
DISSERTATION

submitted to the

Combined Faculty of Natural Sciences and Mathematics

of the

Ruprecht–Karls University
Heidelberg

for the degree of

Doctor of Natural Sciences

put forward by

M.Sc. Benjamin Klenk

born in
Wertheim am Main, Baden-Württemberg

Mannheim, 2017





Communication Architectures
for Scalable GPU-centric

Computing Systems

Advisor: Professor Dr. Holger Fröning

Date of oral exam: ...........................





I would like to dedicate this dissertation to my loving parents

Elfriede and Dieter Klenk

and my loved and missed grandfather

Otto August Kimmel
(† July 1st, 2014)





Abstract

In recent years, power consumption has become the main concern in High
Performance Computing (HPC). This has lead to heterogeneous computing
systems in which Central Processing Units (CPUs) are supported by accelerators,
such as Graphics Processing Units (GPUs). While GPUs used to be seen as slave
devices to which the main processor offloads computation, today’s systems tend
to deploy more GPUs than CPUs. Eventually, the GPU will become a first-class
processor, bearing increasing responsibilities.

Promoting the GPU to a first-class processor comes with many challenges, such
as progress guarantees, dynamic memory management, and scheduling. However,
one of the main challenges is the GPU’s inability to orchestrate communication,
which is currently entirely handled by the CPU. This work addresses that issue and
presents solutions to allow GPUs to source and sink network traffic independently.
Many important aspects are addressed, ranging from the application level to how
networking hardware is accessed.

First, important and large scale exascale applications are studied to further
understand their communication behavior and applications’ requirements. Several
metrics are presented, including time spent for communication, message sizes, and
the length of queues that are required to match messages with receive requests.
One aspect the analysis revealed is that messages are becoming smaller at scale,
which renders the matching of messages and receive requests an important
problem to address.

The next part analyzes how the GPU can directly access the network with
various communication models being presented and benchmarked. It is shown
that a flat address space of distributed GPU memories shows superior band-
width than put/get communication or CPU-controlled message passing, but less
communication can be overlapped with computation. Overall, GPU-controlled
communication is always superior, both in terms of time-to-solution and energy



spending.
The final part addresses communication management on GPUs, which is

required to provide high-level communication abstractions. Besides other funda-
mental building blocks, an algorithm for the message matching is presented that
yields similar performance as CPUs. However, it is also shown that the messag-
ing protocol can be relaxed to improve performance significantly, leveraging the
massive amount of parallelism provided by the GPU’s architecture.



Zusammenfassung

Die Rechenleistung heutiger Rechensysteme wird hauptsächlich durch deren
Leistungsaufnahme beschränkt. Dies führt dazu, dass vermehrt effizientere
Beschleuniger wie zum Beispiel Grafikprozessoren (GPU) eingesetzt werden, um
den Hauptprozessor (CPU) zu unterstützen. Während anfänglich GPUs verwen-
det wurden um rechenintensive Abschnitte eines Programmes zu beschleunigen,
tendieren aktuelle Systeme dazu mehr Grafik- als Hauptprozessoren einzusetzen.
Dadurch entwickeln sich GPUs zu erstklassigen Prozessoren und werden mehr
und mehr Aufgaben innerhalb eines Programmes übernehmen.

Eine der größten Herausforderungen ist es Grafikprozessoren zu ermöglichen
direkt miteinander zu kommunizieren. Dies wird zurzeit vollständig von der CPU
übernommen. Diese Arbeit befasst sich mit dieser Problematik und präsentiert
Konzepte und Techniken die es der GPU erlauben Daten über das Netzwerk zu
verschicken und zu empfangen.

Im ersten Schritt werden Anwendungen für Systeme die eine Milliarden
Rechenoperationen in einer Nanosekunde ausführen können, so genannte Ex-
ascale Systeme, analysiert. Es werden unterschiedliche Charakteristiken dieser
Applikationen präsentiert, unter anderem die Kommunikationszeit, Nachrichten-
größen und die Größe von Datenstrukturen die für die Zuweisung von Nachrichten
(Message Matching) und Empfangsanfragen (Receive Requests) benötigt werden.
Eine Erkenntnis ist, zum Beispiel dass Nachrichten kleiner werden sobald man
die Anzahl an Rechenknoten erhöht. Dies erhöht die Bedeutung des Message
Matching umso mehr.

Im zweiten Abschnitt wird die Interaktion zwischen GPUs und Netzw-
erkprozessoren betrachtet und Konzepte und Performanz von Kommunikations-
modellen präsentiert. Es wird gezeigt, dass ein flacher Adressraum über verteilte
GPUs, im Vergleich zu einem put/get oder CPU-kontrollierten Nachrichtenmod-
ell, hohe Bandbreiten und niedrige Latenzen ermöglicht. Allerdings erschwert es



auch Kommunikation mit Berechnungen zu überlagern, da viele GPU Ressourcen
für den Datentransfer benötigt werden. Zusammenfassend gilt, dass die Anwen-
dungszeit mit GPU-kontrollierter Kommunikation immer geringer ist und ebenso
weniger Energie benötigt wird.

Im letzten Teil dieser Arbeit wird die Verwaltung von Kommunikation auf
Grafikprozessoren untersucht. Dies ist besonders wichtig um komplexe Kommu-
nikationsabstraktionen zu unterstützen. Es wird unter anderem ein Algorithmus
präsentiert, der es erlaubt Message Matching auf GPUs durchzuführen. Diese
Analyse erlaubt die Entwicklung eines weniger strikten Nachrichtenprotokolls mit
sehr hohen Nachrichtenraten. Ebenso werden viele weitere Aspekte behandelt, wie
Speicherverwaltung, Datentransfer, sowie Ereignis- und Benachrichtigungsmech-
anismen.
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Introduction

Computing has been the major driver of technology and science, allowing for
many breakthrough inventions and discoveries. Although nearly every device
in our everyday lives implements at least one microchip computer today, it’s
the supercomputers in large computing facilitates that drive rapid progress in
science. The two traditional pillars of science, theory and experiment, are now
complemented by computational science, for example simulation [1]. These
systems are used by astrophysicists to simulate whole galaxies and predict their
movements, by chemists to discover new materials for the next generations of
computers, or by biologists to understand how cells are interacting in the human
body. Supercomputing is omnipresent and helps society to be safer, find cures
for the most deadly diseases, and to understand how the earth became our home.
However, supercomputing itself is also an active research area in which scientists
explore new architectures and algorithms to improve performance of compute
installations to enable the most challenging problems to be solved.

Research in supercomputing not only encompasses several layers, such as
hardware, Operating System (OS), middleware, and applications, it also aims
to optimize the ecosystem to achieve the highest performance. The following
elaborates on today’s computing and how it is performed, but also on the system
architecture. Then, the motivation for this work is presented, before an outlook
for the remainder of this work is provided.
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Introduction

Parallel Computing

With the end of frequency scaling in the early 2000’s, parallel computing has
become the standard paradigm and architecture after which today’s applications
are designed. Parallelism can be expressed on various levels, from bit-level and
instruction parallelism to task and node-level parallelism. All levels are important
to achieve the highest performance in many scientific applications.

CPUs extensively exploit parallelism on instruction level due to pipelining
and superscalar architectures, however, these techniques are not sufficient to
meet performance goals. Furthermore, vector processing units support Single
Instruction Multiple Data (SIMD) instructions to further exploit data parallelism,
in which a single instruction is executed on multiple data elements. For example,
current Intel CPUs have 256-bit wide vector registers. This allows to apply the
same instructions to eight single-precision floating point values in just one clock
cycle.

GPUs introduced the Single Instruction Multiple Threads (SIMT) model in
which threads execute the same instruction on different data elements. Here, a
thread is seen as a sequence of SIMD lane operations [2, Figure 4.12].

Parallelism of processors is exploited by the user and the compiler, which
tries to vectorize instructions as much as possible. Since single processors do not
offer enough performance, parallelism across processors and nodes is also much
needed. This requires additional communication and synchronization between
distributed processes. Common communication and programming models are
further discussed in Chapter 3, while this chapter continues with the architecture
of highly parallel supercomputers.

High-Performance System Architecture

Today’s HPC systems have four main components. The CPU is the main
processor, running the OS and application. The most common CPUs are Intel’s
Xeon processors with a share of 90% of the top 500 systems in 2016 [3], followed
by IBM’s PowerPC and AMD’s Opteron. The second component is memory with
the top system (Sunway TaihuLight) providing about 1GB per core, which also
equals the third system’s (Titan) memory provision. The next component is the
interconnect, which is dominated by Infiniband (37%) and Ethernet 10G (36%).
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However, half of the 500 system’s performance is delivered by systems with
custom interconnects, such as Cray’s Aries, Fujitsu’s Tofu, or Sunways’ Sunway
interconnect. The last important component are accelerators, whose share has
been steadily increasing the past years. Here, NVIDIA’s GPUs dominate the
system’s share, followed by Intel’s Xeon Phis.

One of the main reasons for an increasing demand for accelerators is the end
of Dennard scaling. In the past, chip manufacturers were able to keep reducing
the size of transistors to put more and more of them onto a single die, while the
power dissipation per die remained constant. This has been possible, because
the power dissipation per transistor decreases linearly with the size, commonly
referred to as Dennard scaling [4]. As the size of transistors keeps shrinking,
current leakages become dominating, thus rendering it impossible to further
sustain Dennard’s rule [5].

With power becoming a severe challenge, application specific hardware is
necessary to satisfy performance demands. This has lead to the general purpose
application of GPUs, whose massively parallel architecture delivers remarkably
high performance and energy efficiency. While it was difficult to program GPUs
in the beginning, NVIDIA’s introduction of the Compute Unified Device Archi-
tecture (CUDA) meant a breakthrough for parallel computing as GPUs became
programmable through a C-language extension. Today, other programming
environments such as OpenCL [6], OpenACC [7], and OpenMP 4.0 [8] also allow
to write code for GPUs.

Table 1.1 compares the CPU architecture with two accelerators, namely
Intel’s Xeon Phi and NVIDIA’s Tesla GPU, both gearing to HPC. The Xeon
Phi co-processor can be seen as a many-core x86 CPU, which is also able to
boot an OS. Its performance is significantly higher than the Xeon CPU, but
only excels if applications offer enough parallelism according to Amdahl’s law [9].
This also applies to the GPU, which provides a completely different architecture
with thousands of light-weight cores, operated at comparably low clock rates.
As shown in the table, the power efficiency is more than 3 times higher than
the CPU, and 1.5 times higher than the Xeon Phi. Although the memory is
significantly smaller, the GPU’s memory bandwidth exceeds the CPU’s by about
one order of magnitude. More details on GPUs will be provided in Chapter 2.
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Introduction

Table 1.1 Comparison of high-end processors, namely Intel’s Xeon E7, Xeon Phi
7240, and NVIDIA P100 GPU.

E7-8894 v4 1 Xeon Phi 7240P1 P100 [10]
Cores/Processors 24 68 60 (SMs)
SP2 ops/cycle3 768 (AVX2) 4352 (AVX-512) 7168 (CUDA)
Base Clock 2400MHz 1300 MHz 1328 MHz
Performance (SP) 1.8 TFLOPS 6 TFLOPS 10 TFLOPS
TDP4 160 W 275 W 250 W
Power efficiency 11 GFLOPS/W 22 GFLOPS/W 37 GFLOPS/W
Memory capacity 512 GB 16 GB5 16 GB
Mem. technology DDR4 MCDRAM HBM2
Mem. bandwidth 80 GB/s 500 GB/s 732 GB/s
Lithography 14 nm 14 nm 16 nm (FinFET)
Price $ 8,000 $ 3,300 $ 8,000

1 https://ark.intel.com/, last visited on June 8, 2017
2 Single Precision (SP)
3 Based on Fused Multiply Add (FMA) instructions
4 Thermal Design Power (TDP)
5 Supports also up to 384GB DDR4 memory

Communication in HPC Systems

Unless the problem is embarrassingly parallel, compute entities are required
to communicate data and synchronize along the application’s run time. While
compute is relatively fast, communication has been identified as one of the major
bottleneck in parallel computing [11, Section 8.2.2.1], especially in regard to
power consumption.

Communication in traditional HPC systems mostly relies on the Message
Passing Interface (MPI) in which processes exchange messages to synchronize
and move data. The application is mainly run on the CPU and accelerators are
only used for certain compute-intensive parts, thus communication is entirely
orchestrated by the CPU. This so-called offloading model, which is similar to
the master/slave principle, requires data to be copied to the GPU, for example,
where it is processed and from where results are copied back.

However, there are highly parallel applications that mostly run on the GPU,
for example the training of deep neural nets. These require more than a single
GPU’s compute power and in order to communicate with others, the GPU relies
on the CPU to orchestrate communication. This does not only require data to be

4
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copied back and forth between the two processors, which negatively affects time,
power, and energy, it also renders programming more difficult as the programmer
has to explicitly deal with both domains. Furthermore, the entire GPU kernel
needs to be left, thus implicitly synchronizing all threads, even if only parts of
the kernel want to communicate data.

Solving this issue is the main objective of this work, which envisions direct
GPU communication without any CPU interference. Related work has focused
on the CPU assisting the GPU with communication by dedicating threads that
receive requests from the GPU and execute communication on the CPU [12],
[13] [14]. Others have studied the interaction between the GPU and the network
controller, but left out how communication can be managed on GPUs [15]. Details
on related work are presented throughout this work.

GPUs for Exascale Computing

The next milestone in supercomputing is to provide a system that is able to
perform a quintillion (1018) floating point operations per second, which is 10
times faster than the currently fastest computer. Furthermore, it is expected
that an exascale system may not consume more than 20-30WM [16], which is
only 1.5-2 times more than today’s fastest computer and equals an efficiency of
16G Floating Point Operations Per Second (FLOPS)/W. Consequently, systems
have to become much more power efficient, which renders GPUs more and more
important.

While there will always be a fast single-thread optimized processor, the ratio
of GPUs per CPU is increasing to further improve power efficiency. An example
is NVIDIA’s own supercomputer SaturnV, which is the 28th fasted in the world
(November 2016). The system provides eight GPUs per node with two CPUs
and is the most power efficient computer with 9G FLOPS/W. This is 90 times
more power efficient than Sunway’s TaihuLight system, the current number one
system with respect to raw compute power.

The current trend toward GPU-centric systems also requires to move away
from the offloading model. Instead, GPUs should be seen as peer processors,
bearing the same responsibilities as a CPU. As peers, GPUs also need to be able
to orchestrate communication and synchronization in order to not longer rely on
the CPU.
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Introduction

This work studies how current GPUs can directly communicate with each
other, without involving the CPU in the communication process. It is analyzed
how the GPU can interact with Network Interface Controllers (NICs), which
are going to be introduced in Chapter 5. Furthermore, in order to understand
constraints, various exascale applications are studied in regard to their communi-
cation behavior and requirements. Based on this analysis, it is examined how
communication can be managed on GPUs, for example how messages can be
matched with receive requests.

Contributions

This work makes the following contributions:

I. Understanding large scale communication - various exascale proxy appli-
cations are analyzed in regard to communication. The analysis presents
various metrics, valuable to application developers to understand bottlenecks
and system architects to understand the applications’ demands. For this
work, it provides insights on requirements that communication architectures
have to meet. This has been published at the International Supercomputing
Conference (ISC) 2017 [17] and was nominated for the conference’s best
paper award. Details are found in Chapter 4.

II. Comparison of GPU-centric communication models - three different mod-
els for direct inter-GPU communication are studied, based on different
benchmarks with distinct characteristics. These models are traditional
CPU-centric message passing, GPU-centric shared address space, and GPU-
centric put/get. This is an important step toward specialized communication
in heterogeneous systems as it reveals how well these models can be applied
to GPUs in terms of time and energy. This contribution comprises various
international workshop and conference publications [18] [19] [20] and is
elaborated in Chapter 5.

III. Introduction of a Software NIC (SoftNIC)1 as a new concept for GPU-centric
and managed communication - managing communication is especially im-

1This has been part the Mantaro project, which explores communication management on
GPUs. It is named after the river in Peru, which is believed to be one of the sources of the
Amazon River.
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portant at larger scale and well explored for CPUs. This work analyzes and
shows what is necessary to manage communication on GPUs. This includes
complex tasks, such as the matching of messages and receive requests, which
has been published at the International Parallel and Distributed Processing
Symposium (IPDPS) 2017 [21] and received a best paper award. Further-
more, various building blocks and related work are discussed and evaluated.
The SoftNIC aims to provide a flexible and highly scalable communication
infrastructure for a massive amount of endpoints. The details are provided
in Chapter 6.

Organization of this Work

Figure 1.1 shows various abstraction layers and the chapters in which these
items are covered. Chapter 2 provides the background on the GPU’s hardware,
memory, and execution model. This is required for almost the entire remainder
of this work.

Chapter 3 reviews various communication and programming models that are
common in HPC. Besides MPI, shared memory models like Partitioned Global
Address Space (PGAS) are also introduced and briefly discussed.

This is followed by the exascale application analysis in Chapter 4. The
analysis focuses on message passing characteristics as this is also the most
prevalent communication model in HPC. Insights are especially valuable for the
communication management in Chapter 6. Here, it is evaluated how well the
GPU can provide higher level communication abstractions, as opposed to relying
on a flat shared address space. The chapter focuses on the matching of messages
and receive request, because it is one of the main tasks required for message
passing.

The insights of this work are discussed in Chapter 7. It aims to provide
answers to what is still needed to render GPUs able to orchestrate communication.
Features of the upcoming Volta GPU architecture are also taken into account.
The discussion is followed by the conclusion in Chapter 8.
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Fig. 1.1 Organization of this work on the basis of different abstraction layers.
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Graphics Processing Units

The first GPU with programmable shaders was introduced in 2001 by NVIDIA,
aimed to accelerate image and video processing and allow programmers to
implement their own programs on GPUs. Soon after, researches started to write
scientific simulations in graphics languages to execute them on the GPU, using
languages like cg or OpenGL [22]. In 2007, NVIDIA started CUDA and allowed
GPUs to be programmed in a C-like language. This tremendously increased the
number of general purpose GPU applications and opened the door for the GPU
to enter the HPC area.

The following provides important background on GPU computing, including
its architecture, memory, execution and programming model. More details can
be found in the CUDA programming guide [23], or the excellent books of Shane
Cook [24] and Nicholas Wilt [25].

2.1 Architecture

An high-level comparison between a CPU and a GPU is shown in Table 1.1.
Although the number of cores, respectively processors, is similar, each Streaming
Multiprocessor (SM) itself is highly parallel and implements many light-weight
cores. This renders the GPU a massively parallel processor with memory that
provides extremely high bandwidth. The target application for GPUs has always
been graphics, wherein most operations are matrix multiplications to transform
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Graphics Processing Units

Fig. 2.1 Architecture of the Kepler SM [26].

and scale vertexes. Most of the computation can be performed in parallel, which
is the reason for the highly parallel architecture of GPUs.

2.1.1 Compute Architecture

The Kepler GK110 architecture [26] implements a total of 15 SMs. The SMs
are interconnected by an internal network to which the memory is also attached.
The architecture of a single SM is depicted in Figure 2.1. There are a total
of 192 so-called CUDA cores, 32 load/store units, 64 double-precision units,
and 32 special function units. Each core is fully pipelined and able to perform
single-precision and integer operations [2, p. 307].

GPUs implement a SIMT model, in which the same instructions are dispatched
to a group of threads operating on different data. Currently this group comprises
32 threads and is referred to as warp. A Kepler SM provides four warp schedulers
with two instruction dispatch units each. Each scheduler selects an available
warp and issues two independent instructions to the hardware to be executed. A
scoreboard [2, pp. 294-306] is used to keep track of warps and provides information
on whether a warp is available for execution or awaits completion of previously
issued instructions. It is important to have much more warps than execution
units in order to hide instructions latencies, especially memory accesses. This
principle is known as oversubscription and key to the GPU’s high compute

10



2.1 Architecture

performance.
Another important aspect is branch divergence, which occurs when threads

within a warp follow a different execution path. As aforementioned, threads of
the same warp are given the same instruction. In case of branches, such as if
statements, the entire warp executes the same instruction, but the results from
divergent threads are discarded. This reduces efficiency and should be avoided.
Furthermore, synchronization primitives in diverging paths result in an undefined
behavior.

On top of the SM’s warp schedulers, the GPU implements a Collaborative
Thread Array (CTA) scheduler. A CTA is a group of threads and assigned to
an SM for execution. Once a CTA is running it completes before another CTA
can be brought to execution. Currently, CUDA limits the size of a CTA to 1,024
threads or 32 warps, respectively. Depending on the size of a CTA, multiple
CTAs can be executed by one SM concurrently.

The peak performance can only be achieved if the GPU is kept busy and
occupancy is high, which means all SMs are fully occupied with executing CTAs.
The occupancy mainly depends on the number of threads per CTA, the number
of allocated registers per thread, and the amount of allocated shared memory
per CTA. For example, if a CTA consumes all of the available shared memory
of an SM and the number of threads is low, the SM cannot execute another
CTA although compute resources would be available. Goal of every kernel is to
maximize occupancy, which sometimes means to launch less threads per CTA to
increase the number of CTAs per SM that can be concurrently executed.

Table 2.1 compares three different GPU architectures in regard to their
specification. The Kepler K80 and Pascal GTX1080 will be used for experiments
later and the Volta V100 serves as a reference for the latest GPU. Volta was
announced at the end of this work, thus it was not possible to run experiments
on this card as it wasn’t available yet. Nonetheless, the comparison shows how
much and rapidly GPUs are advancing and progressing.

The Pascal architecture differs from Kepler, whose SM is shown in Figure
2.1, as its SM implements 128 cores, grouped into four blocks of 32 cores each.
This allows for better warp scheduling and increases efficiency. More on Pascal
can be found in its architectural white paper [10].

11



Graphics Processing Units

Fig. 2.2 Memory system of a Kepler-class GPU.

2.1.2 Memory System

The memory system of GPUs differs significantly from CPUs. Although much
smaller in size, the GPU’s video memory, often also referred to as global memory,
offers tremendous bandwidth that is an order of magnitude higher than the CPU’s
Double Data Rate (DDR) memory. The main reason is that video memory is
optimized for bandwidth with a much wider data bus and higher voltage at the
cost of higher access latency. However, as opposed to CPUs, GPUs can hide
longer latencies extremely well due to oversubscription of resources.

Figure 2.2 shows the memory system of Kepler GPUs. There is a two-level
cache hierarchy, however, their principle is different from CPUs in which caches
are used to minimize latency. In GPUs, the streaming caches are used to reduce
traffic on the video memory and increase bandwidth. There is also no coherency
between L1 caches. L2 caches cover a certain address range, hence no coherency
is required as well. The read-only cache per SM allows for fast access to constant
variables and improves texture performance.

Each SM also implements explicitly managed scratchpad memory, called
shared memory. Shared memory provides low-latency and high-bandwidth access
to data, but the user has to explicitly administer the data it holds. Furthermore,
the memory is divided into interleaved banks and accesses to the same banks are
serialized, hence increasing latency.

Although the memory system allows for high bandwidth, the access pattern

12



2.2 Programming and Execution Model

Table 2.1 Comparison of the Kepler, Pascal, and Volta GPU architectures.

Kepler K801 Pascal GTX1080 Volta V100
Release year 2014 2016 2017
Market Tesla GeForce Tesla
Base Clock 562MHz 1607MHz 1370MHz
SMs 2x 13 20 84
CUDA Cores 2x 2496 2560 5376
Memory 2x 12GB 8GB 16GB

GDDR5 GDDR5 HBM
Memory Bandwidth 2x 240GB/s 320GB/s 900GB/s
Shared Memory/SM 2x 64KB 96KB 96KB
Register File/SM 2x 256KB 256KB 64KB
Power TDP 300W 180W 300W
Lithography 28nm 16nm (FinFET) 12nm (FinFET)
Transistors 2x 7.1B 7.2B 21B
Price $5,000 $600 n/a

1 The K80 GPU is a dual GPU with two chips per card.

is of great importance. A memory transaction consists of 128B, thus 32 single
precision or integer values. Accessed memory addresses should be consecutive in
order to allow the memory system to coalesce requests into a single transactions,
maximizing utilization and efficiency.

The memory specification of various GPU architectures are also shown in
Table 2.1.

2.2 Programming and Execution Model

GPUs are programmed in CUDA, which extends the C/C++ language. Today,
there are several bindings for various programming languages, including Python,
Fortran, Java, or MATLAB. Nonetheless, this work is entirely based on C/C++
and the following presents how memory is managed and work can be launched
on the GPU. Approaches like OpenACC, in which the compiler translates CPU
code to GPU code based on #pragma directives, are not presented. Although
this work’s techniques could also be applied to these programming models, the
following focuses solely on CUDA C/C++.

13



Graphics Processing Units

2.2.1 Memory Management

GPUs have their own on-device memory in which data should reside to yield
high performance. Consequently, GPU memory has to be allocated through
CUDA’s Application Programmable Interface (API), for example cudaMalloc.
The function allocates memory on the GPU and returns a pointer. The pointer
cannot be accessed by the CPU and needs to be passed to the kernel, which
comprises all instructions that will be executed on the GPU.

When memory is allocated on the device, data can be copied using
cudaMemcpy. This instructs the GPU’s copy engine to copy data from system
to device memory and vice versa. The best performance is achieved when the
host data is pinned and thus cannot be swapped to disk. Due to Unified Virtual
Addressing (UVA), the GPU can also access pinned memory directly when a spe-
cific device pointer is passed to the kernel, obtained by cudaGetDevicePointer.
Pinned memory is usually allocated by cudaHostAlloc.

CUDA version 6.0 introduced Unified Memory, with which memory can be
simply allocated with cudaMallocManaged. The resulting pointer can be used on
both CPU and GPU and data is copied between host and device automatically.
The Pascal GPU even provides a page migration engine that can trigger page
faults, which significantly reduces the effort to program GPUs and manage
memory. Upcoming Linux kernels are expected to support this as well, so that
memory can simply be allocated by standard malloc and be used by both CPU
and GPU.

2.2.2 Code Execution

CUDA extends the C/C++ language by additional keywords to inform the
compiler about code that is supposed to be executed on the GPU as opposed
to the CPU. Kernels are declared with the __global__ keyword and device
functions with __device__. These functions are compiled by NVIDIA’s nvcc
compiler and can contain GPU specific intrinsics. The code is compiled to
Parallel Thread Execution (PTX), which is a stable and abstract instruction set
and hides the hardware specific instruction set, ensuring compatibility across
multiple generations of GPU architectures [2, pp. 298].

Kernels are launched from the CPU like regular functions, but require to be
passed information about the kernel’s configuration, encapsulated in <<< and
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>>> delimiters before the opening bracket for the function’s arguments. The
configuration comprises the size of the grid, respectively the number of CTAs,
the number of threads per CTA, and the size of dynamically allocated shared
memory per CTA. Once the kernel is launched control returns back to the CPU,
which can synchronize with the GPU through cudaDeviceSynchronize again.

Many functions in CUDA also have asynchronous implementations, such as
cudaMemcpy and cudaMemcpyAsync. These functions immediately return and
synchronization has to be handled explicitly. Asynchronous functions, together
with kernels, can be assigned to streams to allow for more parallelism. Streams
are independently executed in parallel, whereas functions in the same stream are
executed sequentially. This also allows to pipeline and overlap data transfers to
and from the device with kernels.

CUDA 5.0 introduced dynamic parallelism, with which kernels can be launched
within other kernels on the GPU. While this allows adaptive applications to
avoid returning control back to the CPU, kernel launch latencies are quite high.
Besides kernels, many other operations are callable from the device, such as
cudaMemcpy, cudaMalloc, or stream-related functions. Nonetheless, due to their
high latency these should be used with care as performance can be reduced
significantly [27].

A rather unique feature is warp vote functions. As aforementioned, threads
within a warp follow the same control path and communication among threads
within a CTA requires shared memory. However, warp vote functions allow
threads within a warp to use the register file to communicate data. Table 2.2
shows a brief overview of the most common warp vote functions and bit-vector
intrinsics. Especially the __shfl operation is widely used and provides fast
intra-warp communication through the register file. These intrinsics are executed
extremely fast compared to communication through shared or global memory.

2.2.3 Multi-GPU Programming

Programming multiple GPUs with CUDA requires explicit device management.
This means the user has to declare the device to which all subsequent CUDA
calls are assigned. In practice, it is common to statically assign a CPU thread or
process, for example using MPI, to each GPU. All operations called by a thread
are then always issued to its device.
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Table 2.2 Overview of common warp vote functions and math intrinsics, available
in Kepler and newer generations of GPUs.

Intrinsic Description
__shfl(int val, int src) Exchanges data within a warp. Data can either

be broadcasted by a single thread or distributed
by a certain pattern. The function returns the
received value.

__ballot(bool cond) The function takes a condition as argument
and returns a 32-bit vector wherein each bit
represents each thread’s evaluation of the con-
dition.

__any(bool cond) Returns true if any of the threads evaluate the
condition to true.

__ffs(int arg) The function returns the position of the first
’1’ within a 32-bit vector that is passed as an
argument.

__clz(int arg) The function returns the number of consecutive
’0’s starting at the MSB within a 32-bit vector
that is passed as an argument.

Communication between GPUs requires UVA and is possible through the Pe-
ripheral Component Interconnect Express (PCIe) protocol’s peer-to-peer feature.
Here, devices can access each other without the CPU. UVA allows to map another
GPU’s memory with access on load/store level. Furthermore, cudaMemcpy can
be used to copy data between memories allocated on different GPUs.

In distributed systems, communication between GPUs relies on the CPU
and its communication primitives, for example MPI. However, there have been
efforts to improve data transfers and GPU-NIC interactions. Table 2.3 shows
the history of GPUDirect, which has steadily been extended to further support
inter-node communication. GPUDirectRDMA allows a NIC to read from and
write to GPU memory without the CPU. However, this feature should only
be used if both devices share the same PCIe root complex. In 2016, NVIDIA
released GPUDirectAsync, which allows the GPU to trigger network operations.
Here, the CPU generates a work plan and submits everything to a stream. The
work plan can now include certain memory locations that are written by the
GPU directly, for example a register that has the network device beginning with
the data transfer upon being written. Some MPI implementations are currently
looking into adding this feature, with which a CUDA stream could be passed
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Table 2.3 History of GPUDirect, which aims to improve GPU-NIC interactions.
Note that communication is still managed on the CPU.

Technology Description Year
GPUDirect The same memory allocation can be pinned and

used for GPU and third-party devices, such as
NICs.

2010

GPUDirectP2P Data can directly be copied between GPUs with-
out any host memory staging copies through
PCIe.

2011

GPUDirectRDMA Third-party devices can directly access the GPU’s
memory through PCIe’s peer-to-peer protocol.

2013

GPUDirectAsync Memory operations can be added to streams,
meaning the GPU can trigger events after com-
pleting tasks.

2016

to MPI operations. The MPI operation would then be triggered by the GPU
without involving the CPU at all.
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Communication and Parallel Programming
Models

The previous chapter provided a comprehensive introduction to GPUs and this
chapter introduces various communication and parallel programming models for
large scale systems, which are going to be discussed and evaluated throughout
this work with respect to their compatibility with GPUs. While these models are
generally described here, the next chapters look at them from a more GPU-centric
perspective.

Generally, parallel computing systems can be categorized into two fundamental
approaches, depending on how the memory is accessed. An overview is depicted
in Figure 3.1. Shared memory systems, for example, provide a single address
space which can be accessed by all processors. This can be implemented by either
having a single memory to which each processor is attached, or by allowing any
processor to access another processor’s local memory. Here, it is distinguished
by the access costs of a memory access. In a Uniform Memory Access (UMA)
system each memory access has the same latency, whereas access latencies differ
in Non-Uniform Memory Access (NUMA) systems as some processor’s memory
is farther away than others and thus accesses require more time.

The second class are distributed memory systems. As suggested by the name,
the memory is distributed across the system and primarily accessed by the
local processor. Data transfers between processors require address translation,
performed by the NIC at both endpoints.
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(a) UMA shared memory system (b) NUMA shared memory system

(c) Distributed memory system

Fig. 3.1 Illustration of shared and distributed memory systems.

Independent of the underlying system architecture, the programming model
defines how a system is programmed and how the user perceives the system. The
communication model, on the other hand, defines how data is exchanged.

Since 2003, the largest and most powerful computing systems have always
been distributed memory systems [3], with an increasing share of clusters and
Massively Parallel Processing (MPP) systems. Therefore, the following is only
concerned about programming and communication models for distributed memory
systems. More on the system architecture can be found in the book of Hennessy
and Patterson [2].

3.1 Characteristics of Programming Models

A very simple classification of programming models is to distinguish by control
flow and data. The simplest and sequential model is Single Program, Single Data
(SPSD), in which only a single program accesses non-shared data. The other end
of the spectrum is represented by Multiple Program, Multiple Data (MPMD).
Here, multiple processes are executed, each operating on different data. There
are two other models in between these two, namely Single Program, Multiple
Data (SPMD) and Multiple Program, Single Data (MPSD). However, the most
relevant model is SPMD in which the same program is executed by multiple
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processes, but on different data.
Other important characteristics of programming models are communication,

synchronization, consistency, and coherency, which are briefly described in the
following.

