8 research outputs found

    Dense clustered multi-channel wireless sensor cloud

    Get PDF
    Dense Wireless Sensor Network Clouds have an inherent issue of latency and packet drops with regards to data collection. Though there is extensive literature that tries to address these issues through either scheduling, channel contention or a combination of the two, the problem still largely exists. In this paper, a Clustered Multi-Channel Scheduling Protocol (CMSP) is designed that creates a Voronoi partition of a dense network. Each partition is assigned a channel, and a scheduling scheme is adopted to collect data within the Voronoi partitions. This scheme collects data from the partitions concurrently and then passes it to the base station. CMSP is compared using simulation with other multi-channel protocols like Tree-based Multi-Channel, Multi-Channel MAC and Multi-frequency Media Access Control for wireless sensor networks. Results indicate CMSP has higher throughput and data delivery ratio at a lower power consumption due to network partitioning and hierarchical scheduling that minimizes load on the network

    VIZWALT: A visualization tool for WSN experiments on the WalT platform based on COOJA

    Get PDF
    [ANGLÈS] VizWalT is a visualization tool that allows to observe the behavior of a wireless sensor network, facilitating the testing of any protocol or tool that is being developed.[CASTELLÀ] Es una herramienta de visualización que permite observar el comportamiento de una red de sensores inalámbricos, facilitando el testeo de cualquier protocolo o herramienta que se esté desarrollando.[CATALÀ] VizWalT és una eina de visualització que permet observar el comportament d'una xarxa de sensors sense fils, facilitant el testeig de qualsevol protocol o eina que s'estigui desenvolupant

    Performance Analysis of Distributed Resource Reservation in IEEE 802.11e-Based Wireless Networks

    Get PDF
    Abstract-Guaranteeing quality of service is one of the most critical challenges in IEEE 802.11-based wireless networks. This paper proposes an analytical framework to evaluate hybrid MAC scheduling mechanisms with distributed resource reservation, that was proposed for the IEEE 802.11e enhanced distributed channel access protocol for guaranteeing quality of service. The hybrid MAC scheduling mechanisms split the airtime into service intervals with contention-free period for quality of service guaranteed real-time sessions, and contention access period for other traffic sessions. The distributed resource reservation ensures that the resources are allocated to real-time sessions without the support of a centralised controller -this makes it suitable for ad-hoc networking applications. The proposed analytical framework models the quality of service (i.e. delay and throughput) performance of real-time sessions with dedicated resources in a distributed environment, and also estimates the overall capacity of the network. Moreover, the derived models can be used to investigate the impact of changes to individual system parameters, such as service interval or size of transmission opportunity. The simulation results show that the proposed analytical framework precisely models the quality of service performance of real-time sessions and predicts the optimum resource allocation for improved network capacity

