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Abstract

Considering the potential benefits offered by Wireless Sensor Networks
(WSNs), they have been becoming an interesting technology for process, man-
ufacturing, and industrial control and Smart Grid applications. These applica-
tions motivate many companies, industrial communities and academy to focus
and research in this direction.

The IEEE 802.15.4 is the standard proposed to be use in low-power commu-
nication of which WSN is part. Even though there are many implementations
of the standard for the selected operating system, TinyOS, they are not fully
validated or fully implemented. Moreover, in spite of the existence of previous
studies using the protocol, there is no sufficient analysis of the performance of
this standard.

In this thesis, a comparison between the two main implementations is done
through the experiments to validate the feasibility of the implementations. Be-
cause of the fact that the selected implementation does not have the Guaran-
teed Time Slots (GTSs) mechanism developed, in this thesis are provided all the
mechanisms necessary to transmit during the Contention-Free Period (CFP):
allocation, expiration, reallocation and deallocation. Hence, a IEEE 802.15.4
implementation is provided with a comprehensive evaluation with which the be-
haviour is proven. The implementation is validated in terms of packet delivery
rate and delay for different network configurations and different parameters.

Owing to no practical results for the use of this protocol in control ap-
plications, a inverted pendulum process is introduced to show the benefits in
wireless process control by using the IEEE 802.15.4 in a real-time control loop
process. The extensive experimental results show that packets losses and delays
are the essential factors to guarantee the stability of the system. Furthermore,
we also demonstrate and analyse the benefits of using this protocol in a Home
Smart Grid setup.
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Chapter 1

Wireless sensors networks

1.1 Introduction

In the late 1800’s, the first successful wireless radio transmission was accomplished
by the Italian Guglielmo Marconi. It was by September 1895 when Marconi had
already built the equipment that transmitted electrical signals through the air. He
opened the door towards a world that we are still discovering.

For most people the significance of wireless technologies comes from the abil-
ity to provide communication services like voice/data without any restriction on
movement. The mobility and the no necessity of being wired connected is perceived
as the main characteristics of the wireless technologies. However, it gives us the
possibility of scaling a network, communicate between two points which could be
impossible with wires, and the independence of being always connected.

With the success of wireless technologies in consumer electronics, standard wire-
less technologies are envisioned for the deployment in industrial environments as
well. [45, 46] Wireless technologies have also been identified for industrial and fac-
tory automation, distributed control systems, automotive systems and other kinds
of networked embedded systems with high mobility, reduced cabling and installation
cost, reduce danger of breaking cables, and less hassle with connectors. Neverthe-
less, these applications must often satisfy tight real-time and reliability requirements
otherwise non-productivity, loss of time, money or even physical damage can result.
In wired environments, timing and reliability are well attended by bus systems and
protocols, which are a mature technology. When wireless links are included, reli-
ability and timing requirements are slightly more difficult to achieve, due to the
characteristics of the radio channels.

WSNs have recently received increased attention in the industrial applications,
fact that led many companies, industrial communities and academy to focus and

5
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Figure 1.1: Inverted pendulum diagram

research in this direction. WSNs support much lower data rates and much smaller
transmit powers than other kind of Wireless Local Area Network (WLAN). This
Wireless Personal Area Network (WPAN), due to a limited energy budget sensors
should spend most of their time in a sleep state in which they are not able to
transmit or receive data. Even though these properties do not favour the adoption
of sensor networks in tight control loops, we apply a protocol for WSN in a control
loop where a high sample rate is needed in comparison with monitoring tasks.

This implementation will help us understanding the challenges of performing
real-time control over wireless which is not well studied.

1.2 Motivating applications
WSN can be applied in two realistic scenarios, for Smart Grid technology and pro-
cess control, like home smart grid to monitor the consumption of different devices,
or for controlling the air conditioning system. We could find other applications of
WSN in [1, 27, 34].

1.2.1 Process control

The main purpose of this thesis is to show how wireless technology can become a
key in process control using the IEEE 802.15.4. In comparison to traditional wired
sensors, wireless sensors provide advantages in the manufacturing environment, such
as an increased flexibility for locating and reconfiguring sensors, elimination of wires
in potentially hazardous locations, and easier maintenance.

Figure 1.1 shows the block diagram of our inverted pendulum. Our research
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Figure 1.2: Home Smart Grid deployment in a kitchen. Source: [33]

presented on this thesis has been based on the demonstration that it was possible to
control a tight timing control process using the IEEE 802.15.4. The full description
about the process is shown in Section 6.1.

1.2.2 Smart Grid technology

One interesting application of WSNs is to build a smart-grid infrastructure. WSNs
are an integral part of the automated metering infrastructure and smart-grid plans.
Smart Grid technology is designed to allow customers and utility companies to
collaboratively manage power generation, delivery and storage.

One case of study has been the research made in [33]. The research involves the
programming and deployment of several motes in a kitchen. It shows an example
of how it could work in a home or wherever we want to apply this smart-grid
technology. It shows also how it is possible to analyse and detect patterns and user
profiles.

Figure 1.2 shows an example of a deployment in a kitchen. Mention that huge
number of motes placed in a reduced space could be difficult and hard to deploy
in case of using wires. This example was tested with the standard protocol IEEE
802.15.4 [12]. In Section 6.2, we show the results on the communication analysis for
this application.

1.3 Challenges of WSN
The protocol design for industrial control applications with WSNs encounters much
more challenges than the protocol design for traditional communications networks,
where, mainly, considering a good Quality of Service (QoS) with a good throughput
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is enough. [27, 44] However, in our case of study appears more challenges to deal
with:

• Reliability: Sensor readings must be sent/received with a high probability of
success, because missing sensors readings could be critical. However, despite
the possibility of maximizing the reliability it is necessary a trade-off between
reliability and the network energy consumption.

• Delay: Sensor information must reach the sink within some deadline. Time
delay is very important since it influences on performance and stability of an
industrial control system. Even if an outdated packet is received it will not
be generally useful for a control application. This plays an important role in
our control applications (see Chapter 6).

• Energy Efficiency: The lack of battery replacement, which is essential for
affordable WSN deployment, requires energy-efficient operations.

• Scalability The protocol/application should be able to adapt to variation
in the network size, for example, size variations caused by the addition of
new nodes. This characteristic is one of the biggest advantages of low-power
wireless nodes.

All of these challenges are based on theoretical aspects to take into account
when it is needed to design a protocol or evaluate possible applications. As a
consequence, we can see how the design of such networked systems has to take into
account a large number of factors that ensure correct behaviour. Starting from
these requirements, it is important to design an efficient communication protocol
that satisfies the constraints and optimizes the energy consumption.

On the other hand, once we have designed a good protocol, then the challenges
for the implementation appear. Below we show some of the special requirements to
take into account once we want to work with a real deployment with WSN [38, 14]:

• Limited resources: Motes have very limited physical resources, due to the
goals of small size, low cost and a low power consumption. The motes that
we use (TelosB/TmoteSky [7, 41]) only have 48k ROM and a microprocessor
of 8MHz.

• Adaptation: The network operation should adapt to application requirement
changes, time-varying wireless channels, and variations of the network topol-
ogy. For instance, the set of application requirements may change dynamically
and the communication protocol must adapt its parameters to satisfy the spe-
cific requests of the control actions.
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1.4 Outline

This thesis shows the steps and progress to someone who wants to use a device for
wireless process control (WPC). From an external observer of a system (who does
not know anything about sensors network and process control) it is easy to detect
two characteristics that the system has to satisfy: a low number of data losses and
a high determinism for the arrival packets.

Once the characteristics and limitations of the system are known, it is obvious
the research of a platform that offers us durability and the expansion of possibility
to wide functionalities. At this point some questions appear: Which platform is the
most suitable for our application? Is there any operating system already designed,
or it is better to use a dedicated system? Which operating system (OS)? Which
dedicated system?

First of all, in Chapter 2 we focus on a summary of the protocol that is going
to be used and analysed along the thesis, the IEEE 802.15.4 [12, 26]. We find a
brief description of the standard utilities, primitives and configuration. It does not
intend to be a reference and wide explication of the protocol, it is just for a quick
review and make this thesis more understandable in some points.

In Chapter 3, we get the answer for the previous questions. First we present
some devices available to use in WSN, and other hardware necessary to analyse the
communication protocol. After that, we show a list of OSs that could run in our
sensors and we present our choice. Moreover we discuss which is the best IEEE
802.15.4 implementation for the selected OS. The performance evaluation of the
IEEE 802.15.4 depends on how good is the implementation and how close it is to
the standard. Furthermore, we analyse the precision and accuracy of the timers
with the different implementations.

Chapter 4 intends to be a reference guide for the GTS implementation. As a
complement of the TKN15.4 documentation [15], we provide a complete guide with
the current state of the implementation. This guide consists, first of all, a brief
introduction and overview with the current state of the implementation, then we
show a decomposition of the components and comments about the radio arbitration,
timing issues, and utilities. At the end of this chapter, we show some discussions
fields for future work, in order to give an advice on the next steps towards a full
implementation.

Chapter 5 shows a performance evaluation of the selected implementation. We
analyse reliability and delay for the selected implementation and for our GTS. We
shows these characteristics comparing with different configurations. First of all, we
compare the two transmission modes that the IEEE 802.15.4 has. Moreover, we
analyse the influence of the Medium Access Control (MAC) parameters in order to
characterize which are the critical parameters that influences in the reliability and
delay. Once we have the TKN15.4 validated, we focus on the analysis of transmis-
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sions using our GTS implementation. To end up, we show a brief validation where
we compare some graphs with theoretical model, and some of the future work that
would be made in order to improve and get an extensive performance evaluation.

Finally, Chapter 6 shows some applications where this protocol is applied to
provide more benefits. An inverted pendulum process where the sensing is done
through wireless and [33] a home smart grid. More projects related to this protocol
in our lab could be found in [24].



Chapter 2

IEEE 802.15.4 Protocol

In this chapter, we show a brief description of the IEEE 802.15.4 to
facilitate the understanding of this thesis.
The main features of this standard are network flexibility, low cost, very
low power consumption and low data rate in a ad-hod self-organizing
network among inexpensive fixed, portable and moving devices. It has
been developed for applications with relaxed throughput requirements
which can not handle the power consumption of heavy wireless protocol
stacks.

11
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2.1 General description
2.1.1 Components of the IEEE 802.15.4 WPAN

The most basic component in IEEE 802.15.4 is the device. A device can be a
Full-Function Device (FFD) or Reduced-Function Device (RFD). A network shall
include at least one FFD, operating as a Personal Area Network (PAN) coordinator.

The FFD can operate in three modes: PAN coordinator, coordinator or device.
An RFD is intended for applications that are extremely simple and do not need to
send large amounts of data. An FFD can talk to RFDs or FFDs while RFDs can
only talk to an FFDs.

2.1.2 Architecture

The IEEE 802.15.4 architecture is defined in terms of a number of blocks in order
to simplify the standard. These blocks are called layers. Each layer is responsible
for one part of the standard and offer services to the higher layers. The layout of
the blocks is based on the open systems interconnection (OSI) seven-layer model.

Low rate WPAN (LR-WPAN) device comprises a Physical Layer (PHY), which
contains the Radio Frequency (RF) transceiver along with its low-level control mech-
anism, and a MAC sublayer that provides access to the physical channel for all types
of transfer. Figure 2.1 shows a graphical representation of these blocks.

Figure 2.1: LR-WPAN device architecture Source: [26]
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2.1.3 Network topologies

A combination of different components could generate 3 types of topologies that
this standard supports. Figure 2.2 shows these combinations.

Star
Mesh

Cluster

Tree

PAN coordinator

Full Function Device (FFD)

Reduced Function Device (RFD)

PAN ID1

PAN ID2

PAN ID3

Figure 2.2: Topology models

Star topology The communication is established between devices and a single
central PAN coordinator. Applications that benefit from this topology include home
automation, personal computer (PC) peripherals, toys and games. All the exper-
iments and simulations in this thesis are based on this topology, with one PAN
coordinator and several RFD.

Mesh topology (peer-to-peer (P2P) topology) There is also one PAN coordi-
nator. In contrast to star topology, any device can communicate with any other
device as long as they are in range of one another. Applications such as industrial
control and environmental monitoring, asset and inventory tracking would benefit
from such a topology.
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Cluster-tree topology It is a special case of a P2P network in which most devices
are FFDs and RFD may connect to a cluster-tree network as a leave node at the end
of a branch. Any of the FFD can act as a coordinator and provide synchronization
services to other devices and coordinators. However, only one of these coordinators
is the PAN coordinator.

2.1.4 Functional overview

A brief overview of the general functions of a LR-WPAN is given in this section
and includes information on the superframe structure, the data transfer model, the
frame structure, improving probability of successful delivery and power consumption
considerations. We skip the security services because it is out of the scope of this
thesis.

2.1.4.1 Superframe structure

This standard allows the optional use of a superframe structure. The format of the
superframe is defined by the coordinator, it is divided into 16 equally sized plots.
Optionally, the superframe can have an active and an inactive portion, shown in
Figure 2.4. During the inactive portion, the coordinator and all the devices may
enter a low-power mode.

Active

Contention Access Period

(CAP)

time

Beacon frames

(a) Superframe without Inactive period

Active

time

Inactive

Beacon frames

(b) Superframe with Inactive period

Figure 2.3: Superframe Structure
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The beacons are used to synchronize the attached devices, to identify the PAN,
and to describe the structure of the superframes. Any device wishing to com-
municate during the Contention Access Period (CAP) competes with other devices
using a slotted Carrier Sense Multiple Access with Collision Avoidance (CSMA-CA)
mechanism. Moreover, the PAN may dedicate portions of the active superframe for
GTSs. The GTSs form the CFP, which always appears at the end of the active
superframe starting at a slot boundary immediately following the CAP.