Communication Exchanging data is key in every parallel program and the
programming model implements communication either explicit or implicit. Im-
plicit communication means that variables can be assigned to other variables
even if their data does not reside in the same memory, or even in the same node.
When the assignment is executed communication is triggered, for example a
message is sent from the process that owns the right operand to the process
owning the left operand. Explicit communication, however, requires the user to
invoke communication. Here, data locality is explicitly expressed, for example
through send and receive operations.

Synchronization Similar to communication, synchronization can be implicit
or explicit. While message passing provides implicit synchronization, assigning
remote variables to local variables may require explicit synchronization to avoid
race conditions. Hence, shared memory models provide synchronization primitives
such as atomic operation, mutexes, semaphores, and barriers.

Consistency [2, Section 5.6] If multiple threads or processes share data
the order and point in time at which updates become visible to others pose an
important challenge, to which the consistency model provides the answer. The
most strict model is sequential consistency in which everything appears in the
order it is posted. However, as memory instructions cannot pass others and the
compiler is prohibited from reordering instructions this model limits performance
significantly. Thus, a relaxed consistency model allows for better performance,
but the user now bears the responsibility to ensure consistency by explicitly
invoking memory fences. A memory fence guarantees that all memory operations
prior to the fence are visible when the fence operation returns. Consistency is an
important challenge and often the reason of faulty parallel programs.

Coherency [2, Section 5.2] While consistency concerns multiple addresses,
coherency must ensure that every thread or process perceives all updates to the
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data. However, this is only an issue if the same address is cached or kept in
multiple memories. For example, it is assumed that both threads A and B own
a copy of data Φ. When A issues a write operation on Φ, the update needs to
be broadcasted to ensure that B perceives the update on Φ. With an increasing
number of processes or threads, coherency is a major challenge and often limits
performance of shared memory applications at large scale.

The following introduces various parallel programming and communication
models that are common in HPC.

3.2 Message Passing

This section introduces message passing, which is perceived as the most dom-
inant communication model in distributed memory systems, such as cluster
architectures. The focus lies on MPI since it comprises a comprehensive set of
features and is widely used in HPC. In addition, other interfaces are also briefly
introduced. The most common MPI implementations are OpenMPI [28], MPICH
[29], and MVAPICH [30].

3.2.1 Implementation

Message passing, particularly MPI, has become the de-facto standard for com-
munication in systems with distributed memory. The principle is simple in
that communication is performed by sending and receiving data in the form of
messages. The application is written using the SPMD paradigm, in which a
program is executed by multiple processes, each being assigned a unique identifier,
referred to as rank. A rank can be used in send or receive operations to address
other processes in point-to-point communication. Multiple ranks can be grouped
together to a so-called communicators. Messages can only be exchanged with
ranks within the same communicator, of which multiple can contain the same
rank. In MPI, data is identified by naming and ordering. Naming is given by
the source, communicator, and a tag, which is an arbitrary integer value chosen
by the user. If multiple messages are identical in naming, the order in which the
messages arrive determines which message is matched with the corresponding
receive request.

22



3.2 Message Passing

There are two basic protocols for messaging in MPI: eager and rendezvous.
Both protocols differ in their buffering scheme and the selection of the protocol
that is applied is usually based on the message size. The principle is illustrated
in Figure 3.2.

Eager Protocol In the eager case, the header is written to the receiving
process’ mailbox (➊), where it is matched with the receive request (➌). The
data is either buffered at the sender or, if the the payload is small enough, sent
along with the header and kept in the receiver’s mailbox (➋) until it is copied
to the user buffer (➍). It must be ensured that the receiver provides enough
memory capacity for the message to be stored. Thus, it is common to use a credit
based system, in which the receiver hands off credits to the sender and when a
message is sent a credit is consumed. After receiving some messages, credits are
returned back. If there are no credits available, the rendezvous protocol is used
as a fallback solution.

Rendezvous Protocol If a large message is to be sent, the extra copy from
the system to the user buffer at the receiver side can significantly add latency
and negatively impact performance. Thus, the rendezvous protocol is used
for large messages. First, the header is sent to the receiver (➊) where it is
matched with the receive request (➋). When a matching receive is found, the
receiver’s user buffer address is returned to the sender (➌), who starts the copy
operation from user to user buffer (➍). Alternatively, the receiver can use a
Remote Direct Memory Access (RDMA) transfer to fetch the data from the
sender (get operation). The MPI implementation may also buffer the data at
the sender side to allow the send routine to return more quickly.

If the user relies on the standard MPI_Send routine, MPI chooses the protocol
based on the message size and available credits. However, the user may also force
MPI to use a certain protocol, for example, MPI_Ssend (synchronous send) for
rendezvous and MPI_Rsend (ready send) for eager transfers.

In order to allow communication to be overlapped with computation, MPI
also provides non-blocking operations. For example, MPI_Isend (’I’ stands for
immediate) returns immediately and the send buffer must remain untouched until
the operation completes. Completion can be queried by MPI_Test or ensured
by MPI_Wait, which blocks until the request is processed.
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(a) Eager

(b) Rendezvous

Fig. 3.2 MPI’s eager and rendezvous protocol for point-to-point communication.

Message Matching An important aspect is the matching of receive requests
and message headers, often also referred to as tag matching. The matching is
based on the source, tag, and communicator, whereby a wildcard can be used
for the source and tag. If these criteria apply to multiple messages, the order
in which they are received decides which message is the right match in that the
oldest messages are matched first. However, it may occur that a message arrives
before the matching receive is posted, or the receive is posted before the message
arrives. Thus, MPI maintains special data structures to keep track of receive
requests and messages.

Messages that arrive but cannot be matched with already posted receive
requests are added to the so-called Unexpected Message Queue (UMQ). Although
the name suggests a queue, the most common MPI implementations use lists due
to their superior properties regarding removing an element at arbitrary positions.
When the receiver posts a new receive request, the UMQ needs to be searched for
a match first. If no match is found, the request is appended to the Posted Receive
Queue (PRQ). The overall process is depicted in Figure 3.3. The matching is
especially crucial to the latency of small messages and synchronizing operations.
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Fig. 3.3 MPI’s matching process for incoming messages and receive requests.

It is important that MPI ensures progress of the application, for which there
exist three basic strategies. First, an incoming message or receive request could
trigger an interrupt, allowing the CPU to enter the MPI library to perform the
matching. However, a large number of messages constantly interrupts the CPU
and thus limits performance. Second, helper threads could be dedicated to ensure
progress, constantly polling on the message and receive request queues. The
third approach calls a progress routine every time an MPI routine is entered
from the application. This may require more memory as many messages can be
received in between two MPI calls, but improves performance.

Collective operations Besides point-to-point messages, MPI also provides
collective operations that are called by a group of ranks. For example, a broadcast
allows a single rank to send the same data to multiple processes, whereas a
collective reduce operation can be used to determine the sum of distributed data.
Collectives are optimized within the MPI library and reflect common patterns in
scientific computing. The latest MPI, version 3.0, even provides non-blocking
collective operations to maximize overlap with computation. One of the most
used collective operation is the barrier, which synchronizes all ranks of the same
communicator.

3.2.2 Active Messages

Another and more sophisticated type of messages is active messages, in which
messages trigger the execution of code. This can be used to move tasks closer
to the memory in which the data resides. A common implementation of active
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messages is the Global Address Space Network (GASNet), mostly used in PGAS
environments and Distributed Shared Memory (DSM) systems, which are in-
troduced in the subsequent section. The principle of active messages can be
compared to Remote Procedure Calls (RPCs), which are more commonly used
in operating systems.

GASNet [31] consists of two layers, namely core and extended API. The core
API is network-specific and directly builds upon the network’s API, while the
extended API provides high-level abstractions to exchange active messages and
data, or to ensure synchronization. The user may register handlers that are
invoked upon receipt of an active message, which itself contains arguments that
are passed to the handler. When the handler has been executed a reply may
be sent back to the requesting node, which perhaps triggers the execution of
another handler. However, no further reply messages are generated. Besides
active messages, GASNet also provides data transfer operations, based on put/get
semantics. Remote memory has to be registered using RDMA in advance to
avoid local staging copies.

The main application of GASNet is Unified Parallel C (UPC) [32] or Titanium
(parallel dialect of Java for HPC ) [31], which implement the PGAS model. An
important aspect of UPC is compilation as the compiler can try to overlap
computation and communication by relying on relaxed consistency semantics
automatically. Hence, GASNet is tailored to be used by compilers rather than
exposing its API directly to the user. This differs from MPI, which offers an
end-user library.

Another more recent application of GASNet is Legion [33], which implements
a task-based programming model and is going to be introduced later in this
chapter.

3.2.3 Other Message Passing Systems

Portals [34] is another network programming interface that allows for efficient
message passing, but also one-sided communication. However, it is barely used
directly and often used within MPI, GASNet, or OpenSHMEM [35]. Similar to
MPI, Portals supports unexpected messages and posted receive requests.

Erlang [36] is a functional programming language that supports messaging.
Messages are put into process’ queues, in which they are matched with receive re-
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quests. However, the matching is much simpler than MPI, for example. Messages
can contain any object and be sent to any other process. Erlang is often used for
message handling systems and allows to use C-bindings for high-performance.

Akka [37] is a distributed parallel extension to Java/Scala and supports
messaging. It supports non-blocking messages, unordered delivery, and message
queues can be shared among multiple processes. Message are matched according
to a certain pattern, which the user has to provide, for example sender and
receiver process ID.

3.3 Distributed Shared Memory

As opposed to transferring data by sending and receiving messages, DSM models
allow for fine-grain communication through load/store operations, whereas the
granularity depends on the system. While single words can be addressed, the
system may decide to move or copy entire pages to optimize for spatial and
temporal locality. There are two basic principles in that the address space is
either flat or partitioned. Both are briefly introduced in the following.

3.3.1 Virtual Shared Memory

In a shared memory system all processors see the same address space and can
access data even if it physically resides in some other processor’s memory. This
makes communication key and coherency and consistency pose tremendous
challenges. However, the programmer’s view on a shared memory system seems
simpler than message passing, for example. Data can be accessed everywhere
and communication is implicitly handled by the system, but it also renders the
need for fine grain communication and synchronization inevitable.

One of the most performance critical aspects about DSM systems is coherency.
A simple snooping protocol as implemented in many Symmetric Multiproces-
sors (SMPs) is not scalable as the overhead causes network traffic to increase
proportionally to the number of processors squared. Even with the memory
bandwidth increasing linearly, the network’s bandwidth is effectively reduced by
the number of processors. Since the required broadcast semantic accounts for
this overhead, directory-based coherency is used in large scale DSM systems [38,
Section 1.3.2], avoiding broadcasts by only involving processors that keep copies
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of the cached data. However, even such system require mechanisms to effectively
hide latencies.

Another approach is virtual shared memory, in which shared memory ac-
cesses are mapped onto messages. Here, coherency is achieved on page level
and Translation Lookaside Buffer (TLB) faults trigger mechanisms to ensure
a coherent view on the memory. Since coherency is maintained in software it
can be better adapted to the application. However, because of pages being the
smallest coherent entity data transfers become large and false sharing is likely to
reduce performance [38, Section 5.6].

3.3.2 Partitioned Global Address Space

One significant drawback of a large flat address space is the unawareness of data
locality. Thus, the PGAS approach extends addresses by the affinity to the
memory in which the data resides. This allows threads to rather work on data
that is local as opposed to remote memory, whose accesses entail high latency.
There are two main operations to access the memory: fine-grain load/store
accesses and bulky put/get operations.

In PGAS, memory can be allocated in private or shared memory. As the name
suggests, private memory can only be accessed by the thread from which the
memory was allocated and shared data can be accessed by all threads, however,
with varying access costs. The model allows users to treat cluster systems like
shared memory systems, easing the programming with implicit communication. In
fact, communication is often inserted by the compiler. However, in order to yield
high performance the user has to be careful with data placement, synchronization,
and consistency.

A common implementation of PGAS is the previously mentioned UPC lan-
guage, which uses GASNet and its active messages. More recent efforts have given
rise to Chapel [39], which has been developed by Cray and provides high-level
abstractions, aiming for better productivity and scalability. The user can specify
the mapping of data and processes. Accessing remote data is made simple by
extending variables by a locale characteristic (e.g. variable.local) that returns
the ID of the process that owns the variable. Communication is implicit by
assigning remote to local variables. Although programming is made simpler and
high-level abstractions are provided, Chapel currently struggles to keep up with
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performance demands but is constantly improving in this direction.

3.4 Task-based Programming

Both message passing and DSM have been widely used in HPC, but as computing
systems keep increasing and become more heterogeneous their static behavior
becomes hard to manage. For example, MPI requires to specify a mapping
after which ranks are assigned to processors and cores, respectively. Within the
application, messages are exchanged between distinct ranks, which requires the
user to ensure the availability of the data to the ranks.

Task programming aims to be more dynamic and the user specifies constraints
and relationships between data and tasks, whereas the system decides where
tasks are executed. This is usually based on resource availability and data locality.
Another important aspect is reliability. Dynamic task programming allows to
move tasks away from failing nodes, improving the overall system reliability and
availability.

Legion An emerging task-based runtime is Legion [33], which stands for "logical
regions". A logical region comprises a set of objects and can be dynamically
allocated and deallocated. It also contains locality information and may be
passed to tasks. Computational independence is expressed by sub-regions and
privileges, such as read- or write-only, and coherency, for example exclusive
or shared. Based on this information, the Legion runtime decides which and
where tasks can be run concurrently. Data is also automatically exchanged or
replicated, for example if two tasks do not modify the same region. Nonetheless,
the runtime also provides a mapping interface to control how tasks are assigned
to processors and regions to physical memory units. The authors state that an
application-specific mapping usually provides the best performance.

An important aspect of Legion is the scheduler, which the authors refer
to as Software Out-Of-Order Processor (SOOP). They compare SOOP to a
physical processor as tasks are pipelined, executed out-of-order, and constrained
by dependencies between tasks. Furthermore, Legion uses deferred execution,
meaning the execution of a task is decoupled from the time it was issued. This
allows to hide latencies and improve processor utilization. The deferred execution
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requires a low-level runtime event system, namely Realm [40]. Realm builds upon
GASNet and allows to express dependencies in an efficient way.

Legion’s performance evaluation considers various benchmarks, such as circuit
simulation, adaptive mesh refinement, and particle simulation. The authors
compare to hand-coded versions of these codes and are able to report remarkable
speedups with high scalability.

OmpSs Introduced and developed by the Barcelona Supercomputing Center
(BSC), OmpSs [41] is a task-based extension to OpenMP. The user specifies data
dependencies and the data movement is taken care of by the compiler. Similar
to OpenMP, everything is based on directives. It also supports accelerators like
GPUs.

X10 Introduced and researched by IBM, X10 [42] follows the Java/Scala syntax
with focus on parallelism, distributed systems, and productivity. It claims to
implement the Asynchronous Partitioned Global Address Space (APGAS) model
[43], an extended PGAS with support for tasks. For example, the user can use
RPC or active messages to execute a function on a certain processor. Nonetheless,
it still remains to be seen if X10 provides comparable performance, which is a
must in order to become established in HPC.

Cilk There have also been efforts to extend the C/C++ language by task
parallelism, resulting in the Cilk runtime [44], [45]. New tasks can easily be
spawned by any thread, whereas data and task placement is handled by the
runtime. Here, each thread possesses a work queue to implement load balancing
techniques, for example work stealing.

Task parallelism with MPI Chatterjee et al. [46] propose an MPI extension
to support task parallelism, which they refer to as HCMPI. It combines the
Habanero task-parallel programming model [47], which itself origins from X10,
with MPI. The results show that task parallelism improves scalability over
an MPI+OpenMP implementation of the same benchmark, but also improves
programmability.
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The previous chapter presented various communication models for large-scale
distributed systems. Here, MPI has become the de facto standard and can be
regarded as the most prominent and most implemented CPU-centric model in
HPC. Consequently, this chapter analyzes MPI applications in regard to their
communication behavior and concludes with an overview of communication
requirements of the training of deep neural nets. This study is particularly
important as the size of high-performance systems keeps increasing and the
number of computing nodes is projected to grow to about one million nodes for
an exascale system in 2018 [11]. However, this has later been deferred to about
2023 [48].

Applications can be analyzed in various ways, for example by annotating
the source code or reading performance counters of processor and networking
hardware. While the first requires a basic understanding of the application and
how it is implemented, the latter results in a fine-grain analysis, from which it
might be difficult to derive general conclusions. Another approach is to intercept
library calls. Here, a wrapper library is linked to the application and every call
is logged before the routine is called from the original library. The meta data is
then written to trace files, which can be parsed and analyzed later in time.

The U.S. Department of Energy (DOE) compiled a set of such MPI traces
[49] for various applications, representing the kind of applications that are go-
ing to run on an exascale system. The following analyzes traces in regard to
various characteristics, both considering point-to-point and collective commu-
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nication semantics. The analysis has also been published at the International
Supercomputing Conference (ISC), 2017 [17]1.

4.1 Methodology of the Trace Analysis

Investigating applications in regard to their communication behavior requires
the applications to be run and profiled accordingly. This includes running
applications at different scales in order to consider scaling effects. Since access to
a large number of nodes, even with access to a supercomputer, is limited, various
academic institutions have provided traces of their most common applications.
These traces are publicly available and provided in the dumpi format. The
dumpi tracing framework is part of the Structural Simulation Toolkit (SST) [50],
developed and maintained by the U.S. Sandia National Laboratories 2. When
linked against the dumpi library, any MPI call of the application is intercepted
and logged, including call-specific meta data, such as message size, data type,
source, destination, tag, and communicator or, for instance, the operation that
is executed on the data by MPI’s (all-)reduce operation.

The framework traces each rank separately and generates proprietary binary
trace files, which can be converted to ASCII text files by tools the framework
also provides. This is the first step of the analysis presented in this chapter.
Next, the text files are parsed and any MPI call is stored as an event to a binary
file. An event includes meta data as well as a time stamp of when the routine
was entered and left, containing all the necessary information that is required for
the following analyses.

While any characteristic of the communication analysis can be gathered by
parsing the event file, it is mainly required for more complex analyses such as
the determination of message queue lengths and search depths. Here, queues
are reconstructed for any given rank. The length of the queue and the depth at
which the match was found are logged, resulting in large outputs as the queues
are searched at any occurring send/recv or MPI_Wait call.

A second approach is to parse the ASCII trace files directly. First, it allows
to verify results from the event-based analysis, but secondly also allows for much

1The paper was nominated for the conference’s best paper award
2http://sst-simulator.org/
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faster processing as each file can be processed independently. This approach is
sufficient for most statistics, except any metric that concerns UMQ or PRQ.

Nonetheless, the trace-based analysis has limitations, which leave some ques-
tions unanswered. For example, not all traces contain information on the
composition of custom data types, which renders it impossible to determine exact
message sizes. Furthermore, the traces only comprise MPI calls, which does not
allow to assess overlap between computation and communication, for example.
However, insights from the traces are still valuable for the remainder of this
work.

It is worth noting that not all trace files comprise the entire application run
time, but rather cover a single iteration. While it is explicitly stated that traces
from the Design Forward program contain only a single iteration, other programs
are silent on this matter.

4.2 Overview of MPI Characteristics

Table 4.1 introduces the applications together with a short description and their
underlying communication patterns. Interestingly, nearest neighbor communica-
tion seems to be the most prominent pattern. Examples for these communication
patterns are depicted in Figure 4.1. The nearest neighbor pattern is not nec-
essarily restricted to the immediate neighbor, but can also involve neighbors
that are farther away. Crystal Router and MiniFE follow a staged all-to-all
pattern, which is actually similar to many-to-many. A stage consists of a subset
of processes that exchange data all-to-all. After each stage the subset comprises
different processes.

Basic MPI characteristics are shown in Table 4.2 on page 61. As aforemen-
tioned, traces are available at various scale, allowing the analysis to also consider
scaling effects. The number in brackets of the Ranks column indicates the number
of threads each process is using, however, not all applications are multi-threaded.

4.2.1 Related Work

There are many papers on MPI characteristics of various applications, mostly
focusing on the NAS Parallel Benchmark (NPB) suite. Faraj and Yuan [51]
and Riesen [52] found that most applications heavily use point-to-point commu-
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(a) Nearest neighbor (b) Irregular

(c) All-to-all (d) Many-to-many

Fig. 4.1 Overview of the most common communication patterns in scientific
applications.

nication, whereas collectives contribute only 20% to the total number of MPI
operations. Furthermore, messages sizes are rather small and never exceed 64kB
on 64 nodes.

Similar metrics as used in this work have been analyzed by Kamil [53] and
Vetter [54], who found that the number of peers with which a rank communicates
and message sizes are rather small. However, they only looked at a small set of
applications. Raponi et al. [55] studied MPI time and the number of calls to
various MPI operations. Results regarding the transfer volume are similar to the
findings of this work and they also pointed out that point-to-point communication
dominates the data transfer. However, only small scale applications are studied.

This work and the analyses in the following are the first to look at exascale
applications. Besides common MPI metrics, the queue data structures within
MPI are also studied.
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4.2.2 MPI and Communication Time

The first metric is the time an application spends in MPI routines, referred
to as the MPI time. However, it can also be distinguished between MPI and
communication time, which is the sum of all data transferring operations. The
application time is determined by the last and first occurring MPI call in the
traces. The traces of an application can be reduced to a time-sorted sequence
M = (m0,m1, ...,mn) = (mi)i∈I with index set I = {0,1, ...,n}, which contains
all occurring MPI calls. Another sequence C only comprises communicating or
synchronizing calls, such as send/recv, collectives, and wait(all). The index set
J of sequence C is a subset of I.

toverall = tm|M |−1− tm0

tMP I =
∑

m∈(mi)i∈I

tm

tcomm =
∑

m∈(mj)j∈J⊆I

tm

Based on this, three metrics can be derived that provide insights on how
much communication and overhead a given application contains. First, the MPI
time is divided by the application time. This allows for an overview of how much
time is spent inside the library. Second, the communication time is divided by
the time between the first and last communicating MPI call, hence the first and
last element of sequence C. The idea is to eliminate administrative MPI calls,
such as MPI_Init, MPI_Finalize, or MPI_Cart_create. However, it is still not
guaranteed that the first communicating call marks the end of initialization as
this phase may also exchange data. However, it allows for a much better estimate
than using the application time. Last, the administration share is determined by
the administration time divided by the MPI time.
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smpi = tMP I

tapp

scomm = tcomm

tc|C|−1− tc0

sadmin = 1− tcomm

tMP I

Strong scaling observations Table 4.2 shows the various metrics. It can be
seen that both MPI and communication time increase relative to the application
time as the number of ranks is increased (strong scaling) in the vast majority of
applications. Exceptions are MiniDFT and MiniFE, in which the share of MPI
decreases with the number of ranks. The MPI overhead, which is determined by
one minus the communication time divided by the MPI time, seems to decrease
at larger scale. As this analysis considers all messages of all ranks a larger scale
means more communication, while initialization calls usually remain the same.
Consequently, the relative overhead becomes smaller.

Weak scaling observations Weak scaling, in which the problem size is in-
creased at a constant number of processes, shows that both MPI and communica-
tion time decrease accordingly. This is reasonable as the application is composed
of communication and computation time and an increased problem size increases
the amount of computation. However, this can also lead to larger messages or
more messages to be exchanged. Hence, there are three consequences that can be
observed in the case of weak scaling: first, the share of communication decreases,
as applications show in Table 4.2. This is due to computational efforts increase
more than the additional communication. Second, communication increases more
than computation, thus the share of communication would increase. Third, the
share remains the same and the increase in computation offsets the increase in
communication. The latter two have not been observed in any application.

MPI overhead On average, an application spends 41% of its time in MPI
routines, but only about 21% in communication- and synchronization-related
operations. Applications with more than 1,000 ranks show an average MPI
time and communication time of 60% and 28 %, respectively. The average MPI
overhead amounts to about 33% of the presented MPI time. Some applications
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show an average overhead of about 90%, such as Mocfe. A closer look at
the traces revealed that Mocfe spends about 70% of its MPI time in a single
MPI_Cart_create call. As aforementioned, traces from the Design Forward
program comprise only a single iteration and thus communication phases are
much shorter than in the real application.

Unexpected messages Besides the time spent in MPI routines, the table
also depicts the number of messages that arrive unexpectedly (see Section 3.2.1).
Having too many unexpected messages poses a performance issue as queue
structures and search times become large. On average, 36% percent of all message
are unexpected, with none of the applications having less than 27% and more
than 48%. These numbers mean that the majority of receive requests are already
being pre-posted, as also shown in Table 4.2. In fact, almost all applications use
non-blocking receive operations exclusively, however, it is not always guaranteed
that these are executed before the arrival of the matching message. For instance,
this would be required for ready-send operations (MPI_Rsend), which were not
found except for the MiniDFT application.

The last column shows the number of peer processes any given rank is
addressing with point-to-point messages. Interestingly, the numbers are rather
small and indicate that point-to-point communication is rather local. This offers
space for optimizations regarding the process mapping and topology of the
network infrastructure. On average, a rank has 23 other ranks, with which it
exchanges messages directly.

4.2.3 Message Size

As aforementioned in Section 4.1, the exact size of messages cannot be determined
by analyzing dumpi traces as not all traces contain information on the composition
of custom data types. Nonetheless, Figure 4.2 depicts the message size as elements
per message, whereas the size of an element remains unknown for now.

It can be observed that point-to-point messages generally contain more
elements than collective operations, which are often called and executed on a
single data element. An exception is all-to-all, which shows a median message
size of about 5K elements. However, this is mostly dominated by BigFFT,
which heavily relies on this operation for its matrix transposes. In fact, the
overall column of the graph shows the overall message size distribution, but
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Table 4.1 Applications, for which traces are provided by the DOE. The programs,
under which the applications are developed and maintained, are given in brackets.

Application Description Comm. Pattern
MOCFE (CESAR) Neutronics code. Nearest neighbor
NEKBONE (CESAR) Fluid Dynamics code Nearest neighbor
CNS (EXACT) compressed Navier-Stokes eqn. Nearest neighbor
MultiGrid (EXACT) MultiGrid solver (BoxLib) Nearest neighbor
LULESH (EXMATEX) Hydrodynamic simulation Nearest neighbor
CMC (EXMATEX) Classic Monte Carlo Nearest neighbor
AMG (DF) Algebraic MultiGrid Solver Nearest neighbor
AMR Boxlib (DF) Adaptive mesh refinement Irregular (sparse)
MiniAMR (DF) Adaptive mesh refinement Irregular (sparse)
BigFFT (DF) large 3D FFT Many-to-Many
Crystal Router (DF) MPI many-to-many code Staged All2All
Fill Boundary (DF) Halo update (BoxLib) Nearest neighbor
MultiGrid (DF) MultiGrid solver (BoxLib) Nearest neighbor
MiniDFT (DF) VASP electron structure calc. Many2Many
MiniFE (DF) Finite element solver Staged All2All
SNAP (DF) Neural particle transport Nearest neighbor
PARTISN (DF) Neural particle transport Nearest neighbor

certain workloads exchange far more messages than others and thus dominate
this statistic. Nonetheless, due to the large number of applications it provides
valuable insights on common message sizes.

Scaling observations Half of the applications show a decrease in message
size of point-to-point messages when the scale is increased. On the other hand,
messages of a few applications, namely Crystal Router, MiniDFT, and DF
MultiGrid become larger at scale. MiniDFT shows the same behavior for
the broadcast operation, which message size remains constant in every other
application. A constant message size can also be found for point-to-point messages
in Mocfe, Fillboundary, and LULESH. The most used collective operation is
(all-)reduce with a constant message size in about two-thirds of the applications
and an increase in message size in AMR and MinDFT again. Last, all-to-all
messages become smaller in every application.

The fact that messages tend to become smaller at larger scale is less surprising
as more ranks usually allow to decompose the problem size into smaller parts.
For example, cells contain less elements in a fixed-sized grid if more processes
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Fig. 4.2 Message size statistics for various applications and MPI operations [17].
The last column shows the average across all applications at varying scale.

are used for the decomposition. If the border elements of a cell are exchanged
with neighbor processes, the resulting message also contains less elements. This
is a common pattern as nearest neighbor communication is the predominant
communication pattern in scientific applications.

Data type distribution While this analysis provides an idea on how many
elements a message contains, it remains difficult to compare the results to other
applications as no exact size can be determined. However, Figure 4.3 presents the
data types that are used by any given application, comprising both point-to-point
and collective operations. It is less surprising that most applications use double
as their primary data type, but also user-specific types are widely used. It can
also be seen that 32-bit types are used more frequent than the equivalent 64-bit
types. While the majority of applications use the same types for point-to-point
and collective operations, Nekbone, Partisn, and FillBoundary rely on different
data types for the two kinds of messages.

Besides the size of the message it also important to consider how many
messages are sent during an application’s run time. There are two important
characteristics: communication effort as number of elements sent during an
application’s run time and the rate at which messages are sent. Both aspects are
discussed in more detail in the following.
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Fig. 4.3 Data type distribution for various applications, considering both point-
to-point and collective operations [17].

4.2.4 Transferred Data Volume

The most data per run time is exchanged by Crystal Router with about 5G
elements/s, using 100 ranks. This is followed by BigFFT at 1,024 ranks and
Fillboundary at 10,648 ranks with a rate of 3.3G elements/s each. Regarding
communication time, the most data exchanging application is BigFFT with
112G elements/s at 10,000 ranks. The difference to the second place is quite
significant as AMG (13,824 ranks) and LULESH (512) exchange data at 37G
and 24G elements/s, respectively. The lowest observed rate is 1.2K elements/s,
yielded by CMC at 64 ranks.

The data exchange rate can also be divided by the number of ranks, which
provides insights on how much pressure a process is putting on the network
infrastructure. As a result, MiniFE with 18 ranks shows the highest rate with
about 900M elements/s with the communication time being the reference here.
LULESH with 16 and Crystal Router with 10 processes achieve the second highest
rate at about 400M elements/s. Interestingly, small scale applications tend to
exchange more data per second and rank than large scale configurations, however,
the absolute data volume is smaller as well. This might result from messages
becoming smaller at large scale, which increases overhead and eventually reduces
message rates. However, traces alone are not sufficient to prove this assumption
and more profound analyses are required at this point.

The graph in Figure 4.4 depicts a breakdown of the data volume and time
into various MPI operations. Except for a few workloads, most data is moved by
send/recv operations, while the amount transferred by collectives is comparably
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(a) transfer volume

(b) transfer time

Fig. 4.4 Data volume and transfer time for various applications and MPI opera-
tions [17].
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small. Mocfe and CMC heavily use (all-)reduce operations to exchange data and
BigFFT relies almost entirely on all-to-all communication. MiniDFT, on the
other hand, uses all-to-all, broadcast, and reduce almost equally. Interestingly,
the time spent in these operations shows different results. While most data is sent
by send/recv, the most time is spent in collectives in many applications. Only
Crystal Router, AMG, CNS, and Partisn show a large amount of time spent in
point-to-point communication, of which Crystal Router and AMG do not even use
collectives. It seems that inherent synchronization of collectives significantly adds
to the latency, making them a top priority for optimizations. That being said, it is
less surprising that the barrier and collectives that broadcast their results, which
contain an "all" prefix, show the highest latencies of all operations. Especially at
large scale, small imbalances can significantly slow down the application when
many processes need to be synchronized.

4.2.5 Message Rate

Another important metric is the rate at which messages are injected into the
network. This metric is especially important for small messages as it indicates
the latency of the whole networking subsystem. A simple approach would count
all messages during the application’s run time, however, it would not reflect the
demands regarding the network at certain communication hot spots within an
application. For example, the need for high message rates might be significantly
higher during communication phases than during computation. Consequently,
here we measure the message rate by imposing a time interval and counting
all messages that occur during that time. Figure 4.5 shows the results of this
analysis. The boxplots show the message rate across all applications, while the
orange dots represent the mean count of messages for particular time intervals.

The message count for small time intervals is almost negligible for most
applications as only a mean of 2 messages are exchanged within an interval of
1µs, for example. The count steadily increases for longer time intervals, but even
considering an interval of 1ms does not result in more than 50 occurring message
transfers, translating to a median message rate of 25K messages/s.

Another aspect is that the message rates for point-to-point messages are higher
than for collectives, presumably due to the collectives’ implicit synchronization.

However, message rates can be limited by various factors, such as the end-
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Fig. 4.5 Message rate for certain time intervals across all applications [17]. The
orange points indicate the number of messages that are counted during the
particular time interval.
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point’s injection bandwidth or the network throughput itself. Furthermore, it
depends on the message size since small messages can usually be transferred
at higher rates due to the available bandwidth. Considering a time interval of
100µs, the median message rate amounts to 100K messages/s with a maximum
of 500K messages/s. Taking an average message size of 1K elements into account,
it appears that a throughput of 400MB/s for single-precision data and 800MB/s
for double-precision data is achieved. This equals the PCIe 2.0 bandwidth for
that particular message size [56], indicating that message rates are limited by the
endpoint’s injection bandwidth and PCIe interface. Although this trace analysis
cannot prove this statement, PCIe is a bottleneck especially with multiple MPI
processes sharing a single NIC. For example, the current PCIe 3.0 standard
allows for a maximum unidirectional bandwidth of 16GB/s with 16 lanes, which
is shared among all processes that use the same NIC.