    Wireless Process Control using IEEE 802.15.4 Protocol

    Get PDF
    Projecte final de carrera fet en col.laboració amb KTH Royal Institute of TechnologyCatalà:: Considerant els beneficis potencials de les xarxes sense fils de sensors (WSNs), s'estan convertint en una interessant tecnologia tant per processos com per al control industrial així com per xarxes intel·ligents. Aquestes aplicacions motiven altres companyies, comunitats industrials i a universitats a centrar la investigació en aquesta direcció. El IEEE 802.15.4 és un estàndard proposat per ser utilitzat en comunicacions de baix consum energètic on les WSNs formen part. Malgrat l'existència de moltes implementacions d'aquests estàndard per el nostre sistema operatiu, TinyOS, no estan completament validats o no existeix un anàlisi suficient del rendiment de l'estàndard en una implementació real. En aquest projecte, es compara dues implementacions a través de diferents experiments per comprovar la validesa de les implementacions. Però la implementació seleccionada no incorpora el mecanisme de Guaranteed Time Slots (GTSs), es per això, que en aquest projecte es proporcionen tots els mecanismes necessaris per transmetre durant el Contention-Free Period (CFP): assignació, expiració, reassignació i deassignació. D'aquesta manera proporcionem la implementació del IEEE 802.15.4 amb una completa avaluació del rendiment amb la qual el correcte funcionament queda validat. Degut a que no existien resultats pràctics sobre l'ús d'aquest protocol per aplicacions de control, presentem un pendol invertit per mostrar els beneficis del control sense fils de processos utilitzant el IEEE 802.15.4 en un llaç de control. Els resultats experimentals mostren les pèrdues de paquets i retards, factors determinants per garantir l'estabilitat del sistema. D'altra banda, també demostrem i analitzem els beneficis d'aquest protocol aplicat a una xarxa intel·ligent (Smart Grid).Castellano: Considerando los potenciales beneficios de las redes inalámbricas de sensores (WSN), se están convirtiendo en una interesante tecnología para procesos, producción, y el control industrial así como para redes inteligentes. Estas aplicaciones motivan a otras compañías, comunidades industriales y a las universidades a centrar la investigación en esta dirección. El IEEE 802.15.4 es un estándar propuesto para ser utilizado en comunicaciones de bajo consumo donde las WSNs forman parte. A pesar de que existen muchas implementaciones de dicho estándar para el sistema operativo seleccionado, TinyOS, no están completamente validadas o completamente implementadas. Además, a pesar de la existencia de estudios que utilizan este protocolo, no hay un análisis suficiente del rendimiento de este estándar en una implementación real. En este proyecto, se comparan dos implementaciones a través de diferentes experimentos para comprobar la validez de dichas implementaciones. Debido al hecho de la implementación seleccionada no incluye el mecanismo Guaranteed Time Slots (GTSs), en este proyecto se proporcionan todos los mecanismo necesarios para transmitir durante el Contention-Free Period (CFP): asignación, expiación, re-asignación y de-asignación. De esta manera, proporcionamos la implementación del IEEE 802.15.4 con una completa evaluación del rendimiento con el cual su correcto comportamiento queda validado. Debido a que no existían resultados prácticos del uso de este protocolo para aplicaciones de control, presentamos un péndulo invertido para mostrar también los beneficios del control inalámbrico de procesos utilizando el IEEE 802.15.4 en un lazo de control. Los resultados experimentales muestran las perdidas de paquetes y retrasos, factores determinantes para garantizar la estabilidad del sistema. Además, demostramos y analizamos los beneficios de este protocolo aplicado a una red inteligente (Smart Grid).English: Considering the potential benefits offered by Wireless Sensor Networks (WSNs), they have been becoming an interesting technology for process, manufacturing, and industrial control and Smart Grid applications. These applications motivate many companies, industrial communities and academy to focus and research in this direction. The IEEE 802.15.4 is the standard proposed to be use in low-power communication of which WSN is part. Even though there are many implementations of the standard for the selected operating system, TinyOS, they are not fully validated or fully implemented. Moreover, in spite of the existence of previous studies using the protocol, there is no sufficient analysis of the performance of this standard. In this thesis, a comparison between the two main implementations is done through the experiments to validate the feasibility of the implementations. Because of the fact that the selected implementation does not have the Guaranteed Time Slots (GTSs) mechanism developed, in this thesis are provided all the mechanisms necessary to transmit during the Contention-Free Period (CFP): allocation, expiration, reallocation and deallocation. Hence, a IEEE 802.15.4 implementation is provided with a comprehensive evaluation with which the behaviour is proven. The implementation is validated in terms of packet delivery rate and delay for different network configurations and different parameters. Owing to no practical results for the use of this protocol in control applications, a inverted pendulum process is introduced to show the benefits in wireless process control by using the IEEE 802.15.4 in a real-time control loop process. The extensive experimental results show that packets losses and delays are the essential factors to guarantee the stability of the system. Furthermore, we also demonstrate and analyse the benefits of using this protocol in a Home Smart Grid setup

    Performance analysis of GTS allocation in Beacon Enabled IEEE 802.15.4

    No full text
    Time-critical applications for wireless sensor networks (WSNs) are an important class of services supported by the standard IEEE 802.15.4. Control, actuation, and monitoring are all examples of applications where information must be delivered within some deadline. Understanding the delay in the packet delivery is fundamental to assess performance limitation for the standard. In this paper we analyze the guaranteed time slot (GTS) allocation mechanism used in IEEE 802.15.4 networks for time-critical applications. Specifically, we propose a Markov chain to model the stability, delay, and throughput of GTS allocation. We analyze the impact of the protocol parameters on these performance indexes. Monte Carlo simulations show that the theoretical analysis is quite accurate. Thus, our analysis can be used to design efficient GTS allocation for IEEE 802.15.4.QC 2011011