Contention Access Period

(CAP)

time

Contention Free Period

(CFP)

Beacon frames

Figure 2.4: Superframe Structure with CFP

2.1.4.2 Data transfer model

There are three types of data transfer. The mechanism for each transfer type depend
on whether the network supports the transmission of beacons. A beacon-enabled
PAN is used in networks that either require synchronization. If the network does
not need synchronization can elect not to use the beacon for normal transfers.

1. Data transfer to a coordinator

(a) To coordinator in a beacon-
enabled PAN

(b) To coordinator in a non beacon-
enabled PAN

Figure 2.5: Communication to a coordinator
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Figure 2.5 shows the communication from a device to a coordinator for slotted
and unslotted CSMA-CA. The transmission can be done when the device has
a packet ready to send. It does not need to wait any kind of instruction, like
in the following case.

2. Data transfer from a coordinator

(a) From coordinator in a beacon-
enabled PAN

(b) From coordinator in a non
beacon-enabled PAN

Figure 2.6: Communication from a coordinator

Figure 2.6 shows the sequence for the communication from coordinator to
device. As far as the device does not have the radio chip enabled for reception
all the time, is needed a special mechanism, that allows the device to know
when it has to enable the reception.

3. Peer-to-peer data transfers In a P2P, every device may communicate with
every other device in its radio sphere of influence. The device can simply
transmit its data using unslotted CSMA-CA.

2.1.4.3 Frame structure

The frame structure depends on the protocol layer which add to the structure with
layer-specific headers and footers. This standard defines four frame structures:

Beacon frame Used by a coordinator to transmit beacons and set the network
configuration

Data frame Used for all the transfers data

Acknowledge packet (ACK) frame Used for conforming successful frame re-
ception

MAC command frame Used for handling all MAC peer entity control transfers
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2.1.4.4 Improving probability of successful delivery

The IEEE 802.15.4 LR-WPAN employs various mechanisms to improve the proba-
bility of successful data transmission. These mechanism are:

CSMA-CA LR-WPAN uses two types of channel access mechanisms: unslotted
CSMA-CA for non beacon-enabled PANs and slotted CSMA-CA for beacon-
enabled PANs. These mechanisms minimize the probability of packet colli-
sions. A detailed explanation is shown in Section 2.3.2.1

Frame acknowledgement A successful reception and validation of a data or
MAC command frame is optionally confirmed with an ACK. If the sender
does not receive an ACK after some period, it assumes that the transmission
was unsuccessful and retries the frame transmission.

Data verification In order to detect bit errors, an FCS mechanism employing
a 16-bit International Telecommunication Union - Telecommunication Stan-
dardization Sector (ITU-T) cyclic redundancy check (CRC) is used to detect
errors in every frame.

2.1.4.5 Power consumption considerations

The protocol has been developed to favour battery-powered devices. However, in
certain applications, some of these devices could potentially be powered.

2.2 Physical sublayer specification
The PHY is responsible for the following task:

• Activation and deactivation of the radio transceiver

• Energy detection (ED) within the current channel

• Link Quality Indication (LQI) for received packets

• Clear Channel Assessment (CCA) for CSMA-CA

• Channel frequency selection

• Data transmission and reception

The standard defines four PHYs, but in our case, we only use one of those,
because our radio chip is limited to this one. A 2450 MHz DSSS PHY employing
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Figure 2.7: Modulation and spreading functions

O-QPSK modulation. This band is part of the Industrial Scientific Medical (ISM)
band, which could be interfered with devices operating in the same frequency.

Our PHY operates in 2450 MHz, actually use a range between 2400-2483.5
MHz, providing a bit rate of 250 kb/s with a symbol rate of 62.5 ksymbols/s (4
bits/symbol). Figure 2.7 shows the functional block diagram.

2.3 MAC sublayer specification
This clause specifies the MAC sublayer of this standard. The MAC sublayer handles
all access to the physical radio channel and is responsible for the following tasks:

• Generating network beacons if the device is a coordinator

• Synchronizing to network beacons

• Supporting PAN association and disassociation

• Supporting device security

• Employing the CSMA-CA mechanism for channel access

• Handling and maintaining the GTS mechanism

• Providing a reliable link between two peer MAC entities

2.3.1 MAC sublayer service specification

The MAC sublayer provides two services, accessed through two Service Access
Points (SAPs):

• The MAC data service, accessed through the MAC Common Part Sublayer -
Service Access Point (MCPS-SAP)

• The MAC management service, accessed through the MAC Sublayer Manage-
ment Entity - Service Access Point (MLME-SAP)
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These two services provide the interface between the service-specific convergence
sublayer (SSCS) and the PHY, via the PHY Data - Service Access Point (PD-
SAP) and PHY Sublayer Management Entity - Service Access Point (PLME-SAP)
interfaces. In addition to these external interfaces, an implicit interface also exists
between the MAC Sublayer Management Entity (MLME) and the MAC Common
Part Sublayer (MCPS) that allows the MLME to use the MAC data service.

MCPS-SAP MLME-SAP

PD-SAP PLME-SAP

MAC Common

Part Sublayer

MLME

MAC

PIB

Figure 2.8: MAC sublayer reference model

Below, the main primitives of MLME and MCPS are shown with a brief descrip-
tion.

2.3.1.1 MCPS primitives

Table 2.1 lists the primitives supported by the MCPS-SAP. Note that primitives
marked with a diamond (�) are optional for an RFD.

MCPS-SAP primitive request confirm indication
MCPS-DATA X X X

MCPS-PURGE X� X�

Table 2.1: MCPS-SAP primitives

2.3.2 MAC functional description

In this subclause, we provide a brief description of the MAC functionality. Sec-
tion 2.3.2.1 describes the following two mechanism for channel access: contention
based and contention free. It describes the superframe structure and the CSMA-CA
mechanism. Section 2.3.2.2 shows the transmission scenarios. And Section 2.3.2.3
shows the mechanism for allocating and deallocating a GTS.
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MLME-SAP primitive request indication response confirm
MLME-ASSOCIATE X X� X� X

MLME-DISASSOCIATE X X X

MLME-BEACON-NOTIFY X

MLME-GET X X

MLME-GTS X* X* X

MLME-ORPHAN X� X�

MLME-RESET X X

MLME-RX-ENABLE X* X*

MLME-SCAN X X

MLME-COMM-STATUS X

MLME-SET X X

MLME-START X� X�

MLME-SYNC X*

MLME-SYNC-LOSS X

MLME-POLL X X

Table 2.2: MLME-SAP primitives

2.3.2.1 MAC channel access

This subclause describes the mechanism for accessing the physical radio channel.

Superframe structure The structure of the superframe is described by the val-
ues of macBeaconOrder and macSuperframeOrder. macBeaconOrder describes the
interval at which the coordinator shall transmit its beacon frames. The value
macBeaconOrder, Beacon Order (BO) and the Beacon Interval (BI), are related
as follows,

BI = aBaseSuperframeDuration ∗ 2BO

= aBaseSlotDuration ∗ aNumSuperframeSlots ∗ 2BO

(2.1)
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where 0 6 BO 6 14. The value macSuperframeOrder, Superframe Order (SO) and
the Superframe Duration (SD), are related as follows,

SD = aBaseSuperframeDuration ∗ 2SO

= aBaseSlotDuration ∗ aNumSuperframeSlots ∗ 2SO

(2.2)

where 0 6 SO 6 BO 6 14.

The active portion of each superframe shall be divided into aNumSuperframeS-
lots equally spaced slots of duration aBaseSlotDuration ∗ 2SO and is composed of
three parts: a beacon, a CAP and a CFP.

All frames, except ACK and any data frame that quickly follow the ACK of
a data request command, transmitted in the CAP shall use a slotted CSMA-CA
mechanism to access the channel.

Transmission within the CFP shall not use a CSMA-CA mechanism to access
the channel.

Inactive

CAP CFP

GTS GTS

   0     1     2     3     4     5     6     7     8     9     10     11     12     13     14     15

Beacon

BI = aBaseSuperframeDuration ∗ 2BO

SD = aBaseSuperframeDuration ∗ 2SO

Figure 2.9: An example of the superframe structure

An example of a superframe structure is shown in Figure 2.9. In this case the
BO > SO, and we have two GTS allocated.

CSMA-CA In slotted CSMA-CA, the backoff period boundaries of every device
in the PAN shall be aligned with the superframe slot boundaries of the PAN coordi-
nator. The MAC sublayer shall ensure that the PHY starts all of its transmissions
on the boundary of a backoff period. On the other hand, in unslotted CSMA-CA,
the backoff periods of one device are not related in time to the backoff periods of
any other device in the PAN.
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Figure 2.10: CSMA-CA algorithm Source: [26]

Each device shall maintain three variables for each transmission attempt: NB,
CW and BE. NB is the number of times the CSMA-CA algorithm was required
to backoff while attempting the current transmission. Contention Window (length)
(CW) is the contention window length, defining the number of backoff periods that
need to be clear of channel activity before the transmission can commence. Note
that the CW variable is only used for slotted CSMA-CA. Backoff Exponent (BE) is
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the backoff exponent, which is related to how many backoff periods a device shall
wait before attempting to assess a channel.

Figure 2.10 illustrates the step of the CSMA-CA algorithm. When using slotted
CSMA-CA, the MAC sublayer shall first initialize Number of backoff periods (NB),
CW, and BE and then locate the boundary of the next backoff period, step (1).
For unslotted CSMA-CA, the MAC sublayer shall initialize NB and BE and the
proceed directly to step (2).

The MAC sublayer shall delay for a random number of complete backoff period
in the range 0 to 2BE−1, step (2), and then request that the PHY perform a CCA,
step (3). In a slotted CSMA-CA system, the CCA shall start on a backoff period
boundary. In an unslotted CSMA-CA system, the CCA shall start immediately.

If channel is assessed to be busy, step (4), the MAC sublayer shall increment both
NB and BE by one, ensuring that BE shall be no more than macMaxBE. The MAC
sublayer in a slotted CSMA-CA system shall also reset CW to two. If the value of
NB is less than or equal to macMaxCSMABackoffs, the CSMA-CA algorithm shall
return to step (2). If the value of NB is greater than macMaxCSMABackoffs, the
CSMA-CA algorithm shall terminate with a channel access failure status.

If the channel is assessed to be idle, step (5), the MAC sublayer in a slotted
CSMA-CA system shall ensure that the CW has expired before commencing trans-
mission. To do this, the MAC sublayer shall first decrement CW by one and then
determine whether it is equal to zero. If it is not equal to zero, the CSMA-CA
algorithmic shall return to step (3). If it is equal to zero, the MAC sublayer shall
begin transmission of the frame on the boundary of the next backoff period. If the
channel is assessed to be idle in an unslotted CSMA-CA system, the MAC sublayer
shall begin transmission of the frame immediately.

2.3.2.2 Transmission scenarios

Due to imperfect nature of the radio medium, a transmitted frame does not always
reach its intended destination.

Successful data transmission (1) The originator MAC sublayer transmits the
data frame to the recipient via the PHY data service. In waiting for an ACK, the
originator MAC sublayer starts a timer that will expire after macAckWaitDuration
symbols. (2) The recipient MAC sublayer receives the data frame, send an ACK
back to the originator , and passes the data frame to the next higher layer. (3) The
originator MAC sublayer receives the ACK from the recipient before its timer expires
and the disables and reset the timers. The originator MAC sublayer issues a success
confirmation to the next higher layer.
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Originator

next higher layer

Originator
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next higher layer
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Acknowledgement

MLME-DATA.request

MLME-DATA.indication

MLME-DATA.con!rm

(1)

(2)

(3)

(1)

Figure 2.11: Successful data transmission

Lost data frame (1) The originator MAC sublayer transmits the data frame
to the recipient via the PHY data service. The reception MAC sublayer does not
receive the data frame and so does not respond with an ACK. The timer of the
originator expires before an ACK is received; therefore, the data transfer has failed.
If the transmission was direct, the originator retransmit the data, and this entire
sequence may be repeated up to a maximum of macMaxFrameRetries times. If the
transmission was indirect, the data frame will remain in the transaction queue until
either another request for the data is received and correctly ACK or until mac-
TransactionPersistenceTime is reached. (2) The MLME_DATA.confirm is signalled if
the transmission has failed or success.

Originator

next higher layer

Originator

MLME

Recipient

MLME
Recipient

next higher layer

MLME-DATA.request

MLME-DATA.con!rm

(1)

(2)

(1)

Retry Data frame trans-

mission upv to aMax-

FrameRetries time

Data

Figure 2.12: Lost data frame

Lost acknowledgement frame (1) The originator MAC sublayer transmits the
data frame to the recipient via the PHY data service. (2) The recipient MAC
sublayer receives the data frame, sends an ACK back to the originator, and passes
the data frame to the next higher layer. (3) The originator MAC does not receive
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the ACK frame, and its timer expires. Therefore the data transfer has failed. If the
transmission was direct, the originator retransmit the data frame.

Originator

next higher layer

Originator

MLME

Recipient

MLME
Recipient

next higher layer

MLME-DATA.request

MLME-DATA.con!rm

(1)

(3)

(1)

Retry Data frame trans-

mission upv to aMax-

FrameRetries time

Data

Acknowledgement

MLME-DATA.indication
(2)

Figure 2.13: Lost acknowledgement frame

2.3.2.3 GTS allocation and management

A GTS allows a device to operate on the channel within a portion of the superframe
that is dedicated exclusively to that device and it shall be used only for commu-
nications between the PAN coordinator and a device associated with the PAN. A
single GTS may extend over one or more superframe slots. The PAN coordinator
may allocate up to seven GTSs at the same time, if there is sufficient capacity in
the superframe.

GTS allocation Figure 2.14 show the mechanism to allocate a GTS.

(1) A device is instructed to request the allocation of a new GTS through the
MLME-GTS.request primitive with the GTS characteristics set according to the re-
quirements of the intended application. (2) On reception of a GTS request com-
mand indicating a GTS allocation request, the PAN coordinator shall first check
if there is available capacity in the current superframe. (3) On reception of the
ACK to the GTS request command, the device shall continue to track beacons
and wait for at most aGTSDesPersistenceTime superframes. (4) If the GTS de-
scriptor is received, the MLME shall notify the next layer of the success with
MLME-GTS.indication with SUCCESS status, if not, it shall indicates the failure
with MLME-GTS.indication, indicating the NO_DATA status.