4.3 Message/Receive Request Matching

MPI is a prime example for two-sided communication and as such it requires
messages to be matched with receive requests at the targeted endpoint. The
matching is crucial for the latency and message rate of small messages and highly
optimized in all MPI implementations. For example, although MPI calls their
data structure for unexpected messages and posted receive requests queues, they
are actually implemented as lists due to the list’s superior time complexity of the
remove operation. Removing an element at an arbitrary position withing a queue
requires all following elements to be moved one position back, while single-linked
lists only require two pointers to be changed. On the downside, finding an
element withing the list requires pointers to be chased, whereas memory can be
traversed linearly within a queue.

Generally, there are three major aspects regarding the matching: the matching
performance, lengths, and search depth of UMQ and PRQ, respectively.

4.3.1 Related Work

Similar to MPI metrics, existing work has focused on the NPB suite. Brightwell et
al. [34] reported queue lengths for UMQ and PRQ and concluded that the UMQ
length amounts to about 200 entries for applications with up to 140 processes.
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However, their analysis also showed that the PRQ is always significantly smaller
and search depths never exceed 30 elements. The authors explicitly say that a
study of real applications is necessary, as opposed to analyzing benchmark suites.

Large-scale applications were studied by Keller et al. [57], who found that the
UMQ length scales linearly with the number of processors for a thermodynamics
application. Other applications showed queue lengths in the range of 10 to 30
elements.

4.3.2 Matching Rate

The matching performance is measured in matches per seconds and depends
on the matching criteria, the protocol’s constraints, and the implementation,
such as whether a queue or list is used as primary data structure. In MPI, the
matching process has to ensure that messages stay in order and wildcards are
supported, thus limiting the choice of data structures.

The benchmark to determine the matching rate has two processes running
on the same node, in which one process is referred to as the sender and the
other as the receiver. The sender sends a particular number of messages using
the MPI_Send routine, followed by a barrier. After the barrier, the receiver
posts MPI_Recv operations. The time it takes to receive all messages yields
the matching time. The fact that both processes run on the same node and are
synchronized by the barrier before receiving the messages, minimizes the transfer
times. It can be assumed that messages are already placed in the appropriate
UMQ when the receiver starts posting receive requests.

The tags used in MPI_Send and MPI_Recv determine the order in which
the messages are consumed. The best case scenario means that the tags are in-
cremental and identical for both send and receive operations. Matching messages
for receive requests are then always found at the queue’s head. Alternatively,
MPI_ANY_TAG can be applied too. The worst case, on the other hand, reverses
the order of the tags at the receive side, thus matching messages are always
found at the tail of the queue. Last, randomly shuffling the order of the tags
used in receive requests reflects the average case.

Figure 4.6 depicts the results of this benchmark for different MPI implementa-
tions and C++11’s list from the Standard Template Library (STL), which serves
as a reference to show how much MPI’s lists are optimized for the matching

45



Exascale Application Analysis

process. The MPI implementations are OpenMPI 1.10 [28], MPICH 3.2 [29],
and MVAPICH 2.2.2rc [30]. All of them are in wide use and well known. The
test system’s processor is an Intel Ivy Bridge Xeon E5-2630 with 2.60 GHz core
frequency and DDR3 memory at 1600 MHz. Note that the matching’s linear
time complexity scales well with the core frequency and thus faster single-thread
performance has strong impact on the matching rate.

Regarding the best case matching performance, MPICH is superior most of
the time, except for queues shorter than 32 elements. The performance remains
constant at about 25M matches/s until a queue size of 2K, but starts declining
from there until it reaches about 8M matches/s at 32K elements. OpenMPI
and MVAPICH perform similar and show the same trends, but at a lower
peak performance than MPICH. STL’s list, on the other hand, only performs
comparably at queue sizes of 16K and larger.

The matching rate of different MPI implementations becomes more similar
in the average and worst case scenarios, while STL’s list keeps performing
significantly worse. The performance in the average case starts to drop at 18
elements and reaches a matching rate of less than 10M matches/s at a queue
length of 256. At 1K elements, the matching rate is already below 2M matches/s.
The average case is more representative than the best case as it better reflects
real applications. The worst case shows a similar trend, but with lower absolute
matching rates.

4.3.3 Queue Characteristics

As shown, the matching performance strongly depends on the length of the queue
and search depth. For example, if matching messages are always found near the
head of the queue, the actual queue length has no impact on performance, but
still increases the memory footprint. In order to determine queue lengths and
search depths, the queues need to be reconstructed from the trace files. Here,
the analyzing script looks at every occurring send/recv and wait routine. For
example, a new arriving message has to search the PRQ for a matching receive.
If a match is found the receive request is removed from the queue and the length
and search depth are written to a file. This continues for every call, resulting
in large outputs with the length and depth after every event. However, queues
tend to be quite small toward the end of the application and they are often even
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(a) best case

(b) average case

(c) worst case

Fig. 4.6 MPI’s matching rate for synthetic input data, measured for the best,
average, and worst case on the CPU [17].
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zero in length. This has an impact on the statistics that are reported in the
following and it should be considered that queue length and search depth values
may be higher during communication-intensive periods. The results of the queue
analysis are shown in Figure 4.7.

The length of both UMQ and PRQ is similar for most applications, although
the UMQ tends to become slightly larger. The queues of Nekbone and MultiGrid
are the longest with a median length of 1,024 elements. This is quite long
compared to the overall median length of 128 and a 3rd quartile of 512.

It is particularly interesting to compare search depth and queue length to
identify possible issues with the order in which receive requests are posted. If
the search depth is similar to the actual length of the queue then matches tend
to be found toward the queue’s tail, increasing matching latency and overhead.
On the other hand, if the search depth can be kept small, the actual length
has no impact on the matching performance and only increases the memory
footprint of the MPI library. As the results show, the UMQ search depth is
never significantly lower than the length, which is the case for the PRQ in many
applications. It suggests that the order in which messages arrive match the order
of posted receive requests. Another reason can be that multiple receive requests
match the same message, for example if the same tag is used and messages
originate from the same process.

Combining results from the matching rate experiment with the queue analysis
shows that a matching rate of about 18M matches/s is achieved 50% of the
time, which is about 70% of the peak matching rate. This performance might be
even lower during communication-intensive periods as queues tend to be longer.
Furthermore, the analysis shows that queues tend to become longer at larger
scale. This becomes even more challenging as messages are also becoming smaller
and thus the actual data transfer time is low compared to the matching overhead.

4.4 Trace Analysis Conclusion

Various applications have been analyzed in regard to MPI and general communi-
cation characteristics. This is important as application developers can follow a
similar methodology to identify possible bottlenecks and performance issues, but
also learn from the conclusions this analysis is drawing. For example, applications
mostly use a single MPI communicator, whereas multiple communicators would
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(a) PRQ

(b) UMQ

Fig. 4.7 Length and search depth of UMQ and PRQ [17]. The last bar on the
right considers all messages from all applications and configurations and not only
the configurations shown as the other bars.
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allow for better matching performance as they can be matched independently
in parallel. Also, it has been shown that collective operations cause significant
overhead due to their synchronization aspect. A better approach would be to
use non-blocking collectives as introduced with MPI 3.0 [58].

More importantly to this work, this analysis helps system designers and
architects to understand what applications are demanding from the system in
regard to communication and message passing. For example, messages tend to
become smaller at large scale and thus it seems beneficial to optimize large-scale
systems for small message exchanges. This especially renders the matching
important and raises the question of whether processors and network controllers
could support this even further. It also remains an open question whether MPI’s
protocol still requires complex guarantees such as wildcards and ordering, or if
this can be relaxed to allow for better performance.

Aspects of the trace analysis, especially the message matching, are going to be
picked up again later when GPU-centric (Chapter 5) and managed communication
(Chapter 6) are discussed in more detail.

4.5 Communication in Deep Learning Applica-
tions

The previous sections analyzed traditional HPC workloads that rely on MPI
and the CPU. Although these applications represent the vast majority of HPC
workloads today, advances in artificial intelligence are made so quickly that current
HPC facilities adapt their systems to better support deep learning applications
at large scale. Current and future cloud installations are even adapting their
systems at a much faster rate. Consequently, exascale systems will not only host
traditional scientific applications, much rather they will also be used to train
large neural nets [59], [60].

Although machine learning is a wide field with various approaches for different
use cases, deep learning has been the main focus and driving force of artificial
intelligence lately. Similar to HPC applications, the training of deep neural
nets require vast amounts of computational power, but also large amounts of
data, on which the network is trained. The main reason why deep learning
has received tremendous attention lately is two-fold. First, the computational
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power provided by recent systems, especially GPUs, has reached a level that
makes large nets trainable and second, the available amount of data is seemingly
endless and grows rapidly every second. With deep and powerful neural nets
being able to be trained now, many applications have been found with more and
more showing up every day. Main applications today include image classification,
object recognition, speech recognition, and language translation.

The following presents a brief background on neural nets and their training.
Then, the parallel training is described and analyzed with respect to communica-
tion and synchronization. More details can be found in the book of Goodfellow
et al. [61].

4.5.1 Background

As opposed to analytical approaches, in which there is a concrete and well-defined
relationship between input and output, a neural net needs to be trained with
data to develop this relationship. Neural nets are comprised of so-called neurons,
which are organized in layers. Neurons take the weighted output of other neurons
from previous layers as their input and apply an activation function to generate
their output. A general and simple net is shown in Figure 4.8. The input vector
x, which is the output of the previous layer, is multiplied with the weight matrix
W0, to which a biased b is added also. The results are passed to the activation
function of the neurons:

ai = f (Wi−1 ·ai−1 + bi) i ∈ Layers with f(t) = t√
1+ t2

The activation function is usually a logistic function, such as the sigmoid
function shown in the formula. At the beginning of supervised training, the
weights, or sometimes also referred to as parameters, are usually initialized with
small random values. The result of the output layer is then compared to the
expected result and a loss is calculated. Next, the gradient is calculated and
backpropagated to the input so that each layer can adapt its weights accordingly.
The next time the network sees a similar input the output will be closer to the
desired result. The training needs to be repeated with enough data to eventually
yield the desired accuracy or it ends when the network has stopped learning
from the data. Instead of learning on each example individually, examples are
aggregated into batches of size N examples. This improves efficiency as matrix-
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Fig. 4.8 Example of a neural net with one input, one output, and three hidden
layers in between. All layers are fully-connected.

vector operations are replaced by more efficient matrix-matrix operations and
furthermore, weights are updated N −1 less times.

Fully-connected layers The layers shown in Figure 4.8 are referred to as
fully-connected as any neuron’s output is influenced by every neuron’s output
of the previous layer. While computing the output of a fully-connected layer is
relatively fast, the memory requirements are quite high due to the large amount
of weights. The computational effort F in FLOPS for layer l with Ψ neurons
and a batch size of N is given by:

FF C = N ·Ψl · (2Ψl−1−1)

The memory requirements M for a floating point representation of weights
and activations (four bytes), on the other hand, are given by:

MF C = 4 ·Ψl · (Ψl−1 +N)

The impact of the batch size on the performance is made clear by these
formulas. With small batch sizes, the arithmetic intensity, which is calculated
by the number of FLOPS divided by the number of memory operations, is also
small and thus overall performance is limited by the memory bandwidth. The
performance limits can be determined by the roofline model [62] and although
GPUs provide a high bandwidth memory system, the raw compute power is still
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much higher.

Convolutional layers While fully-connected layers are one type of many,
another important type is the convolutional layer. An common application of
deep learning techniques is image recognition and classification. However, as the
image resolution increases the number of weights also increases dramatically with
fully-connected layers and thus overfitting quickly becomes an issue. Overfitting
occurs when the model is too complex with respect to the number of observations
within the data. Eventually the model learns from noise rather than from
relationships within the data.

As opposed to fully-connected layers, neurons in convolutional layers do not
connect to all neurons of the previous layer, but exploit spatial locality by only
connecting to a neighboring subset, commonly referred to as a kernel. Kernels
share weights with other kernels in order to reduce the number of parameters
to be learned, rendering convolutional layers less prone to overfitting. Due to
the large numbers of neurons grouped into kernels, the output of convolutional
layers is much larger as well, which is why these layers are usually followed by
pooling layers. The pooling takes a neighboring subset of neurons and reduces
their output according to a particular math operation, for example four neurons’
activations are reduced to the maximum value only. The memory requirements
M for a convolutional layer with χ kernels of size υ are given by:

M [B] = 4[B] · (ν ·χ︸︷︷︸
W

+ν · Ψ
χ︸ ︷︷ ︸

x

+χ · Ψ
χ︸ ︷︷ ︸

a

) = (ν ·χ+ Ψ
χ (χ+ν)) ·4[B]

This results in the following arithmetic intensity λ for convolutional layers :

λconv = NΨ(2υ−1)
4(χυ +N Ψ

χ (υ +χ))

One of the first convolutional networks that are trained on GPUs is AlexNet
[63], whose convolutional layers have an arithmetic intensity of 49 to 91 for a batch
size of 1, and 62 to 171 for a batch size of 256. This shows how computational
intensive convolutional layers are, compared to fully-connected layers, whose
arithmetic intensity ranges from 97 to 117 for a batch size of 256, but only
amounts to 0.5 for a batch size of 1.
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(a) Data parallelism (b) Model parallelism

Fig. 4.9 Principles of data and model parallelism. The bottom shows a batch of
training examples.

4.5.2 Parallel Training

The following elaborates on parallelism and communication during the training.

4.5.2.1 Data Parallelism

The idea of data parallelism is simple as the same neural net is trained on multiple
processors. The batch of input data is divided among the processors as depicted
in Figure 4.9a. During training, weights of the network are exchanged between
all processors after each training iteration to update local weights accordingly,
allowing to apply what other processors have learned so far. The updates can
be performed either synchronously or asynchronously. While the first requires
updates to be completed before the network is trained on the next batch of
data, the latter continues with the next batch even though updates from other
processors have not arrived yet.

A common implementation is the parameter server [64], which is a centralized
processor that holds the weights of the network. Before each training iteration,
the participating processors fetch weights from the server and send their updates
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back after they completed the training iteration. Then, weights are fetched
again before the next iteration begins. Again, processors may continue with
the training even though not all updates have been applied to the weights.
Sometimes asynchronicity even helps with the convergence of the training as
random noise adds to the regulation. However, with an increasing number of
processors asynchronous data parallelism might not be applicable anymore as too
many updates are getting lost [65]. This is known as the stale gradient problem.
Thus, synchronous data parallelism could become mandatory at larger scale.

The batch size is another issue that can prevent data parallelism from scaling
to a large number of processors. While the local batch size, meaning the batch a
single processor is training the network on, should be kept moderate to increase
computational efficiency, the effective batch size is the sum of all local batch
sizes. For example, if two processors are given a batch of 64 images to train the
network, the effective batch size is 128. Consequently, the effective batch size
increases linearly with the number of processors, but cannot be chosen arbitrarily
large at the same time as it eventually prevents convergence [65].

The most important communication routine during the data parallel training
is allreduce with the payload being the weights of the network. Since the same
model is replicated on each processor, the payload remains constant with an
increasing number of processors. Table 4.3 on page 62 shows the data parallel
training using the caffe framework on up to eight Kepler K80 GPUs.

While communication efforts increase with the number of GPUs, the time to
complete computation decreases. Consequently, the training quickly becomes
dominated by communication even at rather small scale.

4.5.2.2 Model Parallelism

The second parallel training approach is referred to as model parallelism, in
which activations are exchanged among processors after each layer. Unlike data
parallelism, communication must be synchronous as succeeding layers depend on
the activations of the preceding layer for their calculation of activations. The
principle is illustrated in Figure 4.9b.

There are two approaches to implement model parallelism and distribute the
model among GPUs. First, layers can be cut through and the more processors
are used the smaller the part of the layer per processor. Thus, the overall
communication payload remains constant with an increasing number of processors.

55



Exascale Application Analysis

While the computation time also decreases at increasing scale, model parallelism
seems to scale well in theory.

A second approach assigns each layer to a GPU. When a layer is computed,
the activations are passed to the next GPU and the next batch of training data
is fetched. This follows a pipeline scheme and is supported by mxnet [66], for
example.

With current systems lacking support for GPU-controlled communication,
the necessary communication between layers has to be controlled by the CPU,
hence control is given back and forth between CPU and GPU. The resulting
overhead due to copy operations and context switches prevent model parallelism
to be used at larger scale. However, the latest Pascal GPU architecture enables
fast data exchange between GPUs via NVLINK, enabling model parallelism for
GPUs within a node. It still remains to be seen how future systems support this
principle and how far it scales in practice.

4.5.2.3 Hybrid Parallelism

As aforementioned, fully-connected layers result in many weights to be trained
but the number of neurons and thus activations is comparably small. On the
other hand, convolutional layers share weights, but the large number of neurons
lead to many activations to be fed into the next layer. Since data parallelism
exchanges weights and model parallelism exchanges activations, the type of
parallelism can be varied depending on the layer.

Hybrid parallelism applies data parallelism to the convolutional layers, which
are placed at the beginning of the neural net, and model parallelism is applied
to fully-connected layers, which conclude the neural net. The main advantage of
this approach is that communication can be minimized and also well overlapped
with computation.

However, the main disadvantages of data parallelism still apply as the batch
of training data needs to be divided across all processors.

4.5.3 Comparison and Verdict

The parallel training of neural nets seems to perform well at weak scaling, but
struggles at strong scaling. Both types of parallelism, data parallelism as well as
model parallelism, rely on collective communication primitives, such as allreduce,
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broadcast, and barrier synchronization. Point-to-point communication, on the
other hand, is rather irrelevant.

In order to scale the training to a large number of GPUs it is necessary to im-
plement fast and low-overhead GPU-to-GPU communication as CPU-controlled
communication prevents the application from applying model parallelism. While
data parallelism, especially asynchronously, allows to scale efficiently to a small
number of processors, a large scale application seems unfeasible with current
systems and algorithms. The batch size cannot be chosen arbitrarily large as too
many updates are getting lost, eventually hurting convergence of the training.
While hybrid parallelism suffers from this as well, model parallelism seems to be
better suited to scale to a larger number of processors.

Table 4.4 on page 62 shows example architectures of widely used neural
nets, which will be compared using data and model parallelism. While AlexNet
[63] has many trainable parameters, the number of neurons is comparably low.
Most parameters are provided by the fully-connected layers. VGG [67] is a
much deeper net with many more parameters and neurons, requiring the most
computation for the forward pass. GoogLeNet [68] uses a different kind of layers,
so-called inception layers. These are comprised of convolutional and pooling
layers. Although only 22 layers provide parameters, the entire net consists of
100 layers. The last example net is ResNet [69] with 152 layers and almost as
many neurons as trainable parameters. This is achieved by heavily relying on
convolutional layers.

The amount of data transferred per GPU for data and model parallelism is
shown in Table 4.5. As can be seen, the data volume is mostly higher for data
parallelism at larger scale as weights need to be exchanged, which is independent
of the number of GPUs. For model parallelism, the data volume per GPU
becomes smaller at increasing scale as activations are distributed across all
processors. Furthermore, most neural nets have less activations than trainable
parameters. The number in brackets shows the average amount of bytes per
layer that need to be exchanged per GPU. Nonetheless, at a scale of 64 GPUs
and a batch size of 256, messages can still become as large as 14MB (VGG) with
a total transfer volume of 224MB per GPU.

A simplified model is used to evaluate data and model parallelism on two
different systems. First, it is assumed that all GPUs are fully interconnected by
bidirectional links. Second, a ring communication is assumed. Other assumptions
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are summarized in the following:

• Compute and communication time only comprise forward pass without
backpropagation.

• The batch size is set to 512.

• The GPU has a performance of 9.3 TFLOP/s (e.g. P100) with a network
bandwidth of 80 GB/s (e.g. NVLINK).

• Computation is reduced linearly by the number of GPUs and peak perfor-
mance and bandwidth are always achieved.

The serial computation time is calculated by the batch size N times the
number of floating point operations F divided by the GPU’s performance P

in floating point operations per second. The parallel time takes the number of
GPUs n into account, so one has:

tserial = N · F
P

tparallel = tserial

n
+ tcomm

The communication time depends on the type of parallelism and the network
architecture. For a net with weights W and activations A, represented by 4B
float values, and a network bandwidth of B, one has:

Data Parallelism Model Parallelism
Fully-connected tcomm = 4W

B tcomm = 4N
n ·

A
B

Ring tcomm = 4(n−1)W
B tcomm = 4N(n−1)

n · A
B

The parallel efficiency p is then given by:

p = tserial

n · tparallel
·100%

The parallel efficiency that is achieved with both types of parallelism and
varying scale is reported in Table 4.6. As shown, GoogLeNet and ResNet both
scale well with data parallelism and a fully-connected communication. The ring
communication scales significantly worse, but the bandwidth utilization could
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be significantly improved by pipelining. Nonetheless, model parallelism scales
well for AlexNet and VGG, but shows worse performance for GoogLeNet and
ResNet. The reason for that can be found in the nets’ architectures. AlexNet and
VGG both use fully-connected layers at the end, which provide many parameters
but only a few activations. Thus, their weight-to-activation ratio is higher than
GoogLeNet and ResNet, whose nets are mainly composed of convolutional layers.
As a result, the large number of activations increase the amount of communication
for model parallelism.

It is also important to notice that computation does actually not decrease
linearly with a reduced batch size. For example, if a batch of 512 elements takes
10ms for the forward pass, a batch of 256 takes more than 5ms [70]. However,
this is difficult to model and was neglected for brevity.

The issue with model parallelism on current systems is the frequent and
synchronous data exchange which takes place after each layer. Computing the
training on the GPU but relying on the CPU to exchange activations comes
along with too much overhead, caused by both context switches and data copies.
This issue is being tackled by the just recently introduced NVLINK network
that allows a small number of GPUs to exchange data at high bandwidth and
comparably low latency. Consequently, upcoming systems might apply model
parallelism to GPUs that are connected by NVLINK on node level, while many
of these nodes are using data parallelism to train a network.

It is important to mention that research in this field is highly active at the
moment which affects both system architectures and algorithms. Thus, it is
tough to predict how systems are going to change and how the training will be
executed.

4.6 Insights

The insights of the application analysis are summarized in the following:

Insight I: Communication in scientific applications and training of deep neural
nets is structured and regular, with nearest neighbor communication
being the most common pattern. The training of neural nets relies
entirely on collective operations, mostly allreduce and broadcast.
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Insight II: The number of ranks any process is communicating with using
send/recv semantics is rather small. This makes communication
rather local and selective.

Insight III: Send/recv accounts for the most data by volume, while collectives
account for the most time spent in MPI. Especially at larger scale,
implicit synchronization of collective operations significantly penal-
izes load imbalances.

Insight IV: Message sizes are rather small and decreasing at strong scaling.
Two-thirds of all point-to-point messages across all applications are
smaller than 5,000 elements per message. That’s about 40KB when
double is the assumed data type.

Insight V: The matching of messages and receive requests can mostly be per-
formed with queues smaller than 512 entries. Only a few applications
occasionally exceed this size. However, queues might become long
during communication-intensive parts of an application.

Insight VI: Deep learning might soon explore more model parallelism approaches
as nets become larger and cannot be fit into the GPU’s memory.
This renders GPU-controlled communication necessary in order to
allow for low-latency communication and synchronization.

Insight VII: Data and model parallelism are equally important and their appli-
cation depends on the type of net. For example, deep convolutional
nets might benefit from data parallelism, while mixed nets with
fully-connected layers prefer model parallelism.

Insight VIII: While data parallelism relies on large messages in an allreduce
pattern, model parallelism results in many small messages that are
exchanged in an all-to-all pattern.
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Table 4.2 Basic MPI characteristics of various Exascale proxy applications [17].

Application Ranks sMP I scomm Unexpected Non-Blocking Peers
(sadmin) Messages Send/Recv

MOCFE
64 74 (89) % 25 % n/a 100/100% 2
256 86 (93) % 25 % n/a 100/100% 3
1,024 92 (90) % 30 % n/a 100/100% 4

NEKBONE
64 11 (37) % 12 % 40 % 99.9/99.9% 18
256 34 (68) % 18 % 35 % 99.9/99.9% 8
1,024 78 (70) % 73 % 45 % 99.9/99.9% 29

CNS 64 (1) 3 (18) % 5 % 28 % 0/92.5 % 26
256 (1) 22 (24) % 14 % 40 % 0/98.5 % 44

CNS Large
64 (4) 3 (2) % 4 % 30 % 0/60.8 % 26
256 (1) 11 (9) % 9 % 27 % 0/85.7 % 20
1,024 (1) 43 (10) % 39 % 34 % 0/98.4 % 72

MultiGrid 64 (1) 6 (61) % 3 % 27 % 0/100 % 14
256 (1) 16 (23) % 12 % 47 % 0/100 % 37

MultiGrid Large
64 (1) 3 (53) % 2 % 40 % 0/100% 14
256 (1) 5 (45) % 9 % 31 % 0/100 % 17
1,024 (1) 22 (16) % 39 % 33 % 0/100 % 20

LULESH 64 (4) 1 (36) % 17 % 21 % 100/100% 14
512 (2) 8 (4) % 13 % 29 % 100/100 % 19

CMC 2D
64 76 (0) % 27 % n/a n/a n/a
256 78 (0) % 29 % n/a n/a n/a
1,024 84 (1) % 34 % n/a n/a n/a

AMG
216 3 (0) % 33 % 44% 100/100% 57
1,728 1 (0) % 39 % 46 % 100/100 % 79
13,824 0 (0) % 44 % 48 % 100/100 % 92

AMR Boxlib 64 9 (47) % 6 % 27% 0/99.9% 18
1,728 12 (17) % 15 % 37 % 0/99.9 % 35

BigFFT
100 99 (98) % 91 % n/a n/a n/a
1,024 99 (97) % 98 % n/a n/a n/a
10,000 99 (99) % 99 % n/a n/a n/a

BigFFT Medium 100 72 (60) % 53 % n/a n/a n/a
1,024 81 (77) % 63 % n/a n/a n/a
10,000 99 (99) % 72 % n/a n/a n/a

Crystal Router 10 23 (0) % 27 % 31% 0/100% 3
100 63 (0) % 64 % 46 % 0/100 % 6

Fill Boundary
125 40 (31) % 28 % 34% 0/100% 16
1,000 52 (15) % 51 % 30 % 0/100 % 20
10,648 72 (2) % 82 % 32 % 0/100 % 23

MultiGrid
125 40 (57)% 32 % 41% 0/100% 14
1,000 66 (12) % 70 % 39 % 0/100 % 10
10,648 70 (2) % 85 % 38 % 0/100 % 8

MiniDFT 125 15 (1) % 15 % n/a 32/3.4% 19
424 11 (0) % 11 % n/a 31.3/2.2 % 30

MiniFE 144 7 (5) % 12 % n/a 0/100% 12
1,152 7 (4) % 6 % n/a 0/100 % 15

PARTISN 168 51 (3) % 61 % n/a 0/0% 1

Average n/a 41 (33) % 35 % 36% n/a 23
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Table 4.3 Training of AlexNet using different numbers of GPUs. The training is
based on synchronous data parallelism and is executed on Kepler K80 GPUs.

2 GPUs 4 GPUs 8 GPUs
Effective batch size 64 32 16
Communication/batch [ms] 61 183 427
Computation/batch [ms] 760 488 355
Computation/Communication 12.48 2.66 0.83
Speedup without communication 1.73 2.70 3.72
Speedup with communication 1.60 1.97 1.69

Table 4.4 Example architectures of commonly used neural nets.

Net Parameters Neurons Layers FLOPS
AlexNet [63] 60M 0.7M 8 0.72G
VGG-16 [67] 138M 14M 16 15.3G
GoogLeNet [68] 6.8M 4.5M 22 1.5G
ResNet-152 [69] 26M 20M 152 11.3G

Table 4.5 Communication size for various nets and parallel approaches. The
numbers represent the amount of data per GPU and the number in brackets
provides the average amount of data per layer and GPU. All numbers are in
Bytes and a batch size of 256 is assumed.

Data Parallelism Model Parallelism
GPUs: 4 16 64 4 16 64

AlexNet 240M 240M 240M 179M (22M) 45M (6M) 11M (1M)
VGG 552M 552M 552M 3,584M (224M) 896M (56M) 224M (14M)
GoogLeNet 27M 27M 27M 1,152M (52M) 288M (13M) 72M (3M)
ResNet 104M 104M 104M 5,120M (34M) 1,280M (8M) 320M (2M)

Table 4.6 Parallel efficiency in percent [%] of the example nets at scale with data
and model parallelism.

Data Parallelism Model Parallelism
GPUs: 16 64 256 16 64 256
Topology: FC R FC R FC R FC R FC R FC R
AlexNet 45 5 17 0 5 0 70 14 70 4 70 1
VGG-16 90 35 67 3 34 0 70 14 70 4 70 1
GoogLeNet 94 50 51 6 48 0 42 5 42 1 42 0
ResNet-152 97 67 88 11 65 1 55 8 55 2 55 1

62



5

C
h

a
p

t
e

r

GPU-centric Communication Methods

The previous chapters have introduced communication models and provided
an overview of MPI characteristics of various applications intended to run on
large scale computing systems. This chapter discusses communication from a
GPU-centric view, thus data transfers between accelerators and independent of
the CPU. Various communication models are considered to analyze which one
complements the GPU’s execution model best.

The remainder of the chapter is structured as follows. The first section
provides some background information, including a review of communication
offloading and onloading concepts and other work in this area. Also, typical
network architectures are presented. This is followed by different GPU-centric
communication models and their interactions with the network. The last section
presents benchmarks and results in terms of performance and energy efficiency.

This chapter extends and summarizes various contributions to international
conferences and workshops [18]–[20], [71].

5.1 Background

Before specialized communication models are presented later in this chapter, some
background information is provided in this section. It begins with communication
offloading and onloading concepts and continues with the introduction of three
different network architectures, namely Infiniband, EXTOLL, and NVLINK.
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5.1.1 Review of Communication Offloading and Onload-
ing Approaches

Similar to how computation is offloaded to specialized and highly parallel acceler-
ators, communication can also be offloaded to specialized hardware. Here, a NIC
can perform copy operations while the CPU only needs to trigger and complete
transfers. The tighter integration of the network interface and the processor has
led to a debate on whether to offload communication, mainly between processor
and network vendors such as Intel and Mellanox. The following introduces both
principles and reviews current research in this area.

5.1.1.1 Offloading

Offloading communication to dedicated hardware aims to reduce communication
costs and increase processor availability. The NIC takes over several tasks from
the processor, including data copy, address translation, message matching, and
accelerated synchronization primitives like barriers, atomics, and locks.

The data copy operation performed by the NIC is executed through Direct
Memory Access (DMA). The NIC has direct access to the processor’s memory
and receives source and target addresses from the processor, embedded into
so-called work requests. As soon as the work request is handed off to the NIC,
the processor can either continue with other tasks or idle until it is woken up by
the NIC again.

Work requests contain information on where the data is currently located and
to where it needs to be copied. For message passing, the NIC is told the source
address and a destination node identifier. The NIC reads the data and sends
network packets to the destination NIC, which either copies the data directly
to the user buffer or caches the data in a system buffer until the user address
comes to be known.

One-sided communication is different in that the source processor passes
source and destination address to the NIC. The NIC translates the addresses into
network addresses and the destination NIC translates network addresses to local
physical addresses and copies the data directly to user space. In order to perform
the address translation, memory regions have to be registered in advance.

Besides receiving work, the NIC also needs to notify the processor about new
data available or successfully processed work requests. These signals, generally
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referred to as notifications, can be an interrupt to wake up the processor or another
approach that could let the processor poll on Memory Mapped I/O (MMIO)
addresses provided by the NIC. The latter generates significant Input/Output
(I/O) traffic and can be optimized by replicating the I/O registers in system
memory, which are then held in the processor’s first level caches. This minimizes
polling latency and reduces I/O and memory system traffic.

Including the NIC in the system’s coherence domain has been common
especially in Hyper Transport (HT) systems. As opposed to PCIe, HT’s protocols
is designed for processor interactions, naturally optimized for coherency traffic.

If the NIC is part of the coherence domain it can also update the caches
directly, hence called Direct Cache Access (DCA) [72]. This approach is beneficial
for network I/O intensive applications with spatial and temporal relationships
between processor and I/O memory accesses. Depending on the workload and
based on 10Gbps Ethernet, Intel reported speedups of about 15 and 40%s for
DCA. This study is motivated by the argument that a simple NIC is sufficient if
the processor, a CPU in this case, has sufficient capabilities for communication
on-loading, replacing expensive and feature-rich NICs.

5.1.1.2 Onloading

Onloading communication means that communication tasks are performed by
the processor as opposed to offloading these operations to other hardware entities.
This is mostly relevant to systems with tight network integration and short
data paths between the processor and the network. Prominent examples include
Intel’s OmniPath for CPUs [73] and NVIDIA’s NVLINK [10] for GPUs. However,
both vendors follow different strategies as Intel integrates an Infiniband-like
network access and NVIDIA allows GPUs to directly access other GPUs’ memory,
thus implementing a shared memory model. Although the following examples
implement message passing, other communication models could also be on-loaded
onto the processor.