    Wireless Process Control using IEEE 802.15.4 Protocol

    Get PDF
    Projecte final de carrera fet en col.laboració amb KTH Royal Institute of TechnologyCatalà:: Considerant els beneficis potencials de les xarxes sense fils de sensors (WSNs), s'estan convertint en una interessant tecnologia tant per processos com per al control industrial així com per xarxes intel·ligents. Aquestes aplicacions motiven altres companyies, comunitats industrials i a universitats a centrar la investigació en aquesta direcció. El IEEE 802.15.4 és un estàndard proposat per ser utilitzat en comunicacions de baix consum energètic on les WSNs formen part. Malgrat l'existència de moltes implementacions d'aquests estàndard per el nostre sistema operatiu, TinyOS, no estan completament validats o no existeix un anàlisi suficient del rendiment de l'estàndard en una implementació real. En aquest projecte, es compara dues implementacions a través de diferents experiments per comprovar la validesa de les implementacions. Però la implementació seleccionada no incorpora el mecanisme de Guaranteed Time Slots (GTSs), es per això, que en aquest projecte es proporcionen tots els mecanismes necessaris per transmetre durant el Contention-Free Period (CFP): assignació, expiració, reassignació i deassignació. D'aquesta manera proporcionem la implementació del IEEE 802.15.4 amb una completa avaluació del rendiment amb la qual el correcte funcionament queda validat. Degut a que no existien resultats pràctics sobre l'ús d'aquest protocol per aplicacions de control, presentem un pendol invertit per mostrar els beneficis del control sense fils de processos utilitzant el IEEE 802.15.4 en un llaç de control. Els resultats experimentals mostren les pèrdues de paquets i retards, factors determinants per garantir l'estabilitat del sistema. D'altra banda, també demostrem i analitzem els beneficis d'aquest protocol aplicat a una xarxa intel·ligent (Smart Grid).Castellano: Considerando los potenciales beneficios de las redes inalámbricas de sensores (WSN), se están convirtiendo en una interesante tecnología para procesos, producción, y el control industrial así como para redes inteligentes. Estas aplicaciones motivan a otras compañías, comunidades industriales y a las universidades a centrar la investigación en esta dirección. El IEEE 802.15.4 es un estándar propuesto para ser utilizado en comunicaciones de bajo consumo donde las WSNs forman parte. A pesar de que existen muchas implementaciones de dicho estándar para el sistema operativo seleccionado, TinyOS, no están completamente validadas o completamente implementadas. Además, a pesar de la existencia de estudios que utilizan este protocolo, no hay un análisis suficiente del rendimiento de este estándar en una implementación real. En este proyecto, se comparan dos implementaciones a través de diferentes experimentos para comprobar la validez de dichas implementaciones. Debido al hecho de la implementación seleccionada no incluye el mecanismo Guaranteed Time Slots (GTSs), en este proyecto se proporcionan todos los mecanismo necesarios para transmitir durante el Contention-Free Period (CFP): asignación, expiación, re-asignación y de-asignación. De esta manera, proporcionamos la implementación del IEEE 802.15.4 con una completa evaluación del rendimiento con el cual su correcto comportamiento queda validado. Debido a que no existían resultados prácticos del uso de este protocolo para aplicaciones de control, presentamos un péndulo invertido para mostrar también los beneficios del control inalámbrico de procesos utilizando el IEEE 802.15.4 en un lazo de control. Los resultados experimentales muestran las perdidas de paquetes y retrasos, factores determinantes para garantizar la estabilidad del sistema. Además, demostramos y analizamos los beneficios de este protocolo aplicado a una red inteligente (Smart Grid).English: Considering the potential benefits offered by Wireless Sensor Networks (WSNs), they have been becoming an interesting technology for process, manufacturing, and industrial control and Smart Grid applications. These applications motivate many companies, industrial communities and academy to focus and research in this direction. The IEEE 802.15.4 is the standard proposed to be use in low-power communication of which WSN is part. Even though there are many implementations of the standard for the selected operating system, TinyOS, they are not fully validated or fully implemented. Moreover, in spite of the existence of previous studies using the protocol, there is no sufficient analysis of the performance of this standard. In this thesis, a comparison between the two main implementations is done through the experiments to validate the feasibility of the implementations. Because of the fact that the selected implementation does not have the Guaranteed Time Slots (GTSs) mechanism developed, in this thesis are provided all the mechanisms necessary to transmit during the Contention-Free Period (CFP): allocation, expiration, reallocation and deallocation. Hence, a IEEE 802.15.4 implementation is provided with a comprehensive evaluation with which the behaviour is proven. The implementation is validated in terms of packet delivery rate and delay for different network configurations and different parameters. Owing to no practical results for the use of this protocol in control applications, a inverted pendulum process is introduced to show the benefits in wireless process control by using the IEEE 802.15.4 in a real-time control loop process. The extensive experimental results show that packets losses and delays are the essential factors to guarantee the stability of the system. Furthermore, we also demonstrate and analyse the benefits of using this protocol in a Home Smart Grid setup
    corecore