GTS usage When the MAC sublayer of a device that is not the PAN coordinator
receives an MCPS-DATA.request primitive with TxOptions parameter indicating a
GTS transmission, it shall determine whether it has a valid transmit GTS. If a valid
GTS is found, the MAC sublayer shall transmit the data during the GTS.
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Figure 2.14: MLME-GTS allocation mechanism

It the device has any receive GTSs, the MAC sublayer of the device shall ensure
that the receiver is enabled at a time prior to the start of the GTS and for the
duration of the GTS.

When the MAC sublayer of the PAN coordinator receives an MCPS.DATA.request
primitive with TxOptions parameter indicating a GTS transmission, it shall deter-
mine whether it has a valid received GTS corresponding to the device with the
requested destination address. If a valid GTS is found, the PAN coordinator shall
defer the transmission until the start of the receive GTS.

For all allocated transmit GTSs (relative to the device), the MAC sublayer of
the PAN coordinator shall ensure that its receiver is enabled at a time prior to the
start and for the duration of each GTS.

GTS deallocation The GTS deallocation could be initiated either by the coor-
dinator or the device.

Figure 2.15 show the mechanism to deallocate a GTS initiated by the device.
(1) A device is instructed to request the deallocation of an existing GTS through
the MLME-GTS.request primitive using the characteristics of the GTS it wishes to
deallocate. From this point onward the GTS to be deallocated shall not be used
by the device, and its stored characteristics shall be reset. (2) On the reception
of a GTS request command with the Characteristics Type subfield of the GTS
Characteristics field set to zero (GTS deallocation), the PAN coordinator shall
attempt to deallocate the GTS. If the GTS characteristics contained in the GTS
request command match the characteristics of a know GTS, the MLME of the PAN
coordinator shall deallocate the specified GTS and notify the higher layer.

GTS deallocation may be initiated by PAN coordinator due to a deallocation
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Figure 2.15: MLME-GTS deallocation mechanism
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Figure 2.16: MLME-GTS deallocation mechanism initiated by PAN coordinator

request from the next higher layer, the expiration of the GTSs, or maintenance
required to maintain the minimum CAP length.

Figure 2.16 shows the GTS deallocation mechanism initiated by the next higher
layer of the PAN coordinator. (1) The MLME shall receive the MLME-GTS.request
primitive with the GTS Characteristics set to zero and the length and direction
subfields set according to the characteristics of the GTS to deallocate. (2) The no-
tification is achieved when the MLME issues the MLME-GTS.indication primitive.

(3) In case of any deallocation initiated by PAN coordinator, it shall deallocate
the GTS and add a GTS descriptor into its beacon frame corresponding to the
deallocated GTS, but with its starting slot set to zero.

GTS reallocation The deallocation of a GTS may result in the superframe be-
coming fragmented. For example, Figure 2.17 shows three stages of a superframe
with allocated GTSs. In Figure 2.17a, five GTSs are allocated starting at slots, 15,
13, 12, 11 and 9, respectively. If GTS 2 is now deallocated (Figure 2.17b, there will
be a gap in the superframe during which nothing can happen. To solve this, GTS
3 to 5 will have to be shifted to fill the gap, thus increasing the size of the CAP,
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Figure 2.17: CFP defragmentation on GTS reallocations

Figure 2.17c.

GTS expiration The MLME of the PAN coordinator shall attempt to detect
when a device has stopped using a GTS using the following rules:

• For a transmit GTS, it shall assume that a device is no longer using its GTS
if a data frame is not received from the device in the GTS at least every 2 ∗n
superframes, where n is defined below.

• For receive GTSs, it shall assume that a device is no longer using its GTS if
an ACK is not received from the device at least every 2∗n superframes, where
n is defined below. If the data frames sent in the GTS do not require ACK,
the MLME of the PAN coordinator will not able to detect whether a device
is using its receive GTS.
The value of n is defined as follows:

n =
{

28−macBeaconOrder 0 ≤ macBeaconOrder ≤ 8
1 9 ≤ macBeaconOrder ≤ 14



Chapter 3

Platforms and tools

In this chapter we show the platforms and tools used along this thesis. It
intends to answer the questions someone who wants to start with a real
WSN implementation need to know. Which platform is the most suitable
for our application? Is there any operating system already designed?
Which OS is the most suitable? Which is the best implementation for
the IEEE 802.15.4?
After these steps, we focus in the platforms we use. For the hardware
we select the motes: (a) Tmote Sky (b) Crossbow Telosb and proto-
col analyser, IEEE 802.15.4/Zigbee protocol analyser. For the software
platform we choose the TinyOS and the TKN15.4 implementation.

29
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3.1 Hardware platforms
3.1.1 Motes

Tiny, low-cost and low-power nodes, colloquially referred to as “motes”, are the
devices deployed in the environment to communicate wirelessly to gather and report
information about physical phenomena. There are different types and platforms for
being used in WSN. The most common devices are TmoteSky, TelosB, MicaZ [8],
iMote2 [6], etc.

3.1.1.1 Tmote Sky

Figure 3.1: Tmote Sky mote without battery extension. Source: [7]

Tmote Sky [7] is an ultra low power wireless module for use in sensor networks,
for monitoring applications, and rapid application prototyping. Tmote Sky lever-
ages industry standards like USB and IEEE 802.15.4 to interoperate seamlessly with
other devices.

Features

• 250kbps 2.4GHz IEEE 802.15.4 Chipcon Wireless Transceiver [5]

• Interoperability with other IEEE 802.15.4 devices

• 8MHz Texas Instruments MSP430 microcontroller (10k RAM, 48k Flash)

• Integrated ADC, DAC, Supply Voltage Supervisor, and DMA Controller

• Integrated onboard antenna with 50m range indoors / 125m range outdoors

• Integrated Humidity, Temperature, and Light sensors

• Ultra low current consumption

• Fast wakeup from sleep (<6 µs)

• Hardware link-layer encryption and authentication
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• Programming and data collection via USB

• 16-pin expansion support and optional SMA antenna connector

• TinyOS support

It is important to remark the interoperability they have with the IEEE 802.15.4
devices is coming from the use of the CC2420 radio chip with an external crystal of
16 MHz, which assure that the transmitted frames are standard compliant. But in
Section 3.3 we see that it is not true for the MAC implementation sublayer.

3.1.1.2 Crossbow Telosb

Crossbow’s TelosB mote is an open source platform designed to enable cutting-edge
experimentation for the research community. The telosb bundles all the essentials
for lab studies into a single platform including: USB programming capability, an
IEEE 802.15.4 radio with integrated antenna, a low-power microcontroller (MCU)
with extended memory and an optional sensor suite.

The TelosB platform was developed and published to the research community by
UC Berkeley. This platform delivers low power consumption allowing for long bat-
tery life as well as fast wakeup from sleep state. Though the telosb is an uncertified
radio platform, it is fully compatible with the open-source TinyOS distribution.

Features The Telosb motes have the same hardware than Tmote Sky.

(a) Telosb mote with bat-
tery extension

(b) Functional
block dia-
gram

Figure 3.2: Telosb mote and functional block diagram Source: [41]
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3.1.2 IEEE 802.15.4/Zigbee protocol analyser

To be able to analyse the characteristics of our applications, it is needed to have a
device acting in a promiscuous mode and sniffing all the packets which are trans-
mitted through the air.

The selected board is the Development Kit which includes the CC2420B Eval-
uation Board and a CC2420EM Evaluation Modules [18]. The Evaluation Module
contains the CC2420 chip and required external components. The Evaluation Board
serves as motherboard for the Evaluation Modules. The Evaluation Board provides
a USB port, a serial port, buttons, LEDs, voltage regulator, configuration jumpers
and connectors to make it easy to interface the CC2420 with the SmartRF™Studio
software.

3.1.2.1 Application tools

With the CC2420DK, it is provided a Windows applications in order to see graphi-
cally, and in real-time, the packets. The program is called SmartRF™Packet Sniffer
[18]. The data coming from this program is saved in a file with PSD extension. The
file contains all the packet information, but it is a binary file. In order be able to
analyse the information with another program, i.e. Matlab, we use a PHP script
which converts the binary file in a ASCII file where the columns are the fields of
the packet, length, frame control, source address, destination address, etc.

Figure 3.3 shows the packet format in the PSD file. Note that in our case, the
packet format explained in the manual [18] is not the packet format that we have
with our packets.

The packet format can vary depending on the addressing mode we use in the
packets. For example the TKN15.4 implementation, by default, uses IntraPAN
which reduces the MAC Header (MHR) to 11 bytes, by assuming that PAN identi-
fication is the same for source and destination. In the openZB Hurray implementa-
tion, the IntraPAN is not implemented and they have a MHR of 13 bytes.

Figure 3.4 shows a packet sniffer screenshot from the IEEE 8022.15.4 ZigBee
protocol, when we were running a performance test for the GTS implementation.

Table 3.1 shows the equivalent parsed PSD file for the packets in the Figure 3.4.
Note that all the fields are only valid for data packets.

3.2 Operating systems
The purpose of this section is to show different available OS designed for WSN.
Table 3.2 summarizes the present OSs available for the selected motes. It also
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(a) Packet format in PSD file Source: [18]
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(b) Packet format in PSD file in our case

Figure 3.3: Packet format in PSD file. User manual vs Received packet

shows the last updated date. The two active development projects are TinyOS and
Contiki.

We select TinyOS due to the difference in the learning curve in both cases.
TinyOS provides a huge documentation and has a large active community, ready
to solve any problem. It has applications, tutorials, TEP that make it easy to start
working with TinyOS even though it uses a not common programming language
(nesC ). In case of Contiki, it is hard to find tutorials and it lacks documentation
and implementation of hardware drivers for the TmoteSky/Telosb.

3.2.1 Contiki

Contiki [11] is an open source, highly portable, multi-tasking operating system
for memory-efficient networked embedded systems and WSN. It is designed for
microcontrollers with small amounts of memory. A typical Contiki configuration is
2 kB of random access memory (RAM) and 40 kB of read-only memory (ROM).

Contiki is developed by a group of developers from industry and academia lead
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Figure 3.4: Packet sniffer screenshot from the IEEE 802.15.4ZigBee protocols.

by Adam Dunkels from the Swedish Institute of Computer Science (SICS). The
Contiki team currently has sixteen members from SICS, SAP AG, Cisco, Atmel,
NewAE and TU Münich.

3.2.1.1 Features [11]

Low-power Radio Communication Contiki provides both full IP networking
and low-power radio communication mechanisms. For communication within
wireless sensor network, Contiki uses the Rime low-power radio networking
stack.

Network Interaction Interaction with a network of Contiki sensors can be achieved
with a Web browser, a text-based shell interface, or dedicated software that
stores and displays collected sensor data. The text-based shell interface is in-
spired by the Unix command shell but provides special commands for sensor
network interaction and sensing.

Power-efficiency To provide a long sensor network lifetime, it is crucial to control
and reduce the power consumption of each sensor node. Contiki provides
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Frame format

Packet Timestamps Length FC Seq. PAN Dest. Src RSSI* LQI*
type [µs] [bytes] num. ID ID ID

Beacon1 7659395 35 32768 206 4660 0 18534 237 235
CMD2 7666197 11 32803 183 4660 5 8457 237 235
ACK3 7666937 5 18 183 59652 5 8457 237 235
CMD2 7813594 11 32803 16 4660 8 8457 237 235
ACK3 7814334 5 18 16 60164 8 8457 237 235
Data 7854528 50 34913 39 4660 0 3 236 236
ACK3 7856516 5 18 39 60165 0 3 236 236
Data 7893550 50 34913 94 4660 0 2 230 235
ACK3 7895539 5 18 94 60166 0 2 230 235
Data 8059460 50 34913 95 4660 0 2 229 236
ACK3 8061448 5 18 95 60166 0 2 229 236

Table 3.1: Value after parse the PSD file.(1) For beacons, the fields Dest.Id correspond to
Src.Id and the Src.Id is the Superframe specification. ; (2) For CMD, the field
Dest.Id and Src Id. don’t correspond to the real values ; (3) For ACK, as far
as ACKs packets don’t have any addressing mode, the sniffer copy the values
from the previous packet.

OS By License Updated Language 802.15.4
Contiki
[11]

SICS
(Sweden)

BSD September
2010

C Partially

TinyOS
[43]

UCB, In-
tel (USA)

BSD September
2010

nesC TKN15.4, Hur-
ray, OpenWSN

SOS
[23]

UCLA
(USA)

Modified BSD November
2008

C No

Mantis
[4]

CU Boul-
der (USA)

BSD 2008 C No

Table 3.2: Main available OS for tmote/telosb

a software-based power profiling mechanism that keeps track of the energy
expenditure of each sensor node.

On-node Storage: the Coffee File System Contiki provides a flash-based file
system, Coffee, for storing data inside the sensor network.

Simulators To ease software development and debugging, Contiki provides three
simulation environments: the MSPsim emulator, the Cooja cross-layer net-
work simulator, and the netsim process-level simulator. The development
process for software for Contiki typically goes through all three simulation
stages before the software runs on the target hardware.
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Programming Model Contiki is written in the C programming language and con-
sists of an event-driven kernel, on top of which application programs can be dy-
namically loaded and unloaded at run time. Contiki processes use lightweight
protothreads that provide a linear, threadlike programming style on top of the
event-driven kernel. In addition to protothreads, Contiki also supports per-
process optional multithreading and interprocess communication using mes-
sage passing. Contiki provides three types of memory management: regular
malloc(), memory block allocation, and a managed memory allocator.

3.2.2 TinyOS

TinyOS [43] is an open source, BSD-licensed operating system designed for low-
power wireless devices, such as those used in sensor networks, ubiquitous computing,
PAN, smart buildings, and smart meters. A worldwide community from academia
and industry use, develop, and support the operating system as well as its associated
tools.