Vaidyanathan et al. [74] studied an on-loading approach for MPI. In a
multi-threaded MPI application, one thread is dedicated to communication and
handles all related tasks, while other threads are free to perform computation.
A lightweight lock-free command queue is used to instruct the communication
thread about messages to be sent or received. Both, blocking and non-blocking
calls are supported. In case of a blocking call, the application’s compute threads
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poll on a flag, which is set by the communication thread upon completing the
associated MPI operation. Non-blocking calls, however, are processed differently.
First, compute threads submit requests to the command queue and receive
pointers to MPI_Request structures in return. These structures are allocated
from a pool and it is required to dynamically allocate as many structures as
non-blocking calls are invoked. Progress is guaranteed by the communication
thread. In order to assess performance, three different HPC applications, namely
Quantum Chromodynamics (QCD), Fast Fourier Transformation (FFT), and a
Convolutional Neural Net (CNN), are benchmarked and compared to state-of-
the-art multi-threaded MPI. The maximum speedup for QCD is 1.2x, 1.3x for
FFT, and up to 2x for the CNN. While their approach is never slower, almost
no performance increase is observed at small scales, e.g. less than 32 nodes.

Similarly, Lai et al [75] proposed ProOnE, an onloading protocol for multi-
and many-core architectures. Unlike the aforementioned approach, ProOne
dedicates a subset of cores to communication, executing a daemon process. This
suggests two communication paths: intra-node communication between the
application and the daemon process, and inter-node communication between
ProOne processes. While inter-node communication is implemented in MPI,
intra-node communication uses queues again, one for send and receive requests
each. The matching is augmented by a sequence number and destination rank
to avoid false matching. This is necessary as ProOne sends additional control
flow messages, which can mix up the ordering of MPI messages. However, they
do not support wildcards with that approach. Results from two benchmarks,
namely a 2D Jacobi sweep (stencil code) and a matrix multiplication, show
that ProOne allows for better overlap between computation and communication,
improving performance by about 2.5x for the Jacobi sweep and 1.2x for the
matrix multiplication.

5.1.1.3 Technology Trends

Directing the focus on communication is important in such parallel computing
environments as we find them in HPC, for example. Interconnection networks
are becoming faster and faster and PCIe, for instance, cannot keep up with
bandwidth and latency. As a result, processor vendors increase the effort toward
integrated solutions, in which processor and NIC share the same package [73].
However, the main communication processing is delegated to the processor itself,
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augmented with networking hardware to accelerate distinct networking tasks.
This leads away from typical network offloading strategies, arguing the need
for complex NIC extension cards. On the other hand, networking equipment
vendors like Mellanox argue that offloading communication is beneficial in most
cases to maximize overlap between communication and computation [76]. In
their opinion, processor availability is crucial to many applications and requires
dedicated networking hardware.

Although there is no ground truth of what is the better approach, trends
point toward many core processors, in which some cores can be easily dedicated
to communication tasks. The main issue with peripheral network cards is the
data path between the processor and the NIC. PCIe, for example, seems to limit
the node’s network injection bandwidth. A 16x wide PCIe 4.0 interface provides
32GB/s per NIC, whereas an Infiniband HDR link provides 6GB/s, adding up to
about 72GB/s for an Host Channel Adapter (HCA) with 12 links. With CPUs
implementing more and more cores, the demand for network injection bandwidth
per processor is increasing significantly, thus questioning whether a PCIe-based
NIC is sufficient to satisfy these growing demands. Certainly another aspect is
memory bus bandwidth, which needs to gain upon bandwidth demands. For
example, DDR4 at 2,133MHz provides up to 25GB/s per channel, thus limiting
overall transfer bandwidth. Here, memory technologies like High Bandwidth
Memory (HBM) and Phase Change Memory (PCM) seem promising to increase
capacity and bandwidth significantly.

Summarizing it can be said that a tighter coupling of processors and net-
working hardware is inevitable to cope with increasing demands of network
performance. Thus, many communication tasks will be performed on general
purpose processors, shifting much of the functionality from hardware to software.
In fact, Chapter 6 of this work elaborates on the GPU’s capabilities to manage
communication.

5.1.2 Network Architecture

The communication architecture comprises many layers, implemented in hard-
ware and software. The NIC is one of the most important hardware components,
while the operating system and communication library are essential to the com-
munication software stack. David Culler et al. [77] describe the communication
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Fig. 5.1 Generic communication architecture in accord with David Culler et al.
[77].

architecture as depicted in Figure 5.1.
The top level is represented by the application and programming model,

accessing the system through a communication abstraction. The abstraction
varies and depends on the communication model and system. For example,
a message passing model on a distributed memory system offers send/recv
operations to exchange data, while the application can rely on put/get operations
in a PGAS model. The abstraction is an interplay between the hardware, the
operating system, and the communication library.

The library varies between communication models and builds upon the
operating system and the hardware. The level of abstraction is a trade-off between
usability and performance. Higher abstraction means more generalization with
less control given to the user and thus less application specific optimizations.
However, less abstraction leaves many decisions up to the user who must consider
system specific peculiarities to tweak the application and system for the best
performance.

Another trade-off must be made at the hardware/software boundary. Modern
NICs provide many capabilities to support the runtime with specialized hardware,
reducing software overhead. However, due to integration and shorter paths
between processor and NIC, some functionality is also moved back to the processor
by an onloading protocol. Hence, the software/hardware boundary is shifted
toward the bottom as more functions are performed in software.

The following elaborates on the various layers and components in more detail.
Note that communication and programming models have been discussed in more
detail in Chapter 3.
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5.1.2.1 Generic NIC Architecture

Traditionally, computing systems implement a processor, memory, and a network
controller which is handling communication. The network controller is provided
access to the system’s memory through DMA. It is important to assess where
to attach the network controller and how to access it. Many modern processors
even integrate the network controller into the processor.

The NIC is an important component to scale systems to hundreds and thou-
sands of nodes. It accelerates communication and increases processor availability
by allowing the CPU to offload data transfer and synchronization tasks to spe-
cialized hardware. It serves as interface to the network from the processor’s point
of view and must provide fast access and delivery of both small (e.g. control) and
long (e.g. bulk data) messages. Besides low-overhead access and high-throughput
message transfer, the NIC has to ensure that multiple processes can indepen-
dently access the NIC without notable performance or security complications
[78, section 20.1].

The placement of the NIC in the system is an important design choice. In
order to minimize latency it is recommended to attach the NIC as close to the
processor as possible. In the simplest approach, the processor sees two registers:
an input and output register, referred to as two-register interface [78, section
20.1.1]. Reading and writing these registers de- and enqueues from the message
queues, residing on the NIC. Longer messages are sent by writing word by word to
the output register, prohibiting the NIC to access memory directly through DMA.
Another issue is multi-process support, since one processor could be delayed
infinitely and not write the end of the message to the output register, tying up
resources and blocking the network interface.

The latter issue can be resolved by dedicating a set of registers to the network
interface. The message is written to multiple registers and when the data transfer
is triggered by the processor, the NIC reads the message registers atomically and
starts processing the message. While this renders the message atomic, a DMA
transfer is still not supported by this approach.

Instead of placing the message in registers and having the NIC picking it
up, the processor can directly write instructions to the NIC. The instructions
are embedded in descriptors, which contain the type of command, addresses,
and immediate data. Small messages, for example, can be sent by embedding
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the data into the descriptor and writing it to the NIC. Larger data, on the
other hand, cannot be embedded into descriptors and addresses are passed
to the NIC, which reads the data from the memory directly through DMA.
This approach supports multiple processors and also supports DMA transfers,
increasing processor availability by offloading communication to the NIC.

In the following, three different NIC architectures are introduced, of which two
are used in the remainder of this chapter to evaluate GPU-centric communication
models. The third, NVLINK, has just been released and thus it was not possible
to evaluate its performance and architecture in this work. However, this would
only affect raw performance numbers as the same principles are still evaluated
with EXTOLL’s Shared Memory Functional Unit (SMFU) later in this chapter.

5.1.2.2 Infiniband NIC

Infiniband [79] is a standard that was compiled by a consortium of leading
computer hardware vendors to replace both Peripheral Component Interconnect
(PCI) and Ethernet in high-performance computing systems. While Intel stepped
back and focused on the development of PCI, Infiniband has replaced Ethernet
in many computing systems with low latency and high bandwidth requirements.

Today, the vast majority of Infiniband implementations are indirect and
switch-based networks, with fat tree and dragonfly being widely implemented
topologies.

The processor interface is based on the descriptor approach as mentioned in
section 5.1.2.1. Descriptors are written to queues by the processor. The NIC,
often referred to as HCA, queries the queues for new entries to receive work and
writes to a queue to signal completion of work items.

The system integration and processor interface are depicted in Figure 5.2.
The NIC is attached to a PCIe switch, which is connected to the CPU’s root
complex. This is a common setup, especially in accelerated systems in which the
PCIe root complex cannot provide enough lanes for all peripheral devices, such
as accelerators and network interfaces.

During initialization, a so-called Queue Pair (QP) is allocated, which contains
one queue for send and receive work requests. If the processor wants to send data
to another node, for example, it creates a work request (descriptor) and enqueues
it into the send queue. The NIC does not query the queue periodically, so that
the processor needs to write to the doorbell register in order to signal the NIC
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Fig. 5.2 Infiniband NIC system integration and processor interface.

that new work items are available. Upon ringing the doorbell, the NIC reads and
executes the work request from the send queue through DMA. After completion,
a notification is generated by the NIC and enqueued into the completion queue,
which is frequently queried by the processor. Receiving data follows the same
procedure as work requests are first enqueued into the receive queue, followed by
writing the doorbell register.

Separation of submitting and execution of work requests allows for a few
optimizations. One is that the NIC can fetch multiple work requests from
the queue, increasing efficiency of PCIe transfers. Furthermore, it reduces the
memory footprint on the NIC and avoids polluting the PCIe network by polling on
system memory for new work requests becoming available in queues. Nonetheless,
Infiniband supports work requests that are directly written to the NIC, which is
referred to as ’blue flame’. However, this is only applicable when the embedded
data is rather small and only a few requests are issued.

The actual location of the QP is flexible and could be either system or
accelerator memory. From the NIC’s point of view it does not matter since
queues are accessed through PCIe in either case. On the other hand, accelerators
can map the doorbell register in their address space to trigger data transfers
without the interference of the host processor. This principle will be shown and
evaluated later in the course of this chapter. More on Infiniband itself can be
found in [79].
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Fig. 5.3 The EXTOLL NIC architecture, system integration, and processor
interface. An example Remote Memory Access (RMA) access with requester
notification is given with the dotted red lines.

5.1.2.3 EXTOLL NIC

While Infiniband is a well-established and known high-performance interconnect,
EXTOLL started off as a research project at the Ruprecht-Karls University
Heidelberg (Germany). The first Application Specific Integrated Circuit (ASIC),
called Tourmalet, was released in 2016. This section introduces the technology
and focuses on the differences compared to Infiniband, for example.

The most obvious difference to Infiniband is the direct network approach,
in which the NIC also implements switching logic. The processor interface is,
just like Infiniband, descriptor-based. The NIC receives work requests from
the processor and handles the communication independently. However, unlike
Infiniband, work requests are written to the NIC directly as opposed to queues,
allocated in system memory. The system integration and interface is show in
Figure 5.3.

An EXTOLL NIC provides seven link ports to connect to other NICs, although
the seventh is intended for network attached memory or accelerators, leaving six
link ports free to build a 3D torus network. The link ports are connected to a
crossbar that either routes messages between the link ports, or from the network
to the functional units.

The NIC comprises three major functional units: RMA unit, Virtualized
Engine for Low Overhead (VELO) unit, and SMFU, each supporting different
communication models. This is complemented by the Address Translation Unit
(ATU), which translates between a node’s physical address and the Network
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Logical Address (NLA).

RMA As the name suggests, the RMA [80] unit provides an interface for
one-sided communication. There are two different addressing modes that can
be selected: physical and network addresses. While it should be avoided to use
physical addresses in user space, memory regions can be registered with the
ATU to obtain a network address that can be used for RMA. When an NLAs
is obtained, the memory region is pinned so it cannot be swapped out of the
main memory. Furthermore, the use of network addresses ensures inter-process
security.

During initialization, the work request queue, which resides on the NIC, is
mapped to the processor’s Virtual Address Space (VAS). Unlike Infiniband, a
doorbell is not required and the NIC begins with the execution of work requests
as soon as the last word of the descriptor is received. Notifications, on the other
hand, are written to a queue that resides in system memory to have them closer
to the processor that is polling on pending notifications. Consequently, the design
keeps I/O traffic to a minimum.

Descriptors comprise 192-bit and are written as three 64-bit words to the
NIC. Upon receiving the last word the work request is executed. Besides source
and destination address, the descriptor contains the size, destination node ID, a
command specifier, and a Virtual Process ID (VPID).

Notifications are composed of two 64-bit words. They are written to a double-
linked list structure, which is accessed like a queue, in system memory by the NIC.
The processor can query the queue for new notifications, but has to explicitly
remove it from the queue. Notifications have to be consumed in a First In First
Out (FIFO) order and cannot be taken from arbitrary positions within the list.

The RMA unit is capable of generating different notifications for various
events. For example, a notification can be generated when the NIC has processed
the work request or when new data is received. This mechanism allows to
generate notifications at both sending and receiving side. Possible combinations
are shown in Table 5.1 [81]. The RMA unit itself is comprised of three sub-
units: requester, responder, and completer. The requester receives work requests
from the processor and generates network packets that are delivered to the
receiver. The responder creates responses at the receiving side. For example, a
’get’ operation requires the requester to send a request to the receiving side’s
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Table 5.1 Possible combinations for the generation of notifications [81]

Command Requester Completer Responder

PUT
0 0 0 No notifications
1 0 0 One-sided PUT
1 1 0 Two-sided PUT

GET
0 0 0 No notifications
0 1 0 One-sided GET
0 1 1 Two-sided GET

responder, which responds to the request with the data. The completer executes
DMA transfers on both sending and receiving sides, depending on where the
data is written to memory. For example, the completer in a ’put’ operation is
only involved on the receiving side and writes the data to the receiver’s memory.

The capability of each sub-unit to generate notifications allows to mimic
various communication models with the RMA unit. While traditional one-sided
communication would only require notifications from one sub-unit, a message
passing scheme can be implemented with notifications being generated on both
ends.

SMFU While most interconnection networks implement hardware to support
one- and two-sided communication semantics, EXTOLL’s SMFU [82] provides
hardware support for a virtual shared address space across a physically distributed
system. PCIe packets are forwarded through the network, allowing to virtually
access remote devices.

Like other functional units, the SMFU provides a PCIe Base Address Register
(BAR), which can be mapped into the processor’s VAS through MMIO. The
BAR is divided into intervals that can be individually configured and be assigned
to a specific node within the network. If the processor issues a store operation to
an address within an interval, for example, the SMFU forwards the PCIe packet
to the target node. Upon receiving the network packet the target SMFU looks
up the physical address assigned to the interval the network packet is addressing.
The store operation is then executed on that address with the offset given by
the received network packet. A load operation works similar and a response is
sent back to the source.

The SMFU unit has many advantages as it allows to apply a shared memory
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programming model to cluster systems. Remote node’s memory appear in the
VAS as if they were part of the system’s local address space. However, NUMA
effects have to be taken into account, rendering data locality important. This
particularly applies to CPUs, which cannot tolerate long latencies as well as
GPUs. For example, a database application that uses the SMFU is presented in
[83].

A common issue is that accesses to false addresses can have the system to
deadlock. For example, if one node issues a load to a false address and waits for
the response that will not be generated on the target side. Consequently, the
user has to be careful to ensure addresses are valid. Recovering from deadlocks
requires the system to restart.

5.1.2.4 NVLINK

NVIDIA’s NVLINK has been designed and proclaimed to be a replacement for
PCIe and it’s the first network that is optimized and designed for GPU-to-GPU
communication. Although it aims to replace PCIe, it is still required for control
flow while data is transferred by NVLINK. Nonetheless, less PCIe lanes are
needed and thus enabling a higher numbers of GPUs per CPU without additional
switches.

In NVLINK, the NIC is integrated into the GPU and attached to the High
Speed Hub (HSHUB), which also connects the PCIe interface and the copy
engines to the internal crossbar. Similar to PCIe-based GPU systems and UVA,
a single large address space is globally shared between all GPUs. This allows
for fine-grain communication on a small granularity with load/store operations
or high-bandwidth bulk transfers using the GPU’s copy engines [10]. Besides
load/store operations, NVLINK also supports atomic operations and memory
fences, enabling large SMP-like clusters of GPU.

In terms of network architecture, NVLINK can be seen as a direct network
with point-to-point connections to other GPUs. Each P100 Pascal GPU provides
four links with a bidirectional bandwidth of 80 GB/s. NVIDIA’s example
configuration in [10] shows eight GPUs with four GPUs being fully connected.
It says that "[...] each half of the 8-GPU Hybrid Cube Mesh can operate as a
shared memory multiprocessor, while the remote nodes can also share memory
with DMA through peers" [10]. It seems that GPUs cannot route traffic and
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(a) Unmanaged (b) Managed

Fig. 5.4 Top level diagram of unmanaged and managed communication ap-
proaches.

NVLINK connections are truly point-to-point, making managed communication
inevitable as routing must be done in software.

Although the current use of NVLINK is limited to a single node and only a
small number of GPUs, it is fair to assume that this number is going to increase
as deep learning applications seem to benefit from a large GPU to CPU ratio.
However, it remains unclear in what way these GPUs will be connected at larger
scale and what communication model will be supported.

Currently the two main NVLINK-enabled systems are NVIDIA’s DGX-1 [10]
with 8 GPUs and IBM’s Minsky system [84], implementing 4 GPUs. The DGX-1
system comprises two sockets with each socket being connected to a quad of
GPUs. GPUs within a quad can access each others memory, but communication
between quads is limited and may need to fallback to PCIe instead of NVLINK.

5.1.3 Software Abstraction and Runtime

The software architecture provides the application with access to the hardware
by implementing an interface, through which the application can exchange data.
The actual architecture depends on the networking hardware, but also the com-
munication model and the operating system. Furthermore, it can be distinguished
between managed and unmanaged communication, which is compared in Figure
5.4.
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In an unmanaged communication scheme the application is provided with
a direct interface to the hardware and the operating system. Communication
is processed by the application, possibly supported by the NIC’s offloading
capabilities. The example in the figure shows a Global Address Space (GAS)
approach, in which the application maps the network’s memory into the local
VAS. As soon as the system is set up on the CPU, the pointers are passed to
the GPU which can directly access data within the network through the NIC’s
shared memory unit. Additionally, put/get descriptors can be written to the NIC
for data transfer offloading. However, the memory buffers are managed by the
application and the user. This approach is well supported by EXTOLL, NVLINK,
and partially by Infiniband’s RDMA capabilities. While shared address space
models directly map to unmanaged communication, message passing requires
additional management.

Managed communication, on the other hand, adds an additional software
layer in between the application and hardware to assist the application with
communication. This allows for higher abstraction and communication models,
such as message passing or task-based programming models. However, it also
imposes additional overhead and occupies more GPU resources as the runtime
functions need to be executed on the GPU either within the application kernel or
as separate grid. Managing communication is discussed and analyzed in Chapter
6 of this work.

The following provides more detail on the how the NIC is accessed by the
GPU.

5.2 GPU Global Address Space

GPU Global Address Space (GGAS) [15], [85] is enabled by EXTOLL’s SMFU,
which allows to span a global address space across physically distributed nodes.
A similar approach was MEMSCALE [83], in which distributed CPUs store
a large in-memory database and share a common and non-coherent address
space. Database accesses are forwarded by the SMFU on load/store granularity.
Although the performance is superior to Solid State Disk (SSD) and hard drive
solutions, the approach eventually suffered from the small number of outstanding
memory operations of typical x86 processors.

As opposed to CPUs, GPUs do not attempt to minimize latency but rather
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try to hide accesses, to which a large number of outstanding memory operations
is key. Consequently, the SMFU approach to allow a large shared address space
across many GPUs seems to be more compatible with the GPU’s architecture.

5.2.1 Architecture

In order to use the SMFU the intervals need to be set accordingly, hence pointing
to GPU memory. The memory mapping is shown in Figure 5.5, along with the
software architecture which is discussed afterwards.

5.2.1.1 Memory Mappings

The diagram shows the physical and virtual address space of both CPU and
GPU. First, the application allocates memory on either or both processors (➊).
In order to initialize GGAS and set up the mapping, a portion of GPU memory is
allocated which is then mapped to the GPU’s PCIe BAR (➋). After the memory
is allocated with CUDA’s cudaMalloc, the GGAS driver is passed the unique
identification of the memory, using three components: the GPU virtual address,
a virtual address token, and a peer-to-peer token. This is necessary for the
CUDA driver to map these addresses to the PCIe BAR. The BAR can then also
be mapped into the CPU’s address space through MMIO (➌). The next step
requires to set the SMFU intervals accordingly. Here, one interval is assigned
to each GPU. The physical address of the GPU’s PCIe BAR is returned to the
GGAS driver and passed to the SMFU driver, where the physical target address
of the particular interval of the GPU is set. All incoming memory accesses hitting
this interval are then forwarded and completed at this address, hence the GPU
memory (➍). In order to allow the GPU to access the SMFU directly without
going through the CPU, the intervals need to be mapped into the GPU’s virtual
address space. This has required to enhance NVIDIA’s CUDA driver by MMIO,
but recent drivers support this naturally (➎). As intervals are now accessible
by the GPU, any memory accesses are forwarded to the appropriate nodes and
completed remotely.

5.2.1.2 Address Translation

Remote memory accesses require a few steps of address translation. This is
illustrated in Figure 5.6. If multiple threads of the same warp access consecutive
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(a) Memory mapping

(b) Software architecture

Fig. 5.5 Memory mappings and software architecture of GGAS as an example for
a shared address space model. The ending .ko indicates a kernel driver module,
while .so stands for dynamic shared libraries.

addresses, requests are combined into a single transaction as shown in Figure 5.7.
EXTOLL’s SMFU provides performance counters that show how many accesses
have been made to certain intervals. This allows to obtain information on how
many transactions are forwarded by the GPU’s memory controller. Increasing
the stride with which memory is accessed allows for less accesses to be combined.
Interestingly, the memory controller combines write accesses much more than
load operations. Load operations are only coalesced for consecutive accesses and
any stride greater than one leads to separate transactions. Write accesses, on
the other hand, are combined up to a stride of four.

The next step is to translate the virtual address to a physical address which
points to the SMFU’s intervals, which is performed by the memory controller.
Here, the NIC translates the local physical address to a global address, pointing
to the interval, and an offset. This is transferred to the target NIC. On the
receiving side, the NIC receives the network packets and determines the interval
based on the received global address. The interval is set with a physical target
address, which points to the GPU PCIe BAR. The received offset is added to
this address and the memory operation is completed. In case of a load operation,
the data is read from the memory, sent back to the source, and written to the
source GPU’s memory by the source SMFU.

79



GPU-centric Communication Methods

Fig. 5.6 Address translation as required by GGAS. The graph shows every
translation step that is required from issuing the memory operation to completion
on the receiving side.

Fig. 5.7 Hardware coalescing of memory accesses for read and write operations.
The coalescing is performed by the GPU’s memory controller and reduces memory
bus transactions.
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5.2.1.3 Library Interface

The software architecture of GGAS is depicted in the second graph of Figure
5.5. It comprises a kernel driver and a user-space library as an interface to the
application. The ggas.ko kernel module bridges the SMFU and NVIDIA driver.
The library essentially provides an initialization routine, in which memory is
allocated and mapped to the PCIe BAR of the GPU. The user can retrieve
host and device pointers to the mapping of both GPU PCIe BAR and SMFU
intervals. The device interface of the GGAS library allows to obtain a pointer
to a particular node’s memory. The library returns the pointer to the SMFU
intervals and adds the appropriate offset to target the particular node. The
following code shows an example of a naive broadcast implementation. First,
references to remote memories need to be obtained (line 11), to which each
threads writes the data in the second step (line 12).

Listing 5.1 Example code for a naive broadcast kernel using the GGAS commu-
nication model.

1 __global__ void ggas_broadcast ( double * input )

2 {

3 int tid = threadIdx .x ;

4 double * remote_memory [ NUM_NODES ] ;

5
6 for( int i = 0 ; i < NUM_NODES ; ++i )

7 {

8 if( i == __ggas_local_node_id ( ) )

9 continue ;

10
11 remote_memory [ i ] = _ggas_get_pointer_of_node ( i ) ;

12 remote_memory [ i ][ tid ] = input[ tid ] ;

13 }

14
15 return ;

16
17 }
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5.2.2 Synchronization and Collectives

Besides writing and reading from remote memory, GGAS also provides a barrier
and a collective reduce operation. The barrier’s implementation is based on
the work from Fröning et al. [86], who proposed a scalable and fast barrier
for distributed CPUs with a non-coherent shared address space. As atomic
operations on remote memory are not supported a hierarchical approach is
followed in which the barrier data structure is only written by a single thread in
a store-only fashion. Hence, synchronization is divided into two phases. First,
one thread per GPU sets a flag that resides in the global address space and one
designated master GPU waits for all GPUs to have set their flags. The second
phase is reached when all flags are set and the master GPU sets another flag for
each other GPU to signal completion of the barrier. The necessary intra-GPU
barrier, which is required before entering the global barrier, is implemented as
shown by Xie and Feng [87]. The resulting latency amounts to about 11 µs with
12 nodes, each equipped with an EXTOLL FPGA and a Kepler GPU. The design
indicates good scalability as a barrier between 2 nodes requires about 9 µs.

An important aspect of the GGAS barrier is the GPU’s CTA scheduling.
Once scheduled, CTAs will run to completion until others can be scheduled.
Thus, a barrier is impossible as running CTAs cannot be preempted. Overcoming
this issue requires any of the following models to be applied [15], however both
significantly alter the global shared address space programming model and pose
significant drawbacks:

1. An application can only use as many CTAs as the hardware can execute
concurrently. For example, a Kepler K20 GPU allows for about 52 CTAs
to be scheduled concurrently if shared memory and register usage is kept
small.

2. The application is divided into compute kernels which are launched from a
single CTA master kernel. The master kernel synchronizes compute kernels
via CUDA’s cudaDeviceSynchronize or streams and the barrier synchronizes
master kernels from each GPU within the network.

The second collective operation is the reduce and all-reduce, respectively
[71]. Due to the significantly low bandwidth of remote read operations when
transactions need to pass the CPU’s root complex the reduce is implemented
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with remote write operations only. Hence, all GPUs transfer their data to a
designated root GPU, where the data is reduced and the result broadcasted in
case of an allreduce operation. The aforementioned barrier is used to ensure
all GPUs have sent their data to the root and after the broadcast to comply
with the collective’s synchronization guarantees. However, for small data sizes
the synchronization overhead is too significant, thus all GPUs send their data
to every other GPU where it is reduced locally. Large reductions, on the hand,
suffer from the data distribution, which is why GGAS provides two different
strategies in this case.

1. Large installations with large numbers of GPUs should span a tree struc-
ture in which the reduction is performed. This has been extensively and
successfully studied for large-scale CPU clusters [58], [88] and can also be
applied to GPUs.

2. Instead of an allgather, in which any GPU sends its data to every other
GPU, an all-to-all operation can be used to split the data and send it as
chunks to other GPUs. Each GPU reduces its data and transfers the data
back to the root or to all GPUs for an allreduce operation.

Compared to a CPU-controlled MPI reduce operation on data residing on
the GPU, GGAS’s reduce is about 1.8 times lower in latency for small amounts
of data [71].

5.2.3 Summary

In summary, GGAS is representative for a NIC-assisted PGAS model with
great performance for small messages, both in terms of latency and bandwidth.
However, there are also some drawbacks of which one has to be aware. For
example, remote reads perform poorly if the CPU’s PCIe root complex is passed
and thus a remote store only paradigm needs to be applied. Furthermore, it
is not possible to address the entire GPU memory through the PCIe BAR. In
order to address large amounts of memory, peripheral devices need to be mapped
above the 32-bit addressable space. As the user usually has no control over
the placement of the system’s PCIe mapping, the system may place the BAR
above 40-bit, which means the GPU cannot address this memory through MMIO
anymore. Nonetheless, this is a technical limitation that can and should be
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overcome with future GPUs architectures and host systems. Another drawback
are the resources that are occupied by GGAS for data transfers. If a large
amount of data is to be transferred GGAS requires many SM resources and
load/store units to perform the copy operations. In some cases this reduces the
processor availability to the application and does not allow for communication
to be overlapped with computation. This is going to be analyzed in more detail
at the end of this chapter when performance is discussed on application level.

Another important aspect of a shared memory model is consistency, which
determines the order of instructions. The CUDA programming guide describes
the memory model as weakly-ordered [23]. Within a single GPU, CUDA provides
memory fence instructions at various scopes. For example, threadfence_block

concerns threads of the same CTA only, while threadfence_system also com-
prises system memory and peer memory in addition the GPU’s own memory.
Fences are necessary to ensure memory operations are issued before the fence
returns. For example, instructions can be reordered by the compiler and fences
prohibit the compiler from moving instructions across the fence. Furthermore,
the hardware has to flush all reorder buffers to ensure operations are executed
before the fence returns. The programming guide [23] also states that the volatile
specifier should be used for shared data to avoid stale copies in caches.

In GGAS, fences are necessary if flags are written along with data. In such
case, a system-wide fence needs to be inserted between data and flag to ensure
the flag is written after the data. However, the flag must be declared volatile and
polling is still required. Nonetheless, a comprehensive study [89] revealed several
false statements and assumptions regarding the GPU’s memory model. For
example, it was discovered that volatile statements do not prevent the compiler
from reordering load instructions in CUDA version 5.5. Nonetheless, none of
these issues have been observed with GGAS and recent CUDA releases, but one
has to be careful in this regard.

Note that this shared memory approach is naturally supported by NVLINK,
but currently not supported by Infiniband. NVLINK enhances the model by
providing atomic operations and memory fences across the network. Furthermore,
the entire remote GPU memory can be mapped as opposed to GGAS, in which
only a part can be accessed due to the aforementioned 40-bit limitation of
addressing MMIO memory.
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5.3 Remote Memory Access

A PGAS model has the two fundamental communication operations, namely
put and get. Instead of using GPU resources to copy data the transfer can
be offloaded to the NIC’s DMA engines, increasing processor availability and
overlap between communication and computation. The following presents RMA,
also referred to as RDMA, approaches for GPUs, based on Infiniband’s and
EXTOLL’s network architectures. NVLINK also offers RDMA capabilities in
the form of cudaMemcpy, which performance is discussed in Section 6.3.1 in more
detail.

5.3.1 Infiniband

Although Infiniband’s main focus is message passing it also provides an RDMA
VERBS API for one-sided communication. In order to transfer data between two
GPUs’ memories, the source and target memory regions need to be registered
prior to any data transfer. The memory registration returns two keys, a local
key for local access and a remote key for remote access. Furthermore, an entry
in the memory translation table is created, in which the corresponding physical
address can be found for any registered virtual address and local/remote key.

An RDMA transfer is initiated by first generating a work request and then
enqueuing it to the send queue as part of Infiniband’s QP. The transfer is
triggered when the HCA’s doorbell register is written. The user can specify in
the work requests if a notification is generated after the work request is processed.
The notification is written to a separate completion queue that can be shared by
multiple QPs.

Besides traditional put/get operations, the VERBS API also provides two-
sided semantics and atomic operations. These differ from MPI, for example, as
they require receive requests to be posted before the send operation.

A GPU implementation of Infiniband’s VERBS has first been proposed
by Oden and Fröning [90]. While data is transferred directly between GPUs,
communication is also controlled on the GPU and without any involvement of
the CPU. Similar to GGAS, the GPU’s PCIe BAR is mapped to GPU’s VAS
and the physical address is passed to Infiniband to register it for RDMA transfer.
However, this requires to modify kernel drivers as the registration would fail with
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Table 5.2 Infiniband VERBS latency for queue pairs residing in host and GPU
memory [90].

Operation CPU-controlled GPU-controlled
system memory queue system memory queue GPU memory queue

IBV Post Send 0.01 µs 12.5 µs 10.7 µs
IBV Poll CQ 0.01 µs 15.7 µs 8.3 µs

IBV Post Send (opt.) 7.5 µs 7.0 µs
IBV Poll CQ (opt.) 5.5 µs 3.1 µs

MMIO addresses. In order to enable the GPU to control data transfers between
the registered GPU memory regions the HCA needs to be made accessible too.
Again, this is similar to GGAS as QP and doorbell register are mapped to the
GPU’s address space. In fact, instead of mapping the queues address, the queues
can also be entirely placed in GPU memory and thus access costs are reduced
significantly. The corresponding latencies are shown in Table 5.2.

It becomes immediately obvious that GPU-controlled communication shows
a significantly higher latency than its CPU counterpart. However, moving the
queues from system to GPU memory reduces latency by 14% for posting the
send and almost 50% for polling on the completion queue. The authors blame
the single-threaded work generation for the significant higher latency. Creating
new work requests require multiple memory accesses, which require much more
processor cycles than comparable memory accesses on the CPU. Furthermore, the
GPU’s clock frequency and thus single-thread performance, is also significantly
lower.

