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Abstract 

The demand for large-scale sensing capabilities and scalable communication networks 

to monitor and control entities within smart buildings have fuelled the exponential 

growth in Wireless Sensor Network (WSN). WSN proves to be an attractive enabler 

because of its accurate sensing, low installation cost and flexibility in sensor 

placement. While WSN offers numerous benefits, it has yet to realise its full potential 

due to its susceptibility to network challenges in the environment that it is deployed. 

Particularly, spatial challenges in the indoor environment are known to degrade WSN 

communication reliability and have led to poor estimations of link quality. Existing 

WSN solutions often generalise all link failures and tackle them as a single entity. 

However, under the persistent influence of spatial challenges, failing to provide 

precise solutions may cause further link failures and higher energy consumption of 

battery-powered devices. Therefore, it is crucial to identify the causes of spatial-

related link failures in order to improve WSN communication reliability. 

This thesis investigates WSN link failures under the influence of spatial challenges in 

real-world indoor environments. Novel and effective strategies are developed to 

evaluate the WSN communication reliability. By distinguishing between spatial 

challenges such as a poorly deployed environment and human movements, solutions 

are devised to reduce link failures and improve the lifespans of energy constraint WSN 

nodes.   

In this thesis, WSN test beds using proprietary wireless sensor nodes are developed 
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and deployed in both controlled and uncontrolled office environments. These test beds 

provide diverse platforms for investigation into WSN link quality. In addition, a new 

data extraction feature called Network Instrumentation (NI) is developed and 

implemented onto the communication stacks of wireless sensor nodes to collect 

ZigBee PRO parameters that are under the influence of environmental dynamics. 

To understand the relationships between WSN and Wi-Fi devices communications, an 

investigation on frequency spectrum sharing is conducted between IEEE 802.15.4 and 

IEEE 802.11 bgn standards. It is discovered that the transmission failure of WSN 

nodes under persistent Wi-Fi interference is largely due to channel access failure 

rather than corrupted packets. The findings conclude that both technologies can co-

exist as long as there is sufficient frequency spacing between Wi-Fi and WSN 

communication and adequate operating distance between the WSN nodes, and 

between the WSN nodes and the Wi-Fi interference source. 

Adaptive Network-based Fuzzy Inference System (ANFIS) models are developed to 

predict spatial challenges in an indoor environment. These challenges are namely, “no 

failure”, “failure due to poorly deployed environment” and “failure due to human 

movement”. A comparison of models has found that the best-produced model 

represents the properties of signal strength, channel fluctuations, and communication 

success rates. It is recognised that the interpretability of ANFIS models have reduced 

due to the “curse of dimensionality”. Hence, Non-Dominated Sorting Genetic 

Algorithm (NSGA-II) technique is implemented to reduce the complexity of these 

ANFIS models. This is followed by a Fuzzy rule sensitivity analysis, where the 

impacts of Fuzzy rules on model accuracy are found to be dependent on factors such 

as communication range and controlled or uncontrolled environment. 

Long-term WSN routing stability is measured, taking into account the adaptability and 

robustness of routing paths in the real-world environments. It is found that routing 

stability is subjected to the implemented routing protocol, deployed environment and 

routing options available. More importantly, the probability of link failures can be as 

high as 29.9% when a next hop’s usage rate falls less than 10%. This suggests that a 

less dominant next hop is subjected to more link failures and is short-lived. 

Overall, this thesis brings together diverse WSN test beds in real-world indoor 

environments and a new data extraction platform to extract link quality parameters 
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from ZigBee PRO stack for a representative assessment of WSN link quality. This 

produces realistic perspectives of the interactions between WSN communication 

reliability and the environmental dynamics, particularly spatial challenges. The 

outcomes of this work include an in-depth system level understanding of real-world 

deployed applications and an insightful measure of large-scale WSN communication 

performance. These findings can be used as building blocks for a reliable and 

sustainable network architecture built on top of resource–constrained WSN.  
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1 Introduction 

 

1.1 The Surge in Smart Buildings and Wireless Sensor 

Networks 

The push to reduce the energy consumption of buildings and the impact of the built 

environment on human health and the ecosystem has seen a steady rise in the number 

of Smart Buildings [1, 2, 3]. Context-aware environments are foreseen as key 

elements in the control and regulation of multiple applications in Smart Buildings, 

such as intelligent heating, ventilation and air-conditioning controls, energy 

management systems, smart health and intruder monitoring system. In addition, the 

demand for data-driven applications is projected to result in a one to two-fold increase 

in the number of internet connected devices [4, 5], and this surge will be made 

possible by the advent of Internet of Things (IoT). The need for large-scale sensing 

capabilities as well as scalable communication networks with high mobility levels 

have fuelled the exponential growth in the research of Wireless Sensor Networks 

(WSNs) [6, 7].  

WSN plays an intrinsic role in Smart Buildings, reporting environmental information 

and surrounding context wirelessly to IoT devices and applications. It has proven to 

be an attractive and important enabler for accurate sensing in terms of associated low 

installation cost as well as the flexibility it offers in sensor placements [8, 9]. WSN is 

made up of clusters of smart wireless sensor nodes that are small, built with limited 

processing and computing resources, and are designed to sense, measure, and collect 

information from their surroundings. These nodes are equipped with wireless 

transceivers, have self-organising capabilities to form a cohesive wireless network to 

transmit and relay the measured data to a base station. WSN avoids the need for 

pulling wires at installation, thus allowing for reductions in installation cost and 

increased flexibility in sensor placements.  

While WSN offers numerous benefits, they have yet to realise their full practicality in 

real-world applications. Optimisation protocols are in place in the software stacks of 
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wireless sensor nodes to ensure that WSNs operate smoothly without the need for 

human intervention. These protocols comprise a set of rules that organise routing 

paths and govern certain behaviours between devices during data exchanges. 

However, existing optimisation protocols are often found to exhibit poor 

dependability in the face of a real-world deployment. Studies have shown that a large 

number of WSN deployments operate with less than 90% throughput [10, 11, 12]. 

Particularly, WSNs in indoor environments inherit lower efficiency due to the 

susceptibility to indoor network challenges and the unpredictable radio propagation 

[13, 14, 15, 16]. For instance, communication across dense environment and frequent 

physical changes within the environment caused by human movements are known to 

alter the communication reliability between nodes [17, 18, 19, 20, 21].  

Failing to provide precise solutions under the persistent influence of network 

challenges may lead to further link failures and higher energy consumption of battery-

powered devices [15, 16]. Furthermore, due to the scattered deployment of WSN in 

remote environment, it is challenging to eliminate the source of network failure or to 

even replace the batteries of energy-depleted devices. With considerable bottlenecks 

encountered in the WSN field trials testing for network reliability, there has been 

resistance to adopt these wireless technologies in the commercial market. Therefore, 

in order to create a sustainable competitive advantage, the need to realise the 

practicalities of this complex technology with minimal infrastructure change has 

intensified. It is critical to evaluate the state of WSN communication reliability 

performances in real-world deployments and to design new networking strategies to 

effectively improve the performance of WSN services. 

1.2 Research Motivation  

This thesis is motivated by the following research challenges. 

1. Energy constraint wireless sensor nodes 

The increased complexity in wireless sensor node application has driven the need for 

higher energy consumption requirements [22]. This is especially true for data 

intensive applications that produce large amounts of data. The choice of wireless 

communication technology to transmit and receive these data therefore needs to be 
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carefully considered as it impacts both the reliability of data exchange between nodes 

and the associated energy consumption. 

Different types of interferences in the environment can have different impacts on the 

performance of wireless communication. To mitigate these interferences, additional 

detection mechanisms need to be put in place [23, 24]. Computational resources such 

as computing time and memory size necessary to perform the usual arithmetic 

operations, and operational strategies that match the application’s requirements are 

paramount to an efficient and reliable WSN. However, the option to select WSN 

components relative to the computational effort required by specific application is not 

always available.  

2. Poor predictability of WSN communication in an indoor environment 

The propagation of transmitted signals is determined by the physical medium between 

communicating wireless sensor nodes. The ways in which the nodes are deployed and 

the dynamics of the environment have direct influences on the reliability of wireless 

communication. Objects in physical medium such as walls and cabinets act as 

reflectors, creating different propagation paths for the transmitted signals [13, 19]. 

Depending on the position of the nodes and the layout of their surroundings, the 

receiving node receives superposition of multiple copies of the transmitted signal via 

differing propagation paths, each arriving at different times and qualities.  

In addition, human movements and changes in object placements such as opening and 

closing of door introduce signal propagation topology change. These factors result in 

temporal alteration in the propagation paths of a transmitted signal, causing signal 

qualities to fluctuate [25, 26, 27]. In such situations, signal quality fluctuations of 30 

dB are not uncommon [28]. In reality, it is difficult to predict or control these spatial 

challenges unless the position of all nodes and the geometry of the environment are 

known, static or uninterrupted at all times. This is also impractical due to the vast 

number of interactions among all factors in a real-world deployment [29, 30]. As 

such, the ability to predict these spatial challenges is seen as a critical factor to 

improve WSN communication reliability.  
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3. The need for accurate detection of the cause of wireless link failure 

Network challenges have different effects on individual WSN communication layers 

[31, 32, 33]. This is to say that a topology failure could be attributed to either the poor 

time synchronisation of the MAC layer or poor end-to-end connectivity of the routing 

layer. A link failure detected at a specific layer should not be representative of the 

entire stack without knowing the response from other layers [31]. Furthermore, 

common generalisation of a link performance as good, intermediate or bad does not 

provide sufficient information for WSN optimisation protocol to execute efficiently 

[34, 35]. For instance, increasing transmission power may improve the reliability of 

long distance communicating nodes [13], however, this may not be true for nodes 

suffering from channel access failures under persistent Wi-Fi interference [36].  

Data and computation intensive applications with real-time requirements further add 

on to existing system limitations such as processing performance and buffer space. 

These limitations can be confused with network failures if no specific detection 

mechanisms are in place. The inability to identify the cause of link failure may 

adversely affect the network’s performance [15, 27, 34]. Therefore, in order for WSN 

optimisation protocol to function optimally, it is crucial to identify the causes of link 

failures.  

4. The need for system-level understanding during WSN communication failures 

The absence of system-level understanding to deployed solution, for example in a 

home and building automation, renders it hard for a network operator to accurately 

diagnose network issues. WSN nodes are designed with redundancy features for 

network self-healing and to minimise abrupt changes in a network. These features 

include retransmissions, consecutive keep-alive messages, channel back offs, which 

are performed automatically by the communication stack. As such, link failures are 

often hidden from the user point of view.  

Existing WSN simulators designed to approximate the performance of a WSN in a 

simulated environment is limited [37, 38]. Every simulator has features that work well 

in the respective domain as they inherit the different approaches and theoretical 

models to investigate specific problem. However, this has also led to accuracy and 

authenticity issues when different simulation settings are used. For instance, 
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simulations and theoretical models may not take into account the different protocol 

stacks, type of application, characteristics of wireless module used, and antenna 

polarisation. Due to these, simulation can only be used for performance estimations, 

but not to be relied for accurate results due to the complexity of radio propagation. 

For these reasons, understanding how these network challenges impact 

communication devices, and how they can be detected and measured under diverse 

real-world environmental settings will be beneficial for accurate network failure 

diagnosis and prediction of link failure.  

1.3 Research Aim and Objectives  

The main aims of this thesis are to (1) develop realistic WSN test beds that produce a 

representative collection of WSN communication performance parameters for realistic 

investigation of indoor environment challenges, (2) formulate novel strategies to 

predict and interpret WSN communication failures pertaining to spatial network 

challenges and their causes and (3) apply developed methods on real-world WSN tests 

beds and investigate gaps in existing WSN protocol.   

The objectives of this research are to:  

1. Develop WSN test beds by deploying proprietary NXP semiconductors wireless 

sensor nodes in real-world environments for realistic investigation of indoor 

environment challenges. This includes a seamlessly integrated data extraction 

platform that complies with the implemented WSN protocol to enable a 

representative collection of WSN communication performance parameters.  

2. Evaluate WSN communication performance that are under the influence of both 

experimental and real-world indoor environmental settings with known types of 

network faults and hypothesised symptoms. These are for example, persistent Wi-

Fi traffic, communication through dense environment and human movements.  

3. Using link quality parameters obtained from the operating stacks of wireless 

sensor nodes deployed in real-world environments to train and evaluate models 

that accurately classify WSN link failures to the associated spatial network 

challenges.  

4. Classify WSN communication failures into smaller specific areas of inquiry for 

model interpretation. By doing so, users can comprehend the classification model 
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by inspecting its functions, providing insights into wireless sensor nodes’ 

behaviour under real-world environmental settings. 

5. Formulate methods to investigate the gaps and performance of existing WSN 

protocols using developed classification models and post-interpretation of WSN 

communication failures. 

1.4 Thesis Novelties and Contributions 

The novelties and contributions of this thesis are as follows: 

In this thesis, WSN test beds using actual wireless sensor nodes deployed in real-

world environments were developed. Proprietary wireless sensor nodes were used, 

built using NXP’s JN5168 wireless modules [39] and implemented on an open 

standard ZigBee PRO Home Automation [40]. In addition, a data extraction feature 

called Network Instrumentation (NI) was developed to provide “in-network” 

monitoring and reporting of information within the ZigBee PRO communication 

stacks. As opposed to the use of generated simulated data [37, 38], data collected 

from an under-represented WSN test beds (i.e. controlled [41, 42], one hop network 

[43, 44]), or data collected from non-proprietary systems (i.e. non-standard network 

protocol), the novel use of extracted representative ZigBee PRO performance 

indicators that were collected from diverse real-world environmental settings, 

provided a realistic investigation and evaluation platform for WSN communication 

reliability. This data were also used for relevant benchmarking and proof-of-concept 

purposes, as well as for prediction models training inputs. 

It is emphasised in the literature that Wi-Fi and WSN technology do not co-exist well 

in the same operating environment because the WSN application under simultaneous 

Wi-Fi traffic suffers from packet distortion [36, 45, 46, 47, 48, 49]. Therefore, an 

investigation was conducted to evaluate the impact of persistent Wi-Fi traffic and 

WSN communication on each other. This investigation produced two novel findings. 

First, it was demonstrated that the IEEE 802.15.4 nodes’ transmission failures under 

persistent Wi-Fi traffic were largely due to channel access failure rather than 

corrupted data packets. Second, the operating distance between the IEEE 802.15.4 

nodes, and between the IEEE 802.15.4 nodes and the interference source were key 

factors affecting the dynamic co-existence relationship. IEEE 802.15.4 and IEEE 
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802.11 bgn nodes were found to co-exist well in the same environment as long as they 

were separated with sufficient spatial distance and operating frequency.  

WSN spatial related link failures prediction models were developed using Adaptive 

Neuro Fuzzy Interference System (ANFIS) technique. These ANFIS models, 

designed to classify WSN link failures due to poorly deployed environment and 

human movements, produced an accuracy of 92%. A comparison between multiple 

prediction models, trained with different inputs combination produced the following 

key findings. First, physical layer parameters had showed superior results at 

predicting spatial-related link failures as compared to network layer parameters. This 

is due to their ability to distinguish poorly deployed environment and human 

movements. Secondly, the best-produced model mirrors the properties of signal 

strength, channel fluctuations and communication success rate. This work highlighted 

the limitations of existing single parameter link quality assessment, and the 

importance of careful selection of training parameters and the use of cross-layer 

parameters for prediction of WSN link failures.  

Due to the “curse of dimensionality”, any increase in input variables generates an 

exponential number of IF-THEN rules within the ANFIS model. The increasing 

number of rules becomes difficult for user to interpret (i.e. hard to read and 

understand). Hence, Non-dominated Sorting Genetic Algorithm II (NSGA-II) 

technique was implemented to reduce the complexity of generated ANFIS models, 

whilst sacrificing minimal model accuracy. To our best knowledge, there is limited 

work that investigates the impact of MOEA technique’s settings on minimisation of 

Fuzzy model rule-base size. Therefore, different NSGA-II settings were experimented 

to achieve a thorough exploration of input and output space and to avoid premature 

convergence of all objectives. The influence of individual Fuzzy rule on the different 

predictive conditions was also evaluated using Fuzzy rules removal sensitivity 

analysis. It was found that the dominance of rules was dependent on factors such as 

communication range and controlled or uncontrolled indoor office environments. 

Instantaneous assessment of WSN link quality is often preferred in the literature with 

limited work focuses on long-term WSN routing stability in a real-world indoor 

environment. In this thesis, long-term routing stability measures of Zigbee PRO using 

link failure prediction model on real-world WSN test beds were evaluated. These 
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measures are relative routing path usage count, usage rate of unique next hops and 

switching frequency counts were introduced to identify potential network bottlenecks 

and provided an alterative means to monitor WSN communication reliability. It is 

found that up to 29.9% of the less dominant routing paths in real-world test beds were 

connected to links with failures. These links were short-lived and had contributed to 

the undesired phenomenon of network instability.  

1.5 Thesis Organisation 

In Chapter 2, common causes of WSN link failures and existing detection 

mechanisms are reviewed. Existing link quality assessments are often insufficient to 

provide reliability communication because they generalise all types of link failures as 

a single entity. In order to improve WSN communication reliability, particularly in a 

dynamic deployed environment, the cause of link failure should be accurately 

identified. 

In Chapter 3, two sets of controlled experiments designed to investigate Wi-Fi 

interference and spatial network challenges are presented. In the first experiment, 

wireless sensor nodes, equipped with the fundamental IEEE 802.15.4 standard, are 

experimented under persistent Wi-Fi traffic generated with User Datagram Protocol 

(UDP). Results showed that Wi-Fi interference can be mitigated with careful 

deployment and configurations. In the second experiment, WSN nodes, implemented 

with ZigBee PRO standard, are configured to communicate under the influence of 

simulated single human walking profiles and poorly deployed environment (i.e. long 

distance communication and communication across dense environment). Link quality 

parameters collected in this experiment are used to train link failure prediction models 

using ANFIS technique. The performance of these models and training parameters are 

then compared and evaluated.  

In Chapter 4, the interpretability and accuracy trade-offs in Neuro-Fuzzy systems are 

outlined. NSGA-II is implemented on the initially generated ANFIS models to reduce 

the complexity of their Fuzzy rule-base resulted from the high number of IF-THEN 

rules and antecedent used. Due to the unique problem to be optimised, different 

NSGA-II settings are investigated to ensure thorough exploration of Neuro-Fuzzy 

solutions in the input and output space. 
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In Chapter 5, two distinct large-scale WSN test beds are reviewed. These test beds are 

deployed in actual occupied administration offices in the Solaris building in 

Singapore and the Vaucanson building located in La Rochelle, France. A decision tool 

is formulated to select an ideal solution among the Pareto front of optimised Fuzzy 

models (developed in Chapter 4). Thereafter, Fuzzy rules removal sensitivity analysis 

is used to evaluate the impact of individual Fuzzy rule on the different predictive 

conditions. Results showed that the dominance of link quality parameters is dependent 

on the environmental settings and the communication distance across the network.  

In Chapter 6, the long-term routing path stability of ZigBee PRO implemented WSN 

deployed in real-world environments are investigated. With the application of spatial 

related link failure prediction models, it is not uncommon to find actual routing paths 

to operate on link with failures. Relative routing path usage counts, usage rate of 

unique next hops and switching frequency count are introduced as routing stability 

indicators. The discovery of potential network bottlenecks highlights the importance 

of monitoring long-term routing path stability and the need to avoid the use of non-

dominant links. 

Finally, the conclusions drawn from this research and recommendations for future 

directions are discussed in Chapter 7. 
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2 A Review on Wireless Sensor 

Network Link Failures  

 

Evidence and findings from field trials and literature have shown that WSN in real-

world deployments still exhibit communication reliability issues. There is a pressing 

need to overcome the practical challenges associated with deploying this complex 

technology. Therefore, Chapter 2 reviews the existing solutions in the literature 

designed to detect or mitigate commonly found WSN network challenges. In Section 

2.1 and Section 2.2, the general functionalities of WSN are discussed, including 

optimisation protocols and link quality assessment mechanisms respectively. When 

deployed in real-world environmental settings, nodes are found to exhibit 

unpredictable behaviours because of their lack of awareness of their surroundings. As 

such, Section 2.3 reviews the different types of network challenges pertaining to WSN 

communication reliability and assesses the gaps in WSN link quality estimations in 

the literature. These network challenges include imperfection operating conditions, 

spatial network challenges, inter-WSN interference, and Wi-Fi interference. Findings 

of this chapter highlight that Wi-Fi interference and spatial network challenges are 

key factors affecting WSN communication reliability. 

2.1 Wireless Sensor Networks Optimisation Protocols and 

their Energy Constraints 

WSN consists of spatially distributed autonomous sensor nodes designed to sense, 

measure and gather information about the physical or environmental conditions. 

These nodes are usually equipped with devices such as wireless microcontrollers, 

modular sensors, batteries and energy-harvesting capabilities. Sensor data is collected 

and transmitted wirelessly from one node to another. Depending on the implemented 

optimisation protocol and applications [50], sensor nodes can form a reactive network 

topology with self-organising capabilities so that sensors data can be relayed reliably 

to the destination nodes. Optimisation protocol ensures that the requirements of WSN 
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applications are met without the need for human intervention. These requirements, 

commonly termed as Quality of Service (QoS) help to for example, maintain 

maximum data throughput for data sensitive applications [14, 51] and reduce end-to-

end latency for data critical applications [52, 53]. 

The requirement of small form factor and bill of material constraints on sensor nodes 

limit their resources such as energy, memory, computational power and 

communications bandwidth. In particular, energy in battery-powered WSN is a scarce 

resource. Given that the longevity of WSN applications depends on the energy 

consumption rate of sensor nodes [54], energy efficiency becomes one of the prime 

considerations in designing an optimisation protocol [55, 56]. To avoid energy 

deficiency in WSN, optimisation protocol must be balanced between energy 

consumption, system performance, and operational fidelity while relying on a light 

memory footprint. 

2.2 Link Quality Assessment in Real-World Environments 

QoS criteria are assessed through link quality assessment, where the quality of a 

communication link is monitored, measured and evaluated [57]. Optimisation 

protocol then decides the appropriate solution to mitigate or to reduce any link 

failures. For example, if a transmitting node senses an occupied or noisy channel, it 

backs off for a period of time until the channel is cleared before transmission. Doing 

so minimises potential packet collision. Conversely, a suboptimal decision may lead 

to excessive channel backoff, which leads to increasing energy wastage in the long 

run. In this section, some of the limitations of existing link quality assessments are 

reviewed.  

2.2.1 Limitations	of	Single	Parameter	Link	Quality	Assessment	

Xu and Lee [58] introduced Weighted Regression Estimator (WRE) to estimate link 

quality. WRE is a regression model where the weightage for each regression is 

determined by the spatial distance between a set of nodes. WRE takes into account the 

characteristics of irregular radio propagation [59] and the link quality of nodes in 

same geographical region. Authors explained that WRE improves the robustness of 

link quality assessment since neighbouring nodes in the same region experience 
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similar link quality. This work assumes that all environmental dynamics affect nodes 

regionally and the level of impact can be measured with distance, which is not always 

true. For example, link failures from asymmetrical communications and hidden 

terminal problems do not affect nodes regionally [15]. Furthermore, received signal 

strengths measured do not correlate well with distance between communicating 

nodes, particularly in an indoor environment with the presence of human movements 

[43]. 

The quality of a link is commonly classified as poor, intermediate and good [10, 11, 

25, 60], as shown in Figure 2.1. Doddavenkatappa, Chan and Leong [60] proposed the 

use of Intermediate Quality Link Transformation Protocol (ILTP) to alternate 

communication channels and to improve a link of Intermediate Quality (IQ) into a 

“good” one. Authors argued that Packet Reception Rate (PRR) varies across different 

channels and that IQ links can be improved through channel diversity. For instance, 

there is an 85% chance of finding a better channel for an existing link with 70% PRR. 

However, this work assumes that all causes of link failures degrade PRR. Authors in 

[36] has shown that when sharing communication channel with persistent Wi-Fi 

traffic, only 5% of all losses can be captured using PRR indicator while the rest of the 

losses can only be detected from channel access failure. This means that Wi-Fi traffic 

do not influence every link quality metrics equally. Since ILTP determines a link 

quality using only PRR, network challenges that do not impact PRR (e.g. Wi-Fi 

traffic) may remain undetected.  

 

Figure 2.1. The description of link quality based on PRR values. A perfect link is 

described with PRR of 100%. Poor link has a PRR of less than 10%, PRR of 

intermediate link is between 10% and 90%, and good link has PRR greater than 90% 

[10, 11, 25, 60]. 

Bursty Routing Extensions (BRE) protocol is introduced in [10], which also exploits 

the characteristics of IQ links. Nodes implemented with BRE actively detect 

0% 10% 90% 100% 

Poor Intermediate Good 

Packet reception rate 
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retransmitted packets in the channel and help to forward them if they failed 

repeatedly. The authors mentioned that IQ links typically have “bursty” 

characteristics where link failures are temporal and will also become temporarily 

reliable after receiving a number of consecutive packets over the same link. 

Therefore, BRE employs a Short-Term Link Estimation (STLE) mechanism to 

determine if IQ links are bursty and reuse these links when they are stable, instead of 

re-routing. Doing so helps to preserve the stability of the network topology. By 

preventing unnecessary route changes, BRE is said to reduce total overhead over 

traditional routing by 19% and reduce transmission costs by 40%. In another work, 

Cerpa et al. [61] tackled the high temporal characteristics of a low-power 

communication in indoor WSN deployments with Required Number of Packet 

protocol (RNP). RNP is the average number of packets sent before the receiver 

receives a packet. RNP is said to be a better measure of link quality than PRR as it 

takes into account the underlying distribution of losses. For example, a longer period 

of zero PRR can incur higher RNP values than a shorter period of zero PRR. 

Although a BRE and RNP implemented nodes can identify the temporal 

characteristics of link failures, they have not explored identifying the causes of link 

failures and bottlenecks in the network.  

2.2.2 Link	Quality	Assessment	using	Cross	Layer	Parameters		

A failure detection mechanism belonging to a specific layer of a protocol stack should 

not be representative if it does not consider the responses from other layers [31]. For 

example, a link failure could be potentially attributed to either poor time 

synchronisation characteristic of MAC layer or poor end-to-end connectivity 

characteristic of the routing layer. The use of information from multiple layers such as 

cross-layer parameters can provide more details about the quality of a link.  

Four-Bit estimator (4B) proposed in [62], is a cross-layer link quality metric that takes 

into account of four different link properties. These properties include the probability 

of decoding error during packet reception at the link layer, relative importance of a 

link by comparing among the neighbours at the network layer, and confirmation of 

incoming and outgoing reception through acknowledgement at the physical layer. It is 

said that the network layer parameters allow relative links comparison with 

neighbouring nodes, while physical and link layer parameters are more efficient at 
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estimating the quality of a link at reception. The performance of 4B was then 

evaluated with Collection Tree Protocol (CTP), which built and maintained a tree 

network. It is found that a 4B-based CTP produced a better performance in terms of 

packet delivery than a CTP that uses Estimated number of Transmission (ETX). 

Through simulation, 4B nodes favoured shorter communication distance between 

nodes. This is because a shorter communication distance is reasoned to have better 

quality due to better link budget and lesser chances of link asymmetry at the link 

layer. As such, the depth counts of routing paths in the network increased and the 

overall number of retransmissions reduced.  

In a similar work, Baccour et al. [35] presented Fuzzy-Link Quality Estimator (F-

LQE) that also combined four link properties found in a WSN. F-LQE combined the 

coefficient of variation of PRR indicating the stability of a link over time, Signal to 

Noise Ratio (SNR) used to differentiate a bad and good quality channel, Window 

Mean with Exponential Weightage Moving Average technique [63] to measure data 

throughput overtime, and the PRR difference between uplink and downlink for link 

asymmetry measure. Baccour et al. highlighted that WSN communication channel 

quality is usually assessed with functions of imprecisely measured channel properties 

such as a link quality threshold of 0.95 packet delivery. Unlike classical logic, Fuzzy 

logic is used to deal with imprecise information, providing approximate truth of a 

proposition based on linguistic variables and inference rules. For instance, a channel 

can be unstable, stable, and highly stable. Using cross-layer information and linguistic 

representation of link quality assessment, F-LQE nodes are tested extensively in an 

outdoor simulated experiment and have demonstrated superior network performance 

by avoiding the use of unstable links and noisy channels. 