TinyOS has a programming model tailored for event-driven applications as well
as a very small footprint. TinyOS is developed in nesC, a language for programming
structured component-based applications.

3.2.2.1 Features [14, 21]

Component-based architecture Provides a set of reusable system components.
A application connects components using a wiring specification, each appli-
cation customizes the set of components it uses. Decomposing different OS
services into separate components allows unused services to be excluded from
the application so it reduces the memory requirements.

Task and event-based concurrency Task and events are the two sources of con-
currency in TinyOS. Tasks are a deferred computation mechanism, they run
to completion and do not preempt each other. [42, TEP 106] [21, Sec 4.4]
Events also run to completion, but may preempt the execution of a task or
another event.. Events signify either completion of a split-phase operation or
an event from the environment.

Split-phase operations Because tasks execute non-preemtively, TinyOS has no
blocking operation. All long-latency operation are split-phase: operation re-
quest and completion are separate functions. [21, Sec 4.1] Commands are typ-
ically requested to execute an operation. A typical example of a split-phase
operation is a packet send: a component may invoke the send command to ini-
tiate the transmission of a radio message, and the communication component
signals the sendDone event when transmission has completed.
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3.2.2.2 Directory structure

Table 3.3 shows the default packages in a TinyOS distribution. [42, TEP 3]:

Folder Description
apps/ Contain applications with some division by purpose. Appli-

cations may contain subdirectories. It is not necessary that
packages other than the core break up their components and
their interfaces.

tos/system/ Core TinyOS components. This directory’s components are
the ones necessary for TinyOS to actually run.

tos/interfaces/ Core TinyOS interfaces, including hardware-independent
abstractions. Expected to be heavily used not just by
tos/system but throughout all other code. tos/interfaces
should only contain interfaces named in TEPs.

tos/platforms/ Contains code specific to mote platforms, but chip-
independent.

tos/chips/ Contains code specific to particular chips and to chips on
particular platforms.

tos/libs/ Contains interfaces and components which extend the use-
fulness of TinyOS but which are not viewed as essential to
its operation. Libraries will likely contain subdirectories.

Table 3.3: TinyOS-2 tree

3.2.2.3 nesC

Programming language nesC [14] is an extension to C designed to embody the
structuring concepts and execution model of TinyOS. Two of the motivations in
designing nesC were to support and evolve TinyOS’s programming model and to
reimplement TinyOS in the new language. TinyOS has several important features
that influenced nesC’s design: a component-based architecture, a simple event-based
concurrency model, and split-phase operations, shown in sec. 3.2.2.1.

The basics concepts behind nesC are [13]:

Construction vs Composition The construction and the composition are sepa-
rated. Programs are built out of components, which are assembled (“wired“)
to form whole programs. Components define two scopes, one for their speci-
fication (containing the names of their interface instances) and one for their
implementation.
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Components specification Interfaces may be provided or used by the compo-
nent. The provided interfaces are intended to represent the functionality that
the component provides to its user, the used interfaces represent the function-
ality the component needs to perform its job.

Interfaces Interfaces are bidirectional, they specify a set of functions to be imple-
mented by the interface’s provider (commands) and a set to be implemented
by the interface’s user (events). This allows a single interface to represent a
complex interaction between components.

Components linked Components are statically linked to each other via their in-
terfaces. This increases runtime efficiency, encourages robust design, and al-
lows for better static analysis of program’s.

Compiler nesC is designed under the expectation that code will be generated by
whole-program compilers. This allows for better code generation and analysis.
An example of this is nesC’s compile-time data race detector, which detects
when a variable could be read/written from two different instruction at the
same time.

Concurrency The concurrency model of nesC is based on run-to-completion tasks,
and interrupt handlers which may interrupt tasks and each other. The nesC
compiler signals the potential data races caused by the interrupt handlers.

3.3 IEEE 802.15.4 software
implementation

This section shows the different IEEE 802.15.4 implementations for TelosB/TmoteSky.
To select one of the existence we analyse which one accomplish better the standard
requirements. Mainly we focused on delay introduced by the code, precision and
accuracy. The protocol design process for WSN in industrial application encounters
more challenges than the three showed before, like reliability. Hence, in Chapter 5
the performance evaluation of these characteristics is done for the selected imple-
mentation, the TKN15.4.

3.3.1 OpenZB - IPP Hurray

This implementation is done and supported by Research Centre in Real-Time Com-
puting Systems (CISTER), a top-ranked Research Unit based at the School of En-
gineering (ISEP) of the Polytechnic Institute of Porto (IPP), Portugal.

Firstly, the openZB implementation was selected as the main candidate to apply
to our project. There were reasons to use it. Mainly they had a good documentation,
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a continuous update at the web page [19] and the forum and some recent publications
like [10] which re-conform the good feelings with this implementation. Moreover the
SICS is working in conjunction with ISEP in the migration to the Contiki OS, and
the Scuola Superiore Sant’Anna di Studi Univertari e di Perfezionamento (SSSUP)
in the migration to the Erika real-time OS.

In the following section, we can see the missing functionalities of this implemen-
tation, because although it was our first selection, it is not completely implemented,
and it has some known bugs.

3.3.1.1 Missing functionalities

The next list is the one we could find in the IPP Hurray technical report [9].

• Unslotted version CSMA-CA Implemented but not fully tested;

• Extended Address Fields of the Frames

• IntraPAN Address Fields of the Frames

• Active and Orphan channel Scan

• Orphan Devices

• Frame Reception Conditions Verify Conditions

• Security

3.3.1.2 Known Issues

Below, the list shows the found bugs in the openZB implementation of IPP Hurray.
This is a summary of the known bugs. It could be the case that more issues are
involved, but as soon as we discarded this implementation, we stopped analysing it.

• Stop working The main bug detected is that the motes after some time stop
working. As an example, a coordinator without any traffic load, stops working
after 2100 beacons sent (36 min). Obviously, it is completely impermissible
that stops working after 30 min or after days, if it is powered by the power
line it has to work forever.

• Beacon interval The time between beacons is shifted. We cannot be sure
about the periodicity and the interoperability of that protocol implementation
and other devices. As we know the beacon is the signal needed to align all
the network, and the devices use this to reduce the collisions which mean
that if they are not align, the CSMA-CA will not work as it is designed: no
interoperability, high delay and low reliability.
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Figure 3.5: Histogram of the beacon time interval for BO=5

Figure 3.5 shows the histogram of time interval between two consecutive bea-
cons for BO=5. The green dashed line on the left represents the expected
value taking into account that the Tsymbol will never be equal to 16 µs be-
cause our oscillator runs at 32.768 kHz and the minimum time that we can
achieve is Tsymbol = 1

2∗32768 = 15.259µs using a virtualized timer. The red
dashed line in the middle represents the theoretical value of the beacon in-
terval. And comparing these values with the histogram, we can see how far
we are from the real value (low accuracy). Moreover we can see different bars
close, which shows the low precision of the timer.
Table 3.4 shows the beacon interval with the hurray implementation. As we
can see these times are not close to the values from Tsymbol = 16µs. Moreover
we can see how the error error column , representing the difference between
the theoretical BO and the most occurred value. is increasing with the BO,
but the relative error keeps approximately constant. The precision (standard
deviation) increases with BO. The conclusion looking at those values is that
the beacon interval is not standard compliant and moreover it has not a good
accuracy or precision.

• Acknowledge delay A device that sends a data or MAC command frame
with its ACK Request subfield set to one shall wait for at most macAckWait-
Duration symbols for the corresponding ACK to be received. It is dependent
on a combination of constants and PHY attributes [26, Sec. 7.4.2]
The corresponding time for our configuration is:
macAckWaitDuration = aUnitBackoffPeriod + aTurnaroundTime + phySHRDu-
ration + d6 * phySymbolsPerOctete = 20 + 12 + 5*2 +d 6*2e = 54 symb =
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BO BI BI Error Precision
Tsymbol = 16µs openZB impl. e er Standard deviation

[ms] [ms] [ms] [%] [µs]

1 30.7 36.1 5.4 17.6 94.0
2 61.4 71.5 10.0 16.3 107.8
3 122.9 141.6 18.7 15.2 100.9
4 245.8 282.4 36.6 14.9 95.9
5 491.5 563.4 71.9 14.6 104.3
6 983.0 1055.7 72.6 7.4 127.2
7 1966.1 2250.8 284.8 14.5 101.8
8 3932.2 4500.9 568.7 14.5 124.8
9 7864.3 9000.5 1136.1 14.4 168.8
10 15728.6 17999.9 2271.3 14.4 180.2
11 31457.3 35998.9 4541.6 14.4 235.8
12 62914.6 71996.8 9082.2 14.4 341.9
13 125829.1 143992.6 18163.5 14.4 389.0
14 251658.2 287984.7 36326.5 14.4 996.5

Total 14.4 % 226.3 µs

Table 3.4: Beacon interval on openZB implementation

864 µs.
For this implementation we get the acknowledge within approximately 5ms
value far away of the timing requirements of macAckWaitDuration.

• ACK rejection Some ACK are rejecting because the mote was in the middle
of the CSMA-CA algorithm of the next transmitted packet. This issue, with
the previous one, causes that the transmitted mote re-transmit the previous
packet although the receiver has been received it properly. Thus, it increases
unnecessarily the traffic load on the network. It could be reasonable in a net-
work with lot of nodes, where the interferences are higher but it also happens
when just one node is transmitting to the coordinator.

Although this implementation could be considered complete, involving the main
issues of the IEEE 802.15.4 parts. We could not consider it as a useful implemen-
tation due to these imperfections and bugs found.

3.3.2 TKN15.4

This implementation is done by the Technical University Berlin - Telecommuni-
cation Networks Group, more specifically by Jan-Hinrich Hauer, one of the main
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contributor of the TinyOS development. The first release has been done in March
2009 [15].

It is a platform-independent IEEE 802.15.4-2006 MAC implementation. The
code is under active development and most of the functionality described in the
standard is implemented and tested. The MAC itself is platform-independent, but
it requires (1) a suitable radio driver, (2) Alarms/Timers with symbol precision
and (3) some ”platform glue” code (defining guard times, etc.). Currently the only
supported platforms are Tmote/TelosB and micaZ.

Another point to remark about this implementation is the wide knowledge of
the platform, possibilities and limitations of the motes. One important thing is dis-
cussed in the technical report are the timing issues: precision/accuracy requirements
and the clock drift. Because the fact that our motes do not have a clock that satisfies
the precision/accuracy requirements of the IEEE 802.15.4 standard – 62.500 kHz,
+-40 ppm in the 2.4 GHz band, the timing in beacon-enabled mode is not standard
compliant. Instead we have a virtualized clock of 2 ∗ 32.768kHz = 65.536kHz that
provides a Tsymbol = 15.259µs.

Following, we present the missing functionalities and known issues extracted
from the technical report [15] or the README in the implementation code.

3.3.2.1 Missing functionalities

• GTS The implementation of the GTS has been done in this thesis. A detailed
explanation can be found in Section 4.

• Security services As far as at the moment the Wireless Process Control
applications are in an early development, the security services have not been
implemented. The “Home Smart Grids“ application shown in Section 6.2
could be interesting to apply a security mechanism in order to protect the
data coming from the sensors.

• Indirect transmissions frames are not kept in transaction queue in case
CSMA-CA algorithm fails

3.3.2.2 Known Issues

The list below corresponds to the known issues that it is necessary to check/solve to
have a proper IEEE 802.15.4 implementation. This list correspond to the README
file from the TKN15.4 code.

• Invalid timestamps If initial beacon transmission timestamps is invalid, the
coordinator stops.
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• Frame pending Frame pending flags are (need to be) always set in the ACK
headers

• Complex networks Using an incoming and outgoing superframe at the same
time has not been tested. A simple star topology has been used.

• CSMA-CA During an ongoing CSMA-CA transmission incoming frames are
ignored

• Transmissions modes On a beacon-enabled PAN: if the device cannot find
the beacon the DATA frame is not transmitted (but it should be transmitted
using unslotted CSMA-CA [26, Sec. 7.5.6.1]. At the moment they are different
components, so at compiling time we differentiate which mode we want to use.
As soon as, the motes would have more memory resources (ROM), it would
be possible.

The next list corresponds to the results of our test and analysis done to decide
if this implementation is good enough to continue the development with it.

• Missed beacons When we are running a network with one coordinator
and one device, both are completely synchronized and working fine. If we
add another device to the network, it starts the application scanning, but
once it synchronizes with the coordinator and receives the first beacon, it
loses the synchronization and after aMaxLostBeacons beacons, it signals the
MLME_SYNC_LOSS. It means that the packets in the network influences also the
reception of the beacon.

• Beacon interval The implementation is not completely standard compliant
due to hardware limitations. The limitation is coming from our oscillator that
runs at 32.768 kHz. We are currently analysing the new MSP430 MCU to use
a higher crystal oscillator and overcome this issue.

Figure 3.6 shows the histogram of time interval between two consecutive bea-
cons for BO=5. The green dashed line on the left represents the expected
value taking into account that the Tsymbol = 15.259µs. The red dashed line
represents the theoretical value of the beacon interval. We see that the his-
togram is quite tight and close to the expected value.

Table 3.5 shows the influence of this difference. As we can see on the fifth
column (Error). The difference between the value that we get from the mote
and the theoretical value is increasing with the BO, but the relative error
shown in column six remains constant.
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Figure 3.6: Histogram of the beacon time interval for BO=5

3.3.3 TKN15.4 vs OpenZB

We show a comparison between TKN15.4 and openZb IEEE 802.15.4 implementa-
tion. Due to the use of the same hardware, we expect similar results. But they are
different because of the different ways to use/implement the timers.