Table 5.2 also shows an optimized version of both operations, in which some
steps are omitted that are usually performed in the CPU version. These steps
include checking if queues overflow, interpretation of the completion element, and
so-called stamping in which work requests are marked during their generation to
avoid prefetching from the HCA. As a result, the latency is reduced significantly
as less instructions are required that are executed and which performance is
limited by a single thread.

More details on Infiniband VERBS on GPUs can be found in Lena Oden’s
dissertation [15], including code examples and profound performance analyses.

Daoud et al. [91] follow a similar approach, in which the GPU is able to
control the Infiniband NIC and the QP is allocated in GPU memory. The doorbell
register is mapped to the GPU’s address space as well. Overall, the results shown
in their work are similar to the just shown VERBS implementation.
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Infiniband is also used in the work of Gysi et al. [13]. Here, MPI’s RDMA
features serve as a model for their GPU-sided RDMA approach. However, actual
communication is executed by the CPU, while instructions come from the GPU
through command queues in host memory. As this approach is not limited by
the GPU’s single thread performance the resulting latency and bandwidth are
superior to the approaches shown above. Nonetheless, the CPU is still needed to
perform communication.

5.3.2 EXTOLL

Similar to GGAS, controlling EXTOLL’s RMA capabilities from the GPU requires
to map NIC resources to the GPU’s address space. Here, the requester BAR
needs to be mapped to trigger operations and the notification queue needs to
be mapped to receive status information. While the BAR is an MMIO address
again, the notification queue resides in kernel space and system memory.

Prior to any data transfer, the communication has to be set up on the CPU
before the GPU is enabled to control the NIC’s RMA unit. Before any data
transfer can take place, the application needs to establish a connection, for
which a port needs to be opened first. The port is based on the node ID and
represents a point-to-point path to another node. A connection, on the other
hand, is a virtual path between processes or threads. Multiple connections can
be established using the same port and each connection is identified by its VPID.
When a connection is established particular memory regions can be registered,
for which the ATU will create an NLA. However, this is not necessarily required
as the RMA unit can also deal with physical addresses, but it is recommended
to use an NLA instead to comply with security standards. The NLA needs to be
exchanged with other processes that are allowed to access the memory region
remotely, which completes the initialization phase.

Once a port is open, a connection established, and a valid NLA of remote
memory obtained, the data transfer can be initiated by either put or get operations.
In order to hand off control to the GPU, the port is mapped to the GPU’s address
space, together with the notification queue. Furthermore, the node ID, VPID,
and NLA are also passed to the GPU kernel. A data transfer is started by writing
a descriptor to the mapped port. EXTOLL’s descriptor format is kept lean and
the NIC immediately starts with the transfer once the last word of the descriptor
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Fig. 5.8 Architecture and system integration of the EXTOLL RMA for direct
GPU to GPU communication.

is received.
While the software architecture is similar to GGAS, depicted in Figure 5.5,

the communication procedure differs and is shown in Figure 5.8. First, the
GPU writes an descriptor, sometimes also called work request, to the NIC
device through PCIe. The descriptor contains three 64-bit words and the NIC
immediately starts with the data transfer when the last word is received. Copying
the data from the local to the remote GPU is executed by the NIC’s DMA engines
at the source and receiving side. After the transfer is completed the NIC generates
notifications and places them into the appropriate queue in system memory. Both
sender and receiver can then query the queue for the notification and consume it.

A code example of how the communication is set up on the CPU is shown in
Listing 5.2. First, the port is opened and a connection is established the same
way it would be done for the CPU. Registered regions need to be exchanged with
communication peers as they are directly addressed by put and get operations.
In line 12, the information is copied and made accessible to the GPU before the
kernel is launched. The kernel is shown in Listing 5.3. The data transfer can be
triggered by a single thread. The put operation takes the port, connection, and
destination nodes as parameters, hidden in the info data structure. Furthermore,
the source and destination regions need to be passed as well as the size of the
data. The notification requires polling, hence encapsulated into the do-while
loop.
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Listing 5.2 Example host code for setting up EXTOLL’s RMA on GPUs envi-
ronment.

1 int main( ... )

2 {

3 /* ... */

4 rma2_open ( &port ) ;

5 rma2_connect ( port , dest , ... , & handle ) ;

6 rma2_register (port , buffer , size , & send_region ) ;

7
8 exchange_regions ( dest , & send_region , recv_region ) ;

9
10 grma_copy_data2region ( &data , & send_region , size ) ;

11
12 grma_get_info ( & dev_rma_info , dest , port , \

13 handle , send_region , \

14 recv_region , size ) ;

15
16 grma_send <<<grid ,block >>>( dev_rma_info ) ;

17 /* ... */

18 }
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Listing 5.3 Example device code for copying data using EXTOLL’s RMA API
on GPUs.

1 __global__ void grma_send ( grma_info_t *info )

2 {

3 int tid = threadIdx .x ;

4 int bid = blockIdx .x ;

5
6 grma_noti_t noti ;

7
8 if( 0 == tid && 0 == bid )

9 {

10 grma_put ( info , info ->dest , info ->size , \

11 &info -> send_region );

12 do

13 {

14 grma_get_noti ( info , &noti ) ;

15 } while ( !noti.valid ) ;

16 }

17 __syncthreads () ;

18
19 return ;

20 }

5.3.3 Comparison

Although both Infiniband and EXTOLL provide RDMA capabilities, their im-
plementation and interface are different, allowing to compare them accordingly.
This eventually helps to design a tailored and optimized RDMA interface for
direct GPU communication.

The main difference between Infiniband and EXTOLL is the way data transfers
are triggered. Using Infiniband, the work requests are placed in a queue and
the data transfer begins when the doorbell register is written. Then, the NIC
starts to process work requests, which it fetches from the queue. This approach
optimizes the processing of multiple work requests as they are placed in the
queue first and then a single write to the doorbell register starts the transfer.
Contrary, EXTOLL’s work requests are written to its PCIe BAR and the transfer
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starts when the last word of the work request is received. Here, multiple work
requests require multiple PCIe BAR accesses, which cannot be coalesced by the
GPU’s memory controller and thus become serialized.

5.3.3.1 Bandwidth and Latency of EXTOLL’s RMA

EXTOLL’s performance is determined for various mechanisms and approaches,
which are introduced in the following.

1. direct: the sender GPU issues a put operation to the NIC directly and
polls on system memory to consume the requester notification, which is
generated when the request is processed. The receiving side waits for the
completer notification to complete the data transfer.

2. polling on GPU memory: the receiver GPU polls on the data directly to
ensure everything is received. This avoids accesses to system memory as
no notifications are generated and consumed.

3. assisted: data transfers are triggered on the GPU, but executed on the
CPU. Both processors synchronize through a flag mechanism that resides
in system memory and is mapped to the GPU’s address space.

4. host: The entire data transfer is handled by the CPU, serving as a reference
to GPU-controlled mechanisms. Data is still copied from GPU to GPU.

Half-roundtrip latency and bandwidth for these approaches and EXTOLL’s
RMA engine are shown in Figure 5.9. The experiments refer to an EXTOLL
Field Programmable Gate Array (FPGA) NIC with a clock frequency of 157MHz
and 64-bit data paths.

The latency of the assisted, polling on GPU memory, and host approach does
not differ significantly among each other, while the direct approach’s latency is
about twice as high as the host-controlled approach. The main difference between
the direct and the other GPU-controlled approaches is that host memory is polled
for new notifications, which seems to degrade performance significantly. This is
supported by GPU performance counter, shown in Table 5.3. The bandwidth is
similar with host-controlled bandwidth being about 30% higher than the device
controlled approach. However, it seems to magically drop for data larger than
1MB. This is due to an issue with PCIe’s peer-to-peer protocol and read accesses
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(a) Half-roundtrip latency (b) bandwidth

Fig. 5.9 Latency and bandwidth of the EXTOLL RMA for data transfers between
GPU memory [19].

Table 5.3 GPU performance counters for RMA transfers for various polling
locations [19].

Metric Performance Counter
System memory Device memory

System memory read transactions (32B) 4,368 0
System memory write transactions (32B) 2,908 303
Global memory read transactions (64b) 0 1,314
Global memory write transactions (64b) 500 400
L2 read hits 0 3,143
L2 read requests 4,822 2,970
L2 write requests 5,268 404
Memory accesses (read/write) 6,788 1714
Instructions executed 46,413 22,491

that are routed through the CPU’s PCIe root complex. This has been improved
in newer CPU generations starting with Intel’s Ivy Bridge.

When system memory is polled the overall instructions that are executed
are doubled compared to polling on device memory. This is mostly due to
long-latency system memory accesses and the GPU not being able to cache
them adequately. Contrary, polling on device memory allows read accesses to
be cached and hence accesses are served much faster, significantly reducing the
overall number of instructions. However, polling on the data to be received
requires to know what data is expected and to check every data element. If large
chunks of data are moved the GPU’s consistency model does not guarantee any
order in which the data is received. Consequently, it is not sufficient to poll on
the last element. Alternatively, a flag mechanism can be used in which a memory
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(a) Half-roundtrip latency (b) bandwidth

Fig. 5.10 Latency and Bandwidth for Infiniband VERBS on GPUs [19]. Data is
transferred between GPU memories.

barrier is called in between writing the data and the flag.

5.3.3.2 Bandwidth and Latency of Infiniband VERBS

Figure 5.10 shows latency and bandwidth for the Infiniband’s VERBS implemen-
tation on GPUs with similar approaches as listed before for EXTOLL. Instead of
polling on data elements on the GPU the entire QP is placed in GPU memory,
referred to as device buffer. The test system for the experiments contained one
4x FDR HCA per node and the openstack subnet manager version 4.0.5.

Interestingly, neither latency nor bandwidth seem to benefit from the QP
residing in GPU memory. Their latency is roughly the same regardless of the
queue placement and about 6 times higher than comparable host-controlled data
transfers. The same is observed for the bandwidth.

The reason for the latency not differing significantly for device and host
buffered queues can be found in the performance counters again, shown in Table
5.4. Although system memory accesses are reduced by 70% if queues are allocated
in GPU memory, the overall instruction count is almost the same. Hence, the
queue placement is not the limiting factor, but rather the complex single-threaded
work request generation. An example of its complexity is the conversion from
little-endian to big-endian values as it is required by the Infiniband NIC.

The implication of Infiniband’s complex work request generation becomes
even clearer when its counters are compared to EXTOLL. Overall, more than
twice as many instructions need to be executed. EXTOLL’s lean work request
format and the immediate start of data transfers upon receiving the last word
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Table 5.4 GPU performance counters for Infiniband’s queue pairs residing in host
and device memory [19].

Metric Performance Counter
Host buffer Device buffer

System memory read transactions (32B) 772 80
System memory write transactions (32B) 670 316
L2 read misses 999 1,405
L2 read hits 16,647 14,575
L2 read requests 16,657 15,110
L2 write requests 1,990 1,885
Memory accesses (read/write) 59,937 58,905
Instructions executed 123,297 110,463

seems to be beneficial. However, EXTOLL also showed a significant performance
gain by polling on device memory instead of system memory, in which the queues
are allocated. Queues placed in GPU memory also show performance benefits for
Infiniband, although the difference to host-buffered queues is not as significant
as one might expect.

5.3.3.3 Moving EXTOLL Notifications to GPU Memory

Unlike Infiniband, EXTOLL does not allow for queues to be allocated in GPU
memory and significant changes to the software stack are necessary to still enable
queues to reside in GPU memory. The EXTOLL NIC writes notifications to
the Buffer Queue, which consists of a read pointer and descriptor storage. The
pointers reside in the NIC’s PCIe BAR space, while the descriptors are allocated
in system memory. When notifications are consumed the read pointer is advanced.
In order to move these to GPU memory, the following steps are required [92]:

1. When a new EXTOLL RMA port is opened, GPU memory is allocated
and mapped to the GPU’s PCIe BAR by the patched nvidia.ko driver.

2. A new set of buffer queues is created and pointers are redirected to the
physical address of the GPU’s PCIe BAR.

3. Read pointer and buffer queue descriptor storage are mapped to the GPU’s
address space through MMIO.

Polling on GPU memory notifications can be further optimized by using the
.cv (cache volatile) specifier for load operations. Also, the read pointer is not
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(a) Half-roundtrip latency (b) bandwidth

Fig. 5.11 Latency and Bandwidth of EXTOLL’s RMA for notifications residing
in system and GPU memory [92].

Table 5.5 GPU performance counters for polling on EXTOLL notifications in
system and GPU memory [92].

Metric Buffer Queue placement
System memory GPU memory

System memory read transactions (32B) 3842 0
System memory write transactions (32B) 2052 315
Global memory read accesses (32b) 909 1,116
Global memory read accesses (64b) 781 893
Global memory write accesses (32b) 412 412
Global memory write accesses (64b) 606 606
Instructions executed 60351 65039

incremented every time a notification is consumed, but rather in a lazy scheme
after a few accesses. The latency and bandwidth is compared to the original
approach with notifications residing in system memory and results are depicted
in Figure 5.11.

Moving the queue to GPU memory reduces the half-roundtrip latency by
about half. The bandwidth is also increased for data less than 256kB and remains
the same as the bandwidth of host-buffered queues afterwards. The performance
counters are show in Table 5.5.

Although the overall instruction count is even slightly higher for queues
placed in GPU memory, the number of long-latency system memory accesses is
significantly reduced. As a result, the remaining instructions are mostly spent
on creating work requests and polling on notification no longer seems to be
a limiting factor. Interestingly, the number of global memory accesses is only
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slightly increased, thus notifications are quickly generated by the NIC after it
receives the work request.

5.3.3.4 Verdict

It has been shown how RDMA transfers can be triggered and controlled on
the GPU as opposed to relying on the CPU to handle communication. Two
inherently different interconnection networks showed their benefits regarding the
implementation and interface of their own RDMA capability. Summarizing it
can be said that it is important to make the work request generation as lean as
possible with as few instructions as possible. Unlike CPUs, the GPU performance
suffers from any additional instruction that is required to be executed by a single
thread only. Infiniband shows that their complex work requests do not fit the
GPU’s execution model and thus performance is degraded significantly.

Another important aspect is the placement of notifications. Both Infiniband
and EXTOLL show lower latency and higher bandwidth if notifications are kept
as close to the GPU as possible. This is certainly a approach that is mandatory
for GPU-controlled RDMA transfers.

5.4 Message Passing

The importance of MPI has already been pointed out in previous chapters and
this section is going to introduce mechanisms that enable messaging on the
GPU. Furthermore, message passing requires a management layer on top of the
communication, thus it can be implemented on top of GGAS, for example.

There are two approaches how to involve the GPU in message-based commu-
nication. The first approach enhances MPI by the capability of transferring data
between two GPUs. This separates control and data flow as control remains on
the CPU, but the data is transferred directly between the accelerators.

The second approach moves both control and data flow to the GPU and
leaves the CPU as offloading device to eventually control the NIC.

Generally, it can be distinguished by the processor that controls the commu-
nication, thus CPU- or GPU-controlled. These approaches are discussed in the
following.
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5.4.1 CPU-controlled

CPU-controlled message passing can be viewed as the state-of-the-art in HPC
systems. Here, MPI is the most prevalent communication model and communica-
tion is managed on the CPU. Since the number of systems that employ GPUs as
accelerators has been increasing in the past years, the importance of direct GPU
to GPU communication has led the MPI community to adapt its communication
model accordingly. Starting with MVAPICH all major MPI implementations
allow to pass device pointers to MPI routines.

An important step toward GPU-aware MPI was NVIDIA’s introduction of
GPUDirect, allowing multiple devices to share the same pinned buffer in system
memory to avoid additional copies. This was later extended by the capability of
GPUs of the same PCIe root complex to transfer data directly between each other
without the CPU. The next version, referred to as GPUDirectRDMA, enables
other PCIe devices to access the GPU’s memory directly through peer-to-peer
access. This allows a NIC to read from the GPU and put the data to the remote
GPU’s memory directly without any host memory staging copies. However, this
only works well if the NIC and the GPU share the same root complex. Otherwise
PCIe’s issue with peer-to-peer read operations limit the bandwidth dramatically,
thus making staging copies necessary for larger data transfers [93]. Consequently,
MPI implementations like MVAPICH still use staging copies for larger transfers
to overcome this issue.

The latest GPUDirect, referred to as GPUDirectAsync, allows GPUs to trigger
network operations by accessing the NIC directly. Here, the CPU puts compute
and communication tasks into the GPU’s command queue. When the GPU is
done with a compute task it can execute the communication task by triggering
the NIC. Before, control had to be returned to the CPU from where the NIC was
instructed to perform communication. This feature is currently being adopted
by MVAPICH, extending MPI operations by the ability to take a special CUDA
streams communicator as parameter. An overview of GPUDirect techniques can
be found in Table 2.3 of Chapter 2.

In addition to being CUDA-aware, an extension to OpenMPI even supports
non-contiguous data transfers between GPUs [94]. Here, specialized (un-)pack
kernels are launched from the CPU to allow for contiguous data transfers of
vector data types, which eventually improves the bandwidth for vector transfers
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significantly. There also exists work on MPI collective operations on GPUs [95],
in which callback routines are used to to maximize overlap between computation
on the GPU and MPI communication on the CPU.

Another implementation of GPU-centric collective communication is
NVIDIA’s NCCL library [96]. While mainly designed for intra-node communica-
tion between GPUs it provides optimized collective operations such as allgather,
broadcast, and reduce of data residing in GPU memory. The second version,
NCCL 2.0, scales out to multiple nodes, each deploying multiple GPUs. Nonethe-
less, it uses asynchronous CUDA kernels that are launched from the CPU and
tied to a stream. Furthermore, there are plans to extend NCCL by point-to-point
and neighbor collective operations [97].

5.4.2 GPU-controlled

One of the first efforts to implement message passing on GPUs is the Distributed
Computing on GPU Networks (DCGN, pronounced decagon) framework by Stuart
and Owens [12]. Before the authors introduce their messaging approach they
discuss the challenges of implementing message passing on graphics processors.
The major challenge is that GPUs are unable to access the NIC, preventing the
GPU to source network traffic. Consequently, the NIC is accessed by the CPU,
which polls on distinct memory locations to receive communication requests
from the GPU while a kernel is running. Therefore, a dedicated CPU thread is
constantly waiting for messaging requests from the GPU and then uses standard
MPI for message passing, thus supporting many different NIC architectures. In
fact, the CPU thread handles all MPI communication from both CPU and GPU
threads. The reported performance is about 10% lower for high-level applications
compared to a GAS+MPI model, however, the losses in micro-benchmarks such
as latency and bandwidth are significant. For example, an empty message takes
about 564 times longer than with MVAPICH2. Nonetheless, the authors highlight
the importance of GPU-controlled communication models, especially with respect
to the programming model. Rather than aiming at high performance, the authors
want to present a road map for chip makers and vendors for future systems and
requirements.

Another approach is followed by Sangman Kim et al. [98] and Silberstein [14],
respectively, who aim to implement a networking layer with socket abstraction
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on the GPU. Here, a so-called "Daemon Thread Block" is executed on the GPU,
which accepts requests and spawns computation as needed. Network buffers
are kept on the GPU and written by the NIC directly, using GPUDirectRDMA.
Initialization, e.g. creation of channels, is done by the CPU and control is then
handed off to the GPU. Although the authors emphasize on how important
it is that communication can be performed without the CPU, their approach
still relies on the CPU to control the NIC. A ring buffer is used for data and
control exchange between CPU and GPU. In their first work [98] they reason
that GPUs are incapable of controlling I/O devices, such as NICs. The second
publication [14] corrects this statement and says this is actually supported, but
left it for future work. The reported performance for a face verification server
shows a speedup of up to 2.3x compared to CPU-controlled communication,
and an improvement in latency by a factor of 3. Furthermore, they assessed
scalability and a distributed in-GPU MapReduce framework. A small cluster
with four GPUs yields a speedup of 2.9-3.5x compared to a single GPU for a
word count and k-means application.

In summary it can be said that it does not exist much work to implement
message passing on GPUs. The main reason lies in the different execution
model and architecture of the CPU and GPU. Most applications depend on
fast message transfers which requires high single thread performance and low
memory access latency, especially for synchronization purposes. GPUs, however,
require parallelism to perform well and the message passing model cannot take
advantage of the massive amount of parallelism. Nonetheless, it is a prominent
communication model that is well understood and many applications rely on it.
This model is going to be discussed more when managed protocols are introduced
later in this work, particularly Section 6.3. Although NICs are optimized for
messaging support, many aspects are required to be processed by the processor,
such as memory management or message matching. Hence, even with the support
of NICs, a substantial amount of the messaging is loaded off to the processor.
Additionally, a message passing model can be layered on top of any physical
communication model, such as a flat virtual address space or PGAS.
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5.5 Performance Comparison

The preceding part elaborated on various NIC-assisted and GPU-centric com-
munication models and their implementation, using Infiniband and EXTOLL as
interconnection networks. Here, the communication models are compared in re-
gard to performance, energy efficiency, and compatibility to the GPU’s execution
model and architecture. However, the comparison takes only interactions and
low-level aspects into account, while higher level abstractions and capabilities
are discussed in the remainder of this work.

The following evaluation is based on the EXTOLL interconnection network.
While Infiniband also provides support for message passing and RDMA, EXTOLL
also allows to evaluate the global address space approach. Nonetheless, results
should be viewed independently of the underlying network architecture as their
strengths and weaknesses have already been discussed throughout this chapter.

5.5.1 Benchmarks

The benchmarks used to evaluate different communication models are introduced
in the following. The set of application aims to cover a wide range of applications
with distinct characteristics. A brief introduction is followed by a summary of
distinct characteristics in Table 5.6. Note that the benchmarks are implemented
with GGAS, RMA, and CPU-controlled MPI communication.

N-Body This benchmark represents astronomic scientific simulations and mod-
els the gravitational interaction between bodies of random size. The computation
of the gravitational forces in a three-dimensional space is intense with a complex-
ity of O(n2) with n being the number of simulated bodies. The force F between
two bodies P0 and P1 is determined by the following formula, in which G refers
to the gravitational constant, m to the mass of the body, and r to the distance
between two bodies.

F⃗g = G ·m1 ·m2
| r12 |2

· r⃗12

According to Newton’s first law of motion, the force causes an acceleration
which will change the body’s position and velocity. Overall, this calculation
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requires about 32 floating point operations per interaction and is executed
n · (n−1) times.

The simulation aims to calculate the new positions of each body after a
given time, which is divided into small steps of ∆t. The distributed algorithm
assigns a set of bodies to each processor, referred to as local bodies. As the
calculation of the new position of each body requires to apply the force of every
other body, an all-to-all communication is necessary. The communication is
implemented as a ring, in which the local bodies are sent to the succeeding rank
and bodies are received from the preceding rank. Whenever bodies are received,
their interactions with local bodies are calculated, updating velocity and position
of local bodies. Then, the received bodies are shifted along within the ring and
new ones are received.

GGAS would generally allow all bodies to be placed within the global address
space, however, due to technical constraints only 256MB of PCIe BAR can
be opened to the network. As this is not sufficient, a different message-based
approach is implemented. Here, the limited BAR memory is seen as a mailbox
in which bodies can be received. A global barrier is used to signal that all
interactions have been calculated and the bodies can be shifted along again.
This perfectly follows a Bulk Synchronous Parallel (BSP) model [99], which is
common in scientific applications.

Himeno (Stencil) As shown in Table 4.1, nearest neighbor communication is
the most prevalent pattern in scientific applications, thus it is represented here
by the Himeno benchmark. The basis of this benchmark is the three-dimensional
Poisson equation for compressible fluid analysis, solved using the Jacobi iteration
method. A structured curvilinear mesh is applied to the fluid and solved using a
19-point stencil algorithm. Unlike N-Body, which is computational-bound, this
benchmark is mostly limited by memory performance.

The three-dimensional mesh is divided into planes along the z-direction
(depth). Each rank is assigned a set of planes, in which it calculates interactions
between fluid particles. As neighbor particles have to be taken into account for
the calculation, planes have to be exchanged between adjacent ranks. Thus, top
and bottom planes are calculated first, then sent to other ranks and when data
from neighbor ranks is received the middle part can be calculated as well. This
allows for overlap as the center can be computed while new data is awaited.
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Global Sum Another aspect that has been revealed by the trace analysis is
that the (all-)reduce collective operation is in wide use. Hence, this benchmark
reduces large amounts of distributed data, for example calculating the sum of all
values. First, each GPU reduces its local data and then calls a collective reduce
operation on the result.

Using GGAS, each GPU sends its local data to the root GPU, where the
data is reduced locally. This yields the best performance at smaller scale and a
moderate number of values to be reduced. A tree-based and hierarchical reduce
operation may be more efficient for large-scale installations [71].

The MPI version has the data reduced on the GPU, from which the result is
copied back to the CPU and reduced by MPI’s allreduce operation. An RDMA
version was not implemented as the amount of transferred data is too small to
make efficiently use of DMA engines. In fact, only a single value is sent by each
rank and therefore the RDMA work request is already larger.

Random Access The last benchmark that is used to compare the communi-
cation models for GPUs evaluates how well random memory locations can be
accessed. The Random Access is part of the HPC Challenge Benchmark Suite
[100] and defines rules how the random accesses have to be performed. It starts
with a large table that is distributed across all GPUs. Next, each GPU generates
a set of random indices, which identify a location within the table. The index at
which the table is accessed can either result in local table accesses or remote table
accesses. Due to randomness, accesses are hardly coalesced and often memory
and network transactions contain only a single valid element, increasing overhead
and reducing efficiency. Hence, the rules allow to combine up to 1024 accesses
that modify a particular node’s table. This reduces the number of memory and
network transactions.

Although the table could be placed in the globally shared memory in the
GGAS approach, the resulting table size would be rather small due to the limited
amount of memory that is mappable to the GPU’s PCIe BAR. Another issue
is the lack of remote atomic operations and it also would not be possible to
combine multiple accesses together to reduce network transactions. Thus, a
mailbox scheme with send/receive semantics, similar to the N-Body benchmark,
is implemented. The same approach is used for the RDMA implementation.

With MPI, the table is allocated on the GPU, the indices, however, are
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Table 5.6 Characteristics of various benchmarks that are used to assess various
communication models [20].

Characteristic Application
N-Body Himeno Global Sum Random Access

Computation O(n2) O(n) O(n) O(n)
Memory O(n) O(n) O(n) O(n)
Communication O(n) O( 3√

n2) O(logn) O(n)
Comm. pattern Ring Nearest Neighbor All-reduce Uniform Random
Average Payload n

N
3√

n2 1 (element) 0-1024 (elements)
Overlap + ++ – -

generated on the CPU. At first glance, this seems like an unfair comparison to
the other two implementations, but generating the indices is fast and copying
them to the CPU from the GPU would simply introduce too much overhead.
Furthermore, the actual memory access is supposed to be benchmarked, rather
than the calculation of random indices.

5.5.2 Performance

Before the performance is evaluated for every benchmark and communication
model, the bandwidth are compared in Figure 5.12. It is eminently obvious that
GGAS’ bandwidth is significantly superior to the other models. While MPI
requires to leave the kernel and return control to the CPU for communication,
GPU-controlled RDMA suffers from polling on system memory. The graph also
shows CPU-controlled RDMA with additional cudaMemcpy operations to move
the data to system memory before communication. As shown, it outperforms
MPI as it accesses the NIC’s RDMA capabilities directly without MPI’s software
overhead.

While bandwidth provides first tendencies it is not sufficient to make profound
statements about best suited communication models for GPU-centric commu-
nication. Thus, the performance on application level for the aforementioned
benchmarks is assessed. The test system comprised 12 nodes with Intel Xeon
E5 processors and one NVIDIA K20 Kepler GPU per node. The nodes are
interconnected by EXTOLL, implemented in an FPGA at 157MHz.

N-Body The performance of the N-Body benchmark for 2 and 12 nodes
(weak scaling) is shown in Figure 5.13. At the smaller scale, GGAS yields
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Fig. 5.12 Bandwidth of various communication models for GPU to GPU data
transfers [20].

better performance for smaller problem sizes, but is outperformed by both
RMA and MPI starting at about 4K bodies. The performance is similar for all
three communication models at large problem sizes as computation outweighs
communication by far. Increasing the node count to 12 shows similar effects,
although GGAS can stay at the top until about 16K bodies.Then, GGAS is
outperformed by RMA and MPI again.

While computation increases at a complexity of O(n2), communication in-
creases at O(n), hence time is dominated by computation at larger scale and
communication fades into the background. Furthermore, the more data is needed
to be transferred the more resources are occupied by GGAS, reducing resource
availability for computation and limiting possible overlap. RMA, on the other
hand, offloads the copy operation to the NIC and allows to fully use the GPU
for computation. That is why RMA and MPI are superior to GGAS for larger
problem sizes. Nonetheless, GPU-controlled communication is always favorable
and outperforms MPI in any case.

Himeno (Stencil) Figure 5.14 shows the performance of the Himeno bench-
mark at weak scaling as the problem size increases linearly with the number of
nodes. Unlike N-Body, GGAS is outperformed by MPI at any scale, but MPI’s
performance is itself inferior to RMA. Similar to the previous benchmark, GGAS
requires GPU resources to be dedicated to copying the data while RMA and
MPI allow to offload communication to the NIC and CPU, respectively. Hence,
applications in which communication can be overlapped benefit from an offload-
ing approach, therefore RMA outperforms GGAS. Nonetheless, GPU-controlled

104



5.5 Performance Comparison

(a) 2 nodes (b) 12 nodes

Fig. 5.13 Performance of the N-Body benchmark for various communication
models and 2 and 12 nodes [101].

Fig. 5.14 Performance of the Himeno benchmark for various communication
models at varying scale [101]. The problem size increases with the number of
nodes, showing weak scaling.

communication is yet again superior to MPI. In fact, RMA scales better than
MPI as performance losses are minimal when the number of nodes is increased.

Global Sum The next benchmark that is analyzed is Global Sum, in which
a large array is reduced to its sum. Figure 5.15 shows the execution time for
various array sizes for 2 and 12 nodes, using GGAS and CPU-controlled MPI.
Again, RMA is not evaluated as the benchmark’s communication volume is small
with only a single element per GPU.

The GGAS implementation is significantly faster than MPI and finishes in less
than half the time of the MPI implementation for array sizes up to 4K elements.
Then, the difference in performance starts to diminish as computation takes over
the majority of the benchmark’s run time. The difference between GGAS and
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(a) 2 nodes (b) 12 nodes

Fig. 5.15 Performance of the Global Sum benchmark for GGAS and MPI and 2
and 12 nodes [101].

MPI becomes smaller as scale increases. The more GPUs participate the less
data is reduced locally and the more communication is needed. As a result, both
execution times become larger but GGAS shows a steeper increase. Nonetheless,
GGAS is never slower than MPI and GPU-controlled communication is again
favorable in any case.

Computation of this benchmark increases with the number of elements while
communication only depends on the number of nodes and is independent of the
problem size. Hence, overhead that is caused by communication and synchroniza-
tion increases at scale. As aforementioned, larger scale also requires to implement
a tree-based structure to exchange results from local reductions, however, due to
the limited number of available nodes it was not possible to evaluate performance
for more than 12 nodes.

Random Access The last benchmark of this analysis randomly updates a
distributed table, resulting in a large amount of small messages. The performance
is measured in GUPS (Giga Updates Per Second) and shown in Figure 5.16.

As mentioned in the previous section, the benchmark’s specification allows
to combine up to 1,024 updates into a single message. Nonetheless, messages
are comparably small, which is clearly in GGAS’ favor as it can perform twice
as many updates in the same time than MPI and RMA. However, the RMA
implementation slightly outperforms GGAS at a scale of 2 nodes, but communi-
cation efforts are rather low and half of the updates concern the local table. As
communication efforts increase, RMA’s performance decreases accordingly while
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Fig. 5.16 Performance of the Random Access benchmark for various communica-
tion and a varying number of nodes [101].

GGAS’ performance increases.
MPI’s performance seems to slightly increase and becomes higher than RMA,

for example, but this is mainly due to indices being generated on the CPU. Hence,
only the updates are executed on the GPU. However, generating indices on the
GPU would not make much sense as this operation is quite simple and the extra
copy from device to host would dominate execution time.

5.5.3 Energy Efficiency

Although performance is often regarded as the main aspiration to improve
and enlarge computing systems, they have become more and more limited by
power and energy constraints. Thus, the power saving capabilities of different
communication models needs to be taken into account as well. The energy E a
system is spending is the integral of the power over time.

E =
∫

(Pcpu(t)+Pgpu(t)+Pother(t) )dt

Consequently, energy can be saved by either reducing the run time of an
application or reducing the power consumption of the entire system. The use of
GPUs to accelerate certain compute-intensive parts of an application reduces
execution time, while the GPU itself is more power efficient as the CPU as it
runs at lower clock frequencies and cores are kept simpler without expensive
features like out-of-order execution or branch prediction.

The large number of components makes it difficult to measure power ac-
curately. While the overall system power can be measured with monitors, it
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Table 5.7 Power consumption of various components and benchmarks using
different communication models [20].