2.2.3 Generalisation	of	Links	Failures	as	a	Single	Entity	

It is common for link quality assessment to generalise all causes of link failures as a 

single entity. For instance, WRE nodes [58] assumed all causes of link failure affect 

nodes regionally, and ILTP nodes [60] assumed all network challenges impact WSN 

through packet losses. In F-LQE [35] and 4B [62], multiple link properties are 

characterised and used as measures to distinguish “good” links from “poor” links. For 

example, by measuring a link’s temporal characteristic and both uplink and downlink 

reception qualities, a link can be determined as “good” if it is stable and do not 
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experience link asymmetry. While the ability to identify link failure is important, it is 

equally critical to differentiate the causes of link failures. This is to say that the ability 

to measure channel noise is not the same as identifying channel noise caused by inter-

network collision or inter-network congestion. While both inter-network collision and 

inter-network congestion cause packet losses and noisy channels, they require 

different methods to overcome them. Network congestions should be tackled with 

traffic re-routing at the routing layer, while collision can be overcome with a more 

precise transmission synchronisation at the MAC layer (refer to Section 2.3.3). In this 

case, simply generalising link quality as “good, intermediate or bad” does not provide 

sufficient information for WSN optimisation protocol to execute optimally [27, 34, 

35]. 

The environment in which the WSN is deployed in is often dynamic and the impact 

on WSN communication reliability varies according to the types of network 

challenges. Due to the complex nature of the transmission medium, the ability to 

characterise link quality precisely is challenging where optimisation protocols have 

shown to exhibit unpredicted behaviour. For instance, network flooding can result in 

non-uniform data propagation where packets are relayed further in different directions 

[15]. This is because at the initial stage of flooding (i.e. network broadcast), packet 

collisions are more common due to a sudden surge of broadcasted packets. The 

inability to detect and prevent increasing asymmetrical communications from packet 

collisions has led to some packets travelling further than others. In this example, a 

small imperfection has manifested in ways not tested in the simulation. Furthermore, 

the optimisation protocol is often designed to overcome network challenges without 

the need for human intervention. When ineffective methods are executed in attempt to 

overcome persistent network challenges, the lack of link failures notification can pose 

as a bottleneck to WSN communication reliability. This means that a protocol may 

opt for unwarranted re-routing to compensate of frequent link failures along routing 

paths, leading to excessive energy consumption. Therefore, it is critical for link 

quality assessment to assess the happenings in the environment and to identify the 

cause of link failure accurately. Doing so allows the upper layers of the optimisation 

protocol to decide on the appropriate solution to mitigate the source of failures and 

improve overall network reliability. 
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2.3 Wireless Sensor Network Link Failures and Existing 

Detection Models 

In Section 2.2, identifying the causes of link failures is explained as essential for the 

optimisation protocol to function effectively. WSN, being deployed within a dynamic 

environment may render it difficult to pinpoint the exact causes of link failures. 

Therefore, in this section, the commonly found network challenges, pertaining to 

WSN communication reliability are discussed. 

2.3.1 Imperfect	System	and	Operating	Conditions	

WSN and its operating conditions are imperfect. These imperfections include but not 

limited to, irregular antenna propagation, mismatching of hardware characteristics and 

even environmental factors such as temperature and humidity conditions [15, 30, 64, 

65]. They are known to degrade the assessment of link quality between 

communicating nodes and are often accounted as probabilistic variables and random 

factors during modelling [59, 66, 67, 68].  

1. Energy depleted wireless sensor nodes 

To minimise the overall hardware size and built cost, wireless sensor nodes are often 

equipped with batteries of small capacity. Batteries replacement in a remote 

environment and for a large network size is impractical. As such, energy efficiency is 

seen as one of the primary design goals in a battery-powered WSN. The wireless 

transceiver is the primary energy consumer in a wireless sensor node [54]. The design 

of an optimisation protocol should avoid excessive usage of transceiver such as 

prolonged idle listening where a node listens to a channel for packets that are intended 

for it or other nodes, and excessive control-packet overhead where a node transmits 

packets aggressively to maintain a network.  

On the contrary, in order for a WSN to be precise, responsive and reliable, additional 

monitoring activities involving active transceivers are often required. These activities 

include continuous monitoring of the channels and additional control packets for 

robust communication, both of which are conflicting goals with minimising the 

consumption of energy [69, 70]. Therefore, the choice of optimisation protocol must 
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balance both the reliability of data transfer and the associated energy consumption.  

Uneven energy depletion is often caused by limited routing options in the network, 

which can lead to early death of energy depleted relay node and even network 

partition [55, 55]. For example, the early death of node forces affected nodes to take 

alternate routes. This phenomenon is often referred to as network routing hole or 

coverage hole as shown in Figure 2.2. The energy-depleted node denoted in orange 

circle leaves a region in the network with no routing option or no sensing coverage 

[55, 71]. The solid arrows in Figure 2.2 illustrate the original routing paths between 

the routers and coordinator, as denoted as red circles and yellow triangle respectively. 

The dashed arrows show the effect of a routing hole leading to a reconfiguration of 

routing paths of the affected routers. It is noted that a routing hole may not always 

associate with energy-depleted nodes. In [72], nodes in the same region can be 

shadowed by large physical obstacles, or affected by frequency jamming, leaving 

affected nodes unreachable. 

 

Figure 2.2. Network routing hole – An energy depleted router leaving a routing hole 

in the network, forcing previously connected routers to take a different and often 

longer route towards the coordinator. 

WSN nodes usually do not have the information of the energy consumption rates or 

energy residual of neighbouring nodes. The lack of awareness of unreachable energy 

depleted nodes triggers persistent retransmissions or network probing if an alternate 

route towards the destination node is unavailable. Detection of routing or coverage 
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holes is important so that affected nodes can modify their tasks dynamically, 

according to the energy consumed and estimation of the network lifetime. Energy 

depleted node arise as a node-level symptom where only the affected node stops 

transmitting data. A distributed detection of node anomalies can be highly effective 

[73]. For instance, periodic “keep-alive” broadcast is a common mechanism in 

ZigBee PRO standard [40] used to inform neighbouring nodes that a node is still 

“alive” and available.  

Minimising individual sensor nodes’ energy consumption does not guarantee 

maximising a network’s overall lifetime [74]. To exploit maximum network residual 

energy, a fair energy consumption of nodes across the network should be prioritised. 

Low Energy Adaptive Clustering Hierarchy (LEACH) [74, 75, 76] techniques are 

known to prolong the lifetime of the network by distributing the energy consumption 

among nodes in clusters. LEACH protocols require all the nodes to share their energy 

status among neighbouring nodes, including the estimation of the network lifetime 

based on energy consumption rates. Sharing of this information allows the cluster 

heads to be rotated based on the remaining energy of the nodes within each cluster. 

Since a cluster head consumes more energy from longer channel listening and data 

aggregations, an even consumption of energy among sensor nodes is achieved from 

rotations.  

Duty cycling [77, 78, 79, 80] is another common mechanism known to minimise the 

energy consumption of individual sensor nodes. This is done via synchronising and 

scheduling nodes’ sleep and wake cycles. Nodes implemented with energy efficient 

duty cycling protocol are allowed to enter low-power sleep mode whenever possible 

and activate their transceivers only when data packets are ready to be transmitted or 

received. The packet transmission or receive time-slots are allocated by a centralised 

device for a reliable data exchange and to avoid potential packet collision between 

devices within the shared frequency spectrum.  

2. Wireless communication temporal characteristic 

The temporal characteristic of a wireless communication is referred as the quality of 

transmitted signals between two devices that varies with time. Temporal characteristic 

is often explained with the dynamics of the operating environments, such as noise 
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level, multipath signals, moving terminals, and human bodies [81, 82]. Due to the 

impracticality of accounting for all entities in a deployed environment, temporal effect 

is often observed to be random and referred to as varying probability in path loss 

models [66, 83]. For instance, the variation in received signal strength between 

communicating nodes in the lognormal shadowing technique, used to predict signal 

path loss, is accounted as a Gaussian variable, as shown in Equation 2.3. 

Different performance metrics have different temporal characteristics. For example, 

Srinivasan et al. [66] has found that when measuring the quality of received packets 

between two nodes, the Link Quality Indicator (LQI) metric varied more than 

Received Signal Strength Indication (RSSI). LQI provides an additional indicator 

about the received signals’ chip error rate, while RSSI has a smaller operating range, 

making it less sensitive to PRR variation. In particular, when nodes operate near the 

sensitivity edge of a receiver at less than -87 dBm, PRR enters a grey transition 

region. In this transition region, PRR varies radically from 0 to 100% where local 

noise level is said to be a contributing factor on top of poor signal reception. Zuniga 

and Krishnamachari [84] have also found that the temporal effect has a direct impact 

on a node’s packet delivery performance, both constructively and destructively. This 

is to say that a link of poor quality between communicating devices may fluctuate 

between transitional and disconnected zones, making accurate link quality assessment 

a difficult task. It is concluded that this variance in PRR is not affected by factors 

such as modulation, encoding, output power, and frame size. Rather, it is explained by 

the severity of multipath effects from the environment [84]. To better assess the 

quality of a link, a transitional coefficient is introduced to estimate the size of the 

transitional region (amount of poor links) for different environments. The smaller the 

transitional coefficient, the better the RSSI metric can be translated to PRR.  

The temporal characteristic of a link failure is sometimes regarded as a random 

phenomenon. Unless the quality of network is severely at risk, temporal solutions are 

implemented to avoid drastic compensation by the optimisation protocol [11, 25, 61]. 

For instance, upon identifying a highly temporal failure (bursty link), an aggressive 

backoff technique is employed to delay retransmission [25]. Since link failures on a 

bursty link are temporal, retransmission after backoffs has been shown to improve the 

packet delivery success rate. Srinivasan et al. [25] identified bursty links with β 
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factor, calculated using Conditional Probability Distribution Functions (CDFs). β 

determines the probability that the next packet will be received after n consecutive 

successes or failures. In another work, Authors in [10] developed STLE to identify 

bursty links and suggested to use these links when they are stable. By avoiding the 

need for re-routing, the STLE reduced the total overhead by 19% as compared to 

traditional routing. STLE determines the temporal characteristics of a neighbour’s 

link by overhearing consecutive packets sent from a sender-node and deriving the 

probability of successful delivery based on the packet sequence number and failed 

acknowledgments. 

In [85], a Tree-based Multi-Channel Protocol (TMCP) is designed to measure noise in 

multiple industrial environments. TMCP models noise with parameters from different 

layers – channel detection, channel assignment and data communication. Despite the 

use of cross layer parameters, a static TMCP is still insufficient to take into account 

the varying noise in all industrial environment. Therefore, the use dynamic channel 

allocation mechanism is suggested where channels are monitored dynamically over 

time.  

3. Hardware imperfections 

Hardware imperfections issues are rooted at a single node and can manifest as a bias 

or a drift throughout the lifetime of a node [86]. These imperfections are for example, 

different battery statuses and hardware calibration mismatches between nodes leading 

to non-isotropic propagation.  

The phenomenon of radio propagation irregularities is commonly referred as 

manufacturing hardware dissimilarities [59, 68]. Manufacturing hardware-related 

factors include differences in hardware calibration and nodes not having the same 

antenna gain along all directions. Signal propagation is often mistaken to be uniform 

across all directions in an isotropic manner. However, evidence in the literature shows 

that irregularity in propagation must be expected [15, 59, 63]. Non-isotropic radio 

propagation refers to the variation of transmission signal quality with different 

propagation directions. This effect was demonstrated to be non-repeatable under an 

uncontrolled environment and is associated with the transitional region due to a high 

variance in reception rates and asymmetric connectivity between nodes [84]. 
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Even different battery statuses can introduce varying transmission power. Zhou et al. 

[59] experimented wireless communication between nodes of different battery 

statuses. It was observed that different battery statuses on the same sender node 

produce different transmission power where the receiver node received packets of 

different signal strength. Similar observations were made when different sender 

nodes, equipped with the same battery, produced packets of different signal strengths 

when received on the same receiver node. This is classified as a radio heterogeneity 

property, where different hardware calibration and battery statuses can lead to 

different signal transmission powers.  

Detection of hardware issues can be challenging as the error in reported value can be 

mistaken for other forms of network challenges [73]. The impact of non-isotropic 

radio propagation due to hardware imperfection on the performance of upper-layer 

protocols has demanded a need for realistic WSN propagation models. Therefore, the 

effective radiated power (peak power) that an isotropic antenna can emit is modelled 

using the Radio Irregularity Model (RIM) [68]. RIM takes into account the random 

variance in transmission power that varies with the degree of directional propagation. 

RIM also considers the impact of different battery statuses on signal strength. During 

simulation, nodes configured to communicate under RIM settings were found to have 

frequent signal coverage mismatches, which had further led to asymmetrical links and 

hidden terminal issues.  

4. Severe environmental temperature change 

The environmental temperature in which WSN is exposed to vary with different 

deployed environments such as industrial plant, cold room, and data centre. Severe 

temperature change is observed to degrade wireless link quality estimators 

considerably, such as the RSSI [87, 88, 89]. At temperatures ranging from 13 °C to 37 

°C, RSSI was seen to have a linear decrement of 1.3 dBm with every increase in 10 

°C [88]. Boano et al. [87] has also found a non-negligible impact of temperature on 

different radio chips, where the RSSI measured on CC2420 radio chip and Scatterweb 

Modular Sensor Boards dropped over 9 dBm and 6 dBm respectively when the 

temperature increased from -10 °C to 50 °C.  

The effect of temperature also differs for the receiver and sender nodes. As the 
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temperature increased from 25 °C to 65 °C, authors in [89] observed that the sender 

node’s output power decreased by 5 dBm, while the measured input power on the 

receiver node decreased by only 3 dBm. The reason for the change in temperature 

affecting the assessment of link quality is explained not as a malfunction of the RSSI 

measuring circuitry, but rather a decrease in ability of low-power radio to demodulate 

signals. It is said that the efficiency of the low noise amplifier stage 2 in a CMOS 

receiver drops. Due to the inconsistency of RSSI readings at different temperature 

fluctuation scenarios, RSSI-based protocols do not perform well. Therefore, Luomala 

and Hakala [88] suggested the use of frequency diversity instead of a single 

communication channel for a more accurate RSSI estimation. It is recommended to 

take temperature into account when deciding the transmission power used. For 

instance, 20% less transmission power is recommended for night operations where 

environmental temperature is expected to drop. 

Quartz crystal’s resonant frequency is also affected by the effect of changing 

environmental temperature [90]. Quartz crystal within a sensor node serves as a clock 

feature used mainly for time synchronisation activities. It was demonstrated that the 

change in operating temperature can cause more than 100-ppm difference on the 

crystal oscillator frequency over time [90]. This clock drift impacts nodes in multiple 

ways including the accuracy of time stamps produced, sleep and wake schedules of 

duty-cycle nodes, as well as transmission synchronisation between communicating 

nodes. The effects of temperature variations on WSN protocols are examined in 

TempLab [91]. Boano et al. found that the key bottleneck nodes failed at high 

operating temperature, leading to increasing end-to-end packet latencies and even 

network partitions (i.e. routing holes). Environmental noise was also measured to be 

higher when temperature increased, which had led to the following two phenomena. 

Firstly, link quality assessments on heated nodes were perceived as “weaker” due to 

elevated noise in the channel. Secondly, the number of packet losses had increased 

due to increasing Clear Channel Assessment (CCA) failures, where communication 

channel was occupied or noisy.   

Overall, most electronic devices are designed with an optimal temperature operational 

range [91]. It is common for WSN protocols to assume that the operating temperature 

is static, and any link failures to be non-temperature-related. However, existing 
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researches have shown that the temperature effects on WSN operations should not be 

overlooked, and the role of temperature when assessing link quality should be taken 

into consideration, in particular for WSN operating under extreme temperature 

conditions. 

2.3.2 Spatial	Network	Challenges	

When a node transmits a packet, the radio signals can travel over multiple different 

propagation paths dictated by the physical entities within the WSN deployed 

environment. These signals experience path loss depending on the propagation paths 

taken. Path loss refers to the decrease in the power density of electromagnetic waves 

according to the power law function of the distance between the communicating 

nodes. Particularly in an indoor environment, spatial challenges can alter a signal 

propagation path, introducing greater path loss and affecting the assessment of link 

quality. These challenges include, but are not limited to Line-Of-Sight (LOS) or Non-

LOS (NLOS) communication, distance communication between nodes, and static and 

mobile physical attenuators.  

Propagation loss models are commonly used in the literature to estimate the reduction 

of power density of a transmitted electromagnetic wave as it propagates through space. 

The following path loss models are designed to take into account different power 

degradation levels caused by the respective spatial challenges.  

1. Free space propagation loss 

The Free-Space Propagation Loss (FSPL) model is shown in Equation 2.1. FSPL 

measures the attenuation of signal power between two antennas with the conditions of 

LOS communication within a free space, no hardware imperfection and effects of 

antenna gains. This model employs the exponential path loss degradation concept 

with separation distance d between transmitter and receiver, and operating frequency 

f. Due to the lack of accounting realistic entities such as terrains, reflectors within the 

deployed environment, the application of FSPL for general application is impractical. 

Rather, FSPL is usually only implemented as a basis for propagation situation and as 

a first approximation for link budgeting. 
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𝐹𝑆𝑃𝐿 𝑑 = 20𝑙𝑜𝑔!" 𝑑 + 20𝑙𝑜𝑔!" 𝑓 + 92.45 (2.1) 

where f is the operating frequency measured in units of GHz, and d is the separation 

distance between transceivers in km. 

2. Shadowing effect 

Log Normal Shadowing (LNS) is a widely accepted empirical model that estimates 

the generic path loss encountered over a distance in multiple environments. As shown 

in Equation 2.2, LNS consists of components rooted from theoretical FSPL model in 

Equation 2.1, which assumes exponential path loss with separation distance between 

transmitter and receiver. The inclusion of path loss exponent n allows LNS to be 

modified for different environments (refer to Table 2.1). On the other hand, zero-

mean Gaussian distributed random variable 𝑋! allows LNS to generically estimate the 

path loss of nodes in the same test bed. This means that nodes deployed in the same 

region are expected to experience path losses of similar range. 

𝑃𝐿 𝑑 = 𝑃𝐿 𝑑! + 10𝑛𝑙𝑜𝑔!"
𝑑
𝑑!

+ 𝑋! (2.2) 

where d is the separation distance between transceivers, d0 is the reference distance, 

PL(d0) is the measured reference path loss from the test bed, n is the path loss 

exponent depending on the operating environment, and 𝑋! is Gaussian variable based 

on the level of shadowing effect. Generally, d0 should be in the far field of the 

transmitter so that the near-field effects do not alter PL(d0).  

𝑋!  accounts for the shadowing effect from the environment in decibel (dB). 

Shadowing involves average large-scale probabilistic attenuation on received signals 

due to factors such as the direct obstruction of propagation path between 

communicating objects and multipath. In a situation where there is no shadowing 

effect, variable 𝑋!  is zero. Site-specific values n and 𝑋!  are determined from the 

empirical data. 

Path loss exponent n, presented in Table 2.1 [92], varies depending on the 

environment conditions of signal propagation. The rule of thumb for path loss 
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exponent is 2 denoting free space and greater exponent for a denser environment [30, 

92]. Determination of path loss exponent requires extensive channel measurement and 

modelling of the same environment by sampling both RSSI and distance between 

devices. A deterministic path loss exponent is usually limited to specific deployments. 

For instance, a path loss exponent in an indoor office environment is different from an 

indoor industrial environment [85, 93, 94].  

Table 2.1 Path loss exponent for different WSN operating environments [92]. 

WSN operating environment Path loss exponent n 

Free space 2 

Urban area cellular radio 2.7 to 3.5 

Shadowed urban cellular radio 3 to 5 

In building line-of-sight 1.6 to 1.8 

Obstructed in buildings 4 to 6 

Obstructed in factories 2 to 3 

 

LNS model is used to estimate the signal strength of a received signal [95, 96, 77]. 

The relationship between path loss exponents and reference distances on long distance 

communication between GSM base-stations is investigated in [95]. Path loss 

exponents are calculated using least squares method where reference distances varied 

from 65 to 1560 meters. It is demonstrated that the path loss exponents reduce with 

increasing reference distance. This is because longer reference distance is less likely 

to be affected by near-field obstruction. In addition, the influence of a reference 

distance on path loss exponent weakens if the transceiver’s antenna height increases. 

This is because there is lesser near-field obstruction on signal propagation with the 

use of a taller antenna. This phenomenon is also observed in [97, 98]. In other words, 

a higher antenna generally requires a smaller path loss exponent and the reference 

distance should always be in the far field of the antenna such that the near-field 

effects have less impact on the reference path loss.  

Experimental path loss modelling for outdoor empty plaza, straight sidewalk, and 
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open grass field at 2.4 GHz is performed in [97]. It is concluded that a two-slope 

lognormal model is preferred over a one-slope model to account for the different 

signal degradation in different test sites. Similar observations are made in [99, 100] 

where two-slope log-distance models are superior in terms of the path loss estimation 

and applicability for wireless channel modelling. In particular, transmission at a low 

height is affected by environmental dynamics such as the irregular reflection, 

absorption, and scattering effects from crops.  

Marinda et al. [93] conducted a LOS path loss approximation experiment on 

communicating nodes in an indoor environment. She found that depending on the 

communication channels, the measured signal strength fluctuates from 11 dB to 14 dB 

between static nodes. This range increased from 14 dB to 18 dB when conducted in an 

indoor industrial environment. The variation of received signal strength is explained 

with the real-world environmental factors like noise floor, radio interference and 

physical obstructions. Larger physical obstacles for example, in an industrial 

environment setting create higher signal attenuation and deeper deviation effects on 

received signals [85]. This phenomenon of substantial deviation of signal strength is 

referred to as the shadowing effect.  

Tsai [101] examined the impact of the shadowing effects on the WSN sensing 

coverage and found that the sensing radius of a node is non-uniform. This is because 

the transmitted signals corresponded to different propagation paths at different 

directions and suffered dissimilar amounts of shadowing loss. An increase in 

shadowing effect by 2 dB was found to degrade sensing coverage by 10%. 

Furthermore, a node experiencing 8 dB 𝑋!  will only perform at 66% of its full 

sensing coverage capability. As such, if a specific sensing coverage is desired, an 

increase in the number of nodes in the network is recommended. 

3. Multipath fading 

Similar to a shadowing effect, multipath fading is a spatial-related phenomenon that 

causes signal attenuation and deviation [30, 102, 103]. Puccinelli and Haenggi [30] 

conducted an experiment between two communicating nodes deployed in a room with 

no external disturbances. It was found that the RSSI measured did not fluctuate over 

time. Rather, RSSI only fluctuates when the entities in the deployed environment 
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were moved. The multipath fading level was uniquely determined by the topology of 

the deployed environment and was deterministic under static conditions without 

external interference. The change in environment had led to the change in multipath 

effect, where transmitted packets travel through different propagation paths depending 

on the transmitters’ positions relative to the receiver.  

The following factors are known to alter a propagation path: 

1. Reflection – The phenomenon that occurs when a radio signal meets an 

obstacle surface and the angle of incidence is equal to the angle of reflection. 

Signal power is lost through absorption of the surface. Highly reflective 

surfaces include wet surfaces, metallic objects and mirrors. 

2. Refraction – The phenomenon that occurs when a radio signal passes through 

an obstacle surface, causing a change in its direction and speed. Signal power 

is lost from reflection off the medium surface and absorption from the 

medium. The refraction level depends on the change of speed and angle of 

radio signal, which varies with the material of the medium. 

3. Diffraction – The phenomenon that occurs when a radio signal meets an 

obstacle and travels around it. Diffraction loss is higher when the radio signal 

meets a sharp edged corner, and lower on smoother spherical surfaces. 

 

 

Figure 2.3. Simplified 2D multipath effects in an indoor environment. 

Particularly in an indoor environment, every physical entity acts as a potential radio 

signal reflector. As a result, a node receives multiple copies of the transmitted signal 
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that are reflected off different parts of the environment [30, 65]. Figure 2.3 illustrates 

a simplified 2D multipath effect of a transmitted packet travelling along multiple 

propagation paths in an indoor environment. The transmission distance of reflected 

paths are longer than the direct LOS/NLOS path, thus causing the reflected signals to 

be weaker due to path loss, and are delayed by several nanoseconds. This delay in 

reception produces finer variance of channel impulse within the reception symbol 

duration due to the small coherence time of the channel relative to the application 

requirement. This phenomenon is referred to as short-term fading or fast fading [65, 

104]. 

Mobile attenuators such as human bodies in the real-world environment are common. 

The multipath-fading phenomenon exhibits a linear dependency with increasing 

human density, while shadowing (long-term fading) is a direct consequence of human 

presence [41]. Authors in [81] measured the fading levels of communicating nodes 

under the presence of human movements and concluded that the movement of human 

bodies do not obstruct LOS as much as NLOS communication. Under NLOS 

conditions, fading levels ranges from 15 to 25 dB, while in LOS conditions, the range 

of fading levels reduced from 4 to 11 dB. The higher fading level under NLOS 

conditions is explained with the rarely completely shadowed dominant ray of LOS 

signal propagation.  

Han and Abu-Ghazaleh [104] investigated the effects of fading level on IEEE 802.11 

standard’s optimisation protocol that overcomes link failures with increasing channel 

backoffs. Typically, the CCA at the MAC layer assumes that the link failures are 

caused by channel contention (i.e. simultaneous transmission by neighbouring nodes). 

However, this assumption is not true in distributed wireless network. The packet 

losses due to fading have led to an increase in backoff timer even without 

experiencing packet collisions. This creates unfairness in sharing of wireless medium, 

where the affected nodes are slower to compete for channels due to the increased in 

backoff duration. Hence to address this issue, a backoff algorithm that can 

discriminate between collisions and transmission losses due to fading is 

recommended. The phenomenon of multipath is also experienced differently on 

different channels [65, 105]. The estimation of distance can be misplaced by up to 20 

meters between the best and the worse channel, in particular long-distance 
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communication [105]. In order to minimise the influence of fading levels on the 

measured signal power, measuring signal quality on multiple channels is also 

suggested to provide better link quality assessments. 

Lognormal path loss models are superior over deterministic models (i.e. Rayleigh and 

Nakagami) due to their generality [106]. However, despite their popularity, they are 

not optimised for a dynamic environment. Lognormal path loss models rely on 

distance-based estimation, which can be affected by environmental changes such as 

seasonal and temperature change [96]. The need to measure the probability 

distribution of inter-sensor distance is also unrealistic to be obtained in real-world 

applications. Furthermore, such techniques do not take into consideration the three-

dimension nature of a WSN deployment; nodes deployed at different heights and 

orientations will experience different path loss to distance relationships. It is to note 

that the lognormal path loss models in [85, 97, 99] are modelled for point-to-point 

communications, which is not representative for the entire deployment ground. This is 

to say when nodes are deployed in regions of the deployment ground that are 

subjected to different environmental dynamics, re-calibration of models is necessary. 

Fading effect cannot be deterministically calculated unless the local positions of the 

communicating nodes, the geometry of the deployed environment, and the movements 

of mobile attenuators are known at all times. In reality, accounting for all these factors 

is impractical. Probabilistic approach such as LNS is therefore useful for tractability 

and link quality estimation. A node is typically unaware of the impact of fading level 

only until a link failure occurs or if the information about the received signals 

qualities is shared among neighbouring nodes. Furthermore, the effect of fading can 

also be mistaken as non-spatial network challenges, such as signal quality variation 

from a change in communication channel [30, 65, 105], or the constructive and 

destructive distortion during reception from concurrent transmissions [12]. Therefore, 

a node that has no knowledge of the spatial network challenges in its deployed 

environment may experience persistent degradation in communication reliability, 

particularly in an indoor environment.  

2.3.3 Inter-WSN	Interference	

The complicated routing and reporting structures of a distributed wireless network 
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and the lack of centralised routing control render it hard for an optimisation protocol 

to predict traffic intersection points as well as concurrent transmissions. A dense 

arrangement of wireless sensor nodes without precise synchronisation for spectrum 

sharing can lead to inter-WSN interference. In this section, inter-WSN interferences 

are explained in terms of contention-based and congestion-based link failures. 

1. Contention-based link failures  

Contention-based link failures are referred to as packet losses caused by simultaneous 

transmissions from nodes within neighbouring range. The receiver node unknowingly 

receives and demodulates more than one packet at a time, resulting in packet 

corruption and subsequently discarded packets. Whitehouse et al. [107] suggested that 

a packet collision can be detected through a continuing search for a new preamble 

during packet reception. A collision is confirmed if a second preamble is identified 

during the reception of the first packet. However, to perform this technique would 

require the data layer to anticipate and compare the preamble of the second packet. 

Contention to communicate in the shared spectrum usually occurs on a first come, 

first served basis. To avoid simultaneous transmissions, transmission synchronisation 

at the MAC layer, known as duty cycling, is commonly implemented. Nodes 

implemented with duty cycling protocol possessed the ability to access the channel, 

where it transmits only at a dedicated channel access periods (time-slots). Doing so 

minimises packet collisions and optimises nodes’ sleep and wake operations for 

energy saving purposes [77, 78, 80 108, 109, 110].  