For the hurray implementation, a timer based on the 32.768 kHz (30.5 µs)
802.15.4, that provides a Tbackoff = 335, 5ηs, but to launch the different events they
used counters of 32 bits, increasing considerably the computational time. [21, Sec.
4.5]. Writing or reading a 32 bits number takes more than one instruction. Then it
is possible that an interrupt executes in between two instructions, influencing in the
timing related with the MAC layer, as superframe duration fired, beacon interval
and backoff fired.

TKN15.4 implements a virtualized timer that runs at 2*32.768 kHz using the
external crystal of 32.768 kHz, being able to have a more precision clock. It is
possible thanks to the digital clock that is internally is used by the MSP430 MCU.

• Clock drift: This limitation exists in both implementations and it is due to a
hardware limitation. It is recognized that clock drift can cause contradictions
with the timing requirements of the slotted CSMA-CA in beacon-enabled
PANs. During the CAP the slotted CSMA-CA algorithm requires frames
to be transmitted on backoff slot boundaries. In conjunction with the listen-
before-send mechanism, slotted transmissions theoretically guarantee that the
time interval during which the arrival of one packet implies a collision with
another packet is limited to one backoff slot (320 µs). In practice, however,
clock drift can result in collisions between frames even if they are transmitted
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BO BI BI BI Error Precision
Tsymb = 16µs Tsymb = 15.26µs impl. |BI(16µs)-BI(impl.)| Standard deviation

[ms] [ms] [ms] [ms] [%] [µs]

1 30.7 29.3 29.3 1.5 4.7 7.5
2 61.4 58.6 58.6 2.9 4.7 8.4
3 122.9 117.2 117.2 5.7 4.7 9.8
4 245.8 234.4 234.3 11.4 4.6 10.0
5 491.5 468.8 468.7 22.8 4.6 14.4
6 983.0 937.5 937.4 45.6 4.6 13.7
7 1966.1 1875.0 1874.9 91.2 4.6 5.0
8 3932.2 3750.0 3749.8 182.3 4.6 2.6
9 7864.3 7500.0 7499.7 364.6 4.6 7.5
10 15728.6 15000.0 14999.5 729.2 4.6 13.8
11 31457.3 30000.0 29998.2 1459.0 4.6 20.3
12 62914.6 60000.0 59996.4 2918.1 4.6 6.5
13 125829.1 120000.0 119992.9 5836.2 4.6 10.2
14 251658.2 240000.0 239985.8 11672.5 4.6 22.1

Total 4.6 % 10.8 µs

Table 3.5: Beacon interval on TKN154.4 implementation

in subsequent backoff slots and thus practical vulnerability period is larger.
[15, Sec. 3.2.3.] It is important to take clock drift into consideration for
theoretical models because it is a common problem in hardware devices.

Figure 3.7 shows when we detect the collision using devices synchronized.
During the CAP of a beacon-enabled PAN, nodes will only collide if they are
transmitted in the same backoff slots, because otherwise the CCA mechanism
will detect a busy channel. In Figure 3.7a, Device A would collide with the
frame from Device B because they are transmitting in the same slot bound-
aries. However, in Figure 3.7b they would not collide because Device B would
detect a busy channel and wait for a random unit of backoff periods.

Figure 3.8 shows the case where the devices are not synchronized due to the
clock drift. In Figure 3.8a, where they are in the same slot, we do not detect
a collision. Moreover, in Figure 3.8b, when they are in different slots and
they should detect the collisions, Device A would collide with the frame from
Device B because of the clock drift.

• Beacon interval As we have shown before, both implementations are far
from the expected and theoretical values for the beacon interval. For this
reason, we compared both version, to check which one had the best results.

Table 3.6 shows the real value on the second column, and the values gotten
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from the openZB and TKN15.4 implementation as the difference between
those values and the expected ones. Even though it is easy to detect which
has the best results, on the last row we have the average of the difference
for each implementation, which clearly transmit the TKN15.4 has the lowest
error.
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openZB impl. TKN15.4 impl.

BO BI BI Difference BI Difference
[ms] [ms] [ms] [ms] [ms]

1 30.7 36.1 5.4 29.3 1.5
2 61.4 71.5 10.0 58.6 2.9
3 122.9 141.6 18.7 117.2 5.7
4 245.8 282.4 36.6 234.3 11.4
5 491.5 563.4 71.9 468.7 22.8
6 983.0 1055.7 72.6 937.4 45.6
7 1966.1 2250.8 284.8 1874.9 91.2
8 3932.2 4500.9 568.7 3749.8 182.3
9 7864.3 9000.5 1136.1 7499.7 364.6
10 15728.6 17999.9 2271.3 14999.5 729.2
11 31457.3 35998.9 4541.6 29998.2 1459.0
12 62914.6 71996.8 9082.2 59996.4 2918.1
13 125829.1 143992.6 18163.5 119992.9 5836.2
14 251658.2 287984.7 36326.5 239985.8 11672.5

Relative error: 14.4 % 4.7 %

Table 3.6: Comparison between beacon interval with openZB and TKN15.4 implementa-
tion





Chapter 4

GTS implementation

The GTS mechanism provides to the nodes in the network to transmit
packets to the coordinator with high reliability and high determinism.
The purpose of this chapter is to provide a reference guide to the GTS
implementation described in the IEEE 802.15.4 protocol specification
[26] in nesC/TinyOS based on the TKN15.4 implementation [15]. The
GTS implementation was developed on and is available for the TelosB
[41]/ Tmote Sky [7] platform. This chapter is a complement to [15],
providing the overview and the scheme of the actual IEEE 802.15.4
implementation in TinyOS.

49
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4.1 Overview
Before focusing on the more detailed description of the code and the implementation,
we present a brief description about the implemented features and their working
procedure.

4.1.1 Implementation status

In this section, some screenshots and figures are shown to verify how our imple-
mentation is working. It tries to be the equivalence between the theoretical part
shown in Section 2.3.2.3 and the practical implementation. Most of the signals and
primitives are impossible to show with these screenshots, they only show the packets
transmitted and the superframe structure of each case.

The current version of the GTS implementation supports the following IEEE
802.15.4 functionalities: GTS allocation, GTS deallocation, GTS usage, GTS expi-
ration and GTS reallocation.

4.1.1.1 GTS allocation

To allocate a slot in the CFP the device shall send a request to its coordinator and
wait for the GTS Descriptor in the beacon payload.

Figure 4.1: GTS allocation mechanism

Figure 4.1 shows the process of GTS allocation and Figure 4.2 shows the state
of the superframe. The steps are described here:
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Figure 4.2: Beacon during GTS allocation mechanism

1. In the beacon, the GTS is enabled (Permit = 1) but there is no slot allocated
(Len=0)

2. The coordinator, with ID = 0x0000, has received a GTS allocation from the
device 0x0001. The request has length = 1, and the direction is for transmis-
sion (direction=0). The direction is related to the device.

3. The coordinator has received a GTS allocation from the device 0x0002. The
request has length = 1, and the direction is for transmission.

4. In this beacon we have two slots allocated (Len=2). The direction vector are
all with 0, indicating slots with transmission direction. In the list we have the
description of the slots indicating short address, starting slot and length.

5. The coordinator has received a GTS allocation from the device 0x0002. The
request has length = 1, and the direction is for reception (Direction=1).

6. The coordinator has received a GTS allocation from the device 0x0001. The
request has length = 1, and the direction is for reception.

7. In this beacon we have four slots allocated (Len=4). The directions vector are
two with 0 and two with 1, indicating slots with transmission and reception
direction.

4.1.1.2 GTS usage

Figure 4.3 shows a sniffer dump where five motes are running at the same time, and
transmitting during the CFP with their own slot. The coordinator is configured to
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send packets to the device 0x0001 if the reception slot is requested otherwise it will
fail. The devices 0x0001, 0x0003, 0x0004, 0x0005, 0x0006 send allocation request
for both directions, but if they do not use it, then it will be deallocated by the
expiration mechanism.

All the devices and the coordinator write the slot number in the packet payload
in order to assure that they are sending the packet in the correct slot.

Figure 4.3: GTS data transmission

4.1.1.3 GTS deallocation

To deallocate a slot, there are two ways. If the device starts the deallocation it shall
send a request to the coordinator indicating the deallocation. Otherwise the GTS
deallocation may be initiated by the PAN coordinator due to a deallocation request
from the next higher layer.

Figure 4.4: GTS deallocation mechanism

Figure 4.4 shows the process of GTS deallocation and Figure 4.5 shows the state
of the superframe after receiving the actual packet. The steps are described:
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Figure 4.5: Beacon during GTS deallocation mechanism

1. In the beacon we have one slot allocated (Len=1) for the device 0x0001. See
state in Figure 4.5.

2. The coordinator has received a GTS deallocation from the device 0x0001.

3. In the beacon, we don’t have any slot allocated.

4.1.1.4 GTS reallocation

When a slot has been deallocated, it could do a gap in the superframe as Figure
4.7. To solve this, the slots will realign to avoid the existence of those gaps.

Figure 4.6: GTS reallocation mechanism

To illustrate this mechanism we have deleted the data packets from a sniffer
dump because we just want to focus on what happens with the slots and how the
coordinator re-organize them in the superframe.

Figure 4.6 shows the beacons from the sniffer, and Figure 4.7 shows the evolution
of the superframe structure. The steps are:

1. All the slots are allocated for transmission or reception.

2. The slot for reception of the device with id=0x0002, slot 13, has been reallo-
cated. Slots 9, 10, 11, 12 have been shifted.

3. The slot for reception of the device with id=0x0003, slot 11,has been reallo-
cated. Slot 10 has been shifted.
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Figure 4.7: Beacon during GTS reallocation mechanism

4.1.1.5 GTS expiration

Figure 4.8 shows a deallocation mechanism due to an expiration. The steps are
described:

1. In the beacon, we see that the device 0x0002 has two slots allocated, one for
reception and one for transmission.

2. The device 0x0002 is sending packets to the coordinator 0x0000. This pattern
has been repeated for n = 2 ∗ 28−macBeaconOrder = 8 superframes (macBea-
conOrder = 6). After that, the coordinator detects that the slot allocated for
reception has not been used for n = 8 superframes.

3. The reception slot has been deallocated by the coordinator.
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Figure 4.8: GTS expiration mechanism

GTS 1

ID

0x002

[Tx]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CAP
GTS 2

ID

0x002

[Rx]

GTS 1

ID

0x002

[Tx]

GTS 1

ID

0x002

[Tx]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CAP
GTS 1

ID

0x002

[Tx]

(1)

(3)

Figure 4.9: Beacon during GTS expiration mechanism

4.1.2 Interoperability

The interoperability between devices, is one of the most important characteristics
that a device needs. It has to be standard compliant to be able to use it with
different devices everywhere. Since approximately 1950s, associations, companies
and organizations, like IEEE, European Telecommunication Standards Institute
(ETSI), International Organization for Standardization (ISO),etc. have worked to
achieve that.

One of the utilities that we use to analyse and debug our implementation is the
IEEE 802.15.4/Zigbee protocol analyser from Texas Instruments as we explained in
Section 3.1.2 but although this board only sniffs IEEE 802.15.4 packets, it does not
mean the implementation is fully standard compliant.

Another important test is the interoperability between motes with the TKN15.4
implementation and other IEEE 802.15.4 standard compliant devices. They shall be
able to communicate each other without problems because the previous TKN15.4
and the GTS addition are done with a very strict and careful standard document
tracking.
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4.1.3 Directory Structure

Within the TinyOS 2 module the TKN15.4 MAC implementation is located ba-
sically in the tinyos-2.x/tos/lib/mac/tkn154 directory. The directory includes
additional subdirectories for the interface definitions and the placeholder compo-
nents. Moreover, the location of platform specific code is in another directory.
Table 4.1 shows an overview of all the directories involved.

Content Directory in the TinyOS-2 Tree
TKN15.4 MAC Implementation

components tinyos-2.x/tos/lib/mac/tkn154
interfaces tinyos-2.x/tos/lib/mac/tkn154/interfaces
placeholder components tinyos-2.x/tos/lib/mac/tkn154/dummies
test applications tinyos-2.x/apps/test/tkn154

Platform specific code for TelosB
configuration files tinyos-2.x/tos/platforms/telosb/mac/tkn154
modified timer subsystem tinyos-2.x/tos/platforms/telosb/mac/tkn154
CC2420 radio driver tinyos-2.x/tos/chips/cc2420_tkn154

Table 4.1: TKN15.4 directories in the TinyOS-2 tree [15]

As we can see, the directory structure is equal to default TKN15.4. The GTS
implementation is placed where the rest of the components, interfaces and dummies
are.

4.2 GTS Decomposition
In this section the specific components of the GTS implementation are described.
First of all an architecture overview of TKN15.4 is shown. After that, a reference
model, radio arbitration and timing issues are shown as well. Then, the GTS
components are described. Finally the GTS mechanism shown in Section 2.3.2.3 is
verified with our implementation.

4.2.1 Reference model

Figure 4.10 shows an architectural overview of TKN15.4, its main components and
the interfaces that are used to exchange MAC frames between components. While
this figure abstracts from the majority of interfaces and some configuration com-
ponents, it illustrates one important aspect, namely, how access to the platform
specific radio driver (PHY) in the MAC components.



4.2. GTS DECOMPOSITION 57

MLME-SAP

AssociateP DisassociateP DataP IndirectTxP PollP
Coord-

RealignmentP

DispatchQueuePCoordBroadcastP DispatchCfpQueueP

CfpTransmitP

FrameTx

FrameRx

Beacon-

TransmitP

Beacon-

SynchronizeP

Dispatch[Un]-

SlottedCsmaP

Coord/Device

Cfp

Promiscuous-

ModeP
ScanP

PibP RxEnableP

RadioControlP
SimpleTransfer

ArbiterP

Radio[Tx/Rx/Off]

[Un]SlottedCsmaCa

Radio Driver / PHY System Clock

RadioTx

[Un]SlottedCsmaCa
RadioRx RadioOff EnergyDetection AlarmTimer

MCPS-SAP

Figure 4.10: TKN15.4 architecture: components are represented by rounded boxes, in-
terfaces by connection lines. The radio driver and symbol clock components
are external to TKN15.4

On the lowest level (dark gray boxes), the RadioControlP component manages
the access to the radio: with the help of an extended TinyOS 2.x arbiter component
it controls which of the components on the level above is allowed to access the radio
at what point in time.