Comm. Component N-Body [W] Himeno [W] Global Random Average [W]Model Sum [W] Access [W]

GGAS

CPU 33.21 25.94 18.38 27.60 26.28
DRAM 3.18 2.89 1.63 3.27 2.74
GPU 81.01 105.13 63.57 68.67 79.60

Total 147.43 133.96 83.59 99.54 116.13

RMA

CPU 32.16 23.96 n/a 28.16 28.09
DRAM 3.27 2.60 n/a 3.22 3.03
GPU 87.91 116.53 n/a 79.48 94.64

Total 152.22 143.09 n/a 110.85 135.39

MPI

CPU 37.66 34.23 34.00 35.26 35.29
DRAM 3.86 3.40 2.97 3.62 3.46
GPU 82.93 106.99 57.48 51.79 74.80

Total 158.25 144.62 94.44 90.66 121.99

remains impossible to determine which components contribute most to the power
consumption at certain moments of time. Fortunately, CPUs and GPUs provide
software-centric approaches to query current power consumption. These values
are based on various metrics and fed to a model which calculates how much power
is spent. Intel provides the Running Average Power Limit (RAPL) interface for
CPU and memory power consumption and the GPU’s power can be queried
with NVIDIA’s System Management Interface (SMI). Other components, such
as network, I/O, and peripheral devices are assumed to consume power at a
constant rate.

The performance results from the previous section already show that GPU-
controlled communication is always favorable. In addition, Table 5.7 shows the
average power consumption by component and communication model for each of
the benchmarks.

On average, the CPU consumes about 25% less power if communication is
controlled on the GPU. While GGAS’ system memory power consumption is
also reduced by about 20% compared to MPI the GPU’s power is only increased
by less than 7%. However, using the RMA communication model increases
the GPU’s power consumption by about 25% compared to MPI. Unfortunately,
it is not possible to break down the GPU’s power even further to determine
whether the increased power consumption is caused by compute or memory logic.
Compared to MPI, while GGAS allows to save about 5% in overall power, the
RMA model causes power to increase about 10%. Here, the savings in CPU
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(a) 2 nodes (b) 12 nodes

Fig. 5.17 Energy spending for the N-Body benchmark for various communication
models and 2 and 12 nodes

power consumption cannot offset the increase in GPU power.
Combining power results and performance yields the energy spent on partic-

ular benchmarks. The results for N-Body are shown in Figure 5.17, again for
2 and 12 nodes and various problem sizes. The energy spending seems similar
for GGAS, RMA, and MPI at the smaller scale with a slight advantage for
GPU-controlled communication. However, increasing the scale to 12 nodes shows
clear benefits for GGAS, at least for small to medium problem sizes. Again,
GPU-controlled communication is beneficial in any case and allows for energy
saving from 10 to 80%.

Figure 5.18 depicts the energy spending per node for the Himeno benchmark.
Due to linear performance scaling, more nodes solve larger problem sizes in
constant time and thus the energy spending per node remains constant as well.
Although GGAS’ performance is inferior to MPI, significant less energy is spent
for 8 and 10 nodes and only a little more is spent for other configurations. RMA’s
energy is always less than GGAS and MPI. In fact, using RMA instead of MPI
allows for energy savings from 8 to 20%. GGAS never increases the energy
spending more than 4% and using 8 and 10 nodes, it even allows for savings of
up to 13%.

The energy spending for the Global Sum benchmark follows the same course
as the performance and is shown for 2 and 12 nodes in Figure 5.19. Due to
additional communication and synchronization overhead the energy spent per
node remains constant as the number of nodes increases. The larger the problem
size becomes the less energy can be saved with GGAS as communication is
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Fig. 5.18 Energy spending for the Himeno benchmark for various communication
models at varying scale.

(a) 2 nodes (b) 12 nodes

Fig. 5.19 Energy spending for the Global Sum benchmark for GGAS and MPI
and 2 and 12 nodes.

outweighed by computation. Nonetheless, energy savings from 20% for large
amounts of data and 50% for small amounts are enabled by switching to GPU-
controlled communication.

The energy analysis of the Random Access benchmark completes this section
and the spending is shown in Figure 5.20. GGAS’ superior performance allows
for tremendous energy savings at any scale, while RMA and MPI show similar
spendings at larger scale. On average, GGAS’ savings amount to 47%, whereas
RMA still allow to reduce the energy spending by 13%, compared to MPI.
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Fig. 5.20 Energy spending for the Random Access benchmark for various com-
munication models and varying node count.

5.6 Summary

The GPU’s execution model differs significantly from the CPU and communication
primitives like MPI have been tailored and optimized for fast single-thread
processors with low-latency memory access. Although GPUs provide tremendous
compute power and significantly higher memory bandwidth their integration into
computing systems requires to change the programming paradigm accordingly.
Existing applications and code cannot run without being substantially rewritten
and it divides the code into two branches: code that is executable on the GPU
and code that runs on the CPU.

In an offloading model, the CPU owns control of the entire application, but
hands off compute-intensive tasks to the GPU where data is processed and results
are returned to the host processor. Existing communication models rely on an
interplay with the operating system that solely runs on the CPU, thus making it
impossible to implement it on the GPU.

Nonetheless, this chapter has introduced models in which the GPU can control
communication by accessing networking hardware directly within CUDA kernels.
Although communication is still managed on the CPU, directly orchestrating
communication on the GPU has shown to be beneficial in terms of performance
and energy. Here, it is shown that PGAS models can be orchestrated on the
GPU as they do not require much management after memory registrations are
set up. Contrary, MPI requires much more management and serves as a proxy
for traditional CPU-controlled communication for the analysis of this chapter.

The PGAS model is divided into two basic operations. First, fine-grain
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memory access that is based on load/store forwarding, referred to as GGAS.
This allows GPUs to directly access other GPU’s memory at word or cache line
granularity. Second, bulk transfers with put/get semantics, referred to as RMA.
Here, the data transfer is offloaded to the NIC’s DMA engines. These two models
are compared to MPI.

The performance analysis shows that GGAS is beneficial for small messages
as it occupies only a few GPU resources to copy data. The more data needs to
be transferred, the better it is to use RMA as copy operations are executed by
the NIC’s hardware. In any case, GPU-controlled communication is favorable
to traditional MPI. The improvement results from keeping control on the GPU
and avoiding additional copies to host memory. While the latter can be avoided
with CUDA-aware MPI as well, the consequences from context switches are
still prevalent. Not only does it introduce additional latency when kernels have
to be relaunched, it also aggravates programmability and is conducive to more
heterogeneity.

Energy has evolved to another important metric as many systems are nowa-
days limited by power and energy constraints. It is shown that GGAS and
RMA not only reduce time-to-solution, but also allow to save power by reducing
CPU power consumption at only a small increase of GPU power. Hence, energy
savings from 10 to 50% are shown for various benchmarks.

This chapter clearly shows the benefits of GPU-controlled communication
and strengthens the call for stepping up efforts toward specialized communication
models. The following summarizes the insights from this chapter:

Insight I: A global shared address space or PGAS model are completely align
with CUDA’s programming model.

Insight II: Load/Store forwarding yields the highest bandwidth and lowest
latency, especially for small messages.

Insight III: Application that can overlap communication with computation ben-
efit from offloaded models, such as put/get or even CPU-controlled
message passing.

Insight IV: GPU-controlled communication is always favorable, however, only
when load/store and put/get are used together. Thus, a PGAS
model seems best for GPUs.
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Insight V: At larger scale, managed communication might become inevitable.
In unmanaged communication, the user has to administer buffers
and connections as Listings 5.1, 5.2, and 5.3 have shown. With
hundreds to thousands of GPUs, the complexity growths significantly
when NUMA effects also have to be taken into account.
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Managing Communication on GPUs

Besides having access to the network, it is also important to be able to manage
communication on the GPU. Managing communication comprises various aspects,
often depending on the communication model. This chapter discusses various
aspects with respect to the communication model and covers a variety of building
blocks. The focus is on the matching of messages and receive requests, which
has been published at the International Parallel and Distributed Processing
Symposium (IPDPS), 2017 [21] 1.

The question whether communication needs to be managed or not depends on
the scale. An example for unmanaged communication is a large shared address
space (see also Figure 5.4). Here, each processor maps every other processor’s
memory into its own address space, allowing for direct load/store access of any
data within the system. The user has to know where data resides and care
about data movement accordingly, but also administer buffers on each GPU to
exploit data locality. Managed communication, such as message passing, allows
to explicitly express data locality at an elevated level of abstraction.

6.1 Managing Concepts for GPUs

As it has been shown in Section 5.1.1.2, existing approaches set aside CPU cores
to perform communication, however, this is still an unexplored area for GPUs.

1The paper received a best paper award.
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CPU solutions provide two different hierarchies: first, intra-node communication
to instruct a communication entity about communication tasks. This is usually
implemented as shared memory queues. Second, inter-node communication be-
tween the communication entities, which currently comprises PCIe and NVLINK
for GPUs, or NIC-assisted models as described in Chapter 5. While GPUs are in-
herently different from CPUs, the principles of communication onloading remain
the same, however, there are various design decisions regarding the granularity.

One fundamental question to be answered is the granularity at which com-
munication can be triggered on the GPU. Another open question concerns the
underlying communication architecture that is presumed, on which the commu-
nication process is built.

6.1.1 Kernel-level Management

One approach is to launch two separate kernels, one for the application and
another to perform communication, which is depicted Figure 6.1. It would also be
possible to have multiple application kernels, served by a single communication
kernel. Intra-node communication (➊) takes place between the kernels, through
global memory, and inter-node communication (➋) is handled by the communica-
tion kernels only. Similar to CPU approaches, ➊ can be implemented as a queue,
residing in global memory, whereas ➋ can be any inter-GPU communication
substrate, possibly another queue accessed within CUDA’s UVA space.

However, this approach has a significant drawback with current GPU archi-
tectures. The scheduling of kernels in the current and official CUDA release is
transparent and the user has no control over the timing when kernels are brought
to execution, and SMs, to which CTAs are assigned. Although CUDA implements
stream priorities, it is not guaranteed that higher prioritized kernels actually
run first. Even the order in which kernels are launched does not guarantee that
both kernels run concurrently or that the first kernel is scheduled first. Without
any additional control over the scheduling, this solution is not applicable and
deadlock-free.

6.1.2 CTA-level Management

Instead of launching a separate communication kernel, each application kernel
can dedicate one or a few CTAs to communication tasks. This is depicted in
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Fig. 6.1 Separate communication kernel that runs along with the application.
Instructions are received through global memory.

Figure 6.2. The first CTA that is running on an SM takes over the communication
role, while all others belong to the application. From an application’s point of
view, this approach is similar to the aforementioned approach with a separate
kernel, as one or a few CTAs serve the application’s communication requests.

6.1.3 Warp-level Management

A third, and most fine-granular approach, is depicted in Figure 6.3. The commu-
nication is distributed across all CTAs, each dedicating one or a few warps to
communication. The main advantage of this approach is that the communication
entity is ensured to be running with the CTA that is executing the application.
However, the application has to spare at least one warp per CTA that is entitled
to request communication. These warps are then not available to the application.

6.1.4 Software NIC Specification

In order to assess different design options, the tasks of such a communication
entity have to be defined. Similar to a NIC, the communication entity has to
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Fig. 6.2 Communication CTAs as part of the application. Instructions still need
to be passed through global memory.

possess the following capabilities. The communication entity is referred to as
SoftNIC (Software NIC) in the following.

• Work generation: the SoftNIC needs to receive work requests from the
application. A work request comprises any communication related task,
such as send or receive a message, expose memory to the network, or query
if a new message is available. This requires a control and data path between
the SoftNIC and the application, annotated with ➊ in Figure 6.1, 6.2, and
6.3.

• Work execution: upon receiving work requests, they need to be executed.
Here it depends on the type of work the application is requesting and
the communication model the SoftNIC is implementing. Work execution
comprises, but is not limited to, data transfers (see ➋ in Figure 6.1, 6.2, and
6.3), memory allocations and de-allocations, collectives, active messages,
message matching, synchronization, and many more. However, there are also
tasks the SoftNIC is associated with that do not require explicit triggering.
For example, address translation, routing, other resource allocations, such
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Fig. 6.3 Each CTA has its own communication warp, thus instructions can be
passed through shared memory. Communication between these specialized warps
still requires global memory.

as compute or I/O resources, or intra-SoftNIC communications, such as ➌

in Figure 6.3.

• Work completion: while work generation can be seen as the interface
from the application to the SoftNIC, work completion needs a control
and data path in the opposite direction. Both blocking and non-blocking
communication requires the application to have information about work
requests being completed or still being processed. Hence, the SoftNIC
has to notify the application about unconsumed messages or data, the
completion of work requests, or the release of send buffers that are now
available to be rewritten again.

In the following, these items are discussed in more detail in regard to their
implementation and applicability to various communication models. Various
building blocks are introduced that are eventually needed to compose a SoftNIC.
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6.2 Work Generation

Any time the application wants to communicate, a work request has to be
generated and passed to the SoftNIC. In a CPU-centric world, the interface is
usually implemented as a queue or list, mainly because these data structures
preserve ordering and are rather simple to implement. However, there is no
general definition of a work request and it may depend on the communication
model. For example, two-sided message passing might see a work request as a
send or receive operation, while one-sided communication would map put or get
operations onto work requests. Nonetheless, the interface between SoftNIC and
application remains the same and is discussed in the following.

6.2.1 Queues on GPUs

A queue is a fundamental abstract data type that is either implemented as a
linked list or circular buffer. An important characteristic is that queues preserve
ordering, meaning that elements are consumed in the order they were produced.
Insert and remove are executed in constant time, thus O(1) complexity. On
CPUs, queues have been studied extensively and are available in C++’s STL
library, for example. Furthermore, there are some attempts to implement queues
on GPUs.

6.2.1.1 Related Work

One of the first papers to study queues on GPUs is from Cederman et al.
[102]. Their work discusses if and how well common CPU queuing algorithms,
including lock-based and lock-free queues, can be implemented on graphics
processors, relying on improved atomics of the Kepler GPU architecture. The
authors categorize their designs into Single Producer Single Consumer (SPSC)
and Multiple Producer Multiple Consumer (MPMC) queues, each implemented
with different approaches. In case of the SPSC approach, one CTA dedicates
a thread for the role of the producer and a second CTA provides the consumer
thread. Their experiments show that using the Tesla 2050 (Fermi architecture),
the Buffered BatchQueue [103] performs best, with 2.5M operations/s. Here
the queue is divided into batches, each exclusively accessed by the producer
and consumer, respectively. Additionally, the batches are buffered in shared
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memory to minimize access latencies. The benchmarks for the MPMC has 25%
of the threads per CTA producing elements, and the remaining 75% consume
elements. The number of CTAs is being varied. Regarding lock-based queues,
the dual-spin lock approach showed the best performance, while the so-called TZ
queue (named after Tsigas and Zhang) [104] seems to be superior to the lock-free
queues, achieving 600K operations/s at high contention. Although the paper is
not clear about the implementation of the dual-spin lock, it is assumed that the
queue is locked by busy-waiting on write and read access. The TZ queue is an
array-based queue using atomic Compare-And-Swap (CAS) operations to modify
read and write pointers, respectively. It is also shown that lock-free queues scale
better and are superior at high CTA counts, while lock-based queues still perform
better at small scale.

Scogland et al. [105] continue this study and propose a GPU optimized
design, but they also assess the performance of atomics on CPUs and GPUs.
Interestingly, the performance of atomic Fetch And Add (FAA) operations is
about 7 times higher than successful CAS operations on NVIDIA’s K20 GPU.
Unlike CPUs, the performance remains constant with an increasing number of
threads. The authors propose a ticket-based queue, in which a thread increments
a ticket counter before it is granted access to the queue. Only if a transaction
counter equals the value on the ticket, the thread is granted permission to enqueue
its element. After completing its operation, the thread increments the transaction
counter to signal another thread to proceed. Performance is assessed with a
benchmarks that uses an equal number of producing and consuming threads.
On NVIDIA’s K20 GPU, their ticket-based queue achieved a throughput of
256M elements/s. They further mention that they introduce some random work
between queue operations to lower contention, otherwise performance is about
10% lower.

Although ticket-based queues seem to perform quite well, they cannot distin-
guish between an empty and full state. Generally, existing queue implementations
on GPUs try to port CPU queues to the GPU, following a thread-oriented model.
However, GPU threads are different from their counterparts on CPUs, and a
warp-oriented model is more appropriate as it aims to avoid issues with divergence.
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Fig. 6.4 Circular buffer to implement the queue data structure. Two read pointers
are used to avoid race conditions between multiple readers. Each data element
comprises a valid identifier to avoid race conditions between writers and readers.

6.2.1.2 Warp-parallel Queue

Rather than seeing threads as individual producers and consumers, warp-parallel
approaches result in better efficiency by avoiding threads within a warp to
diverge during queue operations. For example, assuming a warp size of 32
threads, one warp can enqueue one data element that is composed of 32 sub-
elements. Alternatively, 32 threads can collaboratively enqueue one element each.
This perfectly complies with the GPU’s execution model and increases efficiency.

6.2.1.3 Implementation

An example of a warp-parallel queue is shown in Algorithm 1 and 2. Queue
operations are divided into two main parts: first, obtaining a valid queue index
and second, writing or reading to or from the queue, respectively. The first part
needs to ensure that the queue can fit the amount of elements to be enqueued and
that no other warp obtained the same index. Race conditions can be avoided with
different techniques and need to be considered between producers and consumers
themselves, but also between each other. Thus, besides a write index a valid
field indicates if a data element is valid or stale. The write index is advanced
atomically. Both mechanisms together avoid race conditions between multiple
producers and producers and consumers.

Regarding the dequeue operation, it has to be ensured that data has been
consumed before the read index is advanced, thus a second read index is intro-
duced here. The second index is read and incremented atomically to avoid race

122



6.2 Work Generation

Algorithm 1 warp parallel enqueue operation
register: s ← global: size
do

register: r ← global: read-index
register: w-old ← global: write-index
register: elements := (r - w-old) mod s
if elements ≤ count and 0 ̸= elements then

return: Error
else

elements := warp-size
end if
w-new := (w-old + elements) mod s
if r == w-new then

return: Error
end if
if 0 == warp-thread-id then

update := atomicCAS( global: write-index, new-w)
end if

while 1 ̸= __ballot(update)
register: index := (w-old + warp-thread-id) mod s
global: queue[ index ] ← data
__threadfence
global: valid[ index ] ← true

conditions between multiple consumers. An example is depicted in Figure 6.4, in
which two warps are dequeuing and one is enqueuing elements. read (w) is the
original read pointer that indicates how far the write pointer (write) can advance
without overwriting unconsumed data. The second read pointer, annotated with
read (r), is only used by consumers to set a starting position for the dequeue
operation. When the data is consumed, read (r) can only be advanced if read
(w) equals read (r) before it was incremented.

Again, the main advantage of this implementation is that it avoids divergence.
Only read and write indices are incremented by a single thread, while everything
else is done warp-parallel. Reading and writing to the queue also takes advantage
of the memory access coalescing to minimize internal bus traffic.

6.2.1.4 Performance

The performance of queues is assessed by two metrics: issue rate and latency.
However, both metrics depend on a vast amount of parameters, such as the
number of producers and consumers, queue size, or size of queue elements. A large
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Algorithm 2 warp parallel dequeue operation
register: s ← global: size
do

register: r-old ← global: read-index
register: w ← global: write-index
register: elements := (w - r-old) mod s
if old-r == w or 0 ̸= elements then

return: Error
end if
elements := MIN( elements, warp-size )
r-new := (r-old + elements) mod s
if 0 == warp-thread-id then

update := atomicCAS( global: read-index, r-new)
end if

while 1 ̸= __ballot(update)
register: index := (r-old + warp-thread-id) mod s
if warp-thread-id ≤ elements then

while global: valid[ index ] == 0 do
end while
register: data ← global: queue[ index ]
global: valid[ index ] ← 0

end if
__threadfence
register: update := false
do

if warp-thread-id == 0 and global: read-index == r-old then
global: read-index ← (r-old + elements) mod s
update := true

end if
while 1 ̸= __ballot(update)

number of producers or consumers causes significant contention as every entity
issues an atomic operation to the same memory address, either write or read
index. Thus, operations are serialized, or to be precise, a significant amount of
CAS operations fail and associated instructions have to be executed again. This
overhead can be reduced by introducing multiple queues, which distribute atomic
memory accesses across multiple memory locations, thus reducing contention
and serialization. In case of a static mapping between producing and consuming
entities and queues, the order of elements from the same source is still preserved
as one producer always enqueues elements to the same queue. This also enables
load balancing techniques, for example, producers could enqueue elements to the
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(a) Issue rate (b) Latency

Fig. 6.5 Issue rate and latency for the warp-parallel queue. Performance relates
to the Pascal GTX1080 GPU.

shortest queues, and consumers dequeue from the queue that contains the most
elements.

Figure 6.5 shows the throughput and latency for the enqueue operation of
the warp-parallel queue on the Pascal-class GTX1080 GPU. Each data point
is the average of 100 iterations and the kernel launch overhead is eliminated.
The issue rate as well as the latency scales well with the number of queues, a
direct result from reduced contention. The peak issue rate amounts to about
600M operations/s, translating into a bandwidth of 2.4GB/s for 32-bit integer
types. Experiments also showed that the bandwidth can be improved to about
25GB/s with 128B data types. Linear memory copies, for example, achieve up
to 350GB/s, hence the queue is about 14 times slower in terms of bandwidth.
This is due to the overhead associated with obtaining a valid queue index.

As shown, the performance of addressing multiple queues is significantly
better than a single queue due to reduced contention. Figure 6.6 depicts the
number of atomic operations and memory instructions for various queue sizes.
Furthermore, a comparison between a thread-parallel and the warp-parallel
enqueue operation is shown. For the thread-parallel approach, a mapping in
which the right queue is selected based on the thread ID is implemented. For
example, thread 0 enqueues its element to queue 0, thread 5 to queue 5, and if
there is a total of 32 queues, thread 33 would enqueue to queue 1 again. The
warp-parallel approach selects the queue based on the CTA ID. In addition, only
one warp per CTA is used in both thread- and warp-parallel approaches with

125



Managing Communication on GPUs

(a) thread parallel (b) warp parallel

Fig. 6.6 Various performance counters for the thread- and warp-parallel queue.
Counters relate to the Kepler K80 GPU.

a total of 128K CTAs, and the queue is sufficiently large so that no dequeue
operations are required.

While the number of global memory store operations remains the same
regardless of the number of queues, the number of global memory load and
atomic CAS operations decrease significantly in both approaches. However, the
number of operations is about 10 times lower for the warp-parallel approach.
These results are plausible as only the first phase, in which the right index
is obtained, suffers from contention and only requires load and atomic CAS
operations, while the second phase, writing the data to the queue, simply issues
store operations to the previously reserved addresses. The fact that the total
number of global store transactions is lower for the warp-parallel approach is
another advantage over the thread-parallel approach. Every thread within a warp
obtains the same index at the same time and then uses its own warp-internal
thread ID to determine the address to which the thread writes the data, thus
the memory controller can combine these accesses into a few transactions. In
the thread-parallel approach, on the other hand, each thread obtains its own
index, possibly at different times, thus the memory store operations can hardly
be coalesced.

The dequeue operation also benefits from multiple queues and warp-
parallelism. Instruction-level profiling shows that with a queue size of 128K
elements and 32 CTAs, dequeuing elements with one warp each, reduces the
number of atomic CAS operations by a factor of 20 for 32 queues, compared to
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a single queue. Uncached load operations are reduced by a factor of 8. On the
Pascal GTX1080, the peak dequeue rate of 450M operations/s is achieved with
320 warps and 32 queues, thus 10 CTAs with 32 warps each. A single warp yields
a dequeue rate of 4.7M operations/s and one CTA with 32 warps achieves 155M
operations/s. The lowest latency of a warp-parallel dequeue operation amounts
to 3.2µs, but can rise up to thousands when many dequeuing warps contend for
queue access.

6.2.2 Specialized Queuing for the SoftNIC Concept

While the previous section shows the general performance of the warp-parallel
queue, the SoftNIC’s use case is a bit different. Depending on who is sourcing and
sinking network traffic, e.g. warps, CTAs, or kernels, the number of producers
and consumers vary. If communication is handled by an independent kernel, as
depicted in Figure 6.1, the SoftNIC could comprise multiple CTAs, perhaps even
adaptive to the application’s communication demands. However, this requires a
compromise between how many resources are occupied by the SoftNIC and not
available to the application, and the SoftNIC’s performance. Similarly, this also
applies to the approach shown in Figure 6.2, in which the application dedicates a
certain number of CTAs to communication. The more CTAs are detached from
the application, the more resources are available to the SoftNIC. In summary it
can be said that these approaches allow communication requests to be consumed
at a peak rate of 450M requests/s if the SoftNIC is assigned sufficiently enough
resources, or about 150M requests/s for a single CTA, limited by the queue’s
dequeue rate. However, this only comprises the intra-node work generation
aspect and neglects execution and completion.

In the distributed SoftNIC approach, illustrated in Figure 6.3, it would not
make sense for the application warps to submit their requests through global
memory, but instead shared memory may be used. A global memory queue is
only required for intra-node communication between SoftNIC warps. Generally,
shared memory provides an order of magnitude higher bandwidth than global
memory, but also minimizes access latency. For example, while global memory
accesses can easily take hundreds of cycles, a shared memory request is usually
served in less than 10 cycles, thus enabling fast queuing operations.
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Fig. 6.7 Shared memory queue approach to allow for low-latency access. Commu-
nication warps ensure elements are passed between shared and global memory
queues.

6.2.2.1 Shared Memory Queuing

An approach similar to cudaDMA [106] can be used to dedicate one warp per
application CTA to serve requests from the application and communicate with
other communication warps through the global memory queue. Additionally, a
dedicated communication CTA can be used to perform the bulk of communication
tasks, while scattered communication warps specialize on light-weight tasks.

Figure 6.7 illustrates this approach. The application submits work requests
to a shared memory queue, from which it is forwarded to the global queue.
Also, a notification mechanism is provided locally within a CTA to inform the
application about completed work requests or new received data. This is going
to be discussed in Section 6.4. In cases with rare communication, this approach
might not be beneficial as most warps are idle. However, it might work quite well
for applications that allow for overlap between computation and communication.
For example, the application can submit a work request to send already computed
halos in a stencil code and then continue with the computation of the inner
grid. The shared queue allows to reduce the latency that is required to submit
the work request, but there is enough time during computation in which the
communication warp can forward the request to the central communication CTA.
Also, irregular applications that dynamically spawn new work map quite well to
this approach. The performance is depicted in Figure 6.8 and compared to the
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(a) Issue rate (b) Latency

Fig. 6.8 Throughput and latency of the shared memory queue vs global memory
queue. Results relate to the Pascal GTX1080 GPU.

global queue approach.
Accessing the shared memory queue is many times faster than the global

queue. In contended situations, the shared queue provides up to 8 times higher
throughput. The fact that the shared queue’s throughput is lower when only
a few warps access the queue is due to the atomic pointer arithmetic. While
the global queue is split into 32 queues to reduce the number of same-address
atomic updates, the shared queue is a single queue, meaning the atomic CAS
updates the same address. Due to the limited amount of shared memory space,
the queue should not be split up like the global queue. Regarding latency, the
shared queue is accessed up to 30 times faster. As aforementioned, this can
improve performance significantly if communication is well overlapped.

6.2.2.2 En- and Dequeue Granularity

Another interesting aspect is the applicability of warp-parallel queue operations.
Unless a CTA wants to send 32 messages, most enqueue operations might
contain only one or a few requests. In some cases requests might be aggregated
before submission. On the other hand, as long as the queue contains enough
elements, the SoftNIC always wants to dequeue as many elements as it can
process concurrently. Thus, the dequeue operation is likely to benefit from
warp-parallel operations. Enqueuing less than 32 elements per operation reduces
the throughput accordingly. For example, enqueuing only 16 elements causes
the throughput to drop by about half. The latency, however, remains the same
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Table 6.1 K80, throughput in elements/s (element equals integer value)

shared queue global queue (1 queue)

enqueue 31 warps ; 1 request per warp 1,500K 700K
1 warp ; 32 requests per warp 12,800K 7,000K

dequeue 31 warps ; 1 request per warp 670K 470
1 warp ; 32 requests per warp 15,605K 5,221K

as it is mainly limited by obtaining a valid queue index, which is independent
on the number of work requests to be submitted or fetched. Table 6.1 shows
enqueue and dequeue rates for shared queue and global queue accesses. Two
different scenarios are shown: first, 31 warps with 1 element per warp and second,
1 warp with 32 requests per warp. This represents the approach in Figure 6.7,
in which the communication warp uses warp-parallel queue operations, but it
is assumed that application warps do not want to submit more than one work
request. As can be seen, the warp-parallel global queue access is fast enough to
satisfy demands of the remaining 31 warps, given they only hold one element
each. This makes this approach a viable and promising solution if communication
is handled on warp level.

A rather special case is communication on kernel level. Here, only one CTA
can generate communication requests, thus a separate SoftNIC entity might not
be needed. Instead, messages can directly be sent to other kernels, running on
different GPUs.

6.2.3 Hardware Optimized Queuing

As shown, the queue data structure is essential to communication management,
especially with an underlying globally shared address space. However, it seems
the GPU’s architecture and execution model does not allow for efficient queues,
mainly due to high latency memory accesses and little amount of parallelism that
can be exploited for en- and dequeue operations. Thus, adapting and extending
the GPU’s hardware capabilities seems inevitable.

The main bottleneck with GPU queues is to obtain read and write indices and
atomically advancing them to reserve entries. Since all following operations have
to wait until the indices are loaded to registers, the warp is stalled for hundreds
of cycles. Additionally, contention causes the atomic CAS to fail and indices
have to be obtained again, stalling the warp for another hundreds of cycles.
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6.2.3.1 Design Space Evaluation

There are various options to tackle the queuing issue and the most intuitive
approach is to extend the instruction set. The enqueue operation, for example,
requires to advance the write index only if the queue is not full, hence read and
write index differ. This could be solved by a Double Compare-And-Swap (DCAS)
operation [107], which compares two addresses and only updates the write index
if both conditions evaluate to true. Another example is IBM PowerPC’s Load-
Link/Sore-Conditional (LL/SC) instruction [108], which reserves a register and
stores only succeed if the reservation is still valid. However, both approaches
still stall en- and dequeuing warps if operations do not meet conditions and thus
have to be executed again.

It seems insufficient to add just another general instruction in order to support
queuing operations more efficiently on GPUs. Instead, the memory controller
needs to be extended by explicit queuing operations. One approach is to have
the memory controller to administer the queue. Producer can simply write their
data to the memory controller, while consumer read data from it. Indices are
atomically advanced. However, it needs to be defined what happens when the
queue is full and elements are written to the queue, and when the queue is empty
and elements are requested.

Although this approach optimizes queuing operations, polling on the queue
still results in memory bus traffic and stalling warps. Hence, the polling needs to
be moved closer to the SM. Consequently, the SM is also extended by specialized
hardware that communicates with the queue entity of the memory controller.

The entire approach [109] is described in the following. The evaluation is
based on simulation with GPGPUSim [110].

6.2.3.2 Server/Client Queue Controller Approach

As already indicated, the GPU hardware needs to be extended at two places.
First, the memory controller is extended by a so-called Queue Controller Server.
The server manages queue indices and serves enqueue and dequeue operations
coming from the SMs. Second, the SM itself is extended by a Queue Controller
Client, which forwards operations to the server and aims to reduce polling on far
resources.

Similar to MMIO, the queue controller provides a range of addresses that
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can be accessed by plain memory operations such as loads and stores. When
such an address is accessed, the appropriate queue operation is triggered. The
client serves as a filter to avoid polling threads to issue too many memory bus
transactions and eventually reducing the available memory bandwidth to the
application, which is running along with the SoftNIC.

The concept is depicted in Figure 6.9 and comprises three main parts. First,
the queue itself is allocated in GPU memory. This allows for flexibility as the
user can allocate as much space for the queue as needed by the application.
Second, the server is placed next to the L2 cache controller. However, the L2
cache is divided into multiple parts, each covering a certain address range of
the global memory. If only one controller is extended by the queue server the
queue also has to reside in the part of the global memory it covers, thus limiting
the size of the queue. If significantly more space would be needed the server
has to move back to the memory controller as opposed to extend a single cache
controller. Last, each SM needs to be extended by a queue client with access to
shared memory, in which the index table is placed. Indices are used by threads
to directly enqueue elements without having to fetch indices from global memory
and to calculate the correct offset for the absolute address.

A CTA can register as a producer, consumer, or both. During registration,
the CTA conveys the number of required indices to the client, which are then
fetched from the server and entered into the SM’s index table. When indices
are consumed the client ensures to fetch more if the queue has enough space left
until the CTA deregisters as client. At the same time, CTAs need to invalidate
already consumed indices.

The client and server communicate through an index status table, which
tracks indices that are handed out to the clients. This is necessary to avoid the
same indices to be sent to multiple clients. If the CTA produces values, the
queue controller provides the CTA with indices to which the data can be written
to. On the other hand, consuming CTAs are provided with an index and the
number of valid elements in the queue.

6.2.3.3 Simulation Results

Using GPGPUSim [110], the queue controller approach can be evaluated and
compared to software approaches, which use an atomic CAS, for example. The
enqueue and dequeue rates are depicted in Figure 6.10.
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Fig. 6.9 Hardware extensions to support queue operations in GPUs [109]. The
queue controller is divided into a server, extending the L2 cache controller, and
a client, extending the SM.