There are two common types of duty cycling protocols. They are based on Carrier-

Sense Multiple Access - Carrier Avoidance (CSMA-CA) and Time - Division 

Multiple Access (TDMA) technique. In the CSMA-CA (slotted) mode, beacons used 

to synchronise nodes are transmitted periodically. The period bounded by the 

beacons, called Superframe, is divided into 16 time-slots. These time-slots are 

grouped into Contention Access Period (CAP), Contention Free Period (CFP), and 

Inactive Period (IP). When the nodes need to transmit their data, they have to compete 

for the channel access during CAP. Prioritised nodes can request for guaranteed time-

slot for transmission during CFP. All devices can put to sleep during the IP. A 

Optionally, Request to Send (RTS) and Clear to Send (CTS) messages are exchanged 
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to further mediate access to the shared spectrum. On the other hand, in TDMA mode, 

the time frame is divided into a fixed number of time-slots. Every time-slot is 

allocated for individual node to transmit only at a specific time, preventing concurrent 

transmissions. When nodes are not required to transmit, their radio interfaces can be 

switched down for power saving. Global synchronisation of TDMA mode among all 

nodes is possible if there is sufficient time frame length to be allocated. However, this 

would require the use of maximum time-slots throughout the network, and may 

introduce transmission latency. Synchronisation of time frame among nodes in the 

same region is a challenging task, as spatial reuse of a time-slot is possible. This is to 

say that a node outside of another’s radio range can still transmit at the same time-slot 

if scheduled by different systems. This is known as the hidden terminal problem 

[110].  

CSMA-CA and TDMA protocols also introduce non-negligible overheads required to 

organise spectrum sharing among nodes. These overheads involve specifying nodes’ 

sleep and wake cycles, and dedicating transmitter-initiated (RTS) and receiver-

initiated (CTS) roles [77]. Woo and Culler [108] highlighted that spectrum 

synchronisation packets constitute a significant overhead and should be implemented 

only when the media contention level is high. For example, additional 

Acknowledgement (ACK) packets may not be necessary if the sender node overheard 

the transmission of the same packet by the receiver, which implies that the receiver 

has already received and forwarded the packet. In network implemented using 

CSMA-CA (slotted) mode, seeking for channel access permissions may degrade 

channel utilisation if there are increasing number of nodes. Furthermore, the constant 

probing of channel and exchange of control packets may escalate energy consumption 

if not implemented optimally. 

The effectiveness of collision avoidance depends on the location of the interferer from 

the source node. Han and Abu-Ghazaleh [104] demonstrated that as long as the 

measured signal power of the potential interferer at the sender node is above the 

carrier sense threshold, packet collision can be avoided. However, Whitehouse et al. 

[107] explained that the use of technique such as CSMA-CA, TDMA, RTS/CTS and 

ACKs are often assumed to be symmetrical. In practice this is not always true. Han 

and Abu-Ghazaleh [104] also highlighted that the additional RTS and CTS on top of 
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CSMA do not necessarily reduce packet collisions more than CSMA. Four successive 

transmissions (RTS, CTS, data and ACK) are more likely to fail compared to only 

data and ACK. However, upon link failures, the use of RTS and CTS loses only 

control packets while CSMA loses the data packet.  

2. Congestion-based link failures 

Congestion-based link failures are referred to as buffer overflow triggered by the 

inability to handle higher than expected network traffic. Buffers are blocks of memory 

set aside within a programme to hold data. When the buffer size is smaller than the 

data a programme attempts to write into, system congestion and memory access errors 

can occur [111, 112, 113]. As parts of the memory have to be reserved for processing 

the sensed data and maintaining network information, the remaining buffer for 

withholding of packets is limited. Limiting buffer size improves end-to-end packet 

latency while traveling on multi-hop routes. However, this may restrict the 

capabilities of the WSN application and protocol to handle high network loads [113, 

114]. 

The detection of buffer congestion can be measured with abnormal packet losses, 

increasing length of buffer queue, overloading of channel noise, scheduling time, and 

packet delay [112]. The selection of congestion detection mechanism is dependent on 

the application and routing method implemented. For instance, a network operating in 

an industrial environment is expected to have high noise level [85]. As such, to detect 

network congestion with elevated channel noise may not be suitable.  

A node may stick to one routing path consistently that it perceives to have the best 

quality such as the shortest routing path. Without prior knowledge of network traffic 

flow, imbalance-merging load at network intersection points can cause packet 

congestions [112]. If not promptly managed, stubborn congestion can further 

introduce more packets in the region due to persistent retransmissions. In this case, 

the traffic diversion technique to alternative paths is recommended to prevent 

congestions of packets in specific network regions [115]. Kang et al. [116] introduced 

Topology Aware Resource Adaptation (TARA) protocol to alleviate traffic 

congestions at network intersection points. It was pointed out that a fully utilised 

buffer space does not always translate to congestion and hence, TARA also measures 
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channel loading to detect elevated noise that may be caused by potential interferers. In 

TARA, an alternate path is generated between the distributor and the merger nodes. 

When congestion is detected, traffic is diverted through the distributor node along the 

alternate route and eventually merged at the merger node.  

Network traffic estimation is as important as the reactiveness of the traffic diversion 

technique [115]. Traffic control strategies such as additive increase and multiplicative 

decrease of regional packets are often not efficient and reactive enough to resolve 

congestion issues. Combining network traffic estimation with traffic diversion 

technique is necessary to avoid congestions at all. The estimation of traffic is based on 

the affected nodes’ buffer capacities as well as the number of packets expected at the 

interaction points. Upon expecting high network traffic, affected nodes are prompted 

in advance to divert their traffic to an alternative route or drop packets along the 

congested paths even before data is lost.  

The potential inter-WSN congestions can be minimised with the reduction of network 

traffic using data aggregation technique. In data aggregation implemented protocol, a 

node combines data coming from different sources before forwarding the packet, 

thereby reduces the packets being transmitted [117, 118]. The number of traffic 

reduced depends on the number of clusters and the number of nodes in each cluster. 

The representative node (i.e. the clusters head) combines the received data from nodes 

in its clusters into a single packet, avoiding the need to forward all packets to the 

subsequent next hop. Data aggregation may also involve data fusion where sensory 

data are combined to produce a new but more accurate signal. By reducing the 

number of transmission, energy consumption is also minimised. This is provided that 

the energy consumed for data aggregation is less than the energy consumed for the 

transmission process. It is noted that data aggregation techniques do not take into 

account the impact of lossy links in real-world deployment. By grouping nodes into 

clusters, it fixates the parent and children relationships within the network and the 

limiting routing paths options between nodes. Any poor link in the network may 

become a bottleneck for all nodes in the lower depth of the network. 

Overall, the organisation of spectrum usage to minimise inter-WSN interference 

requires an efficient use of existing information. This includes the estimation of the 

network traffic based on the application type, knowledge about the neighbouring 
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nodes’ traffic flow to anticipate inter-WSN interference, and the ability to distinguish 

inter-WSN interference from other network challenges.  

2.3.4 Wi-Fi	Interference	

Wi-Fi devices (IEEE 802.11) are commonly known to interfere the communication 

reliability of WSN nodes (IEEE 802.15.4) [36, 45, 46, 47, 48, 49]. Guo, Healy and 

Zhou [49] observed that IEEE 802.11 devices cause significant increase in link 

failures ranging from 2% to 25% on IEEE 802.15.4 nodes depending on the 

separation distances between the receptive nodes and interferers. It was highlighted 

that with optimal positioning of sensor nodes, these sporadic outages could be 

avoided. Yun et al. [119] emphasised that the ZigBee specification (network layer on 

top of IEEE 802.15.4 standard) relies on duty cycling and CSMA-CA mechanism to 

minimise packet losses from simultaneous transmissions. However, its inability to 

switch channels without human intervention means that it cannot effectively avoid 

Wi-Fi interferences that overpower WSN nodes communication.  

Adequate frequency separation through channel diversity can avoid the impact of 

external interference on IEEE 802.15.4 networks [119, 120]. Wi-Fi interference is 

observed to be detectable with the combination of Energy Detection (ED) (received 

signal power estimation within channel), LQI and SNR of a received packet [120]. 

The combination of these metrics is said to be able to differentiate a packet failure due 

to poor receptive strength from a packet failure that experienced high environmental 

noise (i.e. higher chance of channel interference). Srinivasan et al. [66] also 

highlighted that regular Wi-Fi beacons are prominent and stand out from 

environmental noise. WSN nodes could distinguish IEEE 802.11 traffic even without 

decoding the signal, provided that the Wi-Fi’s operating channel is known. However, 

the need for excessive channel monitoring for external interference can lead to 

increasing energy wastage [109].  

Authors in [121] evaluated the impact of Wi-Fi traffic on ZigBee devices’ 

communication quality in terms of SNR in a Judo training venue. They have showed 

that the SNR have degraded under concurrently transmitting Wi-Fi devices and the 

level of degradation depends on the position relative to the Wi-Fi access point. The 

increase of transmission power of ZigBee nodes is found to improve SNR level but 



2.4. Persistent Wi-Fi Traffic and Spatial Challenges in an Indoor Environment 

 35 

has limited impact if the interference source is too near. Therefore, an optimal 

deployment of WSN nodes is recommended to avoid Wi-Fi interference in a Wi-Fi 

dominant environment.  

2.4 Persistent Wi-Fi Traffic and Spatial Challenges in an 

Indoor Environment 

A summary of network challenges discussed in Section 2.3 is shown in Table 2.2. 

Existing literature have found that these network challenges can impose various 

impact on WSN communication reliability and each requires a different solution. In 

particular, Wi-Fi interference and spatial challenges are identified as two key network 

challenges in an indoor environment that pose as long-term and persistent issues to 

WSN communication reliability. 

Numerous Wi-Fi access points can be found in a typical indoor work environment, 

deployed in a scattered manner to provide sufficient Wi-Fi coverage to “data-hungry” 

consumer devices such as smart phones, computers and mobile terminals. It is notable 

that Wi-Fi interference can spread widely and inconsistently in the frequency 

spectrum (occupying multiple channels) across the deployed environment. With high 

data uploading and video streaming applications becoming a trend in digital 

marketing, the need to improve WSN and Wi-Fi co-existence in the same operating 

environment becomes critical [16].  

Wi-Fi interference does not influence all link quality metrics equally. Under Wi-Fi 

interference, signal strength-related WSN link quality parameters such as RSSI and 

LQI values are found not to coincide with the packet error-related link quality 

parameters such as Bit Error Rate (BER) and PRR [36, 49]. Wi-Fi interference is also 

known to degrade signal quality due to excessive noise in the communication channel 

and also distorts packets during reception. This in turn has introduced receiver-to-

transmitter turnaround latency on IEEE 802.15.4 communications, resulting in further 

partial CCA detection and higher probability of a transmission failure [45]. 

CSMA-CA technique is commonly adopted as a standard feature for the resolution of 

contention in computer networks. However, fair channel access between different 

standards is not always achievable due to the differences in application requirements, 
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operating procedures and hardware capabilities. A Wi-Fi device with higher 

transmission power, greater bandwidth occupancy, higher transmission duty cycle and 

shorter backoff period than IEEE 802.15.4 devices, tend to occupy the channel more 

often. This poses as a persistent interference for the weaker low-power WSN devices, 

if not managed well.  

On the other hand, spatial challenges such as environment path loss, long distance 

communications and mobile physical attenuators were found to introduce constant 

varying path loss between WSN nodes. Given that the indoor environments consist of 

varying object densities made up of different building materials, the interactions 

between real-world environments and the scattered WSN nodes are hard to model. 

Furthermore, a node often assumes symmetrical communication with its neighbour 

upon overhearing a packet. However, due to the signals travelling along different 

propagation paths, bi-directional connection is not always guaranteed.  

The inability to accurately measure the impact of spatial challenges has further 

impacted on the performance of optimisation protocols. For instance, the irregular 

propagation due to the environmental path loss affects the ability of localisation 

protocols to estimate distances between communicating nodes. In [51, 68], receiver 

nodes measured packets of -90 dBm RSSI value at both distances of 7 m and 26 m. 

Even with calibration techniques such as moving average method, curve fitting and 

weighted average to map RSSI to distance, localisation errors cannot be disregarded 

[51]. The inaccuracies observed between RSSI and distance estimation rendered RSSI 

as an unsuitable single parameter to determine the location of a mobile node in an 

indoor environment. 
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 Table 2.2. A summary of network challenges pertaining to WSN communication 

reliability. 
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2.5 Chapter Summary 

This chapter reviewed the network challenges in an indoor environment that have an 

impact on WSN communication reliability. They are the imperfect operating 

conditions, spatial challenges, inter-WSN interference and Wi-Fi interference.  

WSN nodes have limited lifespan and computational capability. For nodes to monitor 

the dynamics within the operating environment require constant energy draining 

operations such as the detection of second preamble to identify packet collision, 

monitoring of multipath effects on multiple channels, and overhearing neighbouring 

node’s transmitted packets to determine temporal links. Unless the local positions of 

the communicating nodes and interferers, the geometry of the deployed environment, 

and the movements of mobile attenuators are known at all times, it is impractical for 

the nodes to anticipate and react to all kinds of network challenges. 

Wi-Fi interference and spatial related network challenges (i.e. physical changes in the 

environment altering multipath and shadowing effects) are identified as two key 

network challenges that pose as long-term and persistent issues to WSN 

communication reliability. Particularly in an indoor environment, they degrade WSN 

communication in many ways. Since each of them requires a different solution, 

distinguishing them from other forms of network challenges is critical. Thus in 

Chapter 3, a series of controlled experiments is conducted to investigate the impact of 

Wi-Fi interference and spatial network challenges on WSN communication reliability.  
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3 WSN Performance Under 

Persistent Wi-Fi Traffic and 

Spatial Challenges 

 

Chapter 3 investigates the influence of persistent Wi-Fi traffic and spatial challenges 

on WSN’s communication reliability. Separate experiments are conducted using 

NXP’s proprietary wireless sensor nodes deployed in controlled indoor environments 

under simulated network challenges. In Section 3.1, the impact of persistent Wi-Fi 

traffic on concurrently transmitting WSN nodes is investigated at the lower layers of a 

Low-Rate-Wireless Personal Area Network (LR-WPAN), IEEE 802.15.4 standard. In 

this experiment, the distance between WSN communicating nodes and distance 

between WSN nodes and Wi-Fi transmitting source are varied. Their dynamic 

relationships are evaluated from link quality parameters including Bit Error Rate 

(BER), LQI, CCA count and PRR.  

In Section 3.2, a novel data extraction platform called Network Instrumentation (NI) 

is developed within node’s Zigbee PRO stacks, to extract unique Neighbour Table 

(NT) and Routing Table (RT) information from experimented nodes. Section 3.3 

describes the experiment set up of nodes in an indoor office under the influence of 

simulated (1) poorly deployed environment and (2) human movement. Adaptive 

Network-based Fuzzy Inference System (ANFIS) technique is also introduced in 

Section 3.3 to model spatial-related link failures. The generated models trained with 

different combinations of inputs are compared and analysed in Sections 3.4 and 3.5, 

which highlighted the importance of cross-layer parameters and careful selection of 

training parameters to better predict link failures. Lastly, Section 3.6 concludes the 

chapter. 
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3.1 Investigation of WSN Performance Under Persistent 

Wi-Fi Traffic 

In Section 2.3.4, WiFi devices are reviewed to have higher transmission power, 

greater bandwidth occupancy and higher transmission duty cycles, which often 

overpowered “weaker” WSN nodes when competing for channel access. This creates 

an unfair spectrum-sharing phenomenon. Therefore, in this section, the ability of 

WSN nodes to communicate in the same spectrum as a persistent Wi-Fi traffic is 

studied from the IEEE 802.15.4 standard perspective.  

3.1.1 IEEE	802.15.4	and	IEEE	802.11	bgn	Standard	Experimental	Setup	

1. IEEE 802.15.4 standard  

IEEE 802.15.4 standard is defined as the physical and MAC layers for LR-WPAN 

devices. The physical layer is responsible for a WSN node’s data transmission and 

reception. Its main functions include carrier sensing, carrier frequency selection, 

encryption and decryption, and modulation and demodulation. The MAC layer offers 

channel management capabilities such as accessing control to a shared spectrum, 

detection of channel’s availability, protection of transmission from interference, and 

providing services for nodes to associate/disassociate the network. 

Experimental node’s configuration 

Two JN5168 development test boards [39] manufactured by NXP Semiconductors are 

used to simulate two communicating WSN nodes. Nodes equipped with IEEE 

802.15.4 standards are configured to exchange data packets of 100 bytes size every 10 

ms at a data rate of 250 kbps on channel 20 (2.45 GHz). The transmission power is set 

at 0 dBm. Every transmission is independent from the previous one such that the 

transmission failure due to buffer overflow is avoided [46]. The maximum 

retransmission and maximum CSMA backoff are set to zero. This is done so that 

whenever the node fails to access the channel during transmission, the entire process 

is considered to have failed. Lastly, if no ACK were received after a data packet is 

transmitted, the transmission is also considered to have failed. All exchanged data are 

recorded on Dell Latitude E6330 laptops connected via USB, from which the 
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following parameters are extracted. 

1. Link Quality Indicator (LQI) – LQI is determined over the first four bytes of a 

correctly received data packet. It represents the number of chip errors and the 

average energy detected over the four bytes. In the JN5168 implementation, a 

LQI value of 250 indicates a maximum quality frame and a value of 0 is 

assigned to the lowest quality.  

2. Bit Error Rate (BER) – Unlike LQI, BER is formulated from both correctly 

received and corrupted data packets. The received data packet is compared to 

the known frame structure and BER represents the number of incorrect bits in 

a received packet. Incorrect bits can be caused by noise, interference, or bit 

synchronisation errors. The higher the BER, the poorer the quality of frames.  

3. Packet Reception Rate (PRR) – PRR in Equation 3.1 is defined as the success 

rate for a node to transmit a data packet to its destination node and to receive 

an ACK in return. 100% PRR indicates a perfect reception of all data packets. 

Here, PRR only accounts for packets that are transmitted across the channel 

and does not include CCA failure. 

𝑃𝑅𝑅 = 1 −
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝐴𝐶𝐾

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝐶𝐶𝐴 𝑡ℎ𝑎𝑡 𝑙𝑒𝑎𝑑𝑠 𝑡𝑜 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛
∗ 100 (3.1) 

4. Unsuccessful Clear Channel Assessment (CCA) count – +1 CCA count 

increment relates to a channel access failure, where energy is detected above a 

threshold. The number of CCA count relates to the amount of noise in the 

transmission channel such that a higher CCA count represents a consistently 

noisy channel.  

 

2. IEEE 802.11 bgn standard  

IEEE 802.11 b, IEEE 802.11 g and IEEE 802.11 n standards specify the physical and 

MAC for WLAN. IEEE 802.11 bgn standard has been widely adopted in Wi-Fi 

networks. They operate on 13 overlapping 22 MHz wide frequency channels in the 

2.4 GHz ISM band. The different versions of IEEE 802.11 standards employ the same 

CSMA/CA mechanism defined in the original IEEE 802.11 standard, but are 

enhancements from the previous version that has a higher data rate and transmission 
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range. 

Similar to IEEE 802.15.4, an IEEE 802.11 bgn node is required to sense for noise and 

concurrently transmitting devices in the channel before initiating a transmission. If the 

channel is detected idle for Distributed coordination function Inter-Frame Space 

(DIFS) time, the transmission will proceed. Otherwise, the Wi-Fi device will initiate a 

backoff timer with a randomly chosen interval. The decrement of the backoff timer 

will happen only when the channel is detected to be idle for a backoff time-slot. The 

backoff timer will also pause when a concurrent transmission is detected and resume 

when the channel is idle again. The Wi-Fi device is allowed to transmit only after the 

backoff timer reaches zero.  

Experimental device’s configuration 

Wi-Fi traffic is generated using the Linksys Wireless-N Router (WR) (WRT160NL) 

[123] connected to a Dell Latitude E6330 laptop via an Ethernet port. Iperf 

programme [124] running on the laptop generates User Datagram Protocol (UDP) 

packets of 1500 bytes size to a mobile device, Samsung Galaxy Note II N7100. The 

WR transmits at a data rate of about 130 Mbps, depending on network conditions. The 

WR transmission power is capped at 21 dBm and is configured to transmit on either 

channel 9 or 11 to simulate a frequency offset of 2 MHz and 12 MHz respectively 

from IEEE 802.15.4 channel 20.  

3.1.2 Design	of	Experiment	to	Simulate	the	Impact	of	Persistent	Wi-Fi	
Interference		

Experiments are conducted in an office aisle during non-working hours in the absence 

of human movements except the experimenter. A sanity check is performed using an 

IQ analyser, Rohde & Schwarz FSV30 [125] and confirmed that no dominant 

uncontrolled interference was present in the operating channels. In addition, the BER 

and PRR of the WSN nodes were recorded as majority 0 and 100% respectively 

before the commencement of experiments. 

The objective of this section is to understand the performance of WSN 

communication under the three different deployment settings; they are operating 

without Wi-Fi interference, frequency offsets from WiFi operating channel and 
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varying operating distance between WSN nodes. Table 3.1 illustrates six test 

conditions, 1A to 1F, categorised into “with or without Wi-Fi interference”, “Wi-Fi 

interference frequency offset” and “IEEE 802.15.4 nodes operating distance”. The 

different frequency offsets between the operating channels between different wireless 

standards is to understand if a larger frequency offsets can minimise or avoid Wi-Fi 

interference. On the other hand, the different operating distances of IEEE 802.15.4 

communicating nodes are used to vary the impact of Signal to Interference Ratio 

(SIR) with varying IEEE 802.15.4 signal strengths. For instance, in test conditions 

1B, 1D and 1F, the receiver node operating at a greater distance from sender node has 

a lower SIR than 1A, 1C and 1E. It is noted that in test conditions 1A to 1D, the WR 

acting as the Wi-Fi interference is placed 5 m away from the IEEE 802.15.4 sender 

node. Test conditions 1E and 1F, without Wi-Fi interference are used as reference 

conditions.  
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Table 3.1. Experiment 1 - Test conditions. IEEE 802.15.4 nodes operating with 

varying distances to simulate the different impact of Wi-Fi interference on WSN 

communication reliability. 

 

3.1.3 The	 Impact	 of	 Persistent	 Wi-Fi	 Traffic	 on	 WSN	 Link	 Quality	
Parameters	

Figure 3.1 shows the LQI performance of IEEE 802.15.4 nodes in test conditions 1A 

to 1F. Each test condition provides 80 LQI samples. LQI outliers are observed to be 

inconsistent among the test conditions. Note that LQI is based on a correctly received 

data packet. Hence, these outliers are correctly decoded data packets with varying 

chip correlation, which can be caused by the background noise and multipath effects 

from the environment.  

It is observed that LQI does not provide a significant difference (P value < 0.05) 

between test conditions with and without WiFi interference. Instead, LQI varies 

Test	
conditions	

Wi-Fi	and	IEEE	
802.15.4	nodes	
frequency	offset	

IEEE	802.15.4	
nodes	distance	

apart	
Experiment	setup	

1A	 2	MHz		
Wi-Fi	channel	9	 1	m	

1B	 2	MHz		
Wi-Fi	channel	9	 10	m	

1C	 12	MHz		
Wi-Fi	channel	11	 1	m	

1D	
12	MHz		

Wi-Fi	channel	11	
	

10	m	

1E	 -	 1	m	

1F	 -	 10	m	

IEEE 802.15.4 sender node 

IEEE 802.15.4 receiver node 

Wi-Fi interference 

5 m 

1 m 

5 m 

1 m 

1 m 

5 m 

10 m 

5 m 

10 m 

10 m 
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according to the operating distance between IEEE 802.15.4 nodes, acting much like a 

signal strength indicator. For test conditions with 1 m and 10 m operating distance 

between IEEE 802.15.4 nodes, the LQI are approximately 179 and 102 respectively. 

The maximum LQI mean difference between test conditions of 1 m and 10 m are only 

3.525 and 1.089 respectively.  

 Figure 3.2 shows the BER performance of IEEE 802.15.4 nodes under test conditions 

1A to 1F. Under test conditions 1A to 1D, the WR is deployed statically, such that the 

channel occupancy for IEEE 802.15.4 sender node is kept constant [48]. It is observed 

that BER is found only in test conditions 1B and 1D. The higher BER can be 

explained by the concurrent Wi-Fi traffic leading to wrongly decoded packets. Under 

test conditions 1A and 1C where IEEE 802.15.4 nodes have a better SIR (due to a 

stronger IEEE 802.15.4 signal at 1 m operating distance), bit errors are not found.  

 

Figure 3.1. Collective LQI of IEEE 802.15.4 nodes under persistent Wi-Fi traffic in 

test conditions 1A to 1F. 
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Figure 3.2. Collective BER of IEEE 802.15.4 nodes under persistent Wi-Fi traffic in 

test conditions 1A to 1F. 

Every transmission attempts will begin with a CCA attempt as explained in Equation 

3.2. The total CCA attempts combine the number of failed and successful CCA 

attempts as shown in Equation 3.3. A CCA attempt may fail if the node senses noise 

in channel 20. Otherwise, a successful CCA indicates a clear channel and 

commencement of packet transmission. Referring to Equation 3.4, a successful CCA 

can result in either a successful transmissions or failed transmissions, depending if an 

ACK is received within the maximum MAC ACK waiting period. 

𝑇𝑜𝑡𝑎𝑙 𝑇𝑋 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 = 𝑇𝑜𝑡𝑎𝑙 𝐶𝐶𝐴 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 (3.2) 

𝑇𝑜𝑡𝑎𝑙 𝐶𝐶𝐴 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 = 𝑇𝑜𝑡𝑎𝑙 𝑓𝑎𝑖𝑙𝑒𝑑 𝐶𝐶𝐴 + 𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝐶𝐶𝐴 (3.3) 

𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝐶𝐶𝐴 = 𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑇𝑋 + 𝑇𝑜𝑡𝑎𝑙 𝑓𝑎𝑖𝑙𝑒𝑑 𝑇𝑋 (3.4) 

Table 3.2 shows the results of 20480 transmission attempts for test conditions 1A to 

1F. It is clear that the transmission failures, if any, are negligible as long as there is 

sufficient frequency separation from the interferer. As expected, the lowest PRR was 

recorded in test condition 1B at 91.05 %. Under test condition 1B, the IEEE 802.15.4 

nodes are expected to have the lowest SIR with the Wi-Fi interference operating at 
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only 2 MHz frequency offset. It is observed that the measured PRR corresponds to 

BER, where the highest BER (most bit errors) is also found in test condition 1B.  

Table 3.2. The breakdown of 20480 transmission attempts. 

Test conditions 1A 1B 1C 1D 1E 1F 

Total TX attempts 20480 20480 20480 20480 20480 20480 

Total failed CCA 11907 13350 10215 10744 1 1 

Total TX (successful 
CCA) 8573 7130 10265 9736 20479 20479 

Total failed TX 8 638 0 278 0 0 

Total successful TX 8565 6492 10265 9458 20479 20479 

PRR% 99.9 91 100 97.9 100 100 

 

The Wi-Fi interference is reflected in the number of CCA failures. A higher CCA 

count is observed in test conditions 1A to 1D regardless of the operating distance 

between the WR and IEEE 802.15.4 sender node. While under test conditions 1E and 

1F, the CCA failures are negligible. This finding confirms that the majority of the 

IEEE 802.15.4 transmission failures are due to the inability to access the 

communication channel rather than corrupted packets.  

Communication robustness between IEEE 802.15.4 nodes is achieved via the 

CSMA/CA mechanism, where a node is denied channel access if the channel is 

occupied. By default, the IEEE 802.15.4 standard defines the maximum number of 

CCA backoff as four. Since CCA failures do not dominate in PRR calculations, PRR 

may not reflect the actual amount of Wi-Fi interference. For instance, a node 

operating in a “noisy” environment may still achieve a relatively good PRR of more 

than 97.9%.  

In this experiment, UDP transmission does not use flow control. UDP packets are 

flooded into the medium without checking if the spectrum is occupied, simulating an 

extreme case of Wi-Fi interference. This experiment shows that even under persistent 

Wi-Fi interference, careful channel configuration and deployment of WSN nodes can 
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minimise or avoid the impact of Wi-Fi traffic. WSN nodes that are deployed at 10 m 

apart should operate at least 12 MHz frequency apart from Wi-Fi operating channels.  

3.2 Extraction of Zigbee PRO Parameters using Network 

Instrumentation 

Typically, external sniffers have to be deployed throughout the WSN’s lifetime to 

obtain information on link quality of communicating devices. However, the use of 

sniffers is impractical due to two factors. Firstly, the resources needed are significant 

and grow exponentially with increasing network size. Secondly, the information 

collected on the sniffers may not be representative, as sniffers are subjected to packet 

distortion from interference. For instance, other devices operating in the same 

spectrum may transmit at the same time, and cause the sniffer to receive a distorted 

packet. Therefore, in order to extract link quality parameters from WSN nodes 

deployed in real-world environment, a new component called Network 

Instrumentation (NI) is developed into the Zigbee PRO stack of the WSN nodes.  