4.2.2 Radio Arbitration

The radio arbitration mechanism is used to coordinate the activities of the compo-
nents on this level so that they do not overlap in time: typically a component is
active only while it has exclusive access to the radio resource. It then performs a
certain task and afterwards either releases the resource or passes it on to some other
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component. Figure 4.11 explain how the radio resource is transferred and which
components can manage it.

The use of a TinyOS resource arbiter avoids inconsistencies in the radio driver
state machine and is in line with the standard TinyOS 2.x resource usage model:
before a component may access a resource it must first issue a request; once it is
signalled the granted() event by the arbiter the component can use the resource
exclusively; and after usage, the resource must be released. TKN15.4 extends this
model by allowing a component that owns the radio resource to dynamically transfer
the ownership to a specific other component.
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(b) Coordinator

Figure 4.11: Transferring the radio token between the components responsible for an in-
coming/outgoing superframe. The commands request(), transferTo()
and the granted() event are part of the TransferableResource interface.
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4.2.3 Timing issues

On this section, we analysed some timing issues and problems that the GTS imple-
mentation involves. Before focusing on the different issues, we have to keep in mind
the environment and timing where we are going to run the GTS.

Considering Table 3.5, we know that the TKN15.4 implementation uses Tsymbol =
15.259µs instead of Tsymbol = 16µs, so the time slot duration varies from the stan-
dard. Table 4.2 shows the values. From now on, when we talk about the implemen-
tation we refer to Tsymbol = 15.259µs and the conversion between symbol units and
time is:

Duration[µs] = Duration[symbols] ∗ Tsymbol
= Duration[symbols] ∗ 15.259 µs

symbols

Theoretical Implementation

BO BI Time Slot BI Time Slot
[symbol] [symbol] [symbol] [ms] [symbol]

1 1920.0 120.0 1829.1 114.3
2 3840.0 240.0 3660.1 228.8
3 7680.0 480.0 7322.1 457.6
4 15360.0 960.0 14646.0 915.4
5 30720.0 1920.0 29293.3 1830.8
6 61440.0 3840.0 58589.8 3661.9
7 122880.0 7680.0 117181.6 7323.9
8 245760.0 15360.0 234365.2 14647.8
9 491520.0 30720.0 468732.4 29295.8
10 983040.0 61440.0 937465.9 58591.6
11 1966080.0 122880.0 1874889.8 117180.6
12 3932160.0 245760.0 3749778.1 234361.1
13 7864320.0 491520.0 7499557.0 468722.3
14 15728640.0 983040.0 14999111.0 937444.4

Table 4.2: Beacon interval and Time slot duration on TKN154.4 implementation

4.2.3.1 Timers and Alarms

Figure 4.12 shows the timers and alarm involved in the GTS implementation and
needed for the smooth running.
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Figure 4.12: Timers and alarm involved in the GTS implementation

Figure 4.13 shows the instant of alarm expiration. The delay influences in the
time slot duration, and moreover this delay could not be negligible when we use low
SO and BO.
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Figure 4.13: Detail of alarms involved in the GTS implementation

4.2.3.2 Time slot duration

It is known that is very difficult to check and debug timing issues without a hardware
emulation. For this reason we try to evaluate it, with two methods and obtain
conclusions from both.

The first test has been done analysing the sniffer dump. Once enough data is
logged with the sniffer, we proceed to convert it to be able to use the data with
Matlab. After that, we apply a script to obtain the desired plots and statistics.
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The Matlab script computes the difference between data packets and the beacon,
preventing to count two packets with the same source id. Some points to be known
are:

• The periodicity of the packets is equal to the half of the beacon interval, to
be sure that we have packets in every superframe, otherwise if the periodicity
is greater than the beacon interval, we have some superframes without any
data packet.

• The time between the first packet of each slot is not the same due to the
periodicity, so although we obtain some results, we cannot assume that is the
time slot duration.

Figure 4.14 shows the histogram of the time slot duration with sniffer method.
There are two distinct peaks, one is coming from the slot in the middle of the
superframe and the small one, is coming from the last slot, because it does not
include the guard time.
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Figure 4.14: Histogram with sniffer method, BO=SO=6 timeSlotDuration =
aBaseSlotDuration ∗ 2SO = 60 ∗ 26 = 3840

On the other hand, the second test is reached with printf functions. To com-
pensate the delay that is introduced by the printf instruction. We calculate the
difference between the mean using the sniffer method with and without printf.
The conclusion is that the printf introduces a delay around 300 symbols, so, the
result should be subtract these number of symbols.

Figure 4.15 shows the histogram of that time slot duration with printf method.
Here we can see two different peaks, but the difference between them, in that case,
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is bigger than in the one with the sniffer method. It is due to the printf position in
the code. For the slot in the middle the printf is placed when a time slot duration
is achieved, and for the last one, the shortest one, the printf is placed when the
token is going to be transferred.
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Figure 4.15: Histogram with printf method, BO=SO=6 timeSlotDuration =
aBaseSlotDuration ∗ 2SO = 60 ∗ 26 = 3840

We see that, for our case of study BO = SO = 6, the time slot duration from
both test correspond with the expected value, considering the limitations. But these
results can not be extrapolated to all the range of BO, SO available. Comments
and possible improvement are shown in Section 4.3.

4.2.4 Components

The GTS functionality is implemented trying to follow the same structure and
the same organization of the TKN15.4 in the MAC layer. Table 4.3 shows the
components that provides the GTS functionality.

Component Name Function[Provided IEEE 802.15.4 Interface]
CfpTransmitP managing GTS transmission [MLME-GTS]
DeviceCfpP functions specific for a device
DispatchCfpQueueP frame transmission during CFP
CoordCfp functions specific for a coordinator

Table 4.3: GTS components
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In the DeviceCfp and CoordCfp, initially it was supposed to contain every
function and variable related to the device or coordinator, in order to have device
and coordinator in different files. But as soon as the code was growing, most of the
code was placed in the CfpTransmit due to the necessity of sharing some variables
and functions which are in the file.

In the CfpTransmitP component, we have some pieces of code with conditional
inclusions (preprocessor directives) to be able to differentiate device and coordinator
without the use of nesC conditional sentences, and reduce the size of the program.

The interconnection between components, called wiring in nesC, are very im-
portant to know which components are related to each other. In our case, due to
the modularity of the TKN15.4 implementation, it is impossible to show the wiring
graph generated by nesdoc. For this reason, Figure 4.16 and Figure 4.17 show a
graph just with the wiring related to our implementation, even if the components
is in the graph it is possible that not all the wiring are shown. 1

4.2.4.1 DeviceCfp

Uses

interface MLME_SYNC_LOSS; Interface that implements the actions in case the
device loses synchronization with the PAN coordinator. When it occurs
all its GTS allocations shall be lost [26, Sec. 7.5.7 p. 192], and if the
device wants to transmit/receive during the CFP again, it has to request
a new slot.

interface GtsUtility; See Section 4.2.5.1.

Provides

interface Init; The basic synchronous initialization interface.

interface Get<ieee154_GTSentry_t*> as GetGtsDeviceDb; Interface that is pro-
vided to share the device database, with the data of transmit/receive slot.
The pointer is shared and the rest of the components that use the inter-
face will be able to modify that variable.

Variables
1To generate the complete graph: 1. compile an app with GTS enabled, make tmote docs;

2. open se.kth.tinyos2x.mac.tkn154/docs/nesdoc/index.html; 3. navigate to the component
TKN154BeaconEnabledP
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Figure 4.16: Wiring of the components related to the GTS implementation compiling for
a device

ieee154_GTSentry_t GTSentry[2] Variable that stores the database for the de-
vice. There is the configuration for the transmission and reception slots
(starting slot, length and direction). As most of the functions are placed
in the CfpTransmitP components, that variable is shared by the inter-
face Get<ieee154_GTSentry_t*> and available for all the components
that uses that interface.

4.2.4.2 CoordCfp

Uses

interface MLME-GET; Interface that is used to get the configuration variables
from the PAN Information Database (PIB). Use: call MLME_GET . variableName().

interface MLME-SET; Interface that is used to set the configuration variables to
the PIB. Use: call MLME_SET . variableName().

interface IEEE154Frame as Frame; Interface that allows access to the content
of a IEEE 802.15.4 frame. It is not the same as FrameUtility.
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Figure 4.17: Wiring of the components related to the GTS implementation compiling for
a coordinator

interface IEEE154BeaconFrame as BeaconFrame; Interface that allows to ac-
cess the content of a beacon frame.

interface GtsUtility; See Section 4.2.5.1.

Provides

interface Init; The basic synchronous initialization interface.

interface WriteBeaconField as GtsInfoWrite; Interface that is used by the
BeaconTransmitP to write the GTS descriptor in the beacon, in case
it was needed. In that interface we analyse all the database that the
coordinator has looking for a GTS slot. It is done, just once if the GTS
slots don’t change.

interface Get<ieee154_GTSdb_t*> as GetGtsCoordinatorDb; Interface that pro-
vides to share the coordinator database, with the data of all the slots. The
pointer is shared and the rest of the components that use that interface
will be able to modify that variable.
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Variables

ieee154_GTSentry_t db[CFP_NUMBER_SLOTS]; This is the vector where all the
slots informations are store. The number of maximum slots is set to 7, as
the standard says [26, Sec. 7.2.2.1.5 p. 145]. The ieee154_GTSentry_t
contains the following information: starting slot, length, direction, asso-
ciate device address (short address) and a field indicating the expiration.

ieee154_GTSdb_t GTSdb; This is the database shared with the GetGtsCoordinatorDb
interface. It contains the previous vector of each ieee154_GTSentry_t
and the number of actual GTS slots that has been used.

ieee154_macGTSPermit_t m_gtsPermit; Variable that stores the boolean indi-
cating the possibility to use or not use the GTS.

4.2.4.3 CfpTransmitP

Uses

interface Leds; Interface that provides commands for controlling three LEDs.

interface TransferableResource as RadioToken; As it has been shown in Sec-
tion 4.2.2 we need to share the radio resource with all the components to
use it properly.

interface GetNow<token_requested_t> as IsRadioTokenRequested; Interface
that checks if any component has request the RadioToken, and immedi-
ately it will be released. In a normal operation, the RadioToken is not
request/release but in some cases like SCAN or RESET is needed.

interface Alarm<TSymbolIEEE802154,uint32_t> as CfpSlotAlarm; This is the
alarm that triggers every instant one slot has started. When it fires we
check in which slot we are at the moment, and if we have to change the
radio state to transmission, reception or inactive. Figure 4.12 and Figure
4.13

interface Alarm<TSymbolIEEE802154,uint32_t> as CfpEndAlarm; This alarm
indicates that the CFP has finished and the token has to be transfer to
the BeaconTransmitP or BeaconSynchronizeP to continue in the inac-
tive period or transmit, receive the beacon. Figure 4.12

interface Alarm<TSymbolIEEE802154,uint32_t> as IsCfpRxSlot; When this
alarm is running it indicates we are in a reception slot.

interface Alarm<TSymbolIEEE802154,uint32_t> as IsCfpTxSlot; When this
alarm is running it indicates we are in a transmission slot.
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interface Alarm<TSymbolIEEE802154,uint32_t> as TrackAlarm; This is the
alarm that triggers when the CFP starts. It is needed due to the guardTime
used at the end of the CAP. Figure 4.12

interface Timer<TSymbolIEEE802154> as GTSDescPersistenceTimeout; Once
it receives the acknowledgement to the GTS request command, the de-
vices shall continue to track beacons and wait for at most aGTSDescPersistenceTime
superframe. If the GTS descriptor is received and the MLME_GTS.confirm()
is signalled this timer stops running. If the timer fired the MLME-GTS.confirm
primitive is sent with status of NO_DATA.See [26, Sec 7.5.7.2 p. 193].

interface TimeCalc; Interface that provides time utilities.

interface GetNow<bool> as IsRxEnableActive; Interface that indicates if the
reception is active.

interface Notify<bool> as RxEnableStateChange; Interface that notifies when
the state has changed.

interface Notify<const void*> as PIBUpdateMacRxOnWhenIdle; Interface that
notifies when the RxOnWhenIdle has changed.

interface SuperframeStructure as SF; Superframe utilities to get parameters
and configuration of the beacon. Superframe start time, slot duration,
number of CAP and CFP slots, GTS fields are some of the parameters
we can get.

interface RadioTx; Interface that provides the functions to be able to transmit
using the radio.

interface RadioRx; Interface that provides the functions to be able to receive
using the radio.

interface RadioOff; Interface that provides the functions to turn off the radio.

interface Notify<ieee154_status_t> as HasRequestedCfpTimeSlot; Interface
that notifies when a new beacon is received in case we are waiting for a
GTS descriptor. It checks if our requested CFP slot exists on the beacon.

interface Notify<ieee154_status_t> as CheckCfpTimeSlot; Interface that no-
tifies when a GTS slot has been deleted from the beacon.

interface FrameTx as GtsRequestTx; Interface that contains the function to
send packet through the radio. It sends packets in the CAP.

interface Pool<ieee154_txframe_t> as TxFramePool; Interface that provides
the pool that has the packets in the same queue and control it.
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interface Pool<ieee154_txcontrol_t> as TxControlPool; Interface that con-
trols the previous pool, and prevents it to overflow.

interface MLME-GET; Interface that is used to get the configuration variables
from the PIB.

interface MLME-SET; Interface that is used to set the configuration variables to
the PIB.

interface FrameUtility; Interface that provides utilities to access the content
of a frame.

interface GtsUtility; See Section 4.2.5.1.

interface IEEE154Frame as Frame; Interface that allows to access the content
of a IEEE 802.15.4 frame. It is not the same as FrameUtility.

interface IEEE154BeaconFrame as BeaconFrame; Interface that allows to ac-
cess the content of a beacon frame.

