363 research outputs found

    Energy-Efficient Interconnection Networks for High-Performance Computing

    Get PDF
    In recent years, energy has become one of the most important factors for de- signing and operating large scale computing systems. This is particularly true in high-performance computing, where systems often consist of thousands of nodes. Especially after the end of Dennard’s scaling, the demand for energy- proportionality in components, where energy is depending linearly on utilization, increases continuously. As the main contributor to the overall power consumption, processors have received the main attention so far. The increasing energy proportionality of processors, however, shifts the focus to other components such as interconnection networks. Their share of the overall power consumption is expected to increase to 20% or more while other components further increase their efficiency in the near future. Hence, it is crucial to improve energy proportionality in interconnection networks likewise to reduce overall power and energy consumption. To facilitate these attempts, this work provides comprehensive studies about energy saving in interconnection networks at different levels. First, interconnection networks differ fundamentally from other components in their underlying technology. To gain a deeper understanding of these differences and to identify targets for energy savings, this work provides a detailed power analysis of current network hardware. Furthermore, various applications at different scales are analyzed regarding their communication patterns and locality properties. The findings show that communication makes up only a small fraction of the execution time and networks are actually idling most of the time. Another observation is that point-to-point communication often only occurs within various small subsets of all participants, which indicates that a coordinated mapping could further decrease network traffic. Based on these studies, three different energy-saving policies are designed, which all differ in their implementation and focus. Then, these policies are evaluated in an event-based, power-aware network simulator. While two policies that operate completely local at link level, enable significant energy savings of more than 90% in most analyses, the hybrid one does not provide further benefits despite significant additional design effort. Additionally, these studies include network design parameters, such as transition time between different link configurations, as well as the three most common topologies in supercomputing systems. The final part of this work addresses the interactions of congestion management and energy-saving policies. Although both network management strategies aim for different goals and use opposite approaches, they complement each other and can increase energy efficiency in all studies as well as improve the performance overhead as opposed to plain energy saving

    When the ship comes in

    Get PDF

    SpiNNaker - A Spiking Neural Network Architecture

    Get PDF
    20 years in conception and 15 in construction, the SpiNNaker project has delivered the world’s largest neuromorphic computing platform incorporating over a million ARM mobile phone processors and capable of modelling spiking neural networks of the scale of a mouse brain in biological real time. This machine, hosted at the University of Manchester in the UK, is freely available under the auspices of the EU Flagship Human Brain Project. This book tells the story of the origins of the machine, its development and its deployment, and the immense software development effort that has gone into making it openly available and accessible to researchers and students the world over. It also presents exemplar applications from ‘Talk’, a SpiNNaker-controlled robotic exhibit at the Manchester Art Gallery as part of ‘The Imitation Game’, a set of works commissioned in 2016 in honour of Alan Turing, through to a way to solve hard computing problems using stochastic neural networks. The book concludes with a look to the future, and the SpiNNaker-2 machine which is yet to come

    Reconfigurable Instruction Cell Architecture Reconfiguration and Interconnects

    Get PDF

    An approach to understand network challenges of wireless sensor network in real-world environments

    Get PDF
    The demand for large-scale sensing capabilities and scalable communication networks to monitor and control entities within smart buildings have fuelled the exponential growth in Wireless Sensor Network (WSN). WSN proves to be an attractive enabler because of its accurate sensing, low installation cost and flexibility in sensor placement. While WSN offers numerous benefits, it has yet to realise its full potential due to its susceptibility to network challenges in the environment that it is deployed. Particularly, spatial challenges in the indoor environment are known to degrade WSN communication reliability and have led to poor estimations of link quality. Existing WSN solutions often generalise all link failures and tackle them as a single entity. However, under the persistent influence of spatial challenges, failing to provide precise solutions may cause further link failures and higher energy consumption of battery-powered devices. Therefore, it is crucial to identify the causes of spatial- related link failures in order to improve WSN communication reliability. This thesis investigates WSN link failures under the influence of spatial challenges in real-world indoor environments. Novel and effective strategies are developed to evaluate the WSN communication reliability. By distinguishing between spatial challenges such as a poorly deployed environment and human movements, solutions are devised to reduce link failures and improve the lifespans of energy constraint WSN nodes. In this thesis, WSN test beds using proprietary wireless sensor nodes are developed and deployed in both controlled and uncontrolled office environments. These test beds provide diverse platforms for investigation into WSN link quality. In addition, a new data extraction feature called Network Instrumentation (NI) is developed and implemented onto the communication stacks of wireless sensor nodes to collect ZigBee PRO parameters that are under the influence of environmental dynamics. To understand the relationships between WSN and Wi-Fi devices communications, an investigation on frequency spectrum sharing is conducted between IEEE 802.15.4 and IEEE 802.11 bgn standards. It is discovered that the transmission failure of WSN nodes under persistent Wi-Fi interference is largely due to channel access failure rather than corrupted packets. The findings conclude that both technologies can co- exist as long as there is sufficient frequency spacing between Wi-Fi and WSN communication and adequate operating distance between the WSN nodes, and between the WSN nodes and the Wi-Fi interference source. Adaptive Network-based Fuzzy Inference System (ANFIS) models are developed to predict spatial challenges in an indoor environment. These challenges are namely, “no failure”, “failure due to poorly deployed environment” and “failure due to human movement”. A comparison of models has found that the best-produced model represents the properties of signal strength, channel fluctuations, and communication success rates. It is recognised that the interpretability of ANFIS models have reduced due to the “curse of dimensionality”. Hence, Non-Dominated Sorting Genetic Algorithm (NSGA-II) technique is implemented to reduce the complexity of these ANFIS models. This is followed by a Fuzzy rule sensitivity analysis, where the impacts of Fuzzy rules on model accuracy are found to be dependent on factors such as communication range and controlled or uncontrolled environment. Long-term WSN routing stability is measured, taking into account the adaptability and robustness of routing paths in the real-world environments. It is found that routing stability is subjected to the implemented routing protocol, deployed environment and routing options available. More importantly, the probability of link failures can be as high as 29.9% when a next hop’s usage rate falls less than 10%. This suggests that a less dominant next hop is subjected to more link failures and is short-lived. Overall, this thesis brings together diverse WSN test beds in real-world indoor environments and a new data extraction platform to extract link quality parameters from ZigBee PRO stack for a representative assessment of WSN link quality. This produces realistic perspectives of the interactions between WSN communication reliability and the environmental dynamics, particularly spatial challenges. The outcomes of this work include an in-depth system level understanding of real-world deployed applications and an insightful measure of large-scale WSN communication performance. These findings can be used as building blocks for a reliable and sustainable network architecture built on top of resource–constrained WSN