3.2.1 Network	Instrumentation	Architecture	

1. ZigBee PRO 

ZigBee PRO [40] is a wireless communication specification based on the IEEE 

802.15.4 standard. ZigBee typically operates in the 2.4 GHz ISM radio bands with 

data rates up to 250 Kbit/s. Figure 3.3 illustrates the ZigBee protocol stack 

architecture, where its operations and features are built on top of the IEEE 802.15.4 

standard. The ZigBee specification further includes the network layer and application 

layer. Their purposes include keeping track of the roles of devices, managing network 

requests, de-multiplexing of incoming messages to the appropriate applications, and 

triggering activities in the MAC layer such as initiating the network and assigning 

network addresses. 
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Figure 3.3. ZigBee protocol stack. 

2. Network instrumentation 

NI, as shown in Figure 3.4, is designed to extract Neighbour Table (NT) and Routing 

Table (RT) periodically. A WSN router’s NT contains communication information 

about its neighbouring nodes that are within reception range. This information 

includes network addresses of neighbouring nodes, their respective RSSI, depth, 

relationship to the neighbour, and device type. If node B is found in node A’s NT, 

node B and A are assumed to have established communication in the past 60 seconds. 

Similarly, if a previously existing node B is no longer found in node A’s NT, 

communication between them is assumed to have failed. A WSN router also holds 

information about the state of route discovery and already established routes. This 

information is stored as entries in the RT, consisting of the addresses of destination 

and next hops. Querying the NT and RT of all routers in the network allows us to 

obtain the actual routing paths in which packets are relayed between nodes.  

Information from the NT and RT entries provide link quality knowledge about the 

local environment around a router, and the communication reliability of the selected 

routing paths towards a destination node. Variations in entries within NT and RT are 

indicators of link stability and routing path stability respectively. Link stability is 

defined as the rate in which a node drops out from an existing link and re-joins it. 
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Poor link stability suggests a node is deployed with a substandard connection with a 

neighbouring node where packets transmitted to it have a higher chance of failure. On 

the other hand, routing path stability is defined as the rate in which a selected next 

hop towards the destination node changes, leading to a variation along the existing 

routing path. Poor routing path stability indicates that a routing path is unstable due to 

frequent failing/ re-joining of connection or frequent changes of parent node towards 

the destination node. 

 

Figure 3.4. Mapping of Network Instrumentation onto ZigBee stack. 

For NI to function seamlessly, three design considerations were derived. 

1. Minimal packet overhead – To minimise the impact of energy cost and 

application latency of the WSN application, only necessary link quality 

parameters at a sufficient granularity should be extracted. 

2. Maintain full standard compliancy – NI should maintain full ZigBee PRO HA 

compatibility where only standard API is used. This allows seamless 

interoperability with newly added ZigBee PRO devices.  

3. Future proof – Information extracted from the nodes should be interpretable in 

similar protocols.  Extraction features of NI should also be applicable for non-

ZigBee devices. 
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Figure 3.5. Flow diagram – Network Instrumentation to extract NT and RT from 

WSN routing devices in the network. 

Figure 3.5 shows the NI flow diagram to extract NT and RT information from WSN 

routing devices. Table 3.3 illustrates the code execution for the coordinator to query 

NT and RT periodically from all routers. The query interval depends on the size of the 

network. 
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Table 3.3. Code execution flow – Coordinator to query NT and RT information from 

all routing devices in the network. 

Events Execution 

Coordinator to access its own 
NT 

1) Coordinator shall access its own NT by executing 
“ZPS_eAplZdpMgmtLqiRequest” command and 
selecting itself as the destined node.  

a. Coordinator has access to the addresses of 
all routers that are one hop away  

Coordinator to access NT of 
all routers  

2) Coordinator shall access the NT of routers that are 
one hop away by executing 
“ZPS_eAplZdpMgmtLqiRequest” command with the 
targeted router as destined node.  

a. Coordinator has access to the addresses of 
all routers that are two hops away  

3) Step 2 shall be repeated for routers in the 
subsequent hops (relative to coordinator) until all 
routers are covered. 

Coordinators to repeat step 1 
to 3 to query Routers’ RT  

4) Once, all router’s NT are obtained, coordinator 
shall repeat step 1 to 3 to query routers’ RT using the 
“ZPS_eAplZdpMgmtRtgRequest” command.  

3.2.2 WSN	Parameters	to	be	Monitored	

Information from NT and RT is post-processed into the following four parameters. 

1. Neighbour Table Connectivity (NTC) 

Table 3.4 illustrates an example of four consecutive NTs of node A, queried at 15 

minutes intervals. NT consists of information about its neighbouring nodes B, C and 

D at the time of data query. Neighbour Table Connectivity (NTCAB), similar to PRR, 

is the percentage of node B captured in node A’s NT, observed over a number of NT 

windows. NTCAB indicates the consistency of node B connected to node A in 

percentage. The calculation of NTCXY is shown in Equation 3.5. 100% NTCXY 

indicates that node Y is consistently found in node X’s NT and packets transmitted 

from node Y is well received on node X. Conversely, 0% NTCXY indicates that node Y 

is not found in node X’s NT and node X has not received any packets transmitted from 

node Y.  
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Table 3.4. An example of four consecutive Neighbour Tables of node A at 15 minutes 

intervals. 

NT A (t = x) NT A (t = x + 15) NT A (t = x + 30) NT A (t = x + 45) 

Entry RSSI 
(dBm) Entry RSSI 

(dBm) Entry RSSI 
(dBm) Entry RSSI 

(dBm) 

B -88 - - B -87 - - 

C -62 C -62 C -63 C -63 

D -78 D -80 - - D -82 

 

2. Bi-direction Neighbour Table Connectivity (BNTC) 

Similar to NTC, BNTC can be explained as the rate of connectivity between two nodes 

in percentage. Both BNTCAB and NTCAB represent the outgoing and incoming 

communication success rates between nodes A and B respectively, and are calculated 

in a similar manner (Equation 3.5). In other words, BNTCAB is equivalent to NTCBA. 

Associating both NTC and BNTC indicates the likelihood of link asymmetry between 

two nodes. An imbalance in NTC and BNTC highlights irregularity in receptive 

quality where one node can receive packets from the other but not the other way 

around.   

𝑁𝑇𝐶!" =  
𝑇𝑜𝑡𝑎𝑙 𝑎𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒 𝑜𝑓 𝑛𝑜𝑑𝑒 𝑌 𝑖𝑛 𝑎𝑙𝑙 𝑁𝑇! 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑁𝑇! 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 ∗ 100 (3.5) 

3. Mean Received Signal Strength Indicator (mean RSSI) 

Mean RSSIXY as stated in Equation 3.6 is the average RSSI in dBm of node Y 

measured at node X over a number of NTs window. Mean RSSI is a measure of 

average power present in received packets. Mean RSSI!" suggests how well node B is 

received by node A in terms of signal strength over an observed period. 

𝑀𝑒𝑎𝑛 𝑅𝑆𝑆𝐼!" =  
1
𝑛 𝑅𝑆𝑆𝐼!"#

!

!!!

 (3.6) 
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4. Average Coefficient of Variation RSSI (ACV RSSI) 

ACV RSSIA is the average coefficient of variation of RSSI in dBm of all links found in 

node A’s NT. ACV RSSI! can be explained as a measure of relative variability of 

received signal strength between all neighbouring nodes around node A during the 

observed windows. A high ACV RSSIA value indicates that the RSSI measured from 

all neighbouring nodes are subjected to high dispersion or high channel variability.  

The calculation of ACV RSSI! is expressed as: 

𝐴𝐶𝑉𝑅𝑆𝑆𝐼!" =  
1
𝑛

𝑆𝐷 𝑅𝑆𝑆𝐼!"#
𝑀𝑒𝑎𝑛 𝑅𝑆𝑆𝐼!"#

!

!!!

 (3.7) 

where n is the number of neighbouring nodes around node X. SD RSSI and Mean RSSI 

is the standard deviation of RSSI and mean of RSSI of the neighbouring node i over 

the same observed windows respectively.  

3.3 Modelling of Spatial-Related Link Failures using ANFIS 

It can be seen from the literature review in Chapter 2 that WSN link quality 

parameters are imprecise at detecting the causes of link failures, and the network 

challenges in the deployed environment can impose different influences on WSN 

communication. Given that spatial challenges in an indoor environment cause 

persistent uncertainties in link quality assessment, the need to take them into 

consideration is critical to optimise WSN communication reliability. Therefore in this 

section, controlled experiments are conducted to extract link quality performance 

parameters from ZigBee PRO nodes under the influence of simulated spatial 

challenges. As illustrated in Figure 3.6, parameters – NTC, BNTC, mean RSSI and 

ACV RSSI – are used as training inputs to model three link failure conditions using 

Adaptive Network-based Fuzzy Inference System (ANFIS) technique. ANFIS 

(explained in Sections 3.3.2 and 3.3.3) is chosen to leverage on its tolerances for 

imprecision and partial truth to achieve robustness and accuracy, particularly in real-

world systems. The link failure conditions are as follow: 

• Link failure due to poorly deployed environment – Link failures that are 

influenced by the dense and static physical obstructions between nodes or if 
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nodes are located too far apart.  

• Link failure due to human movements – Link failures that are influenced by 

the physical obstruction of a human in close proximity.  

• No failure – Best-case scenario where a node is not subjected to any influence 

of spatial challenges. Any failures under such conditions are considered 

negligible. 

 

Figure 3.6. Block diagram – ANFIS-based model to predict spatial challenges. 

3.3.1 Design	of	Controlled	Experiment	to	Simulate	Spatial	Challenges	

In this section, experiments simulating poorly deployed environment and human 

movement are described. Experiments are conducted during non-working hours (i.e. 

in the absence of human movements except the experimenter). A sanity check was 

performed using an IQ analyser, Rohde & Schwarz FSV30 [125] and confirmed that 

no dominant uncontrolled interference was present in the operating channels. 

1. Experiment 1 – Poorly deployed environment  

Experiment 1 illustrated in Figure 3.7, consists of four ZigBee PRO [39] nodes 

uniformly deployed in an open office environment, 5 m apart from one another. The 

experimental layout simulates WSN nodes communicating with each other under the 

influence of reception signal decay and increasing signal attenuation, which mimics 

long distance communication and static physical obstructions respectively. All nodes 

were mounted in the same orientation and at a height of 1.3 m on desk partitions. It is 

important to note that due to the difference in the local operating environment around 

individual nodes, the propagation paths of transmitted signals are different. As such, 

uniform signal strength decay between nodes cannot be expected. This means that 

despite the similar operating distance between node A to node B and node B to node 
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C, their link quality measurements may not be the same. By doing so, a more realistic 

set of measurements as compared to computer-simulated data is produced. 

 

Figure 3.7. Experiment layout – Simulation of wireless sensor nodes communicating 

under progressively poor deployed environment conditions in an open office. 

2. Experiment 2 – Human movement  

Experiment 2 as shown in Figure 3.8 consists of two ZigBee PRO nodes [39] 

deployed 4.5 m apart with LOS communication. The nodes were mounted on tripods, 

elevated 1.3 m from the ground. Prescribed human walking sequences with LOS 

obstruction were introduced to simulate nodes communicating under the influence of 

a single human movement profile. Experiment 2 was conducted in both an open space 

laboratory and open office, where different multipath and fading effects are expected.  

 

Figure 3.8. Experiment layout – Simulation of wireless sensor nodes communicating 

under the obstruction of a single human movement profile in a laboratory and open 

office. 
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3.3.2 Fuzzy	Inference	System	and	Artificial	Neural	Network	

There has been a constant debate about whether the Artificial Neural Network (ANN) 

or Fuzzy Inference System (FIS) is more optimal for modelling complex and non-

linear systems [126, 127, 128, 129]. ANN mimics the biological neural networks of 

animal brains, is known for its ability to approximate any function. However, ANN 

technique is often viewed as a black box. Analysing the trained network is difficult 

due to the complex knowledge representation where model structures used to map the 

input and output spaces are driven by a data-based objective functions and layers of 

mathematical processes [126]. The framework of an ANN consists of a collection of 

processing neurons called units that are arranged in a series of layers, interconnected 

with connection weights. Units of individual layers receive inputs from the previous 

units multiplied by the connections weights, and the outputs are computed by non-

linear functions of the sum of its inputs. Connection weights, representing the learnt 

relations between units, are adjusted iteratively according to the differences between 

the targeted and actual output. This mapping process is repeated until a desired 

accuracy of the model is met.  

On the contrary, FIS mimics the concept of human reasoning and decision-making. 

Users can comprehend the developed model intuitively through the Fuzzy sets theory 

that maps inputs to outputs. For instance, the Mamdani-type FIS [130] models a 

system by synthesising a set of linguistic control rules obtained from domain experts, 

such as an engineer describing a cooling system. 

Room Temperature of 39 degree is translated into Room Temperature is Very 

Warm 
(3.8) 

An element in a Fuzzy set (Room Temperature) is mapped onto Membership 

Functions (MFs) (i.e. either Very Cold, Cold, Warm or Very Warm), where a grade of 

a set is given. Multiple elements can be combined to form a list of IF-THEN rules, 

where the relationship between elements (antecedents) can be translated into a 

decision (consequents) as shown in Equations 3.10 and 3.11. 

IF antecedents(s) THEN consequents (3.9) 



3.3. Modelling of Spatial-Related Link Failures using ANFIS 

 59 

IF “Temperature is Very Warm” THEN “Turn on AC” (3.10) 

IF “Temperature is Cold” THEN “Turn on Heater” (3.11) 

Both ANN and FIS techniques have their advantages and disadvantages. ANN 

possesses high fault tolerance of incomplete and noisy data, while FIS allows the 

incorporation of expert knowledge into the model as Fuzzy rules [126]. Chapter 2 

discusses the imprecise-ness of WSN link quality parameters mainly due to the nature 

of low-power radio propagations under the influence of environmental dynamics. The 

ability to describe the training inputs parameters’ behaviours under different 

conditions is highly valued. Unlike ANN where network structure lacks physical 

significance, the construction of Fuzzy rule-base in FIS can be viewed as grey-box 

modelling. FIS combines verbal modelling where parts of the system are modelled 

with linguistic control rules. This is done in a way prior knowledge can be instilled to 

the inferred behaviour of the system. In addition, the linguistic representations of 

model structures provide users the ability to interpret information within the model, 

and estimate the unknown in a semantic manner.  

3.3.3 Adaptive	Network-based	Fuzzy	Inference	System	Architecture	

Researchers have progressed to incorporate soft computing with Fuzzy rule-based 

classifiers. Neuro-Fuzzy classifier such as ANFIS [131] is one of the most researched 

topics at this juncture. ANFIS, a Takagi-Sugeno (TS) technique [132], combines the 

approximate reasoning of FIS with the learning features of ANN into a single data 

learning technique.  

1. Grid partitioning 

Functionally, ANFIS divides the input and output space using the grid partitioning 

technique, where each partition represents a set of IF-THEN rule corresponding to a 

linear state equation (Equation 3.12). Figure 3.9 shows the combination of premises 

represented as nine partitions that are generated form two inputs with three MFs each. 

Grid partitions are constructed from enumerating all possible combinations of MFs of 

all input variables forming the IF-THEN rules. By doing so, the non-linear system 

being modelled is described as a weighted sum of these linear state equations.  
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Figure 3.9. Training input parameters x and y with three MFs each {S, M, L}. 

Enumerating them produces nine combinations of IF-THEN rules, constructing a 

uniform grid coverage for the input and output space. 

To deal with a complex problem with small error tolerance (i.e. with a large number 

of intricately related input and output variables), more Fuzzy sets and rules are 

required. The number of correctly classified patterns in grid partitioning is associated 

with the accuracy of the model. Increasing the number of intervals (the total number 

of partitioning generated from increasing inputs) produces a model of finer-grain that 

is better able to approximate a non-linear system. However, the number of rules 

increases exponentially with an increasing number of inputs. The number of IF-THEN 

rules is of order 𝑂(𝑇!), where T is the number of inputs and k is the number of MFs. 

2. ANFIS architecture 

An Fuzzy IF-THEN rule i of an two rules ANFIS model can be illustrated as follows: 

𝑅𝑢𝑙𝑒 𝑖: 𝐼𝑓 𝑥 𝑖𝑠 𝐴!𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵! , 𝑡ℎ𝑒𝑛 𝑓! =  𝑝!𝑥 + 𝑞!𝑦 + 𝑟!  , 𝑖 = 1, 2. (3.12) 

where i denotes the rule index, x and y are crisp values of the training inputs, Ai, Bi are 

corresponding linguistic values, also known as the MFs, and pi, qi, and ri are the 

consequent parameters of the linear state equation, fi. 

ANFIS network architecture with two input and two MFs each is shown in Figure 
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3.10. This network architecture is an adaptive multilayer feed-forward network, 

consisting of five layers, namely, a Fuzzy layer, product layer, a normalising layer, 

de-Fuzzy layer and a total output layer. In each layer, network nodes perform 

individual functions on incoming signals. 

Layer 1 is the Fuzzy layer where each node i generates a membership grade of a MF 

relationship based on input x. This membership grade can be expressed as: 

𝑂!,! = 𝜇!! 𝑥  , 𝑖 = 1,… , 4. (3.13) 

where 𝑂!,! denotes the membership grade of i-th node of layer 1, and µ!! denotes the 

MF, which is explained in Equation 3.18. 

Layer 2 is the product layer where each node i corresponds to a single TS-type Fuzzy 

rule and calculates the firing strength wi based on the product of input signals. This 

relationship can be written as: 

𝑂!,! = 𝑤! = 𝜇!! 𝑥 ∗ 𝜇!! 𝑦 , 𝑖 = 1, 2. (3.14) 

where O!,! denotes the output of i-th node of layer 2.  

Layer 3 is the normalising layer where each node i calculates a normalised firing 

strength 𝑤i for a given rule-base on inputs wi. The normalising function can be 

represented by: 

𝑂!,! = 𝑤! =
𝑤!

𝑤! + 𝑤!
 , 𝑖 = 1, 2. (3.15) 

where 𝑂!,! denotes the output of i-th node of layer 3. 

Layer 4 is the de-Fuzzy layer where each node i calculates the weighted consequent 

value of a given rule using a linear combination of the inputs multiplied by the 

normalised firing strength 𝑤!. This defuzzication relationship can be expressed as:  
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𝑂!,! = 𝑤!𝑓! = 𝑤! 𝑝!𝑥 + 𝑞!𝑦 + 𝑟!  , 𝑖 = 1, 2. (3.16) 

where 𝑂!,! denotes the output of i-th node of layer 4, and pi, qi, and ri are consequent 

parameters. 

Layer 5 is the total output layer, where node i calculates the output of all 

defuzzication neurons and produces an overall ANFIS output. The results can be 

written as: 

𝑂!,! = 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 

= 𝑤!
!

𝑓!  , 𝑖 = 1, 2. 

=
𝑤!

𝑤! + 𝑤!
 ∗  𝑓!  , 𝑖 = 1, 2.

!

 

=
𝑤!𝑓! + 𝑤!𝑓!
𝑤! + 𝑤!

 

(3.17) 

where 𝑂!,! denotes the layer 5 output.  

 

Figure 3.10. ANFIS architecture [131]. 

3.3.4 ANFIS	Models	Training	

The flow diagram of ANFIS to model link failures caused by spatial related network 

challenges is shown in Figure 3.11. Firstly, the model training inputs – NTC, BNTC, 



3.3. Modelling of Spatial-Related Link Failures using ANFIS 

 63 

mean RSSI and ACV RSSI – and training output – “0”, “1” or “2”, which classifies as 

“no link failure”, “link failure caused by human movements” and “link failure caused 

by poorly deployed environment” respectively – of 2100 samples size are normalised 

and divided into k subsets using k-fold validation. At any point of the model training 

process, one k subset is used as the test set while the other k-1 subsets are combined to 

form one training set. The accuracies across all k trials are then computed. In this 

manner, every data point will be in a test set once and training set k-1 times. The use 

of k-fold validation minimises misleading results where a model based on a single 

training data set may underperform, giving no indication to the model’s performance 

under unseen data.  

 

Figure 3.11. ANFIS application flow diagram 

Three key functions – GENFIS1, ANFIS and EVALFIS – are used to develop the 

ANFIS models in MATLAB v2015b. GENFIS1 function is used to generate the initial 

TS-type ANFIS network structure as shown in Figure 3.12. This network structure is 
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an extension of the basic network structure from Figure 3.10, consisting of 81 rules, 

constructed by four inputs and three input MFs each. In this work, the MFs are 

described in the form of a Gaussian function as shown in Equation 3.18. 

Gaussian(𝑥;𝜎, 𝑐) = exp (
− 𝑐! − 𝑥 !

2𝜎!!
) (3.18) 

where the x is the input value, 𝑐! denotes the mean of the i-th fuzzy set and 𝜎! is the 

associated variance. The membership grades in Equation 3.13 is computed with 

Gaussian MF. 

 

Figure 3.12. TS-type ANFIS network architecture of 81 rules made up from four 

inputs and three input MFs each (MATLAB v2015b).  

Subsequently, ANFIS function is used for model training using nth training data 

subset. The network learns the non-linear system in two phases. First, in the forward 

phase, the consequent parameters, pi, qi and ri in Equation 3.16 are identified using the 

least squares method. Second, in the backward pass, the error signals propagate 

backward from the output layer, where the premise parameters, ci and 𝜎! in Equations 

3.13 and 3.18 are updated by gradient descent. This learning process is repeated for 

100 Epoch as the premise and consequent parameters are adjusted according to the 

training errors. Lastly, the developed model is evaluated based on Root Mean Square 

Input Input MF Rule Output MF Output 
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Error (RMSE) with test data set using the EVALFIS function and the entire process is 

repeated for k number of times. 

3.3.5 Training	with	Parameters	Combinations		

The ANFIS models are trained 15 times with 15 different sets of input parameters 

combinations as presented in Table 3.5. The purpose of using multiple parameters 

combinations is to understand the behaviour of different inputs and their combinations 

thereof under different link failures to ascertain which layer (i.e. physical and network 

layer) has a greater impact on the predictive conditions.  

ANFIS models’ prediction accuracies are used as performance index for comparison 

and ranking. The models are analysed with the help of box-plot diagrams generated in 

MATLAB using BOXPLOT function. On every boxplot, a central red mark indicates 

the median accuracy of the ANFIS models trained by the respective parameter 

combination. The bottom and top edges of the box indicate the 25th and 75th 

percentile respectively, while whiskers extended beyond the box are the extreme data 

points. Outliers, if any, are represented with ‘+’ symbol, where they are more than 1.5 

times of the interquartile range. Boxplots are used to describe the value spread from 

the median.  

Table 3.5. Parameter combinations used to train ANFIS models. 

Sets 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Mean RSSI ✔    ✔ ✔ ✔    ✔ ✔ ✔  ✔ 

ACV RSSI  ✔   ✔   ✔ ✔  ✔ ✔  ✔ ✔ 

NTC   ✔   ✔  ✔  ✔ ✔  ✔ ✔ ✔ 

BNTC    ✔   ✔  ✔ ✔  ✔ ✔ ✔ ✔ 
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3.4 Influence of WSN Parameters on Spatial Challenges 

Predictability 

1. Comparison between combination sets with one parameter 

This section presents the comparison results of single parameter combination sets (set 

1 – 4). Referring to Figure 3.10, it is clear that mean RSSI (set 1) as single parameter 

performed significantly better than ACV RSSI, NTC, and BNTC (sets 2 – 4) with a 

prediction accuracy of 81.8%. This suggests that mean RSSI, which represents the 

average reception signal strength, is suitable for link failure detection caused by 

spatial challenges. An explanation is that physical LOS obstructions such as human 

bodies, walls, and desk partitions can attenuate or distort the transmitted signals; this 

degrades the strength of received signals and leads to a higher chance of link failures 

[17, 21], or which are detectable with mean RSSI. 

ACV RSSI (set 2) produced the worst accuracy of only 6.5%. It is observed that under 

the conditions of “no failure” and “failure due to poorly deployed environment 

(experiment 1)”, multipath and fading effects are subjected to minimal variations due 

to the static experimental environment. ACV RSSI measures channel variability, 

taking into account the dispersion of reception signal of all connecting links (temporal 

fading and multipath fluctuation). From the experiment 1, mean RSSI between nodes 

is also found to be relatively constant throughout the experiments having no more 

than 1.1 dBm variation. This explanation echoes the poor performance of ACV RSSI, 

which was not able to detect between different conditions distinctively i.e. link 

failures from no failures.  

On the other hand, network layer parameters, NTC and BNTC (sets 3 and 4) as single 

parameter produced a relatively poor prediction accuracy of only 40.4% and 39.2% 

respectively. NTC and BNTC represent the connectivity between communicating 

nodes, and are capable of differentiating a link with and without failure. However 

they are insufficient to distinguish between human movements and poor deployed 

environment. This will be further explained in the following sections. 
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Figure 3.13. ANFIS models’ prediction accuracy – Link failure due to poor deployed 

environment vs. human movement vs. no failure. 

2. Comparison between combination sets with two parameters 

The mean prediction accuracies of combination sets with two parameters (sets 5 – 10) 

in Figure 3.10 are compared. It is obvious that any parameter combination sets 

containing mean RSSI (sets 5 – 7) performed well, producing an average accuracy 

greater than 80%. This is also highlighted in the previous section where mean RSSI as 

a single parameter performed well.  

It is observed that the prediction accuracy of mean RSSI improved with ACV RSSI (set 

5) as compared to with NTC or BNTC (sets 6 or 7). This phenomenon can be 

explained with the degradation of reception strength measurements due to physical 

obstructions, while the introduction of human movements also inflict temporal 

changes from the multipath and fading effects. Mean RSSI and ACV RSSI represent 

reception strength and reception fluctuation respectively. The combination of both 

physical layer parameters not only improved the detection of link failures, they also 

enhanced the model’s ability to distinguish the causes of failure (i.e. human 

movements or poorly deployed environment) with an accuracy of 94.2%. In contrast 

to the poor results of set 2, it emphasised that a single parameter alone (only ACV 
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RSSI) may have insignificant impact on the model’s performance but could still be 

useful if more information is provided.  

The ANFIS model’s training samples with mean RSSI poorer than -86 dBm (300 

samples) and links with NTC and BNTC poorer than 80% take up only 59% and 51% 

of the entire population respectively. This suggests that NTC and BNTC may have 

wrongly indicated a particular condition. This false positive prediction can be 

explained with nodes communicates at reception sensitivity edge (poor mean RSSI), 

may not always lead to link failures. As a result, NTC and BNTC representing 

connection success rate, and link asymmetry performed poorly when it comes to 

differentiating spatial challenges. 

3. Comparison between combination sets with three or four parameters 

The mean prediction accuracies of combination sets with three or more parameters 

(sets 11 – 15) in Figure 3.10 are compared. Once again, it is observed from sets 11 – 

13 and 15 that combination sets that contain mean RSSI produced good prediction 

accuracies greater than 80%. Amongst them, sets that contain ACV RSSI (sets 11, 12 

and 15) performed even better, producing prediction accuracies of more than 90%. 

Clearly, this strongly suggests that poor reception strength and high relative signal 

variation are key characteristics of a link failure caused by spatial challenges.  

The comparison between set 15 (highest number of parameters of four) and 

combination sets 5, 11 and 12 (less parameters yet similar prediction accuracies) 

demonstrates that having more training parameters does not necessarily translate to a 

better prediction accuracy. In other words, adding more training inputs may not 

necessary produce a more accurate prediction. Instead careful selection of training 

parameters may achieve higher prediction performance. 

3.5 Comparison of the Parameter Combinations 

1. Physical layer 

From Table 3.6, it is clear that the mean RSSI stands out among all parameters where 

the top eight models contain mean RSSI as one of their training inputs. Whether used 

alone or as a joint parameter, mean RSSI is a strong influencer when it comes to 



3.5. Comparison of the Parameter Combinations 

 69 

detecting link failures due to a poorly deployed environment and human movements. 

On the other hand, ACV RSSI appears in the top 4 best predictors, while ACV RSSI as 

a single parameter performed poorly. This is attributed to the minimal variations of 

multipath and fading effects in a static environment, thus leading to poor detectability 

of link fluctuation. However, when ACV RSSI is combined with other parameters, the 

overall prediction accuracy has showed improvement. For example, prediction 

accuracy of set 6 with mean RSSI and BNTC improved from 82.7% to 94.5% with the 

addition of ACV RSSI (set 1). In this work, ACV RSSI, representing reception 

fluctuation, is poor at detecting link failures from no failures. However, it is still able 

to differentiate link failures due to a poorly deployed environment or human 

movement.  