(a) enqueue rate (b) dequeue rate

Fig. 6.10 En- and dequeue rate for the hardware-accelerated queue approach
[109].

The results show a tremendous improvement in terms of enqueue and dequeue
rate. The queue controller allows CTAs to enqueue requests at up to 2.5G
request/s, which is a speedup of 14x over the CAS approach. Furthermore, the
queue controller scales well with an increasing number of CTAs, while the CAS
implementation stagnates at about 16 CTAs.

Although this particular implementation aims to improve intra-GPU queuing,
the same principle could be applied to remote queuing that is required to exchange
messages, for example. Summarizing it can be said that hardware supported
queuing is important for the SoftNIC to achieve high performance, but also to
be able to scale to a large number of nodes.
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6.3 Work Execution

When work requests are received by the SoftNIC, various actions are triggered,
depending on the type of work that is requested. The types the SoftNIC has
to support depend on the programming model. An universal implementation
may be possible, but also causes overhead. Thus, specialized SoftNIC features
need to be compiled as needed, depending on the model that is layered on top.
The following presents various features and assesses their application in various
programming and communication models.

6.3.1 Data Transfer

The most fundamental communication work is to transfer data between two
memory locations, e.g. two physically separated GPUs. In offloaded commu-
nication, in which NICs perform data transfers to take load off the processor,
the NIC’s DMA engines are instructed to copy the data over the network and
into the target’s memory. In the absence of a NIC, the data transfer needs
to be handled by the GPU as well and it ultimately depends on the network,
with which the GPUs are interconnected. For example, NVLINK provides a
non-coherent global shared address space, thus data transfers are essentially
put/get operations as target addresses are part of the source’s address space.
However, this becomes problematic as the entire network’s memory can hardly be
mapped into a GPU’s address space, rendering address translation an important
problem to solve. Nonetheless, this is going to be discussed in the next chapter
and for now a PGAS system is assumed, in which the target address is known at
the source.

The data transfer between GPUs within a common address space can be
performed either by using copy engines or the SM’s load/store units. While the
copy engines serve as an offload unit, the SM’s resources would be occupied for
communication, thus being unavailable to the application. Furthermore, the
SoftNIC’s allocated resources may be insufficient to perform a large number of
data transfers. However, small data volumes or certain patterns may still benefit
from SM-based copy operations.

The bandwidths achieved with an SM-based and copy engine data transfer
are depicted in Figure 6.11, determined for communication between the two
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Fig. 6.11 Bandwidth for various copy approaches, including the SM and copy
engine. The data was copied between the two internal GPUs of the Kepler K80.

on-board GPUs of the Kepler K80 card. Clearly, the SM-based copy outperforms
DMA approaches by far in terms of bandwidth. Transfers larger than 16MB do
not show any preference, while GPU-controlled DMA transfers perform slightly
better than their CPU-controlled counterpart. It is worth mentioning that the
SM-based approach utilizes the whole GPU and assigns each data element to
one thread. However, a much more realistic approach is to restrict resources to a
single SM. Here, the results in Figure 6.12 show a peak bandwidth of 10GB/s,
thus one SM is sufficient to satisfy PCIe 2.0. Systems that support faster GPU
communication, for example through NVLINK, might show different results as it
is expected that a single SM is not sufficient anymore. Furthermore, the data
type used by each thread influences the bandwidth as Figure 6.12 suggests. The
int type scales linear, but using CUDA’s vector types, such as int2, allows to
increase the bandwidth by up to 40%.

Another important type of data transfers is non-linear copies as often found
in multi-dimensional data transfers. Here, not all elements need to be copied and
some elements are bypassed. Figure 6.13 shows the bandwidth for various strides.
For example, a stride of two means every other element is skipped. Once again,
the SM-based copy approach can handle stride transfers remarkably efficiently
with almost no loss in bandwidth except for strides larger than 32. Here, cache
misses reduce performance while even higher strides also result in TLB misses.
The copy engine, however, cannot keep up and is outperformed by far. As the
second graph shows, many concurrent accesses significantly increase the access
latency of the copy engines, thus the data transfer becomes inefficient. Using
the two-dimensional interface cannot solve this issue as the bandwidth remains
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(a) copy engine and SM data transfer for
4GB data volume and varying stride

(b) copy engine latency when called within a
kernel

Fig. 6.12 Bandwidth of stride patterns for the copy engine compared to the SM
copy approach. The right graph also shows the latency of copy engine accesses
within the CUDA kernel on the GPU. Measurements are performed on the Kepler
K80.

low, although constant and independent of the stride. However, this is mostly
due to the data layout and row-major ordering. Column-major ordering might
increase performance significantly, especially for small stride values. Summarizing
it can be said that non-linear transfers are best executed by the SM itself. An
alternative would be to pack the data to a continuous buffer which is then copied
by the copy engine and unpacked at the destination. However, this still requires
the SM to execute kernels for the pack- and unpack operation. For example, this
approach is used by Wu et al. [94] to enable support for non-contiguous data
types in OpenMPI.

Handling data transfers on the GPU is eminently important and as ex-
periments show still lacks enough support from the hardware and software
architecture. Although the SM is capable of copying data at high bandwidth
and efficiency the occupied resources become unavailable to the application and
it remains doubtful if it can satisfy the application’s communication demands.
The copy engines, however, cannot be accessed efficiently and cause warps to
stall for a long time, especially if copy engines are accessed concurrently by a
large number of threads.

6.3.2 Messaging

The ability to send and receive distinct messages is required for two-sided message
passing, similar to MPI on CPUs. However, many of MPI’s features are sequential
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(a) Bandwidth depending on the number of
warps. The dotted line marks a single SM,
whereas more warps are scheduled to multi-
ple SMs.

(b) SM copy bandwidth with various data
types

Fig. 6.13 Bandwidth for varying the number of warps in the SM copy approach.
The right graph depicts the bandwidth for various data types. Measurements
are performed on the Kepler K80.

or unpractical on GPUs, due the GPU’s different execution model. For example,
messages have to be matched with receive requests and memory needs to be
dynamically allocatable. While the matching is a sequential task, dynamic
memory allocation is poorly supported on GPUs.

6.3.2.1 Sending and Receiving Messages

Sending a message can be a viewed as submitting a work request to the SoftNIC,
which instructs to transfer data and send a notification to the target processor.
It has to be ensured that the data transfer is completed before the notification is
received by the destination. Receiving a message is another work request that
is submitted to the SoftNIC, which eventually triggers a notification when the
message is matched. Notifications are going to be discussed later in this chapter.

As opposed to a single global address space, only a small part of the target’s
address space needs to be mapped locally and can accessed by shared memory
semantics, hence significantly reducing the size of a node’s address space. For
example, a queue can be placed in the shared part of the GPU’s memory, allowing
others to enqueue messages. However, the aforementioned queue implementation
would not be performant on remote memory. Hence, a different approach is
necessary that avoids fetching queue elements from remote memory at high
latencies.
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6.3.2.2 MPI Compliant Matching

The message matching is an important aspect of two-sided communication and
inherently sequential in MPI’s protocol, for example. This is mainly due to
wildcards and the preservation of ordering. However, this renders it difficult for
GPUs to perform well and efficient at this task. For example, a queue-based
matching is not feasible since elements cannot be arbitrarily removed without
reordering subsequent messages accordingly. Lists, on the other hand, require
too much synchronization when elements are removed. Thus, more GPU-friendly
algorithms need to be found that exploit more parallelism.

Algorithm As opposed to CPU matching algorithms, both PRQ and UMQ
are not separated but kept at the beginning of the receive request and message
queue, respectively. The queues reside in global memory. The algorithm to
match receive requests and messages is then separated into two phases. First, a
matrix is generated, wherein each row represents one message, and each column
one receive request. This step is referred to as scan phase in the following. Note
that rows and columns are interchangeable since the matching is symmetric. The
second phase reduces the matrix to a vector, assigning a matching message to
each receive request, thus referred to as reduce phase in the following. Technically,
a third phase is necessary to compact the queues and eliminate already matched
elements, however, it is assumed that all messages and receive request match
for the description of the algorithm and the sake of brevity. The algorithm is
illustrated in Figure 6.14.

Scan phase During the scan, each thread of a CTA is given a message, to
which it holds on for the duration of the matching, and linearly walks through
the receive request queue. In order to avoid synchronization between warps,
a matrix is built up in shared memory. Threads within the same warp test
whether their message matches with the receive request, at which all threads
of the warp are looking at the same time. CUDA’s ballot function (see Table
tab:gpu:warpvote) is used to obtain a bit vector, wherein the number of the
bit represents the particular thread within the warp and indicates whether the
thread’s message matches with the receive request or not. This bit vector is
written to the matrix. The hierarchical approach, in which warp vote functions
are used to determine the bit vector, reduces the amount of shared memory,
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Fig. 6.14 Warp-parallel MPI compliant message matching algorithm [21]. The
graph shows both phases, the scan (matrix generation) and reduce phase.

Algorithm 3 multi-warp scan [21]
1: SendObj = sendBuffer[ thread:id ]→getObj()
2: for i from 0 to window - 1 do
3: RecvObj = recvBuffer[ i ]→getObj()
4: int32 vote = __ballot( SendObj == RecvObj )
5: voteMatrix [ warp:id * window + i ] = vote
6: end for

compared to each thread writing its match result to a exclusive position within
the matrix. Consequently, the number of rows is determined by the number of
warps performing the scan. Furthermore, the scan phase can be performed by all
warps of the CTA in parallel and does not require synchronization. Algorithm 3
provides more detail on the implementation.

Reduce phase After the matrix is generated, it needs to be reduced to a
single vector, assigning matching messages to receive requests. However, due
to wildcards and ordering, dependencies exist between rows, but also between
columns. Consequently, this phase does not allow for any parallelism and has to
be executed sequentially. In particular, one warp is sufficient as the maximum
matrix height amounts to 32 as this is also the maximum number of warps per
CTA.

Algorithm 4 shows the reduce phase, executed by a single warp. First, each
thread starts with a bit mask, in which all bits are set to ’1’, and loads one bit
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Algorithm 4 Algorithm to reduce a column-vector [21], which contains the vote
results, to a single match.

1: int32 mask = 0xFFFFFFFF
2: if thread:id < warps then
3: for i from 0 to window - 1 do
4: int32 vote = voteMatrix[thread:id * window + i]
5: int32 bidders = __ballot( vote & mask )
6: if thread:id == __ffs(bidders) -1 then
7: int32 match = __ffs( vote & mask ) - 1
8: mask = mask & ∼ (1<<match)
9: result[ i ] = thread:id * warp:size + match

10: end if
11: end for
12: end if

vector from the same column. The mask is used to prevent already matched
messages to be considered again for upcoming matches. Thus, each thread bitwise
conjoins (binary AND) the mask and the bit vector. The result is used in the
ballot intrinsic again to determine which threads see a matching message. In
order to preserve ordering, the thread that holds the bit vector of the warp with
the lowest ID wins and writes its match result to the match vector. Additionally,
the position of the match is erased from the mask before the next column of the
matrix is reduced.

Optimization The reduce phase is the main bottleneck of this algorithm,
because of its sequential nature and execution by a single warp. However, it can
be overlapped with the scan phase using a pipelined approach. Therefore, after a
few columns are written by the scan phase, one warp can already start to reduce
these columns.

As aforementioned, the algorithm technically comprises a third phase, in
which matches are removed from both receive request and message queue. This
step requires a prefix scan and all unmatched elements to be moved toward the
head of the queue. If only a few matches could be found the compaction is not
necessary and bubbles in the queue can be tolerated. However, the performance
is reduced accordingly.

Performance The performance of the matching for three generations of GPUs,
particularly Kepler (K80, single GPU), Maxwell (M40), and Pascal (GTX1080),
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Fig. 6.15 Performance of the warp-parallel MPI compliant matching algorithm
on a Kepler, Maxwell, and Pascal GPU [21]. The performance is shown for a
varying queue size.

is depicted in Figure 6.15. For queue lengths up to 64 elements the matrix does
not need to be generated, thus a single warp is sufficient to match both queues
directly. As can be seen, the pipelined approach yields constant performance,
independent on the queue length and provided all elements match. The drop
for 1,024 elements per queue is due to all warps being required for the scan and
hence the reduce cannot be overlapped anymore. The performance on the Pascal
GPU is twice as high as Kepler. Since the algorithm has linear time complexity,
the Pascal’s two times higher clock rate accounts for the large difference in the
matching rate.

While the matching rate in Chapter 4 is shown for best, average, and worst
case, depending on the order of the elements in the receive request and message
queue, the order does not matter with the GPU algorithm. However, this only
applies if the queue is smaller or equal than 1,024 elements. Longer queues cannot
be matched in one iteration by a single CTA and thus require more iterations
or threads have to match more than one message at a time. However, the trace
analysis in Chapter 4.3.3 also shows that queues range below 1,024 elements
most of the time, rendering one CTA sufficient to perform the matching in one
iteration.

6.3.2.3 Matching in Relaxed Message Passing Protocols

While the presented algorithm complies with MPI’s protocol in that it supports
tag/source wildcards and respects ordering, the performance on GPUs is limited
by the lack of parallelism. Compared to the CPU’s matching performance, shown
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in Chapter 4.3.2, the ’best case’ matching rate is about four times higher than
the GPU algorithm. However, the difference becomes smaller for the average
case as the CPU’s performance depends on the order of receive requests and
messages.

Prohibiting wild cards While MPI has been designed and optimized for
latency-optimized processors, a GPU message passing system has different re-
quirements. For example, wildcards significantly limit parallelism, but can easily
be given up as many of the exascale proxy applications do not even apply them.
In fact, it would be sufficient to prohibit the source wildcard, allowing to par-
tition the rank space and implement multiple queues. Each queue is matched
individually, allowing for more parallelism and enabling higher matching rates.

The performance for such partitioned approach is depicted in Figure 6.16.
The matching scales linearly for up to four queues, but then ranges below linear
speedup due to additional overhead. Although both phases are pipelined, the
scan and reduce still needs synchronization, which applies to all warps of a CTA,
thus affecting the matching of all queues. Nonetheless, the performance can be
increased up to about 60M matches/s on the Pascal GTX1080 for queues with
1,024 elements. Longer queues require additional CTAs, annotated with numbers
in the graph, but overall performance drops. As the matching requires shared
memory and register space and all CTAs are scheduled to the same SM, only
two CTAs can be executed concurrently, thus the execution of more CTAs is
serialized. Nonetheless, multiple CTAs still allow for much longer queues to be
matched. If matching of long queues is important and the shown performance is
insufficient, more SMs can be used, which will allow for linear speedup.

Although the matching is significantly improved by prohibiting source wild-
cards, the application’s communication behavior poses limits on that approach.
For example, the number of queues is limited by the peers a rank is communi-
cation with. If an application exchanges data with only eight other processes,
no more than eight queues could be used. Also, if each queue does not contain
at least 32 elements, the matching becomes inefficient as not all threads of the
warp are utilized.

No unexpected messages Another performance-limiting aspect of the match-
ing is the number of unexpected messages. A message is unexpected if no matching
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Fig. 6.16 Matching performance for multiple queues, enabled by the prohibition
of wild cards [21]. The numbers inside the data points refer to the number of
CTAs. Performance is shown for varying the number of queues over the total
queue size. Measurements are performed on the Pascal GTX1080.

receive request is available at the time of the matching. Thus, the matching rate
is reduced linearly. For example, if only half of the messages can be matched
with receive requests the matching performance is also halved. Furthermore,
compaction becomes necessary to remove matched messages and make space for
other messages to be matched in the next round. If there were no unexpected
messages, the compaction would not be required and it is sufficient to move head
and tail pointers within the queues.

While both relaxations, namely prohibiting the source wildcard and unex-
pected messages, improve the matching rate significantly, the main limitation
is still the order of messages that has to be preserved. Without ordering, the
choice of the data structure that is used to perform the matching is no longer
limited to queues and lists.

6.3.2.4 Hash-Table-based Matching

When ordering can be given up, hash tables seem promising as they allow for
constant insert and search time. Similar to regular tables, the values can be stored
and retrieved at arbitrary positions. Inserting a value v requires to compute the
key k by using a hash function h. Given an universe of keys U and a hash table
T which has space for m elements, one has [111]:

h : U →{0, ...,m−1}

Instead of using a regular table with size |U |, the size of the hash table m is
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much smaller. However, this implies that not all values of the universe U can
be stored in the hash table and multiple values map to the same key in that
h(vi)→ ki and h(vj)→ ki with i, j ∈ N. This is referred to as collision. There
exist various strategies to resolve collisions, which are briefly described in the
following [112].

Open Addressing If two values map to the same key the hash table is searched
for an unoccupied bucket, in which the colliding value can be stored. This is
commonly referred to as probing. Various probe sequences exist to find an
empty bucket. Linear probing, for example, uses the hash function h′(k,j) =
(h(k)+ j) mod m with j ∈ N denoting the probing sequence number. Although
computing the sequence is simple, it quickly leads to long clusters which have to
be traversed before an empty bucket is found. Another probing approach uses the
hash function h′(k,j) = (h(k) + c0j + c1j2) mod m with constants c0 ≤ 0, c1 > 0,
which is known as quadratic probing. A third approach is to use a second hash
function to try another bucket, with h′(k,j) = hj(k). Here, clustering is not
an issue but a set of hash functions need to be found that resolve collisions
efficiently.

Eviction Instead of taking the colliding value and finding an empty bucket,
the value stored in the table is replaced by the colliding value and an empty
bucket has to be found for the original value. A prominent example is Robin
Hood Hashing [113], in which the probe sequence for each value is tracked and
values are only evicted if their number of sequences is smaller, thus the value is
younger. Overall this reduces the number of probes compared to open addressing.
Another eviction-based strategy is Cuckoo Hashing [114], in which a set of hash
functions is required to compute new keys for every iteration. However, there
is no guarantee the eviction process terminates and it depends on the choice of
hash functions that are used.

Closed Addressing Here, each bucket can hold multiple values. This is
usually implemented as a dynamically allocated list. However, as GPUs do not
provide sufficient support for dynamic memory management this strategy is not
applicable to the message matching on GPUs.
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Fig. 6.17 Execution time for various hash functions on the Kepler K20 and Pascal
TITAN X [112].

In the following, various approaches are implemented and evaluated regarding
their applicability to the message matching on GPUs. Generally, hash functions
are assessed based on their avalanche behavior, key distribution, and time to
calculate the hash function. The avalanche behavior is the probability of the
key’s jth bit flipping when the value’s ith bit is flipped. A good hash function
has a probability of 0.5 for every i and j.

The execution time for various hash functions is depicted in Figure 6.17. The
hash function was computed on the Kepler K20 and the Pascal Titan X GPU.
The best performance can be observed for the JAVA, XOR, and TW3 (Thomas
Wang) [115] hash function. However, except for RJ (Robert Jenkins) [116], the
performance difference is not significant. The same applies to avalanche behavior
and collision rate. Thus, the XOR hash function is chosen for the following
implementations.

The performance of hash tables does not only depend on the hash function
and collision strategy, but strongly depends on the input data and its distribution.
For example, if the input data comprises unique values only a suitable hash
function can avoid collisions. On the other hand, if many redundant elements
are present in the input data set the performance suffers from many collisions,
independent of the hash function. Consequently, an understanding of the input
data is inevitable for the design of performant hashing approaches. In context of
message matching, wildcards or receive request that match multiple messages
increase collisions and limit the hash table’s performance.

Figure 6.2 shows the matching rate for various approaches, which are briefly
introduced in Table 6.2. The x-axis shows the multiplicity, thus the percentage of
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Fig. 6.18 Matching rate for various hashing approaches over the multiplicity of
the input data set [112]. Results relate to the Pascal TITAN X.

identical elements in the input data set. For example, 100% means all elements
are identical, while with 50% half of the values are unique and the other half is
identical.

As shown, there is no approach that consistently performs best for all degrees
of multiplicity. Instead, the performance can be divided into three regimes, of
which the first two are rather small. The first regime ranges up to 6% and
the highest matching rate is achieved by linear probing and double hashing,
thus open addressing approaches. Next, between 6 and 12%, the chained batch
approach yields the highest performance. After that, the chained batch approach
with preprocessing is superior to all other approaches. In fact, the performance
slightly increases with higher multiplicity while other approaches’ performances
decrease. This is mostly due to the preprocessing which eventually reduces the
number of elements that are inserted into the hash tables for growing multiplicity.
Also, the preprocessing requires less iterations for less unique values, thus overall
performance benefits from redundant input data.

Using hash tables and suitable approaches, a matching rate of 128M to 512M
can be achieved, which is significantly higher than the queue-based approaches
in previous sections. However, the performance also depends on the length of
the queue. The best performance is achieved for queues up to 1,024 elements.
Larger queues as well as shorter queues yield lower performance.
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Table 6.2 Brief description of various hashing approaches. More details can be
found in Kühlwein’s work [112].

Abbreviation Description
exh_sh Reference approach in which the message queue is sequen-

tially searched for each receive request.
ht_ch Cuckoo hashing as provided in the CUDPP library [117].
ht_lp2 Hashing with linear probing to resolve collisions.
ht_dh2_mod Instead of linear probing, double hashing is used to resolve

collisions.
ht_dhb Chained approach in which identical are stacked, similar to

closed addressing.
ht_dh_bc Chained approach in which a preprocessing step links identi-

cal values before they are inserted into the hash table.

The trace analysis of various exascale applications shows that queues barely
exceed 512 elements, thus hash tables yield between 200M and 500M matches/s,
depending on the approach that is used. Regarding multiplicity, it can be said
that multiplicity varies among applications. Most applications show a UMQ
multiplicity of 10 to 30% [112] and it seems suitable to implement hash tables
for the message matching as hashing still performs better than queue-based
approaches under these constraints.

6.3.2.5 Related Work

Although there is no existing work for the message matching on the GPU, various
optimizations have been explored for the CPU. Zounmevo et al. [118] propose
a new matching algorithm that aims to reduce the memory footprint while it
also improves scalability. Multiple queues and sequence numbers are used to
partition among the rank space and support wildcards. The reported performance
indicates significant performance improvements, but no absolute numbers are
provided.

A hash table approach is proposed by Flajslik et al. [119]. Marker entries are
inserted to preserve ordering information, which is necessary to support wildcards.
A fire dynamics simulation is studied with the new matching approach and the
performance is about 3.5 times higher than with the standard MPI matching.
Note, the matching alone accounts for these gains, emphasizing the importance
of this particular problem.
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Bayatpour et al. [120] suggest a dynamic bin-based approach with multiple
lists and rank partitioning, which performs two times better than the default
matching.

Message matching without wildcards has been analyzed by Dang et al. [121].
Their proposal comprises a hash table based design and aims to support a large
number of threads on many core processors, such as Intel’s Xeon Phi.

6.3.3 Active Messages

Along with transferring data and serving synchronization purposes, messages can
also carry work to other processors. Active Messages, as this form of messaging
is called, is a fundamental building block for task-based programming models.
They generally allow to exploit data locality by moving computation to the data,
as opposed to bringing data closer to computation.

6.3.3.1 Related Work

An active message framework tailored for heterogeneous systems has been pro-
posed by LeBeane et al. [122], focusing on AMD’s Heterogeneous System
Architecture (HSA). Their approach is based on RDMA transfers and a shared
command queue between CPU and GPU. When messages are received a kernel
lookup table is searched for a match. The matching entry points to a kernel,
which is launched with arguments carried by the received message. The authors
evaluate their approach with simulating an Accelerated Processing Unit (APU)
that implements CPU, GPU, and NIC. A performance improvement of 10-15%
is reported for an MPI reduce operation on two nodes. A speedup of about 1.25x
is reported for the allreduce operation during the training phase of a neural net
using Microsoft Cognitive Toolkit (CNTK). The main improvement comes from
bypassing the CPU when work is launched remotely on GPUs.

6.3.3.2 Active Messages Using SoftNIC Queuing

A similar approach can be implemented with the queues presented earlier in
this chapter, which are used to exchange messages between GPUs. The SoftNIC
process, either as separate kernel or integrated into the application’s CTAs, has
to execute preregistered kernels upon reception of messages. Similar to GASNet,
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code can not only be provided for the reception of a message, but also for the
response the SoftNIC generates.

In the first step, kernels are registered and given an identifier. This has to
be executed on all GPUs accordingly. When a message is received the lookup
table is probed to obtain the correct handler, which is invoked with the message
as argument. A crucial aspect is the entity that executes the handler. When
the message is received by a single warp, the handler can be executed by this
particular warp. However, the number of threads is limited to the warp size which
currently amounts to 32 threads. Another possibility is to launch a separate
kernel with as many threads as needed, however, the current GPU’s scheduling
cannot guarantee that the kernel can be executed along with the application that
is currently running. A third option is to use all SoftNIC resources, for example
an entire CTA, but that requires coordination and synchronization and stalls
communication for the duration of the handler execution. Nonetheless, these are
architectural limitations and the following presents results from a warp-based
active messaging while one has to be aware of the consequences and opportunities
that are provided by an improved architecture.

API The active messaging API consists of a base handler class providing
virtual functions. A new handler derives from that class and implements the
functions according to the operations that need to be executed when the message
is received or the response is generated. The following code excerpt shows how an
active message handler can be implemented for the Random Access benchmark,
which Chapter 5 describes in more detail. The handler AMUpdate derives from
class AMBase and overrides the run function. Here, the message is passed as
an argument and contains the index for the table update. The update is then
performed by an atomic xor operation.
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Listing 6.1 Example code for an active message handler [123].
1 class AMUpdate : public Mantaro :: AMBase

2 {

3 /* ... */

4 __device__ Mantaro :: Error_t run( AMMsgData & data)

5 {

6 /* ... */

7 uint64_t addr = data.op ;

8 uint64_t idx = get_local_idx (addr );

9 /* ... */

10 atomicXor ( mem_array [idx], ( unsigned long long) addr );

11 /* ... */

12 }

13 /* ... */

14 }

The handler is registered on the CPU and is passed along with the control
flow to the GPU. Here, messages can be sent and received using queues. When
a valid message is received by a warp it is executed as shown in the following
example. The handler’s warp_exec function is a wrapper for the handler’s run

function. As can be seen, the simplicity of active messages allows to easily move
work to the location of the data on which the instructions are to be performed.

Listing 6.2 Example code for receiving and executing an active message [123].
1 /* receive message */

2 err = handler -> deq_recv (msg , gpu_id_1 );

3 if ( err != Mantaro :: Error_t :: SUCCESS )

4 msg = MSG_EMPTY ;

5
6 /* ... */

7
8 /* execute message */

9 err = handler -> warp_exec ( msg );

Performance The results of the benchmark are shown in Figure 6.19. As
opposed to the experiments in Chapter 5, GPUs (Kepler K80) are deployed in a
single node and connected by PCIe, hence exchanging data at a bandwidth that
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Fig. 6.19 Performance for the Random Access benchmark for various bucket sizes
[123]. The results relate to the Kepler K20.

is effectively about 10x higher than provided by EXTOLL’s FPGA-based NIC.
Nonetheless, an update rate of more than 1 GUPS is achieved with 8 GPUs and
1,024 updates aggregated into one message, which is 10x more than the similar
benchmark achieved with EXTOLL.

The complexity of implementing more benchmarks prohibits broader anal-
yses, however, it shows that such an abstract interface can yield comparable
performance. Nonetheless, there are several limitations that need to be overcome
to support active messages more efficiently, first and foremost better queuing
and more control over scheduling. The concept is still valuable, especially in
regard to task-based programming models.

6.3.4 Memory Management

The ability to dynamically allocate and deallocate memory is another important
building block for managing communication. As for now, memory management
is handled by the CPU and allocated memory resources are passed to the kernel.
This is static and does not allow for changes unless control is returned to the CPU.
In order to implement a communication management layer memory allocations
need to be adaptive in case for large messages waiting to be received or if
the management requires more memory for administrative purposes. Many
publications exist in this area and are briefly introduced in the following, but it
is referred to the publications themselves for more details.

One of the first to implement a dynamic memory allocator for GPUs were
Huang et al. [124]. Their xMalloc allocator uses lock-free FIFO data structures
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residing in global memory with headers being small enough to be modified by
a single atomic operation. Their experiments show that the allocation latency
is reduced by a factor of 211 compared to cudaMalloc (0.166ms versus 0.05ms
measured with xMalloc) while it also scales well with the number of threads.

ScatterAlloc [125] is another allocator, proposed by Steinberger et al. It
uses fixed size memory regions and concurrent requests are scattered across
these regions as opposed to linearly searching through a list, but their approach
eventually leads to fragmentation. The largest entity is a "super block", which
itself is divided into pages. Once a memory request is received, the page is split
into equally sized parts and the whole page can only be freed when all parts are
free. The authors state that their approach is 10x faster than the aforementioned
xMalloc allocator by Huang et al. [124] at full GPU utilization.

Widmer et al. [126] optimize xMalloc and ScatterAlloc by sharing super
blocks among threads of a CTA. Their approach is called FDGMalloc. A single
thread is assigned to handle all allocations as opposed to having all threads
allocating memory concurrently. The authors report speedups in the range of 10
to 100 over ScatterAlloc, depending on the number of threads that are issuing
requests.

Another approach, referred to as Halloc, implements a concurrent slab alloca-
tor [127], in which hashing is used to find free blocks. The evaluation is again
compared to ScatterAlloc and shows significant improvement of 4x for up to
256K threads and 1,000x for more than 576K threads. The benchmark consists
of a kernel invoking a large number of allocations and deallocations.

Vinkler et al. [128] not only propose two additional allocators, namely Atomic
Wrap Malloc (AWMalloc) and Circular Malloc (CMalloc), but also compare
to the previously mentioned allocators and provide recommendations of when
certain allocators should be used. Both introduced allocators use a circular
memory pool, but CMalloc uses a list for organization. With AWMalloc, memory
cannot be freed and it only works for a large pool and allocations should be
used only for a small period of time. Consequently, CMalloc adds a header to
allocated chunks to support deallocations. Similar to ScatterAlloc, chunks are
split, but not uniformly and more adaptive to the application. The authors
recommend to use Halloc if there are many threads allocating memory, but to
use FDGMalloc if each thread issues a large number of allocations. On the other
hand, their own CMalloc is meant to be used if requirements are unknown.
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With respect to the SoftNIC, it seems that Halloc provides the best per-
formance, although CMalloc yields similar results. Both approaches are made
publicly available.

6.4 Work Completion

Work completion is the third and last important aspect of the SoftNIC. It
comprises techniques to notify the application about status of requests and
arrival of new data or messages. Nonetheless, it is also challenging as current
GPUs do not provide any opportunity to control scheduling or even allow CTAs
to be preempted from execution.

6.4.1 Scheduling

One of the main differences between a CPU and GPU is the scheduling. While
threads can be put to sleep and preempted on the CPU, the GPU does not
provide such mechanisms as scheduled CTAs complete before the SM can execute
another CTA. Consequently, interactions between kernels or CTAs are prone to
deadlock. However, in order to work efficiently the SoftNIC requires the following
guarantees to be given by the system:

• It has to be ensured that the SoftNIC is executed, for example by dedicating
one or a few SMs entirely to execute communication tasks. The current
scheduling cannot guarantee that kernels are scheduled together and allows
for kernels to be executed sequentially.

• Communication demands can vary during the application’s run time. If de-
mands are increasing the SoftNIC should be able to allocate more resources,
for example occupy more SMs as originally anticipated. Hence, application
CTAs should be evicted and scheduled at a later time in order to make
room for the SoftNIC. This is especially important for active messages as
incoming messages may trigger a kernel that needs to be executed in a
timely manner.

• CTAs that are waiting for messages should be preempted and brought back
to execution when the appropriate message arrives. The same applies to
CTAs waiting for synchronizing operations to complete.
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Although CTA preemption would solve most issues it would also increase
latency as the CTA’s context need to be saved and restored. A CTA could use
up to 256KB of register space and 64KB shared memory, thus a maximum of
320KB context needs to be saved and restored. This amounts to almost 1µs at
732GB/s memory bandwidth. Although the context only needs to be saved when
the execution is preempted the additional latency hurts performance significantly.
Consequently, more efficient ways are required to ensure high performance and
scalability.

Related work The scheduling of real time applications is discussed by Tanasic
et al. [129]. In order to support multiple contexts executed by the SM, the
execution unit is extended by a context table. Each context, or process, is given
its own virtual address space, similar to virtual addressing in CPUs. The context
table contains the base page table register that is probed in case of a TLB miss,
as opposed to the baseline GPU architecture that uses the same page table for
all SMs and kernels. When multiple kernels are scheduled for execution and none
of the SMs is idle an SM is preempted. The authors present two preemption
strategies, namely context switching and SM draining. The first follows the
traditional context save/restore model, while the latter finishes the execution
of a CTA before other CTAs from a different kernel are brought to execution.
Regarding the turnaround time, the context switch approach is significantly
better than SM draining for a large variety of concurrently scheduled applications.
Furthermore, SM draining would not help in the SoftNIC application as CTAs
might be waiting on messages and would not complete until the message arrives.
Nonetheless, the work shows that context switching is feasible at reasonable
overhead.