    SpiNNaker - A Spiking Neural Network Architecture

    Get PDF
    20 years in conception and 15 in construction, the SpiNNaker project has delivered the world’s largest neuromorphic computing platform incorporating over a million ARM mobile phone processors and capable of modelling spiking neural networks of the scale of a mouse brain in biological real time. This machine, hosted at the University of Manchester in the UK, is freely available under the auspices of the EU Flagship Human Brain Project. This book tells the story of the origins of the machine, its development and its deployment, and the immense software development effort that has gone into making it openly available and accessible to researchers and students the world over. It also presents exemplar applications from ‘Talk’, a SpiNNaker-controlled robotic exhibit at the Manchester Art Gallery as part of ‘The Imitation Game’, a set of works commissioned in 2016 in honour of Alan Turing, through to a way to solve hard computing problems using stochastic neural networks. The book concludes with a look to the future, and the SpiNNaker-2 machine which is yet to come

    Design and development of a localization system for a sensor network in collective symbiotic organisms

    Get PDF
    The REPLICATOR project aims for developing self-adaptive and self-assembling organisms compounded of stand-alone robots. These robots can autonomously and dynamically dock with each other forming symbiotic structures. This system requires that each robot knows the position of the others. Therefore, this master thesis consists of the design, implementation and assessment of a low power and low cost localization system, based on the strength of the signal of the wireless communications protocol ZigBee. Furthermore, a dynamic ZigBee coordinator selection process was developed to separate the localization application and the system’s configuration. The proposed solution is a distributed, anchor-free, self-configuring, cooperative and concurrent algorithm. The localization is iteratively recalculated and updated using a Eucledian method. In order to reduce the errors produced by the fluctuations of the signal, a weighted approach, IIR and FIR filters; and a calibration process were implemented. It was found that the implemented localization system can achieve localization errors lower than five percent. However, these errors vary greatly depending upon several uncontrolled facts such as the environment in which the system is deployed and the radiation pattern of the antennas; and in addition, the errors increase exponentially with the distance

    Communication Architectures for Scalable GPU-centric Computing Systems

    Get PDF
    In recent years, power consumption has become the main concern in High Performance Computing (HPC). This has lead to heterogeneous computing systems in which Central Processing Units (CPUs) are supported by accelerators, such as Graphics Processing Units (GPUs). While GPUs used to be seen as slave devices to which the main processor offloads computation, today’s systems tend to deploy more GPUs than CPUs. Eventually, the GPU will become a first-class processor, bearing increasing responsibilities. Promoting the GPU to a first-class processor comes with many challenges, such as progress guarantees, dynamic memory management, and scheduling. However, one of the main challenges is the GPU’s inability to orchestrate communication, which is currently entirely handled by the CPU. This work addresses that issue and presents solutions to allow GPUs to source and sink network traffic independently. Many important aspects are addressed, ranging from the application level to how networking hardware is accessed. First, important and large scale exascale applications are studied to further understand their communication behavior and applications’ requirements. Several metrics are presented, including time spent for communication, message sizes, and the length of queues that are required to match messages with receive requests. One aspect the analysis revealed is that messages are becoming smaller at scale, which renders the matching of messages and receive requests an important problem to address. The next part analyzes how the GPU can directly access the network with various communication models being presented and benchmarked. It is shown that a flat address space of distributed GPU memories shows superior bandwidth than put/get communication or CPU-controlled message passing, but less communication can be overlapped with computation. Overall, GPU-controlled communication is always superior, both in terms of time-to-solution and energy spending. The final part addresses communication management on GPUs, which is required to provide high-level communication abstractions. Besides other fundamental building blocks, an algorithm for the message matching is presented that yields similar performance as CPUs. However, it is also shown that the messaging protocol can be relaxed to improve performance significantly, leveraging the massive amount of parallelism provided by the GPU’s architecture
    • 

    corecore