2. Network layer  

NTC and BNTC as single parameters, and as joint parameter represent both link 

connectivity and link asymmetry. Our findings show that both parameters are 

insufficient to predict link failures caused by spatial challenges. It is observed that sets 

trained with mainly network parameters and without mean RSSI have larger spread of 

model accuracy (sets 3, 4, 8-10, 13), as shown in Figure 3.10. These spreads can vary 

up to 30%. This can be explained with the grey transitional region phenomenon [84], 

where network level parameters alone can produce false positive predictions, which 

have wrongly indicated the presence of a particular condition.  

Additionally, it is observed that network layer parameters are only useful under the 

conditions where mean RSSI is absent. For instance, the prediction accuracy of set 2 

(ACV RSSI) improved from 6.6% to 48.6% with addition of NTC and BNTC (set 14). 

This phenomenon reinforces that network parameters are useful at detecting a link 

failure but are not able to distinguish between failures caused by human movements 

and a poorly deployed environment.  
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Table 3.6. Training input parameter combinations ranked according to mean 

prediction accuracies from most to least accurate. 

S/N Combination 
Set Parameters Used Mean Accuracy 

(%) 

1 12 Mean RSSI, ACV RSSI, BNTC 94.5 

2 5 Mean RSSI, ACV RSSI 94.3 

3 11 Mean RSSI, ACV RSSI, NTC 93.5 

4 15 Mean RSSI, ACV RSSI, NTC, 
BNTC 92 

5 6 Mean RSSI, NTC 82.9 

6 7 Mean RSSI, BNTC 82.7 

7 1 Mean RSSI 81.9 

8 13 Mean RSSI, NTC, BNTC 81.8 

9 14 ACV RSSI, NTC, BNTC 48.6 

10 8 ACV RSSI, NTC 45.4 

11 10 NTC, BNTC 43.6 

12 9 ACV RSSI, BNTC 43.5 

13 3 NTC 40.4 

14 4 BNTC 39.2 

15 2 ACV RSSI 6.6 

3.6 Chapter Summary 

In this chapter, the impact of persistent Wi-Fi traffic and spatial challenges on WSN 

communication reliability is thoroughly investigated through the conduct of 

controlled experiments. A novel data extraction platform, NI, is introduced to extract 

representative Zigbee PRO parameters from experimented nodes deployed in real-

world environments. Subsequently, ANFIS is used to model link failures caused by 

spatial-related network challenges. Given that the communication reliability of a 

WSN is known to be imprecise in real world application, ANFIS technique is chosen 

for its tolerance for partial truth in training data. 
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From the controlled experiments, three key conclusions are made. First, minimising 

Wi-Fi interference is possible with sufficient operating frequency separation. Second, 

the physical layer parameters have shown to be more useful in predicting spatial-

related link failures than the network layer parameters. This is contributed by the 

abilities of mean RSSI and ACV RSSI to distinguish poorly deployed environment and 

human movements. Lastly, individual parameters are observed to behave differently 

under varying conditions. Thus, there is a need for a better selection of parameters to 

achieve higher model prediction performance and better model interpretation. 
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4 Interpretability and Accuracy 

Trade-Offs in Fuzzy Modelling for 

Wireless Sensor Networks 

 

In Chapter 3, ANFIS models were developed to predict WSN link failures caused by 

spatial challenges. These models, trained by different combinations of inputs, were 

ranked and analysed based on the models’ accuracies. ANFIS prioritises classification 

accuracy and due to the curse of dimensionality, the interpretability on these Fuzzy 

models is challenging (exponential increase in the number of Fuzzy rules). 

The aim of Chapter 4 is to derive a strategy to optimise the ANFIS models’ 

interpretability and accuracy trade-offs specifically for WSN link failure prediction. 

The importance of model interpretability and its conflicting trade-offs with model 

accuracy are discussed in Section 4.1. In Section 4.2, the Non-dominated Sorting 

Genetic Algorithm–II (NSGA-II) technique is introduced to search for non-dominated 

IF-THEN rules within the ANFIS model’s Fuzzy rule-base. The objectives of NSGA-

II are to maximise the link failure prediction accuracy, and minimise the total number 

of IF-THEN rules and the total combined IF-THEN rule length. The implementation 

of different NSGA-II design heuristics and the influence of different optimisation 

objectives on model convergence are discussed in Section 4.3. The design heuristics 

include the initial population with different chromosome diversity, different mutation 

rates for active and inactive genes, and the use of “don’t care” conditions to represent 

no antecedent conditions of the IF-THEN rules. Lastly, Section 4.4 concludes the 

chapter.  
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4.1 Interpretability and Accuracy Trade-Offs in Neuro-

Fuzzy System 

4.1.1 What	is	Model	Interpretability?	

The interpretability of the Fuzzy rule-based classifier distinguishes it from other 

classification methods. The term interpretability refers to the ability of a classification 

model to allow users to comprehend the system’s behaviour by inspecting its 

functions. Unlike model accuracy that is determined based on the number of correctly 

classified training patterns, model interpretation is not as straightforward.  

There are different interpretability measures in the existing interpretability-oriented 

design of Fuzzy rule-based classifiers, such as model complexity, readability, 

completeness and consistency [133, 134, 135]. Two types of interpretability measures 

are commonly used. First, the complexity-based interpretability measure is designed 

to reduce the complexity of a Fuzzy model usually through a reduction of the number 

of rules and their respective antecedents. Second, the semantic-based interpretability 

measure, which preserves the semantics of a Fuzzy model, is often associated with the 

adjustment of MFs. Although these measures are adopted, there is still no universally 

accepted benchmark within the research community [136]. This is primarily due to 

the subjectivity of human intuition and the preference for linguistic values when 

interpreting results [136]. 

An unbounded number of rules are required to achieve arbitrary model accuracy [138, 

139] and a Fuzzy model can become extremely complex when modelling a highly 

non-linear system. In other words, a complexity-oriented model that is made up of 

fewer rules and input variables is regarded as easier to comprehend than a model with 

more rules, hence less complex. In [140], the complexity of an ANFIS model, 

designed to predict the surface roughness of end milling model, is reduced using 

Leave One Out Cross Validation (LOO-CV) technique. LOO-CV is a top-down rule 

reduction approach used to filter less relevant IF-THEN rules from the Fuzzy rule-

base. Iteratively, individual rule is removed from the rule-base and the RMSE of the 

adjusted ANFIS model is computed. The rule corresponds to the greatest RMSE is 

then removed because it has the lowest contribution to the prediction model. The 

removal of lowest contribution rule is repeated until RMSE cannot be further reduced. 
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It is said that the removal of unnecessary rules avoids the over-fitting phenomenon in 

large rule-base models. As a result, Dong and Wang [140] have showed that ANFIS 

with LOO-CV outperforms the classic ANFIS model and ANFIS with clustering 

approach in terms of test data-set model accuracy.  

On the other hand, a semantic-oriented model fine-tunes the linguistic hedges (i.e. the 

shape of a MF) of the original MF, so that the rules can be “self-explanatory” [141, 

142]. The semantic-based interpretability measure is introduced by Dubois and Prade 

[143]. They mentioned that, “the more similar is the observation to an antecedent, the 

more similar the conclusion should be to the corresponding consequent of the given 

antecedent”. This means that a rule is self-explanatory if its antecedent parts clearly 

indicate the characteristics of a classified pattern. For instance, a similarity measure is 

used to identify Fuzzy sets with highly overlapping positions [141]. During the Fuzzy 

model training, an overlapping of Fuzzy sets creates redundancy in the rule-base 

where the coverage of IF-THEN rules in the data space becomes highly similar. By 

merging similar Fuzzy sets and creating a common Fuzzy set in the rule-base improve 

the distinguishability between IF-THEN rules as well as reduce the total number of 

rules [141]. 

4.1.2 The	 Search	 for	 Relevant	 IF-THEN	 Rules	 using	 Multi-objective	
Evolutionary	Algorithms	

Multi-Objective Evolutionary Algorithm (MOEA) techniques have been widely 

adopted to search for multiple Pareto-optimal along the trade-off surface of a Fuzzy 

Rule-Based System (FRBS) [137, 144, 145]. MOEA techniques simulate the concept 

of Genetic Algorithms (GAs) and Evolutionary Strategies (ES) to provide continuous 

and combinatorial optimisation of Fuzzy properties relating to accuracy and 

interpretability. As shown in Figure 4.1, the Pareto front (denoted as black circles) is a 

set of solutions that are superior to the rest of the population (blue circles) in at least 

one criterion. No solution among the Pareto front is more superior to another in all 

criterions; an improvement in one property (i.e. increase in the number of rules) 

degrades the other (i.e. decrease in model accuracy). The common optimisation 

properties of a FRBS are for example, the total number of Fuzzy rules, total length of 

Fuzzy rules, number of correctly classified rules, distinguishability between MFs and 

granularity of the uniform partition [145], 
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Figure 4.1 Two-objective problem and Pareto front - Trade-off between accuracy 

maximisation and complexity minimisation of rules sets 

Alcala et al. [146] experimented MOEA techniques such as SPEA2 and NSGA-II to 

simultaneously reduce the rule-base size of FRBS and improve the models’ accuracy. 

During the MOEA search, binary encoded Fuzzy IF-THEN rules are turned on and 

off, and the corresponding attributes of triangular-shaped MFs are adjusted randomly. 

Two optimisation objectives are considered; model’s accuracy maximisation and 

complexity minimisation, computed as the RMSE and the total number of active 

Fuzzy rules respectively (i.e. rules that are turned on). It is found that through 

exhaustive selection of Fuzzy rules and tuning of corresponding MFs based on 

training error, a smaller and more accurate Fuzzy rule-base is achieved. However, 

through the adjustments of MFs, similar to a semantic-oriented model, the 

homogenous quality of a Fuzzy model is lost. Even if a new pattern in an input space 

is fully compatible with fine-tuned rules, multiple rules with different MFs are 

difficult to compare and the ability to interpret the rules is reduced [147]. Therefore, 

the ability to reduce the number of rules while preserving the homogenous quality of a 

Fuzzy model is necessary for model interpretation. 

The removal of Fuzzy rules without degrading model’s accuracy can be explained 

with a Fuzzy rule-base that contains potential contradictions in its premises 

combinations. For example, it is contradicting to say, “IF the sun is bright AND the 

cloud is heavy” [148]. As such, contradictory rules are present where they may be 
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associated with the empty areas of the input and output space [141]. Optimising a 

Fuzzy rule-base means the exclusion of rules with little relevance from the model, and 

the decision to remove them can be based on its approximation contribution [149].  

4.2 Fuzzy Rule-Base Optimisation of ANFIS models using 

NSGA-II    

4.2.1 Non-dominated	Sorting	Genetic	Algorithm-II		

Non-dominated Sorting Genetic Algorithm II (NSGA-II) has emerged as one of the 

most adopted MOEA techniques to tackle interpretability-accuracy trade-off in FRBS 

[145]. NSGA-II is known for its ability to preserve non-dominated and diverse 

solutions in the Pareto-front with fast non- dominated sorting with elitism approach 

[150].  

Fast non-dominated sorting in NSGA-II evaluates the solutions using Pareto ranking. 

For instance, in the current population, all solutions that are not dominated by others 

in terms of optimisation objectives (i.e. non-dominated solutions) are ranked 1. 

Solutions of rank 1 are then removed from the population. This allows a new set of 

non-dominated solutions to be selected among the reduced population. These new 

non-dominated solutions are ranked 2 and are removed from the reduced population. 

The selection and removal of non-dominated solutions are repeated until a rank is 

assigned to all solutions. As a result, solutions ranked first and last are regarded as 

fittest and weakest respectively. Furthermore, among the solutions of the same rank, a 

crowding measure is used to determine the distance between its adjacent solutions in 

the objective space. Less crowded solutions with larger crowding measure are viewed 

as better than crowded solutions with smaller crowding measure. The distinction 

between crowded and less crowded solutions allows the selection of diverse Pareto 

front. Lastly, elitism approach in NSGA-II refers to the selection of solutions from the 

same rank and incorporating them into the next generation. The selection of solutions 

from the same rank speeds up the GA search without further re-evaluation of fitness. 

In addition, the preservation of neighbouring solutions of the same rank prevents the 

loss of good solutions. 

NSGA-II is also regarded as superior over other MOEA techniques, particularly in a 
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noisy environment [151, 152]. Bui et al. mentioned that solutions in a noisy 

environment tend to be generated close to each other (crowded). It is highlighted that 

noise in real-world application cannot be discounted. Noise can come from different 

sources such as data inputting or sampling error from sensors and actuators in a 

multi–agent simulation. Hence, the ability of NSGA-II to preserve a broader range of 

solutions with greater crowding distance along the Pareto front allows better 

distinction from noise. 

4.2.2 Problem	Formulation		

NSGA-II is used to optimise the ANFIS model (refer to Chapter 3.3) and search for 

non-dominated IF-THEN rules within its rule-base. The flow diagram is illustrated in 

Figure 4.2. The ANFIS model, initially generated with the four training link quality 

parameters – mean RSSI, ACV RSSI, NTC and BNTC – is optimised with the 

objectives of minimising the total number of IF-THEN rules and the total combined 

rule length, and maximising the model’s prediction accuracy.  

 

Figure 4.2. Flow diagram – Fuzzy model optimisation using NSGA-II. 
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1. Chromosome representation 

Given that an attribute i has li number of linguistic values (i.e. total number of MFs), 

the total number of possible combination of rules is 𝑙!!
!!!  for a d-number of 

attributes. Figure 4.3 shows an ANFIS model represented by chromosomes and genes. 

A total of 81 binary encoded chromosomes are used to describe the ANFIS model, 

developed from four attributes – mean RSSI, ACV RSSI, NTC and BNTC – and three 

MFs each, constructing a maximum number of 81 IF-THEN rules. A chromosome of 

‘1’ denotes that the respective rule within the rule-base is activated, and ‘0’ denotes 

that the rule is inactive. All active rules are used to compute the overall model 

accuracy. Vice versa, inactive rules are not utilised for model accuracy computation.  

A chromosome can be further represented with four genes, denoting the 

corresponding antecedent conditions of the respectively rule (Equation 3.12). ‘1’ 

being the antecedent part is mapped on a Gaussian MF (Equation 3.18), and ‘0’ being 

“don’t care (DC)” [153]. Given that there are four antecedent parts per rule, the 

maximum combined rule length of all 81 rules is 324. An attribute that is mapped 

with DC does not contribute to the membership degree calculations in the 

classification phase (Equation 3.14) [154].  

 

Figure 4.3. Chromosome representation of individual Fuzzy IF-THEN rules and their 

respective genes. 

The antecedent condition of DC is represented by a linguistic value of unity. This 

means that an attribute mapped with DC have a degree of 1. For example, if the 

domain of the i-th attribute has an unit interval between [0,1], the membership grade 

of antecedent condition DC can be written as Equation 4.1.  

R1	 R2	 R3	 ...	 R80	 R81	

1	0	0	1	 0	1	1	1	 0	0	0	0	

R1,1	R1,2	R1,3	R1,4	 R2,1	R2,2	R2,3	R2,4	 R3,1	R3,2	R3,3	R3,4	

81 chromosomes representing 81 IF-THEN rules 

4 genes representing 4 input parameters of each rule  
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𝜇!" 𝑥! =  1,0,  
𝑖f 0 ≤ 𝑥! ≤ 1,
otherwise

 (4.1) 
 

where 𝜇!"  is the MF relation of DC type based on input x. When DC antecedent 

condition is used, the membership grade to the input x is always 1. 

2. Objective functions  

Three objective functions implemented to optimise the Fuzzy rule-bases of the 

initially generated ANFIS models are shown in Equations 4.2, 4.3 and 4.4. The 

objective functions are (1) minimisation of the total activated IF-THEN rules in the 

optimised Fuzzy rule-base (M1), (2) minimisation of the combined of rule length of all 

activated antecedent conditions in all IF-THEN rules in the optimised Fuzzy rule-base 

(M2), and (3) maximisation of the classification accuracy based on the optimised 

Fuzzy rule-base (M3).  

Min (M1) = Min (Total activated IF-THEN rules) (4.2) 

Min (M2) = Min (Combined rule length for all activated antecedents 

conditions in all IF-THEN rules (M1)) 
(4.3) 

Max (M3) = Max (Classification accuracy based on the optimised Fuzzy 

rule-base) 
(4.4) 

Both M1 and M2 are measures of the ANFIS model’s interpretability. A simpler Fuzzy 

rule-base has fewer and shorter rules [147, 155]. M3 is an accuracy measure between 

the ANFIS model’s predicted output and the training output data (refer to Section 

3.3). The greater the M3, the better the model is at predicting spatial-related link 

failures.  

Every rule in the rule-base specifies a subspace within the input space. These 

subspaces are dictated by the antecedent conditions of the Fuzzy rules (refer to 

Section 3.3.3). Figures 4.4 and 4.5 illustrate the differences between Fuzzy partitions 

incorporating without and with antecedent conditions DC respectively. In Figure 4.4, 

a 2-D input space is divided into 25 Fuzzy subspaces, constructed by attributes x and y 

with five linguistic values each. On the other hand, the introduction of DC in Figure 
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4.5 reduces the total number of Fuzzy partitions to 5. Each partition is partially 

defined with DC linguistic value, providing a greater coverage within the input space. 

In this case, a non-linear model can be represented with lesser number of grids, 

translating to lesser number of Fuzzy IF-THEN rules [156]. 

 

Figure 4.4. Example of Fuzzy partitioning of a 2-D input space [0,1] × [0,1] with five 

linguistic values for attribute x and y. 

 

Figure 4.5. Example of Fuzzy partitioning of the 2-D input space [0,1] × [0,1] with 

“don’t care” as an antecedent Fuzzy set. 
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3. Fuzzy rule-base optimisation of ANFIS models 

Figure 4.6 illustrates the flow diagram of NSGA-II used to optimise the developed 

ANFIS model based on objective functions M1, M2 and M3. In the first step, NSGA-

II begins the search for optimal solutions with a number of randomly chosen 

chromosomes forming the initial population. An initial population P0 of size N is 

initialised. Every solution pi represents an ANFIS model that contains up to a 

potential maximum of 81 IF-THEN rules and 324 combined Fuzzy rule length.  

 

Figure 4.6. Flow diagram – The application of NSGA-II to generate offspring, rank 

individuals based on objective functions, and carry forward the fittest solutions over 

300 generations.  

In the second step, solutions in P0 are ranked using fast non-dominated sorting. For 

every solution pi in P0, the fitness measures – M1, M2 and M3 – are computed and a 

domination count ni of zero is assigned. ni is the number of solution within the P0 that 
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pi got dominated based on the M1, M2 and M3. Solution p1 dominates solution p2 if p1 

is better than p2 in at least one of the fitness measures and is not worse in any of them. 

This way, a solution with zero ni is regarded as the fittest solution among P0 and the ni 

of any solution is at most N-1. Once the domination counts of all solutions in P0 are 

computed, they are ranked in layers based on the ni. For instance, all solutions with 

zero ni are assigned to front F1, and all solutions that are only dominated by front F1 

are assigned to front F2. This ranking process is repeated until every solution pi is 

ranked. 

 

Figure 4.7. Single-point crossover at a random index between 1 and 81 performed on 

two winning solutions (i.e. parent) to produce two new offspring (i.e. child). 

In the third step, for every generation t, N/2 pairs of individual solutions are randomly 

selected from the current population Pt for tournament selection, crossbreeding and 

potential mutation. The selected pairs will compete for fitness based on M1, M2 and 

M3. The two winning solutions, also known as parents, will undergo crossbreeding to 

form two new offspring. Figure 4.7 illustrates two winning parents exchanging their 

chromosomes at a randomly selected index V-3, where V is the maximum number of 

chromosomes. In this work, the maximum number of chromsomes V is 81. A single-

point crossover is picked at a random index between 1 and 81, from which the 

winning solutions will exchange their chromosomes. Next, a chromosome can be 

selected for mutation depending on a mutation rate. Different mutation rates are used 

for turning on and off the genes. If selected, an activated gene will be deactivated (i.e. 

from ‘1’ to ‘0’). Vice versa, an inactivated gene will be activated (i.e. from ‘0’ to ‘1’). 

If all four antecedent parts within a rule are switched off by chance (i.e. ‘0 1 0 0’ to ‘0 

0 0 0’), the particular chromosome (i.e. IF-THEN rule) is considered unutilised. On 

the other hand, a rule is considered active if any one of the four genes is activated.  

R1	 R2	 R3	 R4	 ……	 RV-3	 RV-2	 RV-1	 RV	

1	 0	 1	 0	 …	 0	 0	 0	 1	

0	 0	 0	 0	 …	 1	 1	 1	 1	

1	 0	 1	 0	 …	 0	 1	 1	 1	

0	 0	 0	 0	 …	 1	 0	 0	 1	

Parent 1 

Parent 2 Child 2 

Child 1 

Randomly select  
index V-3 for crossover 
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In the forth step, once every parent pair in Pt has competed, an offspring population 

Qt of size N will be generated. Pt and Qt are then combined to form an intermediate 

population Rt of size 2N and is ranked using fast non-dominated sorting. Figure 4.8 

shows the rankings of solutions and the non-dominated sorting procedure to carry the 

fittest solutions over to the next generation. This time, non-dominated sorting is 

performed on a 2N size population Rt. Similar to the second step, non-dominated 

solutions with zero ni are assigned with front F1. F2 is assigned to solutions that are 

only dominated by solutions of F1. This ranking (i.e. F1, F2…Fr, where r is the total 

number of fronts) process is repeated until every solution p in Rt is ranked.  

 

Figure 4.8. Non-dominated sorting procedure with crowd distance measure in NSGA-

II used to select the fittest solutions of size N among the population of size 2N (Pt + 

Qt) based on rankings [150]. 

In preparation for the next generation, the intermediate population Rt is reduced to 

size N to form a new population Pt+1. This reduction of population size is based on 

ranking, so that Pt+1 is made up of fitter solutions of better rankings. When the 

population size has exceeded N (i.e. with F3 in Figure 4.8), the remaining individuals 

in F3 to be carried forward are chosen based on crowding distance measure. As shown 

in Figure 4.9, the crowding distance of the solution in orange is the average cuboids 

side length formed using the nearest neighbours as the vertices (illustrated with 

dashed boxes). Crowding distance is the average distance of the two points on the side 

of a solution along each objective. For instance, the crowding distance of solution in 

orange (Figure 4.9) between its closest neighbours in objective M1 is x2 + x3. The 
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larger the crowding distance relatively to its nearest neighbours, the more diverse is 

the solution. In other words, solutions within F3 with the largest average crowding 

distance in terms of M1, M2 and M3 will be selected to be in Pt+1. 

Lastly, steps 3 to 4 are repeated until the stop criterion is reached. The stop criterion 

refers to the maximum number of generations. 

 

Figure 4.9. Crowding-distance calculation between solutions in the form of cuboids 

perimeters. 

4.3 Exploration of Input and Output Space 

The search for non-dominated solutions is iteratively guided by the fitness of the 

current parent generation [157], and the flexibility of solutions to explore the search 

space [158]. One drawback of a fitness proportionate selection is that excessive 

domination by an individual can occur [159]. An individual with the greatest fitness 

can suppress and dominate the current generation, where its genes are replicated and 

brought forward to subsequent generations. This leads to a premature convergence 

towards a local optimum, leaving the rest of the search space unexplored. In addition, 

a low number of generations (i.e. GA search iterations) can lead inadequate search 

space exploration. Contrarily, too high a generation requires excessive computations. 
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In order to allow test cases of contrasting properties to evolve sufficiently, a total of 

300 generations is used.  

Population diversity and selection pressure are key factors to prevent the exploration 

of solutions in the wrong direction (i.e. population is trapped in the local maxima or 

minima) [157]. Population diversity refers to the average distance between individuals 

based on M1, M2 and M3 values at the population-level. On the other hand, selection 

pressure is the tendency to pick the fittest solution of the current generation. An 

overly high selection pressure reduces the population diversity, while an overly low 

selection pressure prohibits convergence to an optima in a reasonable time. In the next 

sections, the influence of NSGA-II’s design heuristics on population diversity and 

selection pressure is discussed. 

Boxplots are used to describe the evolutions of solutions among the population for the 

different test cases. Boxplots as explained in Section 3.3.5, described the manner in 

which the solutions among the respective population are spread out from the median. 

Outliers, denoted with ‘+ in these boxplots, highlight the values that are outside of the 

1.5 interquartile range from the median. 

4.3.1 The	impact	of	Initial	Population	on	Premature	Convergence	

Table 4.1. NSGA-II design properties for test case A1, A2 and A3, with densely 

deactiviated, evenly distributed and densely activated initial populations respectively. 

Test case A1 A2 A3 

Number of 
generations 300 300 300 

Population size 200 200 200 

Mutation rate 0.01 0.01 0.01 

Crossover Single-point 
crossover 

Single-point 
crossover 

Single-point 
crossover 

Initial population 
diversity 

Densely 
deactivated 

Evenly 
distributed 

Densely 
activated 
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Three test cases, namely A1, A2, A3 and their respective design properties are 

illustrated in Table 4.1. Their design properties are the same except for the differences 

in diversities of initial populations. Different initial population diversities in terms of 

Fuzzy rule-base size are experimented for their impact on the solutions’ ability to 

explore the search space over the generations. They are (A1) densely inactive number 

of rules (a mix of solutions randomly generated with maximum of 40 IF-THEN rules), 

(A2) evenly distributed number of rules (a mixed of solutions randomly generated 

with a minimum and maximum of 1 and 81 IF-THEN rules respectively, and (A3) 

densely active number of rules (a mixed with solutions randomly generated with a 

minimum of 45 IF-THEN rules).  

Figures 4.10 a to 4.10 d show the fitness evolution of solutions in test case A1 over 

300 generations with a population size of 200 individuals. From Figures 4.10 a and 

4.10 b, an initial population of densely deactivated rules has guided the GA search to 

evolve quickly towards a small Fuzzy rule-base. Solutions with Fuzzy rule-bases of 

10 rules dominated the population even from the 10th generation. A growth in rule-

base size is also observed from generation 70 onwards. Subsequently, the population 

converged with a median of less than 10 rules after generation 150. Figure 4.10 d 

illustrates the explorations of solutions in the search space. It shows the manner in 

which all 200 individual solutions (i.e. different ANFIS models) evolved over the 

generations (i.e. 1st, 5th, 15th, 20th…150th, 300th generation). The solutions of different 

generations are distinguished by different colour codes. Solutions in the initial 

population (1st generation) are randomly generated between 1 and 40 rules. They are 

found to have varying model accuracy performance, ranging from 0 to no more than 

80% (Figure 4.10 c). It is clear that the populations have evolved prematurely in the 

region of small Fuzzy rule-bases, leaving the input and output space largely 

unexplored. 

The solutions’ model accuracies of test case A1 are also observed to converge quickly, 

as shown in Figure 4.10 c. The randomly generated initial population in terms of 

Fuzzy rules and their antecedent parts have an overall poor median model accuracy of 

less than 25%. This suggests that a randomly generated solution is unlikely to have 

good model accuracy. Thus, solutions with optimal model accuracy require careful 

configurations of rule-base (i.e. activated IF-THEN rules and antecedent parts). 
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Figure 4.10 a. Test case A1 - Convergence of objective function, M1 (initial population 

- densely deactivated, population size = 200, generations = 300, mutation rate = {0.01, 

0.01}). 

 

Figure 4.10 b. Test case A1 - Convergence of objective function, M2 (initial 

population - densely deactivated, population size = 200, generations = 300, mutation 

rate = {0.01, 0.01}). 
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Figure 4.10 c. Test case A1 - Convergence of objective function, M3 (initial population 

- densely deactivated, population size = 200, generations = 300, mutation rate = {0.01, 

0.01}). 

 

Figure 4.10 d. Initial population with densely deactivated Fuzzy rule-base influences 

the manner in which solutions evolve over 300 generations (initial population - 

densely deactivated, population size = 200, generations = 300, mutation rate = {0.01, 

0.01}). 
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Figures 4.11 a to 4.11 d illustrate the fitness evolution of solutions in test case A2 

evolved over 300 generations with population size of 200. It is observed from Figures 

4.11 a and 4.10 b that the objectives M1 and M2 have failed to converge from an initial 

population of evenly distributed Fuzzy rule-bases. From Figure 4.11 d, the number of 

solutions with more than 70 Fuzzy rules is observed to have grown from the 80th 

generation onwards. These solutions are observed as outliers in terms of Fuzzy rule-

base size and model accuracy in Figures 4.11 a, b and c. Despite being anomalies, 

their dominance in model accuracy is maintained, thus allowing them the opportunity 

to reproduce into the subsequent generations. This phenomenon has led to two local 

optima as shown in Figure 4.11 d. First is the region of small Fuzzy rule-base and 

second is the region of solutions with high model accuracy and large Fuzzy rule-base. 