#ifndef IEEE154_BEACON_TX_DISABLED

interface FrameRx as GtsRequestRx; Interface that is used to transmit the
MLME_GTS.request and detect the acknowledge.

interface Get<ieee154_GTSdb_t*> as GetGtsCoordinatorDb; Interface that
is used just when we compile the program for the coordinator. (see on
page 63)

#else

interface Get<ieee154_GTSentry_t*> as GetGtsDeviceDb; Interface that is used
just when we compile the program for the coordinator. (see on page 65)

#endif

Provides

interface Init;

interface MLME_GTS; Interface that provides all the primitives necessary to use
the GTS. The request(), confirm() and indication() are provided.

interface Notify<bool> as GtsSpecUpdated; Interface that notifies to other
components that the GTS descriptor in the beacon has to be rewritten.

interface GetNow<bool> as IsGtsRequestOngoing; Interface that indicates to
other components that there is one MLME_GTS.request on going. While
there is one request on going, it is not possible to process another one.
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interface GetNow<bool> as IsGtsOngoing; Interface that indicates to other com-
ponents that the GTS is working and we are receiving/transmitting through
the GTS.

interface Get<ieee154_GTSentry_t*> as GetGtsRequestedDeviceEntry; Interface
that is used to share the information about the requested GTS entry.

interface FrameTx as CfpTx; Interface that is used to transmit data in the con-
tention free period instead of contention access period.

interface FrameRx as CfpRx; Interface that is used when a packet is received
in the contention free period.

interface Notify<bool> as WasRxEnabled; Interface that indicates if the radio
was enabled to receive packets.

Variables

/* –––––––––––- Vars to CFP tx –––––––––––- */

norace ieee154_status_t m_txStatus; Indicates the transmission status.

norace uint32_t m_transactionTime; To store the transaction time needed for
the packets.

norace uint16_t m_slotDuration; To store the slot duration of the beacon. It
is equal to: timeSlotDuration = aBaseSlotDuration ∗ 2SO

norace uint16_t m_guardTime; That guard time, it is the time that the radio
needs to change its state to inactive. (See [39]).

norace uint32_t m_capDuration; It is the CAP duration. When the radio re-
source is transferred to the CfpTransmitP component, that time is recal-
culated because it is possible that the CAP has changed.
capDuration = numCapSlots ∗ timeSlotDuration = numCapSlots ∗
aBaseSlotDuration ∗ 2SO

norace uint32_t m_gtsDuration; It is the CFP duration. When the radio re-
source is transfer to the CfpTransmitP component, that time is recalcu-
lated because it is possible that the CFP has changed.
gtsDuration = cfpDuration = numCfpSlots ∗ timeSlotDuration =
numCfpSlots ∗ aBaseSlotDuration ∗ 2SO

norace uint32_t m_cfpInit; It is the time when the contention free period has
to start. It is used by the TrackAlarm to align the device and the coor-
dinator.
cfpInit = capDuration+ superframeStartT ime
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norace ieee154_macMaxFrameRetries_t m_macMaxFrameRetries; Variable that
is used to control the number of retransmission that are available.

norace ieee154_macMaxFrameTotalWaitTime_t m_macMaxFrameTotalWaitTime;
Variable that stores the maximum time that it waits until the acknowl-
edge is received and we have to retransmit the packet, if the m_macMaxFrameRetries
is not achieved.

norace ieee154_macRxOnWhenIdle_t macRxOnWhenIdle; Variable that indicates
in which state of the radio, during the idle state. If it TRUE the radio has
to be in reception state, to wait for new packets.

norace bool m_lock; To prevent non-atomic access to a variable, instead of using
atomic block, because although it will assure that the block is accessed
with atomic access, it will take some time.[21, Sec. 4.5]

norace uint8_t m_slotNumber; Indicates the slot number, where it is at the
moment. Variable that is used to load the entry that belongs to the
actual slot number.

norace ieee154_txframe_t *m_currentFrame; Variable that points to the ac-
tual frame, that has been prepared to send.

norace ieee154_txframe_t *m_lastFrame; Variable that points to the last frame
that has been sent.

/* –––––––––––- Vars to GTS request –––––––––––- */

uint8_t m_payloadGtsRequest[2]; Variable that contains a vector where the
payload of the MLME_GTS.request is stored. The first byte indicates
the command type (CMD_FRAME_GTS_REQUEST ), and the second
byte contains the information of the requested slot: short address, length,
direction, and type (allocate or deallocate).

norace bool m_gtsOngoingRequest = FALSE; See entry interface GetNow<bool>
as IsGtsRequestOngoing; on page 68.

norace bool m_gtsOngoing = FALSE; See interface GetNow<bool> as IsGtsOngoing;
on the previous page.

bool m_hasRequestedTimeSlot = FALSE; See interface Notify<ieee154_status_t>
as HasRequestedCfpTimeSlot; on page 67.

uint8_t m_gtsCharacteristicsType = GTS_DEALLOCATE_REQUEST; Variable that
indicates the characteristics type of the request.

ieee154_GTSentry_t GTSentryRequested; Variable that contains the informa-
tion of the request slot.
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ieee154_GTSentry_t GTSentryRequestedEmpty; Variable that contains the in-
formation of the request slot, to be deleted.

/* –––––––––––- Vars to expiration GTS –––––––––––- */

ieee154_GTSentry_t* actualEntry; Variable that points to the actual slot entry
depending on the slot number.

norace uint16_t m_expiredTimeout; Variable that stores the number of super-
frames that the coordinator has to wait if the slot it is not used. Af-
terwards the coordinator starts the GTS expiration mechanism.[26, Sec.
7.5.7.6]

n = 2 ∗
{

28−macBeaconOrder 0 ≤ macBeaconOrder ≤ 8
1 9 ≤ macBeaconOrder ≤ 14

norace uint8_t m_expiredReset[CFP_NUMBER_SLOTS]; Variable that is used to
count the number of superframes in which a slot is not been used. Once
this variable is equal to 0, the coordinator proceed the expiration mech-
anism. When a new slot is requested or when the slot is being used, that
variable is reset to m_expiredTimeout.

4.2.5 Utilities

The utility component provides tools to manage and configure the GTSs.

4.2.5.1 GtsUtility

The TKN154.4 does not provide any functions to access the GTS variables in the
beacons. Note that although they are related to the beacon frame or the data
frame, it has been considered as best option to do it in a different interface, not in
the FrameUtility or IEEE154BeaconFrame.

Table 4.4 explains the functions and commands implemented. The first group
is focused on the frame, as a MLME_GTS.request primitive, and the beacon frame
group provides the functions to read, parse and get the GTS descriptor. Further-
more it provides utilities to manage the GTS database that needs the coordinator.

4.3 Discussion
In spite of having a working GTS implementation, there are few known issues and
problems to be discussed:
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Function Name Description
Frame functions

uint8_t getGtsCharacteristics(...) Get the GTS Characteristics from a
frame payload

uint8_t setGtsCharacteristics(...) Return the GtsCharacteristics to
create a frame

ieee154_status_t parseGtsCharacteristicsFromFrame(...) Parse a frame to get the GtsCharac-
teristics

ieee154_status_t parseGtsCharacteristicsFromPayload(...) Parse a payload to get the GtsChar-
acteristics

BeaconFrame functions
uint8_t getGtsEntryIndex(...) Get the GTS entry index, in case

we have it, otherwise return the new
one

error_t addGtsEntry(...) Add the new entry to the coordina-
tor database

error_t purgeGtsEntry(...) Purge the entry in the coordinator
database. It reallocates the rest of
the slots, to keep it in order

error_t getGtsFields(...) Reads the GTS Fields of a beacon
frame (except GTS List)

error_t getGtsList(...) Reads the GTS List of a beacon
frame

ieee154_status_t hasRequestedTimeSlot(...) Return the requested slot configura-
tion in the ieee154_GTSentry_t*

ieee154_status_t checkTimeSlot(...) Once we have the resource, we just
need to check if our slot is still in the
beacon

void setNullGtsEntry(...) Empty the slot. Set the length and
starting slot to zero; direction to two
(invalid) 2 and expiration to FALSE

Table 4.4: GtsUtility functions

• Guard time: According to [39] there is a switching time between sleep and
active states for the radio chip (CC2420). The time is called guard time
guardT ime = 420symbols = 6.720ms.

Figure 4.18a shows the guard time in the TKN15.4 when the superframe
involves CAP and CFP. In Figure 4.18b with BO 6= SO, we can see that the
guard time used in CAP is not needed, and it takes time in the CAP. In
Figure 4.18a we do not need any guard time, but the implementation has
them because it does not distinguish between BO = SO or BO 6= SO.

Therefore, we see the necessity of deleting this time in the cases where we do
not need it because it decreases the useful time of the period. Moreover, as
far as the guard time is not negligible for small SO, it would not allow the use
of the GTS. Hence, it is really important to analyse this problem deeply, in
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Figure 4.18: Influence of guard time

order to be able to provide a GTS for low SO using the CC2420.

• Superframe Order: The guard time showed before and the timing limi-
tation with the 32.768 kHz crystal, are the factors that does not allow the
implementation to be standard compliant. At the moment it is possible to
use 4 < SO ≤ 14.

For SO < 4 we have a time slot duration lower than the guard time, timeSlot <
guardT ime. So the last time slot shall not be possible to use. In Figure 4.18,
we can see the influence of the guard time in the last slot on the superframe.

We are planning to use our implementation in the new Zolertia Z1 [25] motes
with the new MSP430 Series 2 which allows to use crystal faster than 32.768
kHz as the Series 1.

• Missed beacons: As we have seen in Section 3.3.2.2, the TKN15.4 implemen-
tation has a problem of missing beacons when a network is already running.
Given a network with several devices, once the device synchronizes with the
PAN Coordinator after the MLME_SCAN, it is possible to lose some beacons. It
also happens when we have a big interference or a device transmitting with
high sample rate in the same channel. In the standard specifications, it is
defined that once a node lose the synchronization it shall stop using the allo-
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cated slots. So in this case, it will be necessary to start a MLME_GTS.request
mechanism again.

• Memory limitation: There is a limit of 48 Kbytes in the ROM mem-
ory. With the GTS implementation, the debug utility provided by TKN15.4,
dbg_serial, is not possible to use. In the default TKN15.4 with the coordi-
nator was impossible to use as well.

By using the new Zolertia Z1 motes, we shall overcome this problem, because
the Z1 has 96 kBytes of ROM, instead of 48kBytes that TmoteSky/Telosb
have.

4.4 Future work
To achieve the desired target of a complete implementation, there are few issues
that are necessary to implement.

• Time slot duration: In Section 4.2.3.2, we saw that the time slot duration is
correct, but there is one thing that would improve it. To be sure that the initial
time of the slot is correct, it is possible to modify the timer. Instead of using
call AlarmXXX.start(timeSlotDuration), use call AlarmXXX.startAt (initSlotTime,
timeSlotDuration). Figure 4.19 shows this improvement.

• Superframe Order: The IEEE 802.15.4 protocol is designed to be able to
use BO and SO between 1 to 14 for beacon-enabled mode. Hence, to achieve
a full implementation we need to be able to use all the range available, that
at the moment is limited, 4 < SO ≤ 14. As we have seen, our big challenge is
for SO < 4 where the guard time set this limitation.

• Configure slot length: In the MLME_GTS.request() the device has to send
the requested GTS slot length. At the moment this functionality is not im-
plemented, the slot length is set to one.

• Invalid GTS slot: If there was not sufficient capacity to allocate the re-
quested GTS, the start slot shall be set to zero and the length to the largest
GTS length that can be currently be supported. [26, Sec. 7.5.7.2]. In this
case, it is allow to expand the CFP and use part of the CAP.

• CAP Maintenance: As far as we do not have the configuration of the slot
length available yet, we assure that the CAP length is bigger than aMin-
CAPLength symbols. [26, Sec. 7.5.7.1] The maximum slot number that the
CFP could have is7 ∗ slotLength = 7, the the minimum value that we can get
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Figure 4.19: Comparison between the time slot duration with the actual implementation
and the improvement for the future work. In the actual implementation, we
can see the influence of a small delay in the start timer. In the improvement,
the timer computes the difference between the starting time and the final,
and then the delay does not influence.

is:

CAPlength ≥ aBaseSlotDuration ∗ (aNumSuperframeSlots− 7) ∗ 2SO|min(SO)

≥ 1080symbols

and the default aMinCAPLength = 440symbols. So in our implementation
there is no problem, but as far as the slots length will be optional, it is
necessary to implement it.





Chapter 5

Performance evaluation of IEEE
802.15.4

In the previous chapter, the IEEE 802.15.4 protocol and the GTS imple-
mentation were described. There are a lot of factors that could influence
the behaviour of the protocol, namely: noise, interferences from other
networks and hardware restrictions (delay, precision, accuracy, clock
drift). As a consequence, it is important to consider a strong perfor-
mance evaluation.
In this chapter we analyse the delay and reliability for different traffic
load η and MAC parameters.

77
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5.1 System model
For the performance evaluation, the system model defined in [29] is implemented
in the motes with some variations. It provides us a good reference of how the
performance shall be.

We consider a star network with a PAN coordinator and N nodes. All N nodes
contend to send data packet to the coordinator, which is the data sink. In this
analysis we consider applications where nodes asynchronously generate packets with
probability ηt when a node sends a packet successfully, discards a packet or the GTS
request has failed. And with probability ηp when the sampling interval has expired.
A node stays for hTb without generating packets with probability 1− ηt, where h is
an integer and Tb is the time unit aUnitBackoffPeriod, corresponding to 20 symbols
(320 µs).

In general, we consider two different types of data packets: non-time critical
data packets transmitted during CAP and time critical data packets during CFP
using GTS allocation mechanism. When a node decides to generate a data packet,
it generates a non-time critical data packet with probability ηd and time critical
data packet with probability 1− ηd.