Similar approaches are analyzed by Jason J. K. Park [130], in which three
preemption strategies are presented: switching, draining, and flushing. While
switching and draining are the same approaches that are analyzed by Tanasic
et al., the flushing strategy simply discards the currently running CTA and
starts over at a later time. Theoretically, this approach also works with the
SoftNIC with the assumption that already exchanged messages are ignored in the
repetitive execution. However, the authors also state that the right preemption
strategy depends on the application and it cannot generally be said that one
approach is superior than the others. Their proposed framework uses all three
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strategies and applies the one that suits the application best.
Zhen Lin et al. [131] focus on the context switching. Using live variable

analysis, which allows to determine variables that are potentially read before their
next write at any point within the program, the register states can be reduced
significantly. Since keeping track of the variable liveness would be expensive
for every point of time, preemption is restricted to certain points within the
program. Furthermore, register states are compressed by detecting patterns
and only saving meta data that is necessary to restore the original pattern. For
example, if threads access an array with their thread ID the switching unit only
needs to save the start address and the number of threads. They report that
using this approach the context can be reduced to about 10% of its original size.
Overall, the presented results are promising and show that context switching
might indeed be a reasonable strategy for preemption. The fact that CTAs
could only be preempted at certain points is inline with the SoftNIC concept as
preemption is only needed when the CTA waits for messages or synchronization.

In addition, Jin Wang et al. [132] propose LaPerm, a scheduler designed for
dynamic parallelism. It assumes that parent and child kernels share temporal
and spatial memory locality, of which the scheduler is aware. The results show
an improvement of about 27% over round-robin scheduling.

Chen et al. [133] present EffiSha, which comprises a framework for software
preemption. Through source-to-source translation, kernels are transformed to a
persistent thread approach, in which eviction of CTAs is only allowed at the end.
This is similar to the draining approach, but does not require any additional
hardware. Nonetheless, it is inapplicable to the SoftNIC concept.

Outlook With more and more applications demanding more control over
scheduling future GPUs are expected to add additional features accordingly. The
latest Pascal architecture already added support for instruction-level preemption,
in which it prioritizes graphics applications and can preempt running computa-
tional kernels [10]. Although only little information is available, it seems the
context is saved to off-chip memory when a kernel is preempted. However, it has
to be stated that without having control over the scheduling the SoftNIC concept
is hard to realize as messages cannot be exchanged without being prone to
deadlocks. Especially the approach presented by Lin et al. [131] seems promising
and describes a viable and promising solution.
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6.4.2 Events and Notifications

Independent of scheduling, events and notifications are important as communica-
tion path from the SoftNIC back to the application. The notation here regards
notifications as notifiers that are simply discarded when they are consumed, while
events can be used in more complex tasks, for example to trigger other operations
or bringing back preempted CTAs. A good comparison for notifications can be
found in Infiniband (e.g. notification in the completion queue) and EXTOLL,
while events rather follow the concept presented in the active message framework
Realm [40].

Software approach The simplest approach would have each CTA to maintain
its own queue in which events are placed. However, it not only requires a
significant amount of memory but also pollutes the memory system with requests
when CTAs are polling on their queues. Hence, a shared data structure is required
and queues seem unsuitable as they enforce elements to be consumed in order.
Hash tables, on the other hand, seem to be the natural choice as they allow for
constant insert and retrieval time.

Using hash tables to store events requires both producer and consumer to use
the same key to enter the table, for example the destination CTA and GPU ID.
Another approach is to use a stack to hold available keys and when CTAs submit
a work request they first obtain a new key and include it in the work request.
This way the SoftNIC knows where the CTA expects the event to appear and
after the request is matched with the appropriate message the event is written
to the event table. This also allows to aggregate events as multiple requests can
use the same key and the SoftNIC increments a counter. For example, if two
requests are submitted with the same key the requesting CTA waits until the
table entry counter equals two.

The performance is mainly limited by concurrently accessing the event key
stack, which needs to be atomic and can lead to serialization. Furthermore,
CTAs still need to poll on the table to consume events, resulting in significant
traffic within the memory subsystem. Furthermore, the SoftNIC would need to
keep state information, which requires additional memory overhead.

Hardware approach Similar to the queuing problem, the polling on the event
table needs to be kept local in the SM. In fact, the queue controller server/client
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approach can be extended by the support of events [109], depicted in Figure 6.9.
A CTA can register events locally at the client, which extends the SM. Once
registered, the client notifies the server and waits for a response. When the
event is triggered by another CTA the server broadcasts the event and all clients
waiting for the event to be triggered can update the local table.

Simulation shows that the number of global memory accesses can be reduced
significantly [109]. The software approach performs similar for less than 4,000
CTAs as events can be kept in the L2 cache. However, this is measured with an
isolated benchmark and the L2 cache should rather be used for the application’s
working set.

Outlook Generally it can be said that events become powerful if the GPU
supports the preemption of CTAs. In that case, a CTA can be preempted if
it waits for an event and as soon as an event is triggered the CTA becomes
eligible for execution again. The hardware approach simply extends the queue
controller approach and reduces the memory traffic significantly. Although the
SoftNIC benefits significantly from extended support for events and notifications,
it remains to be shown whether other applications benefit as well and thus
rendering a stronger case for vendors to adapt the hardware accordingly. With
signs of preemption becoming available in future GPU generations, the software
approach for events may be sufficient for the SoftNIC concept.

6.5 SoftNIC Architecture Discussion

This chapter has been introducing and discussing various building blocks individ-
ually. Here, the overall SoftNIC architecture is discussed, composed of previously
introduced building blocks.

6.5.1 Architecture

An important aspect of the SoftNIC is modularity and flexibility, which are the
main advantages software has over hardware. Depending on the communication
model, various SoftNIC incarnations can be compiled, only implementing features
that are needed. For example, a PGAS model might only rely on the SoftNIC
for memory registrations and put/get operations, but mainly uses load/store
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Fig. 6.20 A possible SoftNIC architecture with static warp-specialization.

operations for communication. On the other hand, a message passing model
requires much more management, hence strongly relying on SoftNIC features.

Figure 6.20 shows an example of a possible SoftNIC architecture. The basis of
the SoftNIC is warp specialization, in which warps are dedicated to certain tasks
and independent of each other. For example, some warps take elements from the
work request queue and place them in a cache structure, which is necessary for
the matching with messages, performed by other warps. When a warp fetches
one or multiple work requests it processes it completely before a new one is
fetched again.

A different approach is depicted in Figure 6.21. Although warp specialization
is still applied, warps’ tasks are much more flexible and dynamic. A supervisor
warp decides which tasks currently demand the most resources and thus assigns
worker warps to particular tasks. While some warps are constantly engaged with
a certain task, free workers are pooled into a worker pool. Workers poll on an
internal work distribution structure to fetch small tasks, which they execute
entirely or partially until they generate new tasks that are shared through the
distribution structure.

Although the supervised approach seems superior due its flexibility, the
internal distribution structure quickly becomes a bottleneck. Warps are constantly
and concurrently accessing the structure, requiring atomic operations which,
due to contention, are likely being serialized. Furthermore, shared memory is
scarce, significantly limiting the number of pending tasks. Shared memory is
also required to support the matching and cache receive requests.
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Fig. 6.21 Another SoftNIC architecture that allows for dynamic task assignment.

6.5.2 Differences to Software-centric Networking on
CPUs

The main difference is the execution model. CPU threads have their own context,
including registers and program counter. On GPUs, threads are tied together to
warps and share a register file in which data resides even if threads are currently
stalled. A single program counter is also shared among threads of the same
warp. Consequently, tasks need to be executed by 32 threads in order to yield
high efficiency and performance. Since many tasks are hardly parallelizable,
each thread is more likely to execute a different request. However, this is only
efficient if requests are processed by the same instructions without divergence.
This could be the case if threads process the same kinds of work requests, but
may be impossible if threads work on different requests. Nonetheless, the parallel
SoftNIC approach certainly optimizes throughput rather than latency, which is
also the GPU’s foundation.

Another difference is that the CPU has more control over the system through
the OS. For example, more memory can easily be allocated through system calls
and allocations can be pinned to prohibit pages to be swapped to disk. GPUs
cannot rely on the OS and depend on the CPU to prepare everything before
a kernel is executed, including memory allocations and I/O mappings. This
certainly reduces flexibility and limits the GPU’s ability to perform networking
tasks.
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6.5.3 Verdict

The chapter has shown that it is possible to perform networking tasks on the
GPU on top of a large shared memory system, including inherently sequential
tasks like message and receive request matching. Various building blocks have
been presented and evaluated in regard to their compatibility with the GPU’s
execution model and architecture.

One of the most important building blocks is the queue as it implements the
interface between application and SoftNIC. While queues allow for a reasonable
throughput to be yielded on GPUs, the benefit of extra queuing hardware is
significant and would improve throughput much more. In software, the latency
to enqueue elements is quite high and requires many memory accesses and
arithmetic instructions, distracting threads from working on the application.

The second interface comprises notifications, providing a path from the
SoftNIC to the application. Although this can be implemented reasonably well
in software, the mechanism is significantly limited by the GPU’s scheduling.
The only way for the application to receive notifications from the SoftNIC is
polling, which not only generates many memory transactions but also blocks
resources. Because this can easily result in a deadlock situation, a persistent
thread programming model is inevitable with the current scheduling approach.

Summarizing it can be said that the SoftNIC can provide abstractions to
hide complexity of communication in larger scale systems, aiming to improve
programmability rather than performance. Furthermore, a persistent thread
model is the only feasible approach at the moment. Nonetheless, it can be
observed that GPUs are becoming richer in their ability to perform general
purpose tasks and more and more features are added to make the GPU a first
class processor. Along that road, the SoftNIC becomes an attractive approach
to allow applications to scale out to GPU-centric systems.
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Discussion

In this chapter, insights from previous chapters are reviewed and further discussed.
Furthermore, current trends are taken into account to evaluate results and the
impact of this work.

7.1 Related Work

Several related publications have been presented throughout this work so far and
this section reviews directly related work and how they distinguish from this
work.

One of the first to propose GPU-sided sourcing of communication was Stuart
et al. with their DCGN framework [12]. The proposed message passing scheme
dedicates a CPU thread that receives work from the GPU to execute communi-
cation. Although this marks a first step, the GPU still relies on the CPU which
is different from what this work is proposing. Furthermore, only message passing
was considered as communication model, while this work also looks at flat and
partitioned shared address spaces and one-sided communication.

Similar CPU-dependent approaches are dCUDA [13] and GPUnet [14]. The
first approach implements one-sided communication with help from MPI running
on the CPU. GPUnet, on the other hand, implements a networking layer on the
GPU based on TCP/IP sockets. The CPU is required to assist with notifications.
Again, as distinguished from this work these approaches still rely on the CPU
and focus on a single communication model.
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The closest related work has been published by Lena Oden [15], [85], [90].
Oden proposed GGAS and Infiniband VERBS for GPUs and studied how the GPU
can directly interact with the NIC. GGAS is used in this work and compared
to other GPU-centric communication models. Oden’s work also focuses on
unmanaged communication.

This work is the first to investigate communication management on GPUs,
especially regarding the matching of messages and receive requests. Various
applications have been studied in regard to their MPI characteristics and queue
lengths [51]–[55], [57], [134], but this work is the first to consider exascale proxy
applications.

7.2 Application Analysis

Chapter 4 analyzed various exascale applications in regard to their communication
characteristics, focusing on message passing and MPI. This analysis is important
to understand communication in HPC environments and allows to optimize and
design the communication architectures of HPC systems.

7.2.1 Communication and Synchronization

It is shown that an average of 35% of the application’s execution time is spent
within the MPI library on communication and synchronization tasks, clearly
emphasizing the importance of communication. The MPI time can be further
broken down into particular MPI operation, which shows that synchronization is
the main bottleneck, especially at larger scale. While most data is transferred
through point-to-point operations, the most time is spent in collective operations
due to their implicit synchronization. Non-blocking collectives as proposed by
Torsten Hoefler [58] have been been observed in the traces.

Looking at exascale applications and systems, it is advisable to use non-
blocking operations wherever it is possible, even for collectives. Waiting on
a large number of processes to reach a certain point within the application
poses a tremendous bottleneck. In fact, it might be better to rethink the
traditional message passing model and rather think in tasks that can be executed
independently. In case some processes are still waiting for other processes to
finish a collaborative task, smaller tasks can be executed in the meantime. At
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larger scale, things like reliability and fault tolerance also have to be addressed,
which seem to be more intuitive in task-based models.

One of the most rapidly emerging applications is the training of deep neural
nets. Here, synchronization is most important for scalability. While today’s
applications mostly rely on asynchronous data parallelism, model parallelism
and synchronous data parallelism might be dominating in the near future. This
is mainly due to two aspects. First, asynchronous data parallelism can hurt
the convergence of the model significantly as the batch size indirectly increases
and weight updates might get lost. This is know as the stale gradient problem
and described in more detail by Suyog Gupta et al.[65]. Second, with models
becoming larger and larger the need for model parallelism increases. However,
model parallelism requires synchronous collective communication, which needs to
be supported and optimized by the the system. Here, GPU-sided communication
becomes increasingly important, which renders this work valuable for the design
of tailored communication architectures.

Nonetheless, it was shown that model parallelism shows great potential for
scalability if GPUs are equipped with a fast network access.

7.2.2 Messaging at Large Scale

The way an application sends messages can be described by how many messages
are exchanged, the message rate, and the message size. Here, it must be distin-
guished between weak and strong scaling. Generally, strong scaling applications
has shown that messages tend to become smaller as problems are decomposed
into smaller tasks. Thus, the communication architecture should focus on the
exchange of small messages with an emphasize on the matching of messages and
receive requests.

The impact on weak scaling depends on the application and its computational
complexity. The studied applications show that messages become larger with
an increased problem size and a constant number of processes. The number of
messages, however, seems to be more or less unchanged.

Furthermore, point-to-point communication is rather local as ranks only
communicate with a small subset of other ranks, rendering the mapping and
topology important. Another important aspect are collective operations, which
are frequently used in scientific applications and exclusively used in the parallel
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training of deep neural nets. It is crucial for future systems to focus on collective
operations in regard to system design and optimization.

MPI’s messaging also needs to become more GPU-aware to further accom-
modate for a steady increase in heterogeneity. While GPUDirectAsync is a step
in the right direction, it still requires the CPU to prepare a work plan and to
submit all tasks to streams. In the future, GPU’s should be capable of triggering
communication within kernels, for example by declaring certain stream tasks as
ready. These are then executed by the GPU.

Important issues to be addressed at larger scale also include reliability, quality
of service, and process mapping.

7.2.3 Message Matching

With messages becoming smaller at larger scale, the matching becomes key to low
latency. However, the current MPI matching protocol is too complex and need
to be relaxed in order to allow for the best performance. For example, almost
none of the applications use wildcards. It would be a simple change to MPI to
allow communicators without wildcards to enable parallel matching algorithms.

More drastically, MPI could introduce something like fences that reestablish
ordering. The following example shows how a region could be defined in which
messages are matched out-of-order. Here, the user uses source and tag to identify
each message uniquely. The start of the region instructs MPI to replace its lists
with hash tables for the matching of messages. At the end, the region is closed
and lists are reestablished. Alternatively, the system could allow users to create
communicators in which ordering is not guaranteed.
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Listing 7.1 Example for unorderered transfer regions in MPI.
1 MPI_Unordered_region_open ( MPI_COMM_NO_WC );

2
3 for( src = 0 ; src < number_ranks ; ++ src )

4 {

5 if( src == my_rank )

6 continue ;

7
8 for( tag = 0 ; tag < number_messages ; ++ tag )

9 MPI_Irecv ( <buffer >, <count >, <type >, \

10 src , tag , MPI_COMM_NO_WC , <request > ) ;

11
12 }

13
14 MPI_Unordered_region_close ( MPI_COMM_NO_WC );

7.3 GPUs in Control of the Network

The importance of GPUs in scientific computing has been increasing in the past
years, but due to their recent success in deep learning, GPUs have become more
important in other domains as well. Undoubtedly, many distributed systems are
going to be enhanced by GPUs and it can also be expected that the number
of GPUs per CPU is increasing. Examples are NVIDIA’s Saturn V 1 and the
Summit system at the Oakridge National Laboratory [135]. That being said, the
need for GPUs to orchestrate communication has never been higher.

7.3.1 System Architecture

Scientific computing and artificial intelligence suggest that the number of systems
with specialized accelerators is increasing, mainly driven by power constraints.
The current model, in which the CPU orchestrates everything and certain
compute-intensive parts are offloaded to another device, seems unpromising as
it requires additional context switches and data copies. Instead, accelerators

1https://blogs.nvidia.com/blog/2016/11/14/dgx-saturnv/, last visited on June 9,
2017.

165

https://blogs.nvidia.com/blog/2016/11/14/dgx-saturnv/


Discussion

(a) single inter-node network (b) hierarchical network architecture

Fig. 7.1 Two possible high-performance and heterogeneous system architectures.

are becoming first class processors that are part of the network, receiving and
executing tasks and communicating data with others. A good example is Intel’s
Xeon Phi processor which can be used as a processor within a SMP system,
but also NVIDIA’s efforts to make GPUs more general purpose. An example
system, which is similar to NVIDIA’s Saturn V supercomputer, is sketched in
Figure 7.1a. The system consists of two domains, the CPU SMP optimized
for latency, and a group of GPUs optimized for throughput. Both CPU and
GPU processors are interconnected by their own networks and share a NIC for
inter-node communication. There are also systems in which CPU and GPU
share the same network, namely NVLINK, such as Oakridge’s Summit with
IBM PowerPCs and NVIDIA’s Volta GPUs. However, this still requires PCIe to
access the NIC.

Figure 7.1b shows a different system, in which another hierarchy is introduced.
GPUs within a node are also connected to other GPUs of other nodes within the
same cabinet by a fast and throughput oriented network, for example NVLINK.
The same applies to the SMP processor. Each cabinet is also connected to a
global network comprising all of the system’s cabinets using a network that is
shared between CPUs and GPUs, for example Infiniband.

What is crucial about this system is its specialization, not only in computation
but also in communication. That means that CPUs and GPUs can implement
different communication models, tailored to their execution model. However,
there might also be interactions between the two types of processors, for example
in a task-based programming model in which tasks can be scheduled to the
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processor that suits best the task’s requirements. Here, dependencies and
events might require communication between a CPU and GPU. Nonetheless,
programming these kind of systems at larger scale is going to be challenging.

An open research question is also how much of an application can actually
be performed on the GPU. If the critical path of an application can be entirely
run on the GPU, a simpler and more power efficient CPU might be sufficient.
In an extreme case, the CPU could also be seen as a co-processor for the GPU
which offloads sequential tasks.

NIC architecture Regarding the NIC architecture, three aspects have to
be considered. First, GPUs within a node are going to remain connected by
NVLINK and a shared address space. Nonetheless, the internal NVLINK NIC
should be extended by RDMA capabilities, for example by significantly improving
access to copy engines and also allowing them to generate distinct notifications.
In fact, it can be assumed that NVLINK’s scale might be extended to a few nodes
within a cabinet, for example. Second, EXTOLL’s work request generation has
been shown to be superior to Infiniband. The NIC that connects to other nodes
should be accessible from the GPU and EXTOLL’s interface seems promising as
work requests are lean and simple to generate. Third, notifications have to be
placed in GPU memory, which is possible with both EXTOLL and Infiniband.
Overall, the NIC has to support both CPU and GPU communication models as
it is shared. Dedicated NICs for each processor are not cost efficient and only
increase the system’s complexity.

GPU architecture Changing the GPU architecture requires to prove signif-
icant value by adding new features. The SM architecture has not added any
new features until Volta and its tensor cores, driven by deep learning and its
multi-billion market. The SoftNIC, as shown in Chapter 6, benefits significantly
from hardware support for queuing, data management, scheduling, and events,
but unless there is much greater value these features are not going to be imple-
mented. Nonetheless, Volta’s new threading model can help to implement much
faster queues and matching algorithms and thread groups provide synchroniza-
tion across CTAs. However, it is unclear how much the latter is supported by
hardware or implemented in software. An overview of architectural improvements
are shown in Table 7.1 with respect to the Volta architecture and how much it
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will improve certain aspects. It remains to be seen how deep learning algorithms
evolve and how much they require GPUs to communicate directly with each
other. If model parallelism is going to replace data parallelism at some point,
GPU-sided communication and synchronization quickly become key to high
training performance.

Another approach is followed by AMD, who combines the CPU and GPU
to an APU. NVIDIA offers a similar architecture for their embedded vertical
market, but has not shown any plans to expand this to the Tesla market, which
gears to HPC and data centers. Nonetheless, if more and more features keep
being added to the GPU to make it more general purpose, a simple Advanced
RISC Machines (ARM) core on the GPU die might be beneficial. The core
would be programmable and could implement SoftNIC functionality, for example,
but could also be used for other applications that require faster single-thread
performance.

7.3.2 Communication Model

As for now, the most prevalent communication model in HPC is MPI and this
is not expected to change in the near future. However, this mostly concerns
the CPU and with GPUs becoming interconnected another or adapted message
passing model is required. NVLINK introduces a shared memory model, but is
rather limited to smaller scale in current DGX-1 systems.

Another question is what it needs to further scale the shared memory model,
as it also showed the best performance on GPUs in Chapter 5. The following
elaborates on some of the challenges.

Address translation Scaling a shared memory model also means that the
size of the shared address space growth linearly, but it also increases the number
of pages that need to be addressable. One problem is the page table of each
GPU, which needs to contain addresses of all pages in the network. Also, the
TLB has to become larger to work efficiently. Hence, it is mandatory to find
more efficient and better ways to translate addresses and support page migration
between remote GPUs in order to scale out the shared memory model to a larger
network
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Fig. 7.2 Concentric consistency model as it is supported by current GPUs.

Consistency Consistency is a major concern in all shared memory approaches.
Currently, GPUs see consistency in a scoped and concentric way as depicted in
Figure 7.2. Fences are used to ensure previously posted memory operations are
visible at the particular scope. However, extending the scope to a cabinet or
even the whole system is too expensive in terms of latency as it concerns too
many processors.

A better, more performant way is to be able to enforce consistency between
objects or variables. Here, it only needs to be guaranteed that one or a group
of variables are visible before another group or particular variable. The model
enforces the order of write operations and their visibility to all processors. This
is certainly required at larger scale and allows to scale to larger GPU networks.

Managing communication Although shared memory models allow for fine-
grain accesses on word or page granularity, the user is required to know the
address from which data is loaded or to which data is written. At larger scale, a
large number of buffers might be used, which make it hard for the programmer
to be aware of data locality, which is crucial to performance. Also, notifications
have to be managed explicitly, which means notifications have to be found
for particular requests and the programmer has to be aware of pending and
outstanding operations. Even with systems like NVIDIA’s DGX-1, not all GPUs
can access other GPU’s memory through NVLINK and thus the user has to
handle the routing explicitly. This problem is amplified at larger scale.

In order to ensure large systems are still programmable and yield high per-
formance, the system needs to provide suitable abstractions. While put/get
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semantics allow to express communication, as opposed to implicit communication
by assignment, addresses and registrations still need to be known and adminis-
trated. Consequently, managed communication is important to provide high-level
abstractions to hide much of the system’s and network’s complexity.

The right communication model The communication model is likely to
become hierarchical. Looking at the systems in Figure 7.1, it can easily be
imagined that GPUs within a node or cabinet communicate through a shared
memory model, while inter-node communication still relies on message passing,
for example MPI. However, due to complexity, reliability, and scalability reasons,
the right model might be using tasks instead of a static rank-to-processor mapping.
This also improves performance as resources can be better utilized and work is
moved instead of data. A promising task-based model is Legion [33], for example.
Nonetheless, the granularity of tasks is still to be determined as tasks can be as
small as a kernel that runs on a single GPU, or as large as a group of processes
running on an entire node. The latter requires the task itself to be decomposed
to run on all available processors.

7.4 Managing Communication on GPUs

Chapter 6 and the previous section have shown that it will not be enough to
simply allow the GPU to control the network by providing it access to the NIC.
On the contrary, the GPU needs to manage communication to some extend.
The level of abstraction, however, depends on the communication model, but
generally the management is mostly limited by the following items.

7.4.1 Queuing

Asynchronous communication requires data structures in which messages can
be stored until they are eventually consumed. Queues are an efficient data
structure to exchange messages, but as shown, GPUs struggle with the queue’s
sequential nature. In order to en- or dequeue elements, various pointers have
to be fetched, modified, and written back atomically. The proposed hardware
extensions implement these operations inside the memory controller and allow
for high-throughput queuing, which is necessary for both inter-CTA, but also
inter-GPU communication.
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CUDA 9.0 introduces the notion of Cooperative Thread Groups which allow
for fast inter-thread synchronization and communication across warps. It is now
possible to expand the warp-parallel de- and enqueue to more than 32 threads.
The Volta GPU architecture goes even a step further by allowing threads to
diverge, enabling more efficient queuing implementations. Nonetheless, hardware
supported queuing is still desirable to cope with communication demands at
larger scale and a massive amount of end-points.

7.4.2 Scheduling

When CTAs are scheduled to run on an SM they cannot be preempted, thus
if messages are used for synchronization the GPU might end up in a deadlock
situation. With preemption, CTAs could be set aside while they are awaiting
messages and brought back when the message has arrived, perhaps triggered by
an event.

Starting with the Pascal architecture, GPUs support instruction-level pre-
emption for compute kernels. However, switching the context still takes up to
100µs [10] and should only be used infrequently. It seems unlikely that GPUs are
going to implement and expose full CTA preemption in their API as the current
scheduling and oversubscription are key to the GPU’s high performance in many
applications.

CUDA’s aforementioned Cooperative Thread Groups allow for synchronization
across multiple CTAs, given it is guaranteed all CTAs are resident on the GPU.
The SoftNIC in its current form supports the persistent thread model, overcoming
current scheduling limitations, but is at the same time limited in its applications.

7.4.3 Memory Management

Another significant difference between CPUs and GPUs is the memory man-
agement, which is much more dynamic on the CPU. There are two main issues
resulting from the lack of dynamic memory management on GPUs. First, the
SoftNIC and communication runtime may have to allocate memory to buffer
incoming messages or to stage data for the transfer and application. Second,
one-sided communication requires registrations, which the application should be
able to allocate within the CUDA kernel as opposed to registering everything
prior to the kernel launch.
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Although there is existing work implementing dynamic memory management
it is still an active research area and CUDA still does not provide any support.
It is certainly desirable to have this feature in future GPU generations, perhaps
even with specialized hardware acceleration. Nonetheless, Volta’s new threading
model improves the performance of rather sequential data structures, such as
lists, but also hash tables as threads within a warp are able to diverge. These
data structures are needed to implement dynamic memory allocators.

7.4.4 Data Copy Engines

Although it has been shown throughout this work that fine-grain communication
is superior on GPUs, large and frequent data transfers can occupy a significant
amount of resources. Hence, offloading data transfers allows for better overlap.
The current Pascal P100 GPU architecture implements two copy engines to which
data transfers can be offloaded, however, accessing them within CUDA kernels
entails high latencies. Consequently, a faster direct access is required, but also a
virtualized interface in order to be able to serve many concurrent requests. For
example, each copy engine could implement multiple queues in which threads
can enter requests in parallel.

7.5 Outlook

The major driver in GPU computing is certainly artificial intelligence, especially
deep learning. Consequently, innovations in GPU architecture or in the program-
ming model are mostly focused on benefiting these applications, which also share
requirements with traditional scientific computing.

The latest Volta architecture implements tensor cores to accelerate tensor
operations, mainly aimed at deep learning but also benefiting other linear al-
gebra applications and thus many HPC workloads as well. Furthermore, the
revised threading model in which threads can diverge allows for more flexibility
and improved efficiency at tasks that require fine-grain synchronization, for
example double-linked lists. This certainly improves the matching and queuing
performance required by a SoftNIC implementation.

The most interesting innovation in regard to the SoftNIC is the Cooperative
Thread Group. Due to the scheduling, the SoftNIC is mostly limited to the
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Table 7.1 Architectural improvements to allow for better communication man-
agement on GPUs. The table shows what features are improved by Volta and
values the improvement.

Item How Volta helps Valuation What is desired
on Volta

Queuing Revised threading
model (TM)

Medium Queue instructions,
supported by
hardware

Scheduling Cooperative Thread
Groups (CTG)

Medium Preemption, but
CTG is sufficient for
persistent thread
model

Msg. Matching Revised TM, CTG High Faster single-thread
performance

Mem. Mngmnt. Revised TM Medium Faster and built-in
dynamic memory
allocations within
kernels

Data transfer NVLINK 2 Low Highly concurrent
and virtualized copy
engines

Synchronization NVLINK 2, CTG Medium Better scheduling
Messaging NVLINK 2 Medium Better queuing,

locally and remotely
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persistent thread model, which is now significantly improved with the latest
CUDA features on Pascal and Volta GPUs. Besides synchronization across CTAs,
communication and collective primitives are going to be supported, even across
multiple GPUs. This further allows to keep state information in registers instead
of reloading everything after the kernel re-launch. A task model, in which thread
groups receive tasks from a queue and create new tasks is now a feasible and
attractive approach. Here, the SoftNIC can be used for group collectives and
inter-node communication between groups running on different GPUs in different
nodes.

As aforementioned, the major driver is deep learning. The size of neural
nets is growing at a tremendous speed and the parallel training has gained a
focus in research. While asynchronous data parallelism is still the most prevalent
choice, model parallelism is becoming more important. Thus, communication
and synchronization between GPUs is soon becoming the bottleneck in order to
scale out deep learning. This will make a strong case for further enhancements in
architecture and the programming model, rendering this work a good reference.
With Volta’s enhanced support for the persistent thread model the need for
in-kernel communication becomes evident.
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Conclusion

Heterogeneous computing has become the standard in HPC to keep up with
performance demands under power constraints that have become increasingly
harder to meet. While computation is an interplay between CPUs and GPUs,
communication is still homogeneous and entirely handled by the CPU.

With computing shifting toward GPU-centric systems, in which both proces-
sors are peers, communication needs to be specialized and heterogeneous, similar
to computation. This work has presented and analyzed the GPU’s capability
to orchestrate communication and source and sink networking traffic, from the
GPU’s interaction with networking hardware to how communication can be
managed in software to provide suitable communication abstractions that hide
complexity from the user. Furthermore, several exascale applications were studied
in regard to their communication behavior.

The application study showed that point-to-point communication is rather
local and limited to a few peers. The most data is transferred through point-
to-point operations like send/recv, but the most time is spent in collective
communication, such as barrier, (all-)reduce, or all-to-all. This results from
collective’s implicit synchronization and is especially critical at large scale as
imbalances are more likely and significant. Large scale also leads to a higher
number of small messages, rendering the matching of messages with receive
requests more important. Consequently, the matching and its queue structures
were analyzed and it was found that queues barely exceed 512 messages. The
analysis is important to identify boundary conditions and define design goals.
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This investigation was followed by a comprehensive analysis of the interac-
tion between GPU and NIC. Three fundamental communication models were
presented: global shared address space, one-sided put/get, and traditional CPU-
controlled MPI. Various benchmarks with common scientific communication
patterns were used to assess these models in regard to execution time and energy
spending dependent on the underlying communication model. Results show
that GPU controlled communication is always favorable, not only in terms of
time-to-solution but also regarding the energy spent to execute an application.
Energy savings range between 10 and 50%. Although fine-grain communication
using loads and stores shows the highest bandwidth and lowest latency, overlap
with computation is limited. Thus, applications that allow for overlap benefit
from one-sided put/get communication as more resources are available to the
application and the actual copy operations are offloaded to the NIC hardware.
Nonetheless, the proposed communication models are unmanaged with low-level
abstractions, making it difficult to develop applications for large-scale systems.

The final part of this work considered communication management on GPUs,
a widely unexplored research area. A concept was presented in which communi-
cation is handled by a kernel that runs along with the application. The kernel
receives requests from the application through queue structures and performs
communication tasks, occupying less resources as a single SM. This kernel is
referred to as SoftNIC (Software NIC). First, queuing approaches were discussed
and evaluated and it was concluded that additional hardware structures could
improve the throughput significantly. Another focus has been on the message and
receive request matching. Although an MPI protocol compliant algorithm was
developed and assessed, a more relaxed protocol was presented that yields much
higher message rates on GPUs. The most severe limitation with a software NIC
is the scheduling, which is non-preemptive and only allows to apply a persistent
thread model.

Although the current technology limits the SoftNIC to a persistent thread
model and mainly tackles programmability rather than performance, trends and
advances in the GPU architecture make this concept more and more attractive
and feasible. On the one hand, GPUs are increasingly adding new features toward
general purpose computing which eventually will promote them to first-class
processors. On the other hand, the need for GPU controlled communication is
becoming more important than ever, not least because of the rapidly expanding
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field of deep learning.
This work contributes a comprehensive study of GPU communication through

the entire computing stack, from low-level interactions between GPU and NIC
to the applications’ communication behavior. This makes this work valuable to
system architects but also to researchers that aim to take their applications to
large scale and distributed GPU systems. In addition, this work also encourages
more research in GPU architecture to focus on communication, but also to explore
more scalable and GPU-centric programming models with suitable high-level
abstractions. The SoftNIC can play an important part to hide complexity of
large-scale GPU accelerated installations.
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