This signifies that the innovation time taken to generate local optima is possible and 

these solutions can take over the population as long as they can remain non-

dominated.  

In test case A2, majority of the solutions are found to converge towards a small Fuzzy 

rule-base in the early generations. This phenomenon is also observed in test case A1 

and can be explained by the following two factors. First is the tournament selection. 

An evenly distributed initial population has about half of the population with 50% of 

their rules inactive. Competing for fitness between individuals of different rule-base 

size is unfair. This is because solutions with smaller Fuzzy rule-bases will be selected 

since it is uncommon to generate an initial population with good model accuracy. 

Such large diversity in Fuzzy rule-base size during competition can lead to vanishing 

selection pressure. Elimination of unfit solutions is due to a larger Fuzzy rule-base 

size rather than the IF-THEN rules being incompetent. The second factor is the 

crossover between solutions of different rule-base sizes. The winning solutions will 

undergo crossover and the chances for the solutions with a large rule-base to 

reproduce with solutions of a small rules-base will increase. This further increases the 

rate of reproducing an offspring with much smaller Fuzzy rule-base.  
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Figure 4.11 a. Test case A2 - Convergence of objective function, M1 (initial population 

- evenly distributed, population size = 200, generations = 300, mutation rate = {0.01, 

0.01}). 

 

Figure 4.11 b. Test case A2 - Convergence of objective function, M2 (initial 

population - evenly distributed, population size = 200, generations = 300, mutation 

rate = {0.01, 0.01}). 
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Figure 4.11 c. Test case A2 - Convergence of objective function, M3 (initial population 

- evenly distributed, population size = 200, generations = 300, mutation rate = {0.01, 

0.01}). 

 

Figure 4.11 d. Initial population with evenly distributed Fuzzy rule-base influences 

the manner in which solutions evolve over 300 generations (initial population - evenly 

distributed, population size = 200, generations = 300, mutation rate = {0.01, 0.01}). 
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Figure 4.12 a to Figure 4.12 d illustrate the fitness evolution of solutions in test case 

A3 evolved over 300 generations with a population size of 200. It is clear that an 

initial population of densely activated rule-base effectively slows down the 

convergence of objective functions M1 and M2. This can be explained by the choice of 

solutions during tournament selections. Tournament selections are conducted between 

solutions of similar rule-base size, providing selection pressure on solutions with 

better model accuracies. For example, the solution with a better accuracy will be 

selected between two individuals with 70 rules. Referring to Figure 4.12 d, the slower 

convergence towards a smaller rule-base has led to a more thorough exploration of 

solution space.  

In addition, the slower reduction of Fuzzy rule-base size in test case A3 is likely 

performed through mutation, rather than through crossover as observed in test cases 

A1 and A2. The removal of rules through mutation has led to a subtle reduction in 

Fuzzy rule-base size. Despite the slower convergence of solutions towards smaller 

rule-bases, M3 outliers in Figure 4.12 c still remains. Again, this can be explained with 

the difficulty to randomly generate a solution with good model accuracy. 

 

Figure 4.12 a. Test case A3 - Convergence of objective function, M1 (initial population 

- densely activated, population size = 200, generations = 300, mutation rate = {0.01, 

0.01}). 
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Figure 4.12 b. Test case A3 - Convergence of objective function, M2 (initial 

population - densely activated, population size = 200, generations = 300, mutation 

rate = {0.01, 0.01}). 

 

Figure 4.12 c. Test case A3 - Convergence of objective function, M3 (initial population 

- densely activated, population size = 200, generations = 300, mutation rate = {0.01, 

0.01}). 

Fitness evolution of solutions in test case A3 for objective function M2  

1  10 20 30 40 50 60 70 80 90 100 100 125 150 175 200 225 250 275 300
Generation

0

50

100

150

200

250

300

To
ta

l r
ul

e 
le

ng
th

 Generation = 300, Population size = 200 (Range of total combined if-then rules length per generation)

Fitness evolution of solutions in test case A3 for objective function M3  

1  10 20 30 40 50 60 70 80 90 100 100 125 150 175 200 225 250 275 300
Generation

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 Generation = 300, Population size = 200 (Range of model accuracy per generation)



4.3. Exploration of Input and Output Space 

 94 

 

Figure 4.12 d. Initial population with densely activated Fuzzy rule-base influences the 

manner in which solutions evolve over 300 generations (initial population - densely 

activated, population size = 200, generations = 300, mutation rate = {0.01, 0.01}). 
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earlier on in the GA search suggest that the parent solutions can be easily dominated 

by a new offspring.  

Test case A3, with a densely activated initial population, has also guided the solutions 

to a quick convergence in M3. This is because individuals with similar rule-base sizes 

will compete for M3 in the earlier generations. Unlikely in test cases A1 and A2, the 

populations search for better model accuracy only at the later generations. However, 

despite the progressive convergence, test case A3 struggles to produce solutions with 

less than 20 IF-THEN rules. This signifies a long “takeover time” for a fitter solution 

to take over the population [159], which suggests a need for a greater selection 

pressure towards a smaller Fuzzy rule-base.  

 

Figure 4.13 a. A comparison of mean number of IF-THEN rules, M1, between (A1) 

initial population - densely deactivated and (A3) initial population - densely activated 

(population size = 200, generations = 300, mutation rate = {0.01, 0.01}).  
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Figure 4.13 b. A comparison of mean model accuracy, M3, between (A1) initial 

population - densely deactivated and (A3) initial population - densely activated 

(population size = 200, generations = 300, nutation rate = {0.01, 0.01}). 

The standard deviations of M1 and M3 of the populations in test cases A1 and A3 are 

illustrated in Figures 4.14 a and b. Referring to Figure 4.14 a, test case A3 maintains a 

Fuzzy rule-base diversity of about 4 to 9 rules over the generations. In test case A1, 

the GA began with wider range of Fuzzy rule-base sizes of about 9 rules, and this 

reduced rapidly to 5 rules before the 10th generation. An increase in rule-base diversity 

is also observed after the 50th generations, corresponding to the increase in overall 

mean rule-base size of A1 observed in Figure 4.10 a. This is because the populations 

have a limited exploration space for non-dominated solutions after it converged 

prematurely into a small rule-base. 

The increase in standard deviation of M1 in test cases A1 and A3 (Figure 4.14 a) at the 

later generations can be explained by the search of non-dominated solutions over 

multimodal search space. A multimodal search space is defined as multiple local 

optima acting as attractors in the search dynamics. Searching for models with a small, 

yet accurate Fuzzy rule-base at the later generations is increasingly challenging due to 

similar-looking solutions. This highlights the importance of maintaining M1 diversity 

when searching for non-dominated solutions.  
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This finding further emphasises the importance of a thorough exploration of GA 

search towards a global optimum [157]. Premature convergence can be prevented 

when the “innovation time” is longer than the “takeover time” [159]. For instance, the 

time taken for the best individual to take over the population is longer than that 

needed to generate a new best individual. Therefore, the ability to maintain diversity 

among strong individuals without abrupt changes is critical for the creation of 

exploration opportunities. From Figure 4.12 d, the thorough exploration of search 

space in test case A3 can be observed from the variation in M3 diversity as compared 

to test case A1. It is clear that when exploring non-dominated solutions before global 

convergence, it is necessary to maintain a right diversity in all objectives.  

 

Figure 4.14 a. A comparison of standard deviation of total number of IF-THEN rules, 

M1, between (A1) initial population - densely deactivated and (A3) initial population - 

densely activated (population size = 200, generations = 300, mutation rate = {0.01, 

0.01}). 
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Figure 4.14 b. A comparison of standard deviation of model accuracies, M3, between 

(A1) initial population - densely deactivated and (A3) initial population - densely 

activated (population size = 200, generations = 300, mutation rate = {0.01, 0.01}). 
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deactivate the genes is 0.03. The higher mutation rates in contrast to test case A1 (0.01 

mutation rates for both gene activation and deactivation) allows greater chance to 

generate offspring solutions that have different rule-base from their parent solutions. 

In test case B2, mutation rates of 0.03 and 0.01 are used for activating and 

deactivating of genes respectively. Contrarily, test case B3 has the opposite mutation 
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the search space exploration.  
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Table 4.2. NSGA-II design properties for test case B1, B2 and B3, with mutation rates 

for activation and deactivation of antecedent parts of IF-THEN rules. 

Test case B1 B2 B3 

Number of 
generations 300 300 300 

Population size 200 200 200 

Mutation rate 

0.03 (Parameter 
deactivation) 

0.03 (Parameter 
activation) 

0.01 (Parameter 
deactivation)  

0.03 (Parameter 
activation) 

0.03 (Parameter 
deactivation) 

0.01 (Parameter 
activation) 

Initial population 
diversity Densely activated Densely activated Densely activated 

 

Figures 4.15 a, b and c illustrate the comparison of the mean of M1, M2 and M3 of test 

cases B1, B2 and B3 over 300 generations. It is clear that the different mutation rates 

have led to different convergence results. Referring to Figures 4.15 a and b, test case 

B2 with higher mutation rates for activating a gene performed the poorest in terms of 

M1 and M2. The solutions’ overall mean rule-base size does not converge to less than 

50 rules. It is observed that despite having higher chances of antecedent parts 

activation (due to mutation), there is no increase in the total number of rules (M1) and 

rule length (M2) over the generations. With greater chance of activating new 

antecedent part of a rule, a more detailed subspace (i.e. finer grid partitions) is used to 

map the input and output space (Refer to Section 4.2.2 (2)). However, the constant 

generation of solutions with more antecedent parts in existing rules also prevents the 

population from exploring solutions of small rule-bases.  

Solutions in test case B1, with 0.03 mutation rates to activate and deactivate genes, 

have failed to reduce their rule-bases size to less than 36 rules over the generations. 

Comparing test cases A1 (Figures 4.13 a) and B1 (Figure 4.15 a), the higher mutation 

rates of 0.03 do not produce solutions of smaller rule-bases over the generations. 

Similar to test case B2, the failure of the population to converge to a small rule-base in 

test case B1 has showed that greater variability in both rule activation and deactivation 
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(through mutations) may introduce long “takeover time” [159]. This means that new 

but not fitter offspring are generated. Furthermore, the higher chance of mutations in a 

rule-base creates an offspring that is dissimilar from its parents, where key 

arrangements of a rule-base (i.e. the rules and their antecedent parts) are re-

configured. Comparing test cases B1 and B2 in Figure 4.15 c, despite the solutions of 

smaller rule-bases in test case B1, its mean model accuracy (M3) of the population 

remained poor. This phenomenon further highlights that the offspring are often unfit. 

To minimise drastic changes in model accuracy, the generation of offspring should 

have subtle rule-base changes. 

Test case B3 with mutation rates of 0.01 and 0.03 for activating and deactivating of 

genes respectively performed the best among the test cases in all objectives. The 

higher mutation rate for gene deactivation forces the population to explore the region 

of smaller rule-bases with shorter rules as shown in Figures 4.15 a and b. At the same 

time, in Figures 4.15 c, the mean models’ accuracies are observed to improve steadily 

over the generation to approximately 87%. The population in test case B3 showed 

greater momentum in producing and selecting solutions of smaller rule-bases while 

not compromising the model accuracy. Contrarily, the inability to converge towards a 

smaller rule-bases in test cases B1 and B2 can be seen as incapability to produce 

accurate solutions with small rule-bases. Hence, this has showed that achieving 

shorter innovation time (i.e. time to generate new best solution) with increasing 

mutation rate for gene activation is unsuitable.  
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Figure 4.15 a. A comparison of the mean total number of IF-THEN rules, M1, between 

(B1) mutation rate = {0.03, 0.03} (B2) mutation rate = {0.01, 0.03} (B3) mutation rate 

= {0.03, 0.01} (initial population - densely activated, population size = 200, 

generations = 300). 

 

Figure 4.15 b. A comparison of the mean total rule length, M2, between (B1) mutation 

rate = {0.03, 0.03} (B2) mutation rate = {0.01, 0.03} (B3) mutation rate = {0.03, 0.01} 

(initial population - densely activated, population size = 200, generations = 300). 
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Figure 4.15 c. A comparison of the mean model accuracy, M3, between (B1) mutation 

rate = {0.03, 0.03} (B1) mutation rate = {0.01, 0.03} (B3) mutation rate = {0.03, 0.01} 

(initial population - densely activated, population size = 200, generations = 300). 
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B3 are illustrated in Figures 4.16 a and b respectively. From Figure 4.16 a, it is clear 

that the rule-base size diversity of test case B3 grew significantly higher in the initial 
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The increase in M1 diversity in test case B3 can be explained with the higher mutation 

rate for deactivation of antecedent parts of a rule. For example, the offspring are 
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potentially more accurate yet larger rule-bases remained dominant. The ability to 
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This also prevents the population from exploring in the wrong direction or away from 

small rule-bases. More importantly, a solution with small rule-base must also be 

accurate in order to be non-dominated. A non-dominated solution is superior in all 

objectives. The increase in population diversity in test case B3 (Figure 4.16 a) 

signifies selection pressure where an offspring with smaller rule-base (refer to 

improving M1 and M3 in Figures 4.15 a and c) must also be more accurate in order to 

be dominant. 
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On the other hand, in test cases B1 and B2, the inability to explore the regions of 

smaller rule-bases has led to lower diversity of rule-base size throughout the 

generations (Figure 4.16 a). The generated offspring are expected to have similar or 

higher rule-base size as compare to their parent, due to higher chance of gene 

activations. As a result, tournament selection is performed between solutions of 

similar rule-base size; this is also observed from the model accuracy diversities of test 

cases B1 and B2, which remained in the range of 12 to 22% throughout the generations 

without converging to a smaller rule-base.  

It should be noted that a generated offspring is likely to have poor model accuracy. 

This is observed in all test cases (Figures 4.13 b and 4.15 c) where the populations in 

the 1st generation have a mean M3 of less than 30%. The inability of test cases B1 and 

B2 to generate a population with overall good model accuracy in the later generations 

highlights the importance of both population diversity and exploration of search space 

in the right direction. However, this must be performed in a subtle manner to prevent 

premature converge. For instance, in test cases A1 and A2, solutions with very small 

rule-bases in the early generation remained non-dominated by solutions with large 

rule-base of poor accuracy. This has led to a prematurely converged population with 

mean accuracy of more than 80% at only the 30th generation.  

 

Figure 4.16 a. A comparison of the standard deviation of total number of IF-THEN 

rules, M1, between (B1) mutation rate = {0.01, 0.01}, (B2) mutation rate = {0.03, 

0.01} and (B3) mutation rate = {0.05, 0.01} (initial population - densely activated, 
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population size = 200, generations = 300). 

 

Figure 4.16 b. A comparison of the standard deviation of model accuracy, M3, 

between (B1) mutation rate = {0.01, 0.01}, (B2) mutation rate = {0.03, 0.01} and (B3) 

mutation rate = {0.05, 0.01} (initial population - densely activated, population size = 

200, generations = 300). 

Figure 4.17 illustrates the manner in which populations in test case B3 converged over 

300 generations in terms of objectives M1 and M3. Clearly, a higher mutation rate for 

deactivation of parameters has resulted in a population with smaller Fuzzy rule-bases 

[160] without compromising the exploration of search space. Figure 4.17 also 

provides another perspective of the gradual improvement of objectives M1 and M3 

over the generations. Regions of solutions with small and inaccurate rule-bases in the 

search space are probed. Nonetheless, they remained non-dominated without taking 

over the population and create another local optima as observed in test case A2 in 

Figure 4.11 d.  
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Figure 4.17. The impact of 0.03 mutation rate for deactivation of parameters over 300 

generations (initial population - densely activated, population size = 200, generations 

= 300, mutation rate = {0.03, 0.01}). 

4.4 Chapter Summary 

Chapter 4 introduces the use of NSGA-II to optimise the complexity and 

interpretability of an ANFIS model, and evaluates the impact of different NSGA-II 

design heuristics during optimisation. NSGA-II technique is known for its ability to 

preserve non-dominated and diverse set of solutions. We have showed that thorough 

exploration of search space can be achieved through maintaining population diversity 

and selection pressure during optimisation. Maintaining population diversity should 

be performed at the start of GA search, which can be done with the use of an initial 

population of densely activated rule-base. The search for non-dominated solutions 

beginning from a densely activated rule-base allows fair competitions among 

solutions of similar rule-base sizes. For example, two solutions of 70 rules will 

compete for better model accuracy. In this thesis, the recommended densely activated 

rule-base ranges from 50 to 81 rules. Conversely, an evenly distributed initial 

population ranging from 1 to 81 rules starts off the GA search with a population 
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diversity that is relatively high. In this case, solutions with smaller rule-base, 

regardless of model accuracy performance, have the tendency to dominate the 

population. We have showed that this has led to premature convergence, as well as the 

possibility of convergence toward multiple local optima.  

In addition, higher mutation rate for genes deactivation acts as an attractor to guide 

the population towards smaller rule-bases. This has shown to create diversity among 

the population and a greater selection pressure to explore new non-dominated 

solutions, particularly at early generations. In this thesis, mutation rates of 0.01 and 

0.03 to activate and deactivate a gene are used. This configuration, including densely 

activated initial population, allows subtle mutation in the rule-base towards small 

rule-bases. The population, regardless of rule-base size, has shown to evolve towards 

similar model accuracy, which highlights that for the solutions to remain non-

dominated, they must have small and accurate rule-bases. Lastly, a total of 300 

generations is recommended to ensure that the GA search have sufficient time to 

explores the solution space thoroughly. Given that subtle changes to the solution’s 

rule-base are recommended, 300 generations would allow non-dominated solutions to 

be searched over multimodal search space without premature convergence.  
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5 Investigation of Spatial Challenges 

in Real-World Indoor 

Environments 

 

Chapter 5 investigates the spatial challenges found in real-world environments. Two 

WSN test beds, deployed in administrative offices, are described and compared in 

Section 5.1. A decision tool is introduced in Section 5.2, to select an optimal Fuzzy 

model among Pareto front for model interpretation. The decision is based on the 

importance of Fuzzy model generality on unseen data and the link failure prediction 

accuracy to minimise energy wastage. Subsequently, the chosen solutions are 

analysed in Section 5.3 using Fuzzy rule removal sensitivity approach, where 

individual rule is removed and the change in respective predictive conditions are 

monitored. It is observed that the removal of rules of the same parameters does not 

have the same contributions to the respective model’s prediction performance. 

Instead, the contributions of parameters to the Fuzzy models’ predictive performances 

are dependent on factors such as long-distance or short-distance communication, 

controlled experiments and real-world test beds. Lastly, Section 5.4 concludes the 

chapter.  

5.1 Descriptions of WSN Test Beds in Real-World 

Environments 

This section describes two WSN test beds deployed in administrative offices in the 

Solaris building (WSN@Solaris) and in the Vaucanson building (WSN@Vaucanson). 

Link quality parameters collected from these test beds are used as training inputs to 

developed ANFIS models for spatial-related link failure predictions.  

5.1.1 Solaris	Building	(Single	Storey	Administrative	Office)	

WSN@Solaris is located in a single level administrative office of approximately 900 
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m2. Figure 5.1 illustrates the floor plan of WSN@Solaris with the deployment 

locations of 21 routers and one coordinator. The office can be broken down into two 

areas. First is the centralised open-concept administrative area consisting of 

workstations and 1.2 m high desk partitions. Approximately 24 employees occupied 

this area. Second, the south and west sections of WSN@Solaris are made up of 

partitioned rooms consisting of meeting rooms, laboratories, and a pantry. The entire 

office is furnished with carpet flooring and false ceilings. 

The routers in WSN@Solaris are deployed in a scattered manner as denoted as red 

circles in Figure 5.1. Figure 5.2 shows the photos of the actual routers’ placements in 

WSN@Solaris. They are deployed among the workstations, in meeting rooms and on 

the walls along the corridors at approximately 0.5 m in height. The coordinator, 

denoted as a yellow triangle in Figure 5.1, is deployed in a location where nodes 

located further away are subjected to signal attenuation from partitioned rooms, while 

nodes deployed closer are subjected to human movements. 

 

Figure 5.1. The deployment locations of 21 routers and one coordinator in 

WSN@Solaris. 

0 dBm routers 

0 dBm coordinator 
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Figure 5.2. The routers’ deployment in WSN@Solaris. These routers are deployed in 

a meeting room, on a workstation, and on a wall along a corridor at 0.5 m in height.  

5.1.2 Vaucanson	Building	(Two	Storey	Administrative	Building)	

WSN@Vaucanson is set up in a two storey administrative office of 3750 m2. Figure 

5.3 illustrates the combined two storey floor plans of WSN@Vaucanson with the 

deployment locations of 18 routers and a coordinator. Approximately 60 employees 

occupy the office during working hours. WSN@Vaucanson has a dense room layout, 

made up of administration offices, meeting rooms, conference hall, and a small data 

centre. The 18 routers are strategically deployed from the ceilings along the corridors, 

forming a grid layout such that data from sensor nodes (not shown in Figure 5.3) can 

be relayed to the coordinator deployed at the second storey. 14 routers are deployed 

on the first level and four others are deployed on the second level. The building is 

fitted with a heating system, however all nodes are deployed away from the drafts of 

ventilation units, cooling panels, fan-coils and any radiation elements. 
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Figure 5.3. The deployment locations of 18 routers and one coordinator in 

WSN@Vaucanson. 

5.1.3 Differences	 between	 Real-World	 Test	 Beds	 (WSN@Solaris	 and	
WSN@Vaucanson)	

The following are two key differences between WSN@Solaris and 

WSN@Vaucanson. 

1. Communication quality – WSN@Vaucanson is approximately four times the 

size of WSN@Solaris and there are fewer routers implemented. The routers in 

WSN@Vaucanson are deployed further apart from each other to achieve 

sufficient routing coverage. The communications between routers in 

WSN@Vaucanson are therefore subjected to greater signal path loss and 

increasing number of spatial challenges. In contrast to the denser router 

layouts in WSN@Solaris, communications between neighbouring nodes have 

longer range and are likely to have lower link budget.  

2. Routing quality – The routers in WSN@Vaucanson provide relay options for 

nodes deployed deeper in the network. For example, nodes on the ground level 

and	number	usage	of	routing	path	 

2nd level 

1st level 

0 dBm routers 

0 dBm coordinator 
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require intermittent routers to relay their packets to the coordinator deployed 

on the second level. Unlike the shorter communication range and shorter 

routing paths in WSN@Solaris, the longer routing paths in WSN@Vaucanson 

provide a realistic evaluation platform in terms of end-to-end routing quality. 

The implementation of test beds with the contrast in WSN communication and routing 

performance provides a diverse platform for investigation into WSN link quality. 

5.1.4 Key	Differences	 between	 Controlled	 Experiments	 and	 Real-Test	
Beds	

The key differences between the WSN test beds deployed in a real-world 

environments and controlled experiments are described as follows. 

1. Environmental dynamics – Increased number of NLOS communications are 

expected in WSN@Solaris and WSN@Vaucanson due to the vast number of 

physical obstructions such as room partitions and multi-floors communication. 

In addition, real-world test beds are occupied during working hours, where the 

communications between nodes are subjected to physical obstructions such as 

human bodies. All dynamics in the real-world test beds are non-simulated. 

They are for instance, closing and opening of doors, placements of chairs, and 

moving human bodies. It is important to note that Wi-Fi interference (if any) is 

minimal. This is because all WSN nodes are deployed away from Wi-Fi 

access points and also operate at least 12 MHz away from Wi-Fi operating 

channels. 

2. Number of nodes and flexibility of deployment – Real-world environments 

have larger deployment grounds and utilise more nodes for greater routing 

coverage. At the same time, the deployment locations of these nodes are not 

constrained. For example, the distances between nodes are not fixed. With 

more nodes available as well as the flexibility of deployment, link quality 

information of greater variability can be expected as compared to a controlled 

experiment.  

3. Availability of routing paths – WSN@Solaris and WSN@Vaucanson are 

deployed with more routers and therefore have a denser network topology. 

This translates to an increase in the number of end-to-end routing paths and 
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more routing options between any two nodes. Unlike in controlled 

experiments, the communications between nodes are fixed. 

5.1.5 Classification	of	Link	Failures	from	Real-World	Test	Beds	

In this section, WSN link failures from real-world test beds are classified according to 

their respective causes. In order to provide representative training inputs to model 

spatial-related link failures, only data of dedicated periods are used. These periods are 

from 12 am to 5 am and 12 pm to 5 pm representing non-working hours and peak 

working hours respectively. 

 

Figure 5.4. Flow diagram – Classification of spatial-related link failures from real-

world test beds. 

Figure 5.4 illustrates the flow diagram to classify link failures in WSN@Vaucanson 

and WSN@Solaris into poorly deployed environment and human movements. Any 
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poorly deployed environment. It is assumed that in this period, WSN is under no 

influence of human activities, where link failures are subjected to poor reception 

between communicating nodes. It is noted that these links affected by poorly 

deployed environment are filtered from the data of the next day. By doing so, the 

links that are already affected with poorly deployed environment are not confused 

with human movements. Newly discovered link failures during the working hours on 

the following day and are not found during non-working hours are also classified as 

poorly deployed environment. These new links with failure are not available during 

previous day’s non-working hours, suggest that they had persistently failed due to 

poorly deployed environment. Lastly, further link failures found during working hours 

are classified as human movements. These links have not failed during non-working 

hours but have failed during working hours. This suggests that the introduction of 

human movements has led to link failures.  

5.2 Selection of Fuzzy Solution From the Pareto Front 

5.2.1 Model	Accuracy	and	Interpretability	Trade-Offs	

In the absence of user preference, neither of the solution from the Pareto front is 

superior. Therefore, a decision tool is used to select a solution from the Pareto front 

for interpretation based on two factors. These factors are the importance of accurate 

spatial-related link failure prediction and model generality on unseen data.  

1. Failing to predict the cause of link failure and energy wastage 

In this section, a power consumption profile of a wireless sensor node’s data 

transmission from a wake cycle is described. It is noted that a typical wireless sensor 

node is equipped with environmental sensing capabilities to measure its surrounding 

temperature, humidity, illumination and atmospheric pressure periodically.  
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Figure 5.5. Current ouputs of a wireless sensor node’s data measurements and data 

transmission from a wake cycle. 

Figure 5.5 illustrates the current outputs, which represent the energy consumptions of 

a wireless sensor node during its active duty cycle. Every active period lasts for 

approximately 160 ms and consists of the following events as denoted with current 

consumption peaks in Figure 5.5.  

1. Initialisation of sensor elements – Start temperature and light measurements, 

read battery voltage, and reset pressure sensor. 

2. Pressure sensor reset completed.   

3. Pressure sensor calibrated.   

4. Start pressure sensor’s temperature measurement.   

5. Pressure sensor’s temperature measurement completed. Start pressure 

measurement.   

6. Pressure measurement completed.   

7. Temperature and luminance measurement completed. Start humidity 

measurement. 

8. Humidity measurement completed. Switch off all sensors.   

9. Clear-channel assessment, packet transmission and wait for 

acknowledgement.  

The microcontroller [39] enters a deep sleep state in between the current peaks while 
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waiting for the next timer event. The current consumption is higher during the active 

period due to the activation of clock generator for sensor readings. The average power 

consumption of the node depends on the duration of each duty cycle and can be 

characterised as shown in Equation 5.1 below.  

𝑃!"# = (𝑃!"##$ ∗ 𝑇!"##$ + 𝐸!"#$%&)/(𝑇!"##$ + 𝑇!"#$%&) (5.1) 

where,  

𝑇!"##$ Duration of the sleep period 

𝑇!"#$%&: Duration of the active period 

𝑃!"##$:  Power consumption during the sleep period 

𝐸!"#$%&: Energy consumption of a single active period 

𝑃!"#: Average power consumption the sensor node 

This formula can be simplified as duty cycles scale longer (i.e. 𝑇!"##$ >> 𝑇!"#$%&).  

𝑃!"# = (𝑃!"##$ ∗ 𝑇!"##$ + 𝐸!"#$!")/𝑇!"##$ 

𝑃!"# = 𝑃!"##$ + 𝐸!"#$%&/𝑇!"##$ 

(5.2) 

(5.3) 

Given the power characterisation of 𝑇!"#$%& , 𝑃!"##$, and 𝐸!"#$%& as 160 ms, 15 µW and 

651 µJ respectively, the average power consumption per duty cycle for four 

representative duty cycles is computed in Table 5.1.  
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Table 5.1. Average power consumption as a function of duty cycle. 

Duty cycle length 
(𝑻𝒔𝒍𝒆𝒆𝒑) 

Average power 
consumption (𝑷𝒂𝒗𝒈) 

5 minutes 17 µW 

1 minute 26 µW 

10 seconds 80 µW 

1 second 663 µW 

 

Sleep power is observed to be dominant for longer duty cycles (1 - 5 minutes) 

whereas active power is dominant for shorter duty cycles (1 - 10 seconds). It is 

apparent that the prolonging of active duty period increases the overall power 

consumption exponentially [77, 78, 79]. As such, further retransmission after a failed 

data transmission would prolong the active period of a node and escalates the total 

energy consumed. Therefore, detecting a link of poor quality and avoiding data 

transmission over it should be prioritised. 

2. Model generality on unseen data for an interpretable solution 

The number of Fuzzy rules and the total rule length are useful measures against the 

over-fitting of Fuzzy rule-based classifiers [155]. This is to say that the increase in the 

number of Fuzzy rules degrades the model’s ability to generalise a system. Over-

fitting happens when a modelled system corresponds too closely to the residual 

variation from a particular set of data such as noise in link quality information. 

Therefore, the Fuzzy model that fails to perform on unseen data is not a good 

representation of the network.  

The Pareto fronts of the optimised Fuzzy models of WSN@Solaris and 

WSN@Vaucanson are shown in Figure 5.6 and Figure 5.7. These solutions are the 

fittest individuals among the population in the final 300th generation. Solutions in the 

Pareto front are ranked 1 using the fast non-dominated sorting method described in 

Section 4.2.1 where they are not dominated by any other solutions in the same 

generation. Pareto front consists of solutions with marginal rates of return, where an 
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improvement in one objective degrades another. Both Pareto fronts form knee shape 

curves, demonstrating the trade offs between model accuracy and size of Fuzzy rule-

base. In both examples, degradations of models’ accuracy are observed when the 

number of rules reduces to less than seven Fuzzy rules. This signifies the limitation of 

small Fuzzy rule-bases to provide accurate prediction. At the upper bound of this 

degradation, further increase in Fuzzy rule-base size has minor improvements in 

models’ accuracy.  

 

Figure 5.6. WSN@Solaris - Pareto front (initial population - densely activated, 

population size = 200, generations = 300, mutation rate = {0.03, 0.01}). 
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Figure 5.7. WSN@Vaucanson - Pareto front (initial population - densely activated, 

population size = 200, generations = 300, mutation rate = {0.03, 0.01}). 

Fuzzy solutions of the Pareto fronts are evaluated with unseen validation set from 

10% of the training data in Tables 5.2 and 5.3. In both examples, the differences 

between model accuracy of test and validation data set do not exceed 3.22%. The 

chosen solution should have the highest model accuracy at the point where any further 

reduction of rule-base size will greatly reduce the model accuracy.  
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Table 5.2. WSN@ Solaris – Comparison of the training and test accuracy. Solution 

indicated with (*) is selected for Fuzzy model interpretation. 

No Total number 
of Fuzzy rules 

Total Fuzzy 
rules length 

Model 
accuracy 

(Training data) 

Model 
accuracy 

(Test data) 

Rate of 
accuracy 
increment 

1 1 1 0.787 0.7548 0.0782 

2 2 2 0.8474 0.833 0.0253 

3 3 3 0.8825 0.8583 0.0117 

4 4 4 0.8974 0.87 0.0046 

5 4 5 0.8998 0.8746 0.0056 

6 5 5 0.9034 0.8802 0.0101 

7 5 6 0.9043 0.8903 0.0026 

8 6 6 0.9039 0.8929 0.002 

9* 6 7 0.9106 0.8949 0.0005 

10 7 7 0.9101 0.8954 0.006 

11 7 8 0.9168 0.9014 0.0015 

12 8 8 0.9219 0.9029 0.0015 

13 8 9 0.9226 0.9044 0.0053 

14 8 10 0.9216 0.9097 0.0013 

15 9 11 0.927 0.911 - 
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Table 5.3. WSN@Vaucanson - Comparison of training and test accuracy. Solution 

indicated with (*) is selected for Fuzzy model interpretation. 

No 
Total 

number of 
Fuzzy rules 

Total Fuzzy 
rules length 

Model 
accuracy 

(Training data) 

Model 
accuracy (Test 

data) 

Rate of 
accuracy 
increment 

1 1 1 0.6595 0.6545 0.1846 

2 2 2 0.8713 0.8391 0.0101 

3 3 3 0.8787 0.8491 0.0035 

4 5 5 0.8846 0.8561 0.0166 

5 6 6 0.8959 0.8726 0.0125 

6* 7 8 0.9037 0.8851 0.0092 

7 8 8 0.9117 0.8943 0.004 

8 9 9 0.9148 0.8983 0.0015 

9 10 10 0.9145 0.8998 0.0014 

10 11 11 0.9165 0.9012 - 

11 11 12 0.9179 0.9023 0.0023 

12 12 12 0.9189 0.9046 - 

13 12 13 0.9203 0.9048 0.0003 

14 13 13 0.9193 0.9051 0.0004 

15 14 14 0.9188 0.9055 - 

5.3 Investigation of Individual Fuzzy rules in Optimised 

Fuzzy Model  

In this section, a sensitivity analysis is used to determine the impact of individual 

Fuzzy rule on the model predictive accuracy. Individual rule is removed from the 

optimised Fuzzy model and the changes in prediction accuracy of the respective 

conditions – No Failure (NF), Human Movements (HM), and Poorly Deployed 

Environment (PDE) – are monitored. Table 5.4 and Table 5.5 illustrate the sensitivity 

analysis results of WSN@Solaris and WSN@Vaucanson respectively. The results for 

the different test beds are discussed in Sections 5.3.1 and 5.3.2 respectively, and are 

summarised in Section 5.3.3.  
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Removed rule leading to significant accuracy change indicates its relevancy to the 

overall model prediction performance, while a less important rule will have less 

contribution [140]. The training inputs are collected from real world test beds. 

Henceforth the Fuzzy models are expected to incorporate environmental noise. It is 

noted that the removals of individual rules may have drastic impact to the model 

accuracy, which are observed as outliers in Section 4.3. Therefore, to provide 

representative interpretation of the optimised models, only the removed rules with 

accuracy change of approximately 30% are discussed in Sections 5.3.1 and 5.3.2. 

Figure 5.8 shows the final MFs for Mean RSSI, ACV RSSI, NTC and BNTC after 

150 epochs of data training. The ranges and values of these MFs are referred during 

interpretation in the following sections.  

 

Figure 5.8. Final membership functions after 150 epochs of (a) Mean RSSI, (b) ACV 

RSSI, (c) NTC, and (d) BNTC.  
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5.3.1 WSN@Vaucanson	

Rule index 2 – The removal of rule 2 (refer to Table 5.4) is found to degrade the 

prediction of HM by more than 50%, but has no substantial influence to NF and PDE. 

Rule 2 consists of the parameter “Poor” mean RSSI, representing a range of 

approximately -77 dBm to -89 dBm (refer to Figure 5.8). In other words, the “Poor” 

mean RSSI is capable of differentiating links that are affected by HM. Nodes in 

WSN@Vaucanson are deployed further apart and long-distance reception between 

nodes are expected. As such, communication at the sensitivity edge may be lost when 

human activities are introduced. Links with “Poor” mean RSSI are therefore subjected 

to failure due to HM.  

Rule indices 3 and 4 – The removal of rules 3 and 4 has degraded the prediction of NF 

by 94% and 36% respectively. Rules 3 and 4 are represented by the parameter “High” 

NTC and can be considered as an optimal communication success rate, ranging from 

78% to 100%. Removing the model’s ability to characterise optimal communication 

success rate has clearly affected the model’s ability to differentiate spatial-related link 

failures (i.e. HM or PDE) from NF. This can be understood since links with failure do 

not have optimal communication success rates. It is also observed that the prediction 

of HM and PDE are not affected. Therefore, it can be said that NTC is useful at 

detecting link failures but may be insufficient to differentiate the cause of link 

failures. 

Rule index 6 – The removal of rule 6 has degraded the prediction of NF and HM by 

approximately 95% and 30% respectively. “Intermediate” mean RSSI represents a 

range of -53 dBm to -77 dBm. Rule 6 with “Intermediate” mean RSSI can identify 

links with no failure. Coupling rule 6 with the findings of rules 3 and 4, we can infer 

that majority of the links with no failures in WSN@Vaucanson operate with 

“Intermediate” mean RSSI and “High” NTC. Coupling rule 6 with the findings of 

rule 2 signifies that links with “Intermediate” mean RSSI are also easily subjected to 

failure due to HM.  
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Table 5.4. Sensitivity analysis of optimised link failure prediction Fuzzy model 

(WSN@Vaucanson) with rule removal. 

Rule 
Index 

Parameters 

Degradation or 
improvement of 

conditions when rule 
is removed 

Mean RSSI ACV RSSI NTC BNTC 

A. No failure 

B. Human 
movements 

C. Poorly deployed 
environment 

1 - 

 

- - 

-13.99% 

-15.76% 

-18.11% 

2 

 

- - - 

+2.57% 

-57.64% 

-7.87% 

3 - - 

 

- 

-94.37% 

-7.32% 

-10.08% 

4 - - 

 

- 

-36.66% 

-6.05% 

+3.31% 

5 - - 

 

- 

-3.05% 

-9.39% 

+4.41% 

6 

 

- - - 

-95.34% 

-30.57% 

+5.2% 

7 - - 

  

-1.13% 

-6.21% 

+3.62% 
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5.3.2 WSN@Solaris	

Rule index 3 – Rule 3 consists of “Low” ACV RSSI with a variation about -0.024 

value. The removal of rule 3 (refer to Table 5.5) degrades the prediction of HM at 

approximately 51%. This rate is higher than what is observed in rules 1 and 2, where 

the “Intermediate” ACV RSSI only affects the predictability of HM by only 12%. 

“Intermediate” ACV RSSI value varies from -0.001 to -0.0105. We can infer that HM-

related link failures in WSN@Solaris experienced varying received signal strength, 

and can be better distinguished with “Low” ACV RSSI rather than “Intermediate” 

ACV RSSI. 

Rule index 4 – Rule 4 consists of “High” NTC ranging from approximately 78% to 

100%. Similar to WSN@Vaucanson, “High” NTC is observed to degrade the 

predictability of NF significantly by approximately 85%. This is explained with links 

with no failure generally have consistently high communication success rates.  

Rule index 5 – Rule 5 consists of two parameters. They are “High” NTC and “High” 

BNTC ranging from 78% to 100% and 72% to 100% respectively. “High” NTC and 

“High” BNTC represents the good quality incoming and outgoing links and can be 

associated with link symmetry between two nodes. The removal of rule 5 has 

degraded the prediction HM by 29.6%, which can be interpreted as the link symmetry 

characteristic is able to differentiate HM-related links failures.   



5.3. Investigation of Individual Fuzzy rules in Optimised Fuzzy Model 

 125 

Table 5.5. Sensitivity analysis of optimised link failure prediction Fuzzy model 

(WSN@Solaris) with rule removal. 

Rule 
Index 

Parameters 

Degradation or 
improvement of 
conditions when 
rule is removed 

Mean 
RSSI ACV RSSI NTC BNTC 

A. No failure 

B. Human 
movements 

C. Poorly deployed 
Environment 

1 - 

 

- - 

+1.61% 

-11.66% 

+4.6% 

2  

 

- - 

+1.61% 

-12.11% 

+5.13% 

3 - 

 

- - 

-27.71% 

-51.12% 

+2.14% 

4  - 

 

- 

-85.14% 

-6.73% 

-27.35% 

5 - - 

  

-16.47% 

-29.6% 

8.55% 

6 - - 

 

- 

0% 

1.59% 

-8.55% 
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5.3.3 Discussions	

1. Network layer parameters are poor differentiators of link failures caused by 

human movements or poorly deployed environment 

Similar to the findings from controlled experiments in Chapter 3, network layer 

parameters are observed to be capable of identifying links with no failures from link 

failures. However, both NTC and BNTC do not play a significant role in 

differentiating the different causes of spatial-related link failures (i.e. poorly deployed 

environment to human movements). The relation between “High” NTC and links with 

no failure suggests that failures on these links, if any, are not persistent.  

2. Parameter mean RSSI is not as dominant in real-world test beds  

The parameter mean RSSI is not as dominant in the real-world test beds as compared 

to in controlled test beds in Chapter 3. This can be attributed to the differences in test 

bed setups between real-world environments and controlled experiments. The 

variations in measured RSSI in a controlled experiment are limited. In an experiment 

with 23 WSN nodes that are deployed in offices [43], RSSI is found not to correlate 

well with distance in indoor environments and during daytime, where human 

movements are common. Given that there is more link information available in real-

world test beds and no two links are the same, consistency in measured RSSI cannot 

be expected. As such, mean RSSI has limited contribution to the model prediction 

performance in WSN@Solaris and WSN@Vaucanson. 

Figure 5.9 shows the RSSI readings between two nodes in WSN@Solaris. The 

fluctuations of RSSI during working hours were observed to be greater than non-

working hours. Despite the static environment during non-working hours, the 

measured RSSI are found to be likely stronger during working hours. This can be 

contributed to the constructive and destructive multipath fading effects [12]. For 

instance, environmental changes during working hours may have provided a 

constructive effect on measured RSSI (i.e. opening of a door leading to an improved 

direct path communication) and had subsided during non-working hours (i.e. closing 

of a door). As such, a poorer mean RSSI does not always translate to the presence of 

human movements in the environment. 
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Figure 5.9. RSSI readings btween two nodes deployed in Solaris office during 

working hours and non-working hours. Constructive and destructive effects on RSSI 

readings can be expected despite the environmental settings.   

3. The importance of ACV RSSI in real-world environment  

The severity of multipath fading is said to exhibit a linear dependence with increasing 

human density, while long-term fading is a direct consequence of human presence 

[41]. WSN nodes are deployed among the presence of human occupants and long 

term fading can be expected as shown in Figure 5.9. Given that the human movement 

in the controlled experiments is simulated with a single human walking profile, its 

influence on WSN communication is minimal relative to real-world test beds. As 

such, ACV RSSI has performed better in real-world test beds than in controlled 

experiments. 

Furthermore, the fading levels under NLOS conditions are expected to be higher than 

in LOS conditions [44]. With the vast number of physical obstructions in real-world 

test beds, the fading levels introduced by human movements under NLOS 

communication may have further contributed to the ability of ACV RSSI to detected 

HM.  

4. Impact of short-range and long-range communication on link reliability 

Nodes in WSN@Solaris have shorter distance communications relative to 

WSN@Vaucanson.  The short distance communications can be equated with a wide 

range of RSSI [51], where a small variation in measured RSSI causes a large bias in 
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distance estimation. This is to say that the measured signal strength on a shorter 

distance communication is sensitive with the changes in the environment. As such, 

nodes in WSN@Solaris are more sensitive to the presence of human movements, 

which is reflected on ACV RSSI’s ability to detect HM.  

On the other hand, nodes in WSN@Vaucanson are deployed far apart from each 

other. These links that are communicating at the sensitivity edge are likely to fail with 

increasing changes in the environment. For instance, nodes that are already 

communicating with “Poor” mean RSSI are likely to fail when the presence of human 

movements are introduced. Environments with frequent human mobility such as a 

clinic [161], office hallway [162], and research laboratory [43] have shown that 

mobile attenuators are the root cause of signal strength variation. Furthermore, the 

presence of human activities leads to more environmental changes such as closing and 

opening of doors, and moving of chairs, which can further degrade the already poor 

communicating nodes. As such, HM detection under long-distance communication is 

better distinguished with “Poor” mean RSSI rather than ACV RSSI 

5.4 Chapter Summary 

This chapter discussed the selection and interpretation of optimised Fuzzy models 

based on two real-world test beds; namely WSN@Solaris and WSN@Vaucanson. A 

decision tool is designed to select a solution from the Pareto front for model 

interpretation with the considerations of model generality on unseen data and optimal 

model accuracy. Consequently, sensitivity analysis is performed on the chosen model 

where individual rule is removed and the model accuracies of the respective 

predictive conditions are monitored.  

The removal of rules with the same parameters does not have same effect on the 

prediction performance of models for the respective test beds. For instance, mean 

RSSI is observed to play a more important role in WSN@Vaucanson than in 

WSN@Solaris, whereas ACV RSSI is more critical in WSN@Solaris. Four 

conclusions are drawn from the Fuzzy model interpretation. First, the network layer 

parameters (NTC and BNTC) are useful for detecting link failures but are poor at 

differentiating the causes of spatial-related link failures. Second, due to the vast 

number of links in the large test beds coupled with the complexity of real-world 



5.4. Chapter Summary 

 129 

dynamics, mean RSSI is found not as significant in real-world test beds as compared 

to controlled experiments. Third, ACV RSSI has better contribution in detecting non-

simulated human movements in real-world environments than in controlled 

experiment. Fourth, the impact of spatial-related link failures on physical layer 

parameters is dependent on the communication distance between nodes. For instance, 

ACV RSSI and mean RSSI performed better under short-distance and long-distance 

communications respectively.  

Model interpretation in this chapter not only identifies influential features of a model, 

but also provides insights to the modelled system’s behaviour. For instance, human 

activities are found to affect a pair of long distance communicating nodes 

(WSN@Vaucanson) more than short distance communicating ones (WSN@Solaris). 

Such examples signify the need to avoid long distance communication for packet 

routing at certain periods of the day, which is detectable with poor mean RSSI. With 

this knowledge, an increase in the communication link budget (i.e. transmission 

power control) could be potentially useful to minimise the impact of human activities 

during peak hours. 
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6 Long-Term WSN Routing Stability 

in Real-World Environment  

 

WSN reliability is often assessed based on node-to-node communication performance 

through link characterisation. On comparison to short-term link assessments, long-

term routing stability is an aspect of WSN that receives relatively less attention 

because the former focuses in routing protocol implementations [163]. Therefore, this 

chapter aims to investigate the long-term routing stability of ZigBee PRO 

implemented wireless sensor nodes deployed in real-world environments. In Section 

6.1, related work on routing stability in a wireless network context is discussed. 

Section 6.2 presents the process of collating the actual routing paths of wireless sensor 

nodes taken from WSN@Solaris and WSN@Vaucanson test beds. The routing path 

stability is then evaluated in Section 6.3, where parameters such as relative routing 

path usage counts, usage rate of unique next hops and switching frequency counts are 

introduced. In Section 6.4, the characteristics of network bottlenecks are discussed 

and solutions to overcome these challenges are proposed. Lastly, Section 6.5 

concludes with a summary of the key findings presented in this chapter. 

6.1 Related Work on Monitoring Routing Stability  

Chapter 2 reviewed that the existing WSN test beds are often designed to assess the 

performance of node-to-node communication through link characterisation. For 

example, the quality of node-to-node communication is measured using packet 

delivery and environmental noise factors [13, 66], spatial and temporal characteristics 

of packet loss [27, 64], and temporal consecutive link failures [25]. To our best 

knowledge, there is limited work conducted to investigate the long-term WSN routing 

stability in a real-world indoor environment.  

A network topology is made up of interconnected routing paths across the network, 

while a routing path is made up of intermediate routers forming node-to-node 

connections. The lossy and unstable nature of wireless links can introduce routing 
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instability in WSN [164]. Routing instability refers to the phenomenon of frequent 

changes along routing paths between a source and destination node. The implemented 

routing protocol has to respond to node-to-node link failures, and makes changes 

along the routing path to improve its end-to-end reliability. Similar to link stability, 

the stability of generated routing path depends on its adaptability and robustness to 

overcome the dynamics within the deployed environment.  

Authors in [164] evaluated the routing stability of 802.11 a/b/g mesh technology 

networks in terms of routing path prevalence, persistence and oscillation. It is found 

that the Wireless Local Area Network (WLAN) connectivity between a source and 

destination pair is seldom static. The routing paths between nodes are used for more 

than 40% of the time. In addition, 57.7% of the nodes pairs have a dominant route 

usage of less than one minute and a routing path oscillation of approximately 5000 

times over four days. The deployment of WLAN routers is fixed. Since there are a 

limited number of routers within the reception range, their routing options are also 

limited. Unlike in a WLAN, WSN is usually designed for a wide deployment of nodes 

that forms a dense interconnected mesh network.  

A Competence metric is introduced in [165] to differentiate long-term stable links for 

routing, while eliminating the unstable ones. To characterise long-term link stability, 

Competence incorporates the history of link quality into exponential weighted moving 

average as the weight of the smoothing filter. Furthermore, Competence compensates 

the variability of wireless communication by specifying upper and lower Packet 

Delivery Rate (PDR) bounds. PDR bounds account for short-term variation in 

delivery performance. It is found that the end-to-end (E2E) PDR varies significantly 

during the daytime. E2E PDR is measured at approximately 55% between the hours 

of 8 AM and 8 PM, dropping from 90% in the evening hours. Competence indicates 

the links as “poor” during the day, highlighting that these links have long-term link 

instability. In addition, the reduction in the quality of links during the day introduces 

the number of counts in which parent nodes switch between node pairs. This 

phenomenon triggers further packet losses from network maintenance packets, 

leading to greater energy consumption and route changes. However, a stable route 

enforced by a Competence-implemented protocol may increase traffic loads on 

affected nodes. In this chapter, we have shown that the most dominant next hop may 
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also operate on links with failures and not all routers have “good” routing options. 

The choice of routing path is largely dependent on the resources available and the 

types of routing mechanisms used. 

Long-range link characterisation of WSN operating at 868 MHz is conducted in 

[166]. A node constructs a list neighbouring nodes within reception range in its NT. It 

is observed from the variations within NT that the number of nodes within receptive 

range changes constantly and satiability is uncommon. A proactive approach (i.e. 

short-term link quality estimation) is said to be ineffective at choosing reliable nodes, 

since a “reliable” next hop may become redundant in the next moment. Although the 

list of connected nodes in NT changes frequently, a group of stable neighbours still 

exists. A long-term stable connection with these nodes is discovered to have either 

less than -75 dBm in RSSI value or within one-fifth of the radio range at about 70 m. 

This suggests that for a connection to overcome the dynamics in the deployed 

environment, sufficient link budget must be available. 

Existing link quality estimation techniques (discussed in Section 2.2) often implement 

short-term link quality assessment [35, 58, 59, 60, 61, 62, 163]. The link quality 

between two nodes is evaluated through methods such as decoding of received 

packets, probing network with additional overheads and over-listening of transmission 

in the channels. Short-term link quality assessments are regarded as reliable as long as 

the evaluation of link quality is accurate as the moment of communication. However, 

because the stability characteristic of a link is often not persistent, short-term link 

evaluation may not be representative [164, 165, 166].  

Distributed wireless network system involves many uncertainties [165]. It is 

impractical to expect a stable network, yet expect WSN nodes to operate on a single 

reference value. Changes along routing paths are to be expected. The routing path 

selection is largely subjected to the implemented routing protocol. However, 

persistent changes in routing paths are undesirable. Re-routing requires the use of a 

network broadcast mechanism, which has shown to trigger further changes in the next 

hop due to increasing packet collisions [63, 165]. An unstable routing path suggests 

frequent link failures, thus necessitating additional network maintenance overheads 

such as retransmission and re-routing. 
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Routing stability impacts network protocols that require synchronisation between 

nodes. For instance, a duty cycling protocol that allocates transmission periods, and a 

multi-radio network that re-assigns radio channels between nodes. Given a routing 

mechanism that re-routes upon failure, the most commonly implemented routing path, 

though not optimal, may be seen as most robust. The ability to measure routing path 

stability therefore provides insights into the quality of links, as well as the adaptability 

and robustness of generated routing paths. Section 6.3 shows that the communication 

quality of a network can be captured from its long-term routing stability performance.  

6.2 Capturing Routing Stability (ZigBee PRO) 

6.2.1 ZigBee	PRO	Routing	

ZigBee is designed primarily for mesh topology networks where nodes can 

communicate directly, indirectly and non-hierarchically. A ZigBee mesh network is 

illustrated in Figure 6.1. Nodes (Routers, coordinator and end devices) are 

interconnected, forming alternative routing paths for one another, and minimising the 

reliance on a particular node. It comprises a coordinator and routers and/or end 

devices. An end device and router can be associated with a router or the coordinator. 

Either the router or coordinator through which the new node joins the network will be 

its ‘parent’. Vice versa, the new node will act as the ‘child’. An end device is 

designed to communicate directly with its own parent, while a router and the 

coordinator can communicate directly with any other router or coordinator within the 

radio range.  

 

Figure 6.1. An illustration of mesh network topology in ZigBee network. 

In ZigBee PRO, a node with the highest probability of successful communication with 

Coordinator	

Router	

End	device	
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the child is considered a potential parent. This probability metric is referred to as the 

link cost. Poor link cost suggests a lower probability of a successful packet delivery. 

Link cost in wireless microcontroller JN5168 [39] is measured using the Link Quality 

Indicator (LQI). LQI indicates the signal strength of a received packet, measured on 

every received packet as an integer ranging from 0x00 to 0xff. For example, LQI 

values 0x00 and 0xff are associated with the lowest and highest quality IEEE 

802.15.4 signals in received signal strength respectively, where the LQI value is 

uniformly distributed between these two limits.  

Path cost is used to assess the quality of end-to-end routing path. Path cost is a 

summation of the link cost of nodes that forms the routing path. A routing path with a 

higher path cost is assumed to have better quality. Equation 6.1 shows how path cost 

is calculated.  

𝐶𝑜𝑠𝑡 𝑃 =  𝐿𝑄𝐼!!!!!!

!

!!!

 (6.1) 

where P is the routing path between two nodes, L is the number of hops along the 

routing path, and LQI is the link cost between device i (𝐷!) and its next hop towards 

destination node (𝐷!!!).  

ZigBee PRO utilises Ad Hoc On-Demand Distance Vector (AODV) protocol where 

routes between source and destination nodes are formed only upon request. The 

coordinator and router discover and maintain the routes within the network. 

Discovering a new routing path requires the source node to broadcast a Routing 

Request (RREQ) message that addresses the destination node. Intermediate nodes 

receiving the RREQ broadcast will incorporate its link cost and rebroadcast it. This 

process is repeated until RREQ reaches the destination node. Eventually, the 

destination node may receive multiple RREQ messages (broadcasted by multiple 

intermediate nodes) and the route with the least path cost (accumulated link cost) will 

be selected by returning a Route Response (RREP) message via the reverse path.  
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6.2.2 Computing	Routing	Paths	Using	 Information	 from	Neighbouring	
Table	and	Routing	Table		

NT and RT information are collected from routers in the WSN@Solaris and 

WSN@Vaucanson at an interval of approximately 25 minutes continuously for 6 

days. This information is used to compute the actual routing paths taken from all 

routers towards the coordinator. The pseudo-code presented in Table 6.1 (Algorithm 

1) traces and collates nodes that form the links along the routing paths. 

In Algorithm 1, the source node first checks for the destination node in its RT (the 

destination node is always the coordinator). If the coordinator is found, the source 

node will forward the message to the next hop assuming it has direct/indirect 

connection with the coordinator. This process is repeated until the coordinator is not 

found in the next hop’s RT. Subsequently the latest next hop will check its NT for the 

coordinator. If the coordinator is found, the routing path between the original source 

node and coordinator is collated. Otherwise, the collation of routing path is considered 

to have failed, meaning no routing path is available between the source router and the 

coordinator at the point of data query.  

In ZigBee, keep-alive pings are broadcasted by routers every 15 seconds to inform the 

network that it is alive. An existing link between two routers is considered to be 

absent if four consecutive pings were not received. If so, all information associated 

with the neighbour is erased from NT and RT. For instance, communication between 

router A and router B is subjected to high failure and if no keep-alive pings from 

router A were received for a minute, router B then proceeds to delete all of router A’s 

information from its NT and RT. This removal is reflected as changes in the 

computed routing paths. 
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Table 6.1. Algorithm 1 – Pseudo code used to trace and collate node-to-node routing 

paths from the sampled NT and RT information. 

Algorithm 1: Pseudo-code to trace and collate the routing path from individual 
routers towards the coordinator.  

Output: Return a sequential node-to-node routing path from a source node (router) to 
the destination node (coordinator) 

Input Variables: 

S: Source node 
C: Destination node (coordinator) 

H: Next hop  
R: Relay node  

RT: Routing Table 
NT: Neighbour Table  

P: Routing Path 
Method: 

(1) P = {S} % Initiating the routing path with source node address 
(2) Given a list of NT and RT of 10 minutes window period 

(3) R = S % Replace source node as relay node 
(4) While C is found in RT of R 

(5) P = {P, H} % Insert next hop address into the routing path 
(6) R = H % Replace next hop as relay node 

(7) % Repeat while loop until C is not found in RT of R  
(8) If C is found in NT of R  

(9) P = {P, C} % Routing path towards C is found 
(10) Else % C is not found in both NT and RT of R 

(11) P = {P, “failed”} % Routing path is not found  
(12) End 

(13) End 
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6.3 Long-Term Routing Stability in Real-World 

Environments 

6.3.1 Routers’	Routing	Path	Usage	Counts	

To understand a WSN’s routing behaviour in a real-world environment, the number of 

times the routers are used as part of the routing paths (usage count) in WSN@Solaris 

are monitored. Actual routing paths are computed over six days using Algorithm 1. 

Figure 6.2 illustrates five routing paths taken from router 6BD4 in WSN@Solaris. 

Each of these rioting paths shows an example of a routing path initiated by a different 

unique next hop; they are the coordinator 6209, routers 6BC9, 6BE0, 6C61 and 

6BDC. Router 6BD4 is deployed at a height of 0.5 m in the west of WSN@Solaris. 

Referring to Figure 6.2 a, a direct connection to the coordinator 6209 is possible. 

However, doing so requires transmitted signals to propagate across a dense 

environment that includes partitioned walls, meeting rooms and multiple partitions of 

workstations. As shown in Figure 6.2 b to 6.2 e, intermediate relay routers are also 

used. Router 6BD4 is observed to be in close proximity to all its relay next hops, 

contrary to the final hop of the routing path, where signals have to propagate for a 

longer distance towards coordinator 6209. This difference can be explained by the 

surrounding dense environment, which leads to a limited link budget where only 

nearby routers can provide good link-to-link connections.  

The number of times a router is used as part of routing paths is marked in orange in 

Figure 6.3. 190 unique routes were expected from an individual router over six days 

(values may vary depending on the query latency). However, a router may be utilised 

more often, up to a total of 733 times, if it also acts as a relay node. For illustration 

purposes, the pink circle in Figure 6.3 denotes the approximate reception range of the 

coordinator (based on the routers’ ability to connect). It is observed that nodes closer 

to the reception edge of the coordinator were utilised more often than those deployed 

nearer to the coordinator. This is because these routers were used more often as a 

relay for others deployed further away. A routing path may reflect the least number of 

hops [40]. This is because the route with the lowest depth (least hop) from the 

coordinator will be selected if the path costs of all possible routing options are the 

same. As long as the destination node is within reception range, the source node will 
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opt for direct communication. In addition, nodes that are out of the coordinator’s 

reception range will connect to routers that are at the edge of its reception range to 

minimise the total hop count. 

    

(a)      (b) 

    

(c)      (d) 

 

(e) 

Figure 6.2. Five routing paths generated from source router 6BD4 to coordinator 

6209. These routing paths illustrate the use of five different unique next hops of router 

6BC6, which include (a) coordinator 6209, (b) router 6BC9, (c) router 6BE0, (d) 

router 6C61 and (e) router 6BDC. 
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Figure 6.3. Routers’ routing path usage count computed from actual routing paths in 

WSN@Solaris. The pink circle denotes the approximate reception range of 

coordinator 6209, based on the routers’ connection ability. 

6.3.2 Next	Hops’	Usage	Rate	and	Routing	Path	Stability	

Referring to Figure 6.3, an abnormally high routing path usage can be observed on 
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6BCC, 6BE0 and 6BED have 369, 733 and 445 routing path usage counts 
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The usage counts and rates of unique next hops in WSN@Solaris over the span of six 

days are shown in Table 6.2. Evidently, the unique next hops of a source node are 

interchangable. Their usage rates range from 0.5% to 100% depending on the source 

router. A unique next hop with a 100% usage rate signifies that the respective source 

router (i.e. source node 6BD6, 6BE4, 6BE7, 6BE9 and 6BEE) has only one direct 

connection to the coordinator. 
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Table 6.2. The usage counts and rates of unique next hops that link respective source 

routers to the coordinator in WSN@Solaris. 

Source node Unique next hop 
towards coordinator 

Usage counts of 
unique next hop 

(%) 

Counts of unique 
next hop with 

predicted failure 

Router 6BC6 

Coordinator 6209 190 (~98.9%) 5 

Router 6BCC 1 (~0.5%) 1 

Router 6BE7 1 (~0.5%) 0 

Router 6BD4 

Coordinator 6209 21 (12%) 5 

Router 6BC9 1 (~0.6%) 1 

Router 6BDC 63 (~36%) 18 

Router 6BE0 46 (~26.2%) 5 

Router 6C61 44 (~25.1%) 15 

Router 6BC9 
Coordinator 6209 187 (~99.5%) 26 

Router 6BEB 1 (~0.5%) 0 

Router 6BCC 
Coordinator 6209 192 (~99.5%) 13 

Router 6BC6 1 (~0.5%) 0 

Router 6BCD 

Coordinator 6209 18 (~9.23%) 11 

Router 6BCC 175 (~89.7%) 7 

Router 6BE7 2 (~1%) 1 

Router 6C61 

Router 6BD4 20 (~10.2%) 1 

Router 6BD9 4 (~2.1%) 0 

Router 6BED 171 (~87.7%) 1 

Router 6BD5 

Router 6BD4 13 (~7%) 2 

Router 6BDC 1 (~0.5%) 0 

Router 6BE0 170 (~91.4%) 1 

Router 6BE3 2 (~1.1%) 2 

Router 6BD6 Coordinator 6209 194 (100%) 0 

Router 6BD9 
 

Coordinator 6209 167 (~85.6%) 30 

Router 6BDC 5 (~2.6%) 0 

Router 6BED 17 (~8.7%) 0 

Router 6BEE 6 (~3.1%) 0 

Router 6BDC 

Coordinator 6209 155 (~81.1%) 12 

Router 6BC9 1 (~0.5%) 0 

Router 6BD4 10 (~5.2%) 3 

Router 6BD9 6 (~3.1%) 3 

Router 6BED 1 (~0.5%) 1 
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Router 6BEE 18 (~9.4%) 3 

Router 6BDE 
Coordinator 6209 194 (~99.5%) 0 

Router 6BC9 1 (~0.5%) 0 

Router 6BE0 

Coordinator 6209 135 (~70.7%) 8 

Router 6BD4 56 (~29.3%) 0 

Router 6BDC 1 (~0.5%) 1 

Router 6BE3 

Router 6BD5 156 (~85.2%) 0 

Router 6BD9 3 (~1.6%) 1 

Router 6BDC 21 (~11.5%) 4 

Router 6BED 3 (~1.6%) 2 

Router 6BE4 Coordinator 6209 194 (100%) 9 

Router 6BE7 Coordinator 6209 174 (100%) 7 

Router 6BE9 Coordinator 6209 195 (100%) 0 

Router 6BEB 

Coordinator 6209 5 (~2.6%) 2 

Router 6BC9 145 (~74.7%) 14 

Router 6BDE 44 (~22.7%) 4 

Router 6BED 
Coordinator 6209 189 (~99%) 13 

Router 6BD9 2 (~1%) 1 

Router 6BEE Coordinator 6209 194 (100%) 21 

Router 6BEF Router 6BDC 3 (~1.6%) 3 
Router 6BE0 184 (~98.4%) 1 

 

Routers 6BD4 and 6BCD from Table 6.2 are used as examples to illustrate the 

differences in dominating next hops. Router 6BD4 has five unique next hops over the 

six-day period, as compared to three unique next hops in router 6BCD. The usage 

rates of router 6BD4’s unique next hops – coordinator 6209, and routers 6C61, 6BE0, 

6BDC, 6BC9 – range between 0.6% and 36%. While the usage rates of router 

6BCD’s unique next hops –  routers 6BCC, 6BE7, and coordinator 6209 – ranges 

from 1% to 89.7%. It is observed that router 6BCD was connected directly to the 

router 6BCC with a usage rate of 89.7%. In contrast, the most connected next hop of 

router 6BD4 accounts for only 36%. The consistency in dominant next hop explains 

why certain routers have greater routing path usage counts. For instance, router 6BCC 

has an abnormally high routing path usage count of 369 (refer to Figure 6.3) since it 

acts as the dominant next hop for router 6BCD. 
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(a)      (b) 

 

(c) 

Figure 6.4. Three routing paths generated from source router 6BCD to coordinator 

6209. These routing paths illustrate the use of three different next hops of router 

6BCD. They are (a) coordinator 6209, (b) router 6BCC and (c) router 6BE7. 
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consistently adapting to the dynamics of the real-world environment and more than 

one unique next hop can be expected. As such, router 6BCD’s consistency in having 

router 6BCC as the dominant next hop (89.7%) can be inferred as being more stable 

than having a direct connection to the coordinator. Furthermore, the more frequent 

switching between next hops on router 6BD4 than on router 6BCD signifies the 

instability of routing paths generated by the former.  

6.3.3 Chances	of	Link	Failure	based	on	Unique	Next	Hops’	Usage	Rate		

As link failures are common in WSN, it is important for WSN protocols to find the 

optimal routing paths between communicating devices so as to avoid operating on 

links with potential failures. In this section, link failures found along actual routing 

paths are analysed.  

 

Figure 6.5. Probability of link failures based on unique next hops’ usage counts in 

WSN@Solaris. 
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Figure 6.6. Probability of link failures based on unique next hops’ usage counts in 

WSN@Vaucanson. 

The number of link failures found in the unique next hops of individual routers in 
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these routes operate on poorer quality links that were short-lived, hence the lower 

usage rate. Since a router may be used as a relay for nodes deployed further in the 

network, a less dominant next hop (referred to as minority next hop) could pose as 

potential network bottlenecks. Therefore, it is critical to monitor the usage rate of next 

hops so that appropriate solutions can be devised to minimise the use of minority next 

hop.  

6.3.4 Unsustainable	Route	despite	Dominant	Next	Hops	

In this section, Switching Frequency Count (SFC) is introduced to evaluate the 

routing path stability via the number of counts in which a next hop changes. SFC is 

the sum of counts of every change in the next hop of a source node towards the 

coordinator. A source node with a greater SFC has a higher chance of changing its 

current next hop. Given that a next hop changes when there is a link failure, an 

increase in SFC signifies frequent link failures and route discoveries between affected 

source nodes and the connected next hop(s).  

Figures 6.7 to 6.11 show the SFC of five source routers in WSN@Solaris and the 

periods in which the most dominant next hops are not used. These figures illustrate 

the connection periods of the respective source routers between the dominant and 

minority next hops. The peaks in Figures 6.7 to 6.11, if any, indicate the periods when 

minority next hops were used and a dominant router was not. Each of these periods 

last for approximately 20 minutes, where the higher the peaks, the longer it takes for 

the source router to revert to its dominant next hop.  

In Figure 6.7, source router 6BE9 with 0 SFC has the same next hop (coordinator 

6209) throughout its deployment cycle. In Figure 6.8, source router 6BED with 2 

SFC, had momentarily switched to a minority source next hop before switching back 

to the dominant one. In this example, source routers with a low SFC have stable 

connections with their dominant next hops. When the source routers fail, the minority 

next hops act as routing redundancies, albeit they were utilised for a brief period since 

they have a greater chance of experiencing link failures as shown in Section 6.3.3. 

In Figure 6.9, router 6BEB is observed to switch between its dominant next hop router 

6BC9 and minority ones for 35 times in six days. Similarly, router 6BD4, in Figure 

6.10, also has a high SFC of 42. Referring to Table 6.2, the dominant next hop usage 
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rates of routers 6BEB and 6BD4 are 74.7% and 36% respectively. The contrast in 

usage rates while having similar SFC highlights the differences in reception quality 

across dominant next hops. Router 6BEB’s usage of dominant next hop is divided into 

multiple periods, signifying failures along dominant paths. It takes a longer period for 

the minority next hop to fail and to revert to the dominant next hop. On the other 

hand, router 6BD4 experiences an undesirable constant switching of next hops. 

Authors in [167] highlighted that in a WLAN test bed (IEEE 802.11 a/b/g), routing 

paths with a higher dominance rate are found to have a greater routing stability with 

less oscillation. This work has shown that such observations are not appropriate for 

low-power WSN applications. Despite having a dominant route, frequent switching of 

next hops can be expected for a low-power WSN.  

 

Figure 6.7. SFC between source router 6BE9 and its most dominant next hop 

coordinator 6209. 
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Figure 6.8. SFC between source router 6BED and its dominant next hop coordinator 

6209. 

 

Figure 6.9. SFC between source router 6BEB and its dominant next hop router 6BC9. 
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Figure 6.10. SFC between source router 6BD4 and its dominant next hop router 

6BDC. 

 

Figure 6.11. SFC between source router 6BCD and its dominant next hop router 

6BDC. 
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6.4 Identifying Network Bottlenecks Using Routing Stability 

Measures 

Persistent link failures on bottleneck nodes may cause reliability issues for the rest of 

the network since they are utilised more often than others. The communication 

performance of bottleneck nodes affects dependant nodes that are deployed away 

from the coordinator. The following are three characteristics of bottleneck nodes and 

suggested solutions. 

1. Relatively high routing path usage count 

As mentioned in Section 6.3.1, a router with a relatively high routing path usage count 

suggests that it is utilised as a dominant next hop for nodes deployed deeper in the 

network. Relative high routing path usage counts are influenced by the routing 

protocols implemented, and the routing options available. In this work, a routing path 

reflects the least number of hops [40]. A router may be selected as a dominant next 

hop as long as it can provide the shortest route towards the coordinator. Doing so 

creates a reliance on certain nodes in the network. 

Such potential bottlenecks can be detected when there are abnormally high routing 

path usage counts. A possible solution to avoid over-reliance on specific nodes is to 

divert the existing traffic to an alternate routing path by deploying an additional router 

in the region. By doing so, routing redundancy can be improved.   

2. Unsustainable minority next hops 

The routing paths within WSN@Solaris and WSN@Vaucanson vary throughout their 

deployment cycles. The usage rate of next hops relative to a source router can 

distinguish a dominant next hop from a minority one. In Section 6.3.3, minority next 

hops are explained to be more likely to operate on links with failures than dominant 

ones. In Figure 6.9, the high SFC of router 6BEB can be attributed to the temporary 

usage of the minority next hop that lasts for only one period. Similar observation can 

be made for router 6BCD in Figure 6.11. The use of minority next hops is found to be 

short-lived as it causes an increase in switching between nodes.  For a source router to 

revert to its dominant next hop, the existing minority next hop has to fail before 
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activating the re-routing process. The need for the minority next hop to fail before 

switching to a better routing option is an indication of poor energy utilisation.  

Since routing discovery is the primary energy consumption activity, there is a need to 

avoid unnecessary re-routing and the consistent use of unsustainable minority next 

hops. To do so, a routing protocol may perform immediate retransmission to the 2nd 

most dominant next hop (based on the usage rate) when the initial retransmission 

fails. By doing so, the need for re-routing is delayed, since the dominant next hop is 

likely to be available in the next transmission period. Unless both dominant next hops 

fail persistently, the re-routing process may resume.   

3. Limited routing options  

Every source router has a fixed number of neighbouring node(s) that can provide a 

route towards the coordinator. Having limited routing options, a source router would 

toggle between neighbours if any of them fails. Therefore, a source node with a 

relatively high SFC, coupled with the lack of dominant next hop suggests the 

unavailability of stable routing options where none of the neighbouring nodes can 

provide a long-term routing solution. 

To resolve this issue, it is proposed that the routing protocol should notify the user 

application when nodes have limited routing options. An additional router must be 

deployed in the region to improve the overall routing redundancy.  

6.5 Chapter Summary 

Chapter 6 demonstrates the importance of link failure prediction models and the need 

for monitoring long-term routing stability. Monitoring and analysing of long-term 

routing stability on real-world test beds (WSN@Solaris and WSN@Vaucanson) 

provides useful insights to network behaviour that existing instantaneous link quality 

assessment techniques could not i.e. SFC, and identification of the most dominant and 

minority next hops.  

It is discovered that routing paths between individual routers and the coordinator are 

rarely static. These routing paths are found to switch among next hops and can be 

categorised based on their usage rate, into the most dominant or minority next hops. 
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The application of the developed link failure prediction model (from Chapter 5) found 

that minority next hops operate on links with up to 29.9% failure rate. In addition, 

through the use of a SFC parameter, minority next hops are observed to be temporary 

solutions when a dominant next hop is not available. Lastly, three characteristics of 

network bottlenecks are described and suggested solutions are provided to avoid the 

use of nodes with an abnormally high routing path usage counts and unsustainable 

minority next hops. 
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7 Conclusion 

 

7.1 Concluding Remarks 

WSN being prime examples of high performance mixed signal technologies are very 

attractive to the businesses and are expected to grow both in the number of 

deployments and in the nodes per deployment. This thesis investigated the 

practicalities of this complex technology given that evidence from field trials have 

showed frequent network instability in real-world deployments and the limitations of 

WSN optimisation protocols to provide precise solutions to the cause of link failures.  

This thesis brings to light the WSN performance evaluation strategies to improve 

WSN communication reliability. Of particular significance are the unique data 

extraction platform of WSN devices and their deployments in real-world large-scale 

indoor environments. The realistic setups of WSN tests beds provided representative 

platforms to evaluate the impact of persistent Wi-Fi traffic and spatial network 

challenges on WSN communication reliability, and long-term WSN routing stability 

in real-world environment. The data collected from both uncontrolled experiments 

and real-world test beds were used to develop ANFIS prediction models for link 

failures caused by spatial challenges. In order to further evaluate the training input 

parameters on their ability to identify spatial challenges, NSGA-II is used to reduce 

the complexity of the Fuzzy rule-bases while maintaining the overall model accuracy. 

To understand the dominance of Fuzzy rules used, sensitivity analysis was performed 

on the chosen model where individual rule was removed and the model accuracies of 

the respective predictive conditions were monitored. Through long-term routing 

stability measures, it is discovered that the routing paths between routers and the 

coordinator in real-world WSN test beds are rarely static. More importantly, the 

minority next hops are found to operate on links with up to 29.9% failure rate. This 

phenomenon highlights the importance of NI and developed spatial-related link 

failure prediction models to monitor long-term routing stability and identification of 

network bottlenecks respectively.  
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This chapter discusses the main contributions of this thesis and highlights the 

novelties, limitations as well as recommendations for future work. 

7.2 Contribution to Knowledge 

1. The development of real-world WSN test beds and the extraction of ZigBee 

PRO performance indicators  

Existing research on WSNs is largely simulation based [37, 38] or are conducted on 

small-scale experiments, which may not be applicable in real-world environments. 

The nature of low-power radio propagation in occupied indoor environments 

introduces lower dependability of WSN’s wireless communication. Due to the 

complex nature of the transmission medium in the indoor environments, a small 

imperfection in the network can be manifested in ways not tested in the simulation 

[15]. Most existing simulators and path loss models are incomplete [37, 38, 100]. 

Every simulator has specific features that work well in the respective domain since 

they inherit the different approach and theoretical models to investigate different 

problem. However, this has led to accuracy and authenticity issues when limited and 

different simulation settings are used. For instance, simulations and theoretical models 

may not take into account the different protocol stacks and type of application. Due to 

these, simulation can only be used for performance estimations, but not to be relied 

for accurate results due to the complexity of radio propagation.  

Similar observation is made by Kurt and Tavli, who demonstrated that analytical 

models cannot determine path losses between communicating nodes accurately [100]. 

Assessing WSN performance based on probability path loss errors is ineffective. For 

instance, overestimating the path loss would lead to overestimated number of sensor 

nodes required. Vice versa, underestimated path loss leads to under-established 

network connectivity. This further leads to performance assessment errors in terms of 

required number of hops, total neighbouring nodes, and network coverage. It is 

identified that the usability of simulation (with theoretical models) can be improved if 

the following areas are taken into consideration during modelling; they are not limited 

to background noise, clock drift, characteristics of wireless module used, antenna 

height, antenna polarisation, and ground reflectivity. All of which varies across 
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different test beds [40, 100]. 

In this thesis, actual ZigBee PRO wireless sensor nodes were deployed in real-world 

environments. These nodes were implemented with NI with minimal infrastructure 

changes to extract NT and RT information from the ZigBee PRO stack. The extracted 

information was processed into four link quality parameters – Mean RSSI, ACV RSSI, 

NTC and BNTC – which are relevant and relatable to the existing link quality 

parameters found in the literature and mirror the properties of communicating node’s 

signal strength, signal deviation, communication success probability and link 

asymmetry. The development of these WSN test beds under the influence of 

environmental dynamics had provided representative platforms to evaluate WSN 

communication reliability. 

2. A novel investigation to understand the impact of IEEE 802.15.4 and IEEE 

802.11 bgn standards on each another 

The controlled experiments with dynamic setups between IEEE 802.15.4 and IEEE 

802.11 bgn devices have demonstrated that their abilities to co-exist in the same 

frequency spectrum were dependent on two factors. First, there must be sufficient 

operating distance between the IEEE 802.15.4 nodes, and between the IEEE 802.15.4 

nodes and the Wi-Fi interference source. Second, the different communication 

standards must operate on a transmission frequency separation of at least 12 MHz. 

These experiments have also demonstrated that transmission failures of IEEE 

802.15.4 nodes under persistent flooding of Wi-Fi UDP packets were largely due to 

channel access failure rather than corrupted data packets. Therefore, in order to 

minimise the impact of Wi-Fi interference, careful configurations and deployments of 

WSN devices must be put in place.  

3. Understanding the impact of spatial challenges and Wi-Fi interference on 

WSN communication reliability through controlled experiments 

Controlled experiments were conducted for detailed evaluations of WSN link quality 

parameters under the influence of persistent Wi-Fi traffic, poorly deployed 

environment and human movements. Results from these experiments highlighted that 

the individual link quality parameter behaved differently under different network 
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challenges. As such, the model’s training inputs must be carefully selected to produce 

a best-possible prediction model. For example, the physical layer parameters were 

better at distinguishing spatial challenges than network layer parameters, and the 

count of CCA failures was better at detecting persistent Wi-Fi traffic than PRR. It is 

concluded from these findings that WSN link failures must not be generalised and 

considered as a single entity. Detection mechanism for the cause of link failures and 

precise solution must be in place to improve WSN communication reliability. 

4. Reduction of Fuzzy rule-base for interpretation 

NSGA-II was used to reduce the complexity of ANFIS models without sacrificing 

model accuracy. The reduction of Fuzzy-rule-base had provided an alternative 

approach to analyse the optimised Fuzzy rules and their inputs. It was found that the 

dominance of Fuzzy rules was dependent on factors such as the WSN node’s 

communication range and environmental settings (controlled or uncontrolled). 

Due to the unique formulation of Fuzzy rule-base optimisation, specific NSGA-II 

settings must be put in place to achieve adequate exploration of search space and 

avoiding premature convergence. In particular, maintaining population diversity and 

selection pressure throughout the GA search were found to be key factors. Sufficient 

population diversity was achieved at the beginning of GA search with the use of 

initial population of densely activated rule-bases. The initial population of densely 

activated rule-bases forces solutions of similar rule-base size to compete among each 

other. Thus, the selection pressure for non-dominated solutions was emphasised on 

models with higher accuracy. In addition, a higher mutation rate for deactivation of 

parameters (Fuzzy antecedent parts) was implemented. By doing so, greater diversity 

among the population in terms of Fuzzy rule-base sizes was created. This had led to a 

greater selection pressure for the exploration of new non-dominated solutions of 

smaller rule-base sizes. 

5. Monitoring of long-term WSN routing stability in real-world environments 

Instantaneous assessment of WSN link quality is often preferred in the existing 

research. However, since WSN communication is highly temporal and the 

assessments of link quality were performed using limited information, instantaneous 
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assessments of link quality are not always accurate. In this thesis, the measure of 

long-term of WSN routing stability provided an alternative means to monitor WSN 

communication reliability. For instance, the rate of routing paths changes over time 

was studied instead of the typical link-to-link performance measure.  

Network parameters to identify potential network bottlenecks were introduced. These 

parameters are namely, relative routing path usage count, usage rate of unique next 

hops and switching frequency counts. The use of these parameters and the spatial-

related link failure prediction models had discovered that up to 29.9% of the less 

dominant routing paths in real-world test beds were connected to link with failures. 

Such links were found to be short-lived and had contributed to the phenomenon of 

network instability. The need to avoid the use of less dominant links and to identify 

network bottlenecks in the network highlighted the importance of monitoring long-

term WSN routing stability. 

6. Network management system to investigate WSN network challenges 

Overall, this research brings together a building block for a sustainable resource-

constrained WSN architecture to investigate network challenges pertaining to WSN 

communication reliability. This building block validated on real-world test beds and 

developed with minimal infrastructure change, is suitable for a Network Management 

System (NMS) [168] to detect, diagnose and remedy network reliability issues in a 

deployed WSN. “In-network” extraction of information such as the node operating 

states (i.e. number of neighbouring nodes and E2E routing paths) and link quality 

between communicating nodes permits NMS to perform management control tasks to 

improve the reliability of WSN communication. These tasks are, for example, 

configuration of a node’s retransmission limit, transmission power, and duty cycling 

interval. We have also showed that through the development and interpretation of 

optimised ANFIS-based prediction models that are trained using data collected from 

controlled and uncontrolled test beds, the influence of link quality parameters under 

specific network challenge can be studied. In addition, NI has shown to be effective at 

extracting meaningful mesh-network (i.e. ZigBee PRO) performance information, 

which allows us to investigate bottlenecks in a large-scale network. 
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7.3 Limitation and Recommendations for Future Work  

The outcomes of this research can be used to inform future work in the area of WSN. 

However, the results from this thesis require further evaluation with a broader 

approach, including the use of more real test beds, implementing on different 

applications, different hardware systems, as well as different protocols.  

1. Optimisation subjected to individual test beds 

The results and interpretations of optimised models are dependent on the knowledge 

and experience of user making the evaluation, as well as the type of deployed 

environment, configurations and deployments of WSN nodes, and even the 

implemented optimisation protocol. The interpretation of optimised Fuzzy model is 

subjective in nature. The use of “universal” interpretation metric may be controversial 

since designing of indexes takes into account designers’ interpretation preferences. In 

addition, such metric may not be applicable for different systems or applications. 

Therefore, instead of an interpretation metric, the use of more training inputs that 

represent different characteristics of a wireless communication is recommended. 

These characteristics are for example, noise level, severity of deep fading, short-term 

bursty link and transmission latency. Since cross-layer parameters are valued, 

providing more information about a wireless link during modelling can produce a 

more accurate model with specific Fuzzy sets.  

In addition, results from this work may be used to improve the evaluation approach of 

WSN communication within a simulator. For instance, instead of regarding a link 

with poor mean RSSI as bad, the simulator can classify this link as highly susceptive 

to failure due to human activity, since poor mean RSSI do not always translate to 

failure. This inclusion of addition information allows a WSN simulator to represent 

the dynamicity of a real-world test bed more realistically.  

2. Remote and uncontrolled WSN test beds 

WSN test beds in uncontrolled environments produced realistic information about the 

communication performance of deployed devices and also serve as a validation 

platform for prediction models implemented. However, given that the environments 
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are remote such as 3rd party building, it is difficult to account for packet losses in all 

conditions. For example, IP network faults leading to IP packet loss and delay, and 

unexpected power outages shutting down of WSN operations or specific nodes. 

Accounting for packet losses in such situations require a dedicated fault detection 

system where the loss of information can be differentiated with packet losses due to 

wireless communication failures. This can be done with periodic monitoring of 

existing network maintenance packets such as “keep alive” messages, sequence 

number of transmitted packets, and network re-join status from nodes that are alive. 

Any periodic gaps in collected data can be counterchecked with network maintenance 

packets to verify if nodes were alive or where disconnected from the network.  

3. Suggestions to improve WSN communication reliability under spatial related 

network challenges 

It is concluded in Chapter 2 that a unique solution is required to mitigate the different 

network challenges. Similarly, Chapter 5 showed that spatial related network 

challenges can have different impacts on different WSN test beds (i.e. controlled 

experiments, WSN@Solaris and WSN@Vaucanson). In the future work, solutions 

designed to mitigate these network challenges are recommended to be customised 

depending on their impacts on the WSN communication reliability. For instance, 

temporal human movements are likely to affect a pair of long distance communicating 

nodes (in WSN@Vaucanson) than short distance communicating ones (in 

WSN@Solaris). In other words, a long distance communication, detectable with poor 

mean RSSI, is more likely to fail under the presence of human activities, as there is 

limited link budget. In this situation, an increase in the communication link budget to 

minimise the impact of human activities is suggested. This can be achieved through 

increasing the transmission power of affected nodes with poor mean RSSI.  

On the other hand, nodes with shorter-range communication in WSN@Solaris may 

not require an increase in link budget since human activities may not introduce 

persistent link failures. In this situation, delaying retransmission [10, 11] could be 

sufficient. In addition, nodes communicating under poorly deployed environment may 

not be a persistent network issue if the affected node is not a dominant next hop. In 

this situation, because the link is not utilised for data routing, no immediate solution is 
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necessary. Otherwise if the affected node is used as a dominant next hop, diverting of 

network traffic with a network re-routing mechanism could be useful to reduce the 

reliance on affected nodes. 

Overall, this work shows the importance of understanding the behaviour of link 

quality parameters under different network challenges. It should be noted that the 

solution should be WSN application-dependent, where minimal impact to the existing 

application in terms of energy consumption and operation must be considered. 
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