A node that uses beacon-enabled slotted CSMA-CA algorithm, for sending a
time critical data packet, first sends a GTS request to coordinator during CAP.
Once the MLME_GTS.confirm is signalled (due to a GTS descriptor reception or and
error), each node may need to send a multiple number of time critical packets τn
during CFP once the slot is allocated. For the non-time critical data packet, the
node sends one packet during CAP. Note that the packet transmission is successful
if an ACK packet is received.

Figure 5.1 illustrates the system model implemented in the motes. The grey cir-
cles boxes indicate the states of the system. The light blue boxes indicate command
to send or a received event.

5.2 Network scenarios
In this chapter we show different modes that IEEE 802.15.4 allows. In the beacon-
enabled, we use the slotted CSMA-CA in CAP and GTS in CFP. The non beacon-
enabled use the unslotted CSMA-CA.

Figure 5.2 shows the topology considered for this performance evaluation. All
N=9 motes are placed surrounding the coordinator between (50cm - 1m). They
have a low transmission power to avoid possible interferences between motes.

Following, reliability and delay are shown for different configurations, and as
function of some MAC parameters. It does not intend to be a wide comparative
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Figure 5.2: Star network topology

between the real implementation and the theoretical model found in [29, 30]. This
chapter shows the results from the real implementation using the TKN15.4 and our
GTS implementation.

The reliability is the packet reception rate of the network. And the delays
show in this chapter are defined as the variation of time between the generated and
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received packets. So, it give as the idea of the delay introduced by the CSMA-CA
mechanism influences the network. Mention that in papers where the performance
evaluation is done, the delay is refereed to the time between a generated packet and
when its ACK is received.

Name Value Description
SO 6 Superframe Order. This value set the duration of the

superframe
BO 6 Beacon Order. This value set the duration of the

superframe plus inactive period. As we have the same
value BO = SO = 6 the inactive period is 0.

Tb 20 symbols aUnitBackoffPeriod
h 500 the number of backoff units. Sampling interval
N 9 Nodes contend to send data packet to the coordinator
n 1 macMaxFrameRetries
m 4 macMaxCSMABackoffs
mb 8 macMaxBE
m0 3 macMinBE
τn 2 The number of time critical data packets for each GTS

request.
Lp 50 bytes Packet length containing the packet header (11 bytes)

and payload (39 bytes).
ηd Probability of non-time critical packet (CAP)

1− ηd Probability of time critical packet (CFP)
ηp Probability to generate a packet when the sampling

interval is expired
ηt Probability to generate a packet when a node send a

packet successfully or discard a packet.
η = ηp = ηt Traffic load

Table 5.1: Default parameters for CSMA-CA

Table 5.1 shows the involved parameters and their default values for our system
model.

5.2.1 Beacon-enabled vs non beacon-enabled

In this section we compare the beacon-enabled and the non beacon-enabled mode
to see which mode provides a better performance. In the beacon-enabled mode
all the motes have their backoff boundaries aligned which reduces the probability
of collisions, however, in the non beacon-enabled mode the motes have their own
backoff boundaries with no synchronization between motes. In Section 3.3.3, we
have seen influence of the clock drift on the CCA mechanism, because even with
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the beacon-enabled mode where the motes shall be aligned, they could have some
drift.

5.2.1.1 Reliability

In slotted CSMA-CA, packets are discarded due to two reasons: (i) CCA failure ;
(ii) retransmission limits. CCA failure happens when a packet fails to obtain idle
channel in two consecutive CCAs within m + 1 backoffs. Furthermore, a packet is
discarded if the transmission fails due to repeated collisions after n+ 1 attempts.
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Figure 5.3: Reliability as a function of the traffic conditions η = ηp = ηt = 0.3, 0.5, 0.7, 0.9
for slotted and unslotted CSMA-CA, with a given probability for generating
non-time critical packet ηd = 1, superframe and beacon order BO = SO = 6
(for slotted version), MAC parameters n = 1, mb = 8, m0 = 3, N = 9,
h = 500 and the packet length Lp = 50bytes.

Figure 5.3 compares the reliability of the slotted and unslotted CSMA-CA as
a function of the traffic load η with a given probability for generating non-time
critical packets ηd. The slotted version has a better reliability than the unslotted
version. Reliability decreases as the traffic load increases, but for the lowest traffic
load the reliability should be closer to 1. This difference could come from the
imperfection of the implementation or external interferences in our work place (radio
communications, WiFi, other WSN ).

The difference of both probabilities is set around 0.01 for η 6 0.7. For η = 0.9
the reliability is similar in both cases. This behaviour is reasonable due to the
the big number of collisions present in η = 0.9. All the nodes wants to transmit
almost continuously, it does not influence the fact of transmitting in the backoffs
boundaries (slotted) or every time after we detect the channel clear (unslotted).
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5.2.1.2 Delay
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(a) Slotted CSMA-CA with SO = BO = 6
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Figure 5.4: Snapshot of delay for η = ηp = ηt = 0.5, with a given probability for
generating a non-time critical packet ηd = 1, superframe and beacon order
BO = SO = 6 (for slotted version) and MAC parameters n = 1, mb = 8,
m0 = 3, N = 9, h = 500 and the packet length Lp = 50bytes.

Figure 5.4 shows a snapshot of the delay for 250 packets. The delay for the
slotted version is lower than the unslotted, where we see a lot of packets between 4
and 10 ms.

Figure 5.5 shows the delay as a function of the traffic load η for the slotted and
unslotted version. In case of unslotted the values for η 6 0.5 should be lower and
increasing when η increases.

As we were expect, with the slotted version we get better performance in terms
of reliability and delay. We conform the importance of the alignment in the motes
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Figure 5.5: Delay as a function of the traffic conditions η = ηp = ηt = 0.3, 0.5, 0.7, 0.9 for
slotted and unslotted CSMA-CA, with a given probability for generating a
non-time critical packet ηd = 1, superframe and beacon order BO = SO = 6
(for slotted version) and MAC parameters n = 1, mb = 8, m0 = 3, m = 4,
N = 9, h = 500 and the packet length Lp = 50bytes.

in order to reduce the collisions. Even though we know that the clock drift of the
motes influences the alignment, we see that the influences is not big enough to make
the slotted worse than the unslotted. In the delay we see a significant difference for
low traffic load between the slotted, unslotted version.

5.2.2 Beacon-enabled and MAC parameters

In this section, we focus in the beacon-enabled mode. We analyse the influence of
MAC parameters, macMinBE, macMaxFrameRetries and macMaxCSMABackoffs.

5.2.2.1 Reliability

Figure 5.6 shows the reliability as a function of the traffic load η with a given number
of nodes N=9 and different MAC parameters, m0, m and n. In Figures 5.6a, 5.6b
the reliability increases as MAC parameters m0, m increase, respectively. However,
in Figure 5.6c the reliability does not improve as the retry limits n increases for
high traffic conditions η ≥ 0.7. Notice that the reliability saturates if n ≥ 3. Hence,
the retransmissions are necessary but not sufficient for high reliability under high
traffic load.
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5.2.2.2 Delay

Figure 5.7 shows the average delay as a function of the traffic load η with a given
number of nodes N=9 and different MAC parameters, m0, m and n. Observe that
the average delay increases as traffic load increases due to high busy channel proba-
bility and collision probability. In Figures 5.7a, 5.7b and 5.7c the delay increases as
MAC parameters m0, m and n increases, respectively. However, Figure 5.7a shows
that the average delay increases exponentially as m0 increases. This behaviour is
due to the CSMA-CA algorithm. In each backoff period it has a random period
of 2BE − 1 backoffs. Hence, we conclude that m0 is the key parameter in terms of
average delay with respect to m and n.

It is important to remark which are the most important parameters that influ-
ences in the performance of our network. For the reliability, increasing the number
of retransmissions we improve the reliability but moreover more packets are sent
to the network, so the reliability saturates. But if we increase the number of re-
transmissions then the delay will be influenced, so it is important to use the value
of retransmissions that gives the highest reliability with a low delay. In our case,
n = 3 gives the best performance.

Moreover the delay is highly influenced by the MAC parameter macMinBE (m0).
The CSMA-CA algorithm generates a random delay where m0 is the minimal value
of the exponent. For this reason, if we increase this parameter the delay will increase
exponentially.

5.2.3 Beacon-enabled with hybrid MAC

Section 5.1 shows the system model used in this chapter, but until now, we anal-
yse the performance transmitting during the CAP (ηd = 1), sending non-critical
packets. Now, we analyse the hybrid MAC, where we transmit during the CAP or
CFP depending of the probability of critical packets (1 − ηd). For sending a time
critical data packet, first sends a GTS request to coordinator during CAP and send
a multiple number of time critical packets τn during CFP once the slot is allocated.

This section present the performance analysis done for a hybrid MAC in a real
implementation. Even though, the system model implemented is not the one intro-
duced in [29], It gives a good approximation about the expected values.

5.2.3.1 Transient behaviour

In this section, we analyse the transient behaviour of the network, keeping track of
the slots allocated, received data packets and received request packets.
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Figure 5.8 shows the snapshot of a number of received data packets, received
GTSs requests, and allocated GTSs. It shows them as a function of traffic load.
The convergence of the values is reached around 30 superframes.

The received data packets are the packets sent by the device with its ACK from
the coordinator. The received GTSs request are the GTS commands sent by the
device with its ACK, they are the number of GTS request that the coordinator
processes. The allocated GTSs are the slots allocated by the coordinator. This
information is extracted from the GTS descriptor for each beacon.

In Figures 5.8a and 5.8b, are shown the received packets, request and data, as
a function of traffic load. In case of the allocated GTSs, in Figure 5.8c we can see
the saturation for η = 0.7, 0.5 while for η = 0.3, 0.1 it converges around the 6 and 5
slots allocated, respectively.

In Figures 5.8a and 5.8b, if we focus in one peak when it converges, for example
60, the number of data packets increases when request packets decreases. It is due
to the system model implemented, because to send a data packet during the CFP
we need to send a request packet and those are not counted as a received data
packets.

5.2.3.2 Reliability

Figure 5.9 shows the reliability transmitting in the CAP and CFP as a function of
the traffic load η with a given number of nodes N=9 and different MAC parameters,
m0, m and n. The reliability decreases as the traffic load increases. Note the
evolution and behaviour of the plots for ηd = 0.5 and ηd = 0.8 do not follow a
continuous behaviour. For ηd = 0.5 the reliability should be bigger than ηd = 0.8.

As we saw in Section 4.4, the time slot alarm could be influenced by delays.
With a high traffic load, the motes is trying to send packets more often and these
interruptions could occur during the CFP. Moreover, this drift influences the ACK
reception. Even if the packet has been sent correctly, the sender do not receive the
ACK sent by receiver.

Hence, we can see how important is the improvement proposed in 4.4 for the
time slot duration.

5.2.3.3 Throughput

Here we analyse the throughput of the hybrid MAC, namely, the average amount
of both non-time critical packets and critical packets that are transmitted in the
superframe, during a length of beacon interval TBI . To be able to compare with
different BO, we use a normalized throughput,

Θ = NCAPLCAP +NCFPLCFP
TBI

(5.1)
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where NCAP represents the number of successfully received non-time critical pack-
ets, LCAP the length of the packets transmitted during the CAP, and NCFP and
LCFP are the equivalent values for the time critical packets transmitted during the
CFP. Note that the terms NCAPLCAP , NCFPLCFP and TBI are normalized by the
slot unit.

Figure 5.10 shows the throughput of hybrid MAC as a function of traffic load
η, the probabilities of generating a time critical packet 1− ηd and superframe order
SO = 6 with a given MAC parameters mb = 8, m0 = 3, m = 4, N = 9, h = 500,
the number of time critical data packets for each GTS request τn = 2, and the
packet length Lp = 5. Figure 5.10c presents the hybrid throughput, the sum of
throughput of CAP in Figure 5.10a and CFP in Figure 5.10b. Note that it is not a
comparison between CAP and CFP, it a a decomposition for the hybrid throughput.
We observe that as probability for generating a time critical packets 1−ηd increases,
the throughput of CFP increases, however the throughput of CAP decreases. CAP
throughput has a similar trend as the Hybrid throughput. The throughput of CAP
is more dominant factor for the hybrid throughput of the network. This is due to
the limited number of GTSs slots in the superframe.

5.2.4 Validation with theoretical model

Figure 5.11 shows the reliability for our experimental results and the theoretical
model. Reliability as a function of traffic load η using the slotted scheme with a
given probability for generating a non-time critical packet ηd = 1. Increasing the
traffic load, with the experimental results, we see a decreasing reliability, but in the
theoretical model it does not happen until η ≥ 0.6. In the maximum η = 0.9 we see
that the theoretical model is between the maximum value and the minimum that
we get with the real implementation.

We can see how close the behaviour of our network is in comparison with the
theoretical model.

5.3 Future work
• Validation with theoretical model: An extensive performance analysis

regarding reliability, delay, throughput, energy consumption, collision proba-
bility and probability/cumulative distribution function is needed in order to
assure that the behaviour and characteristics of this implementation are close
to the model. [29, 30] are two references where an extensive performance
evaluation is done for the CAP and for the Hybrid MAC, respectively.

• Interference analysis: As far as this standard uses the ISM radio band,
other networks and devices surrounding could influence in the reliability,
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throughput and delay. [2, 16, 32] give some analysis on the impact of the
IEEE 802.11 g/n in IEEE 802.15.4 network, or the influence of Received Sig-
nal Strength Indication (RSSI) levels. The theoretical model do not take into
account these interferences and it will be important to analyse with the real
deployment how much the interferences influences in terms of reliability.
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Figure 5.6: Reliability as a function of traffic load η = ηp = ηt = 0.3, 0.5, 0.7 and MAC
parameters m0 = 3, 5, 8, m = 2, 3, 4, 5, n = 0, 1, 3, 7 given probability for
generating a non-time critical packet ηd = 1, superframe and beacon order
BO = SO = 6. N = 9, