER performance of this system operating with a detect-and-forward relaying is studied, where the symbol timings are estimated independently for each channel. A feedforward data and channel aided maximum likelihood (DCA-ML) symbol timing estimator for cooperative communication operating over flat fading channels is then developed. For more severe fading the DCA-ML estimator performs better than the NDA- NML estimator and the DA-ML estimator. The performance gains of the DCA-ML estimator over that of the DA-ML estimator become more significant in cooperative transmission than in single-link node-to-node transmission. The NDA-NML symbol timing estimator is applied to three-node cooperative communication in fast flat-fading conditions with various signal constellations. It is found that timing errors have significant effect on performance in fast flat-fading channels. The lower complexity NDA-NML estimator performs well for larger signal constellations in fast fading, when compared to DA-ML estimator. The application of cooperative techniques for saving transmit power is discussed along with the related performance analysis with timing synchronization errors. It is found that power allocations at the source and relay nodes for transmissions, and the related timing errors at the relay and the destination nodes, have considerable effect on the BER performance for power constrained cooperative communication. The performance of multi-node multi-relay decode-and-forward cooperative com- munication system, of various architectures, operating under different fading con- ditions, with timing synchronization and various combining methods, is presented. Switch-and-stay combining and switch-and-examine combining are proposed for multi-node cooperative communication. Apart from the proposed two combining methods equal gain combining, maximal ratio combining and selection combining are also used. It is demonstrated that synchronization error has significant effect on performance in cooperative communication with a range of system architectures, and it is also demonstrated that performance degradation due to synchronization error increases with increasing diversity. It is demonstrated that decode-and- forward relaying strategy with timing synchronization, using a very simple coding scheme, performs better than detect-and-forward relaying with timing synchronization. Analytical expressions are derived for BEP with static and dynamic timing synchronization errors over Rayleigh fading channels using rectangular pulse shaping for amplify-and-forward and detect-and-forward cooperative communications. Moment generating function (MGF) based approach is utilized to find the analytical expressions. It is found that timing synchronization errors have an antagonistic effect on the BEP performance of cooperative communication. With the relay intelligence of knowing whether symbols are detected correctly or not, detect- and-forward cooperative communication performs better than the low complexity amplify-and-forward cooperative communication

    Cooperative Communications: Network Design and Incremental Relaying

    Get PDF

    Performance enhancement of wireless communication systems through QoS optimisation

    Get PDF
    Providing quality of service (QoS) in a communication network is essential but challenging, especially when the complexities of wireless and mobile networks are added. The issues of how to achieve the intended performances, such as reliability and efficiency, at the minimal resource cost for wireless communications and networking have not been fully addressed. In this dissertation, we have investigated different data transmission schemes in different wireless communication systems such as wireless sensor network, device-to-device communications and vehicular networks. We have focused on cooperative communications through relaying and proposed a method to maximise the QoS performance by finding optimum transmission schemes. Furthermore, the performance trade-offs that we have identified show that both cooperative and non-cooperative transmission schemes could have advantages as well as disadvantages in offering QoS. In the analytical approach, we have derived the closed-form expressions of the outage probability, throughput and energy efficiency for different transmission schemes in wireless and mobile networks, in addition to applying other QoS metrics such as packet delivery ratio, packet loss rate and average end-to-end delay. We have shown that multi-hop relaying through cooperative communications can outperform non-cooperative transmission schemes in many cases. Furthermore, we have also analysed the optimum required transmission power for different transmission ranges to obtain the maximum energy efficiency or maximum achievable data rate with the minimum outage probability and bit error rate in cellular network. The proposed analytical and modelling approaches are used in wireless sensor networks, device-to-device communications and vehicular networks. The results generated have suggested an adaptive transmission strategy where the system can decide when and how each of transmission schemes should be adopted to achieve the best performance in varied conditions. In addition, the system can also choose proper transmitting power levels under the changing transmission distance to increase and maintain the network reliability and system efficiency accordingly. Consequently, these functions will lead to the optimized QoS in a given network

    Differential Modulation and Non-Coherent Detection in Wireless Relay Networks

    Get PDF
    The technique of cooperative communications is finding its way in the next generations of many wireless communication applications. Due to the distributed nature of cooperative networks, acquiring fading channels information for coherent detection is more challenging than in the traditional point-to-point communications. To bypass the requirement of channel information, differential modulation together with non-coherent detection can be deployed. This thesis is concerned with various issues related to differential modulation and non-coherent detection in cooperative networks. Specifically, the thesis examines the behaviour and robustness of non-coherent detection in mobile environments (i.e., time-varying channels). The amount of channel variation is related to the normalized Doppler shift which is a function of user's mobility. The Doppler shift is used to distinguish between slow time-varying (slow-fading) and rapid time-varying (fast-fading) channels. The performance of several important relay topologies, including single-branch and multi-branch dual-hop relaying with/without a direct link that employ amplify-and-forward relaying and two-symbol non-coherent detection, is analyzed. For this purpose, a time-series model is developed for characterizing the time-varying nature of the cascaded channel encountered in amplify-and-forward relaying.Comment: PhD Dissertatio

    MIMO communications over relay channels

    Get PDF
    • …
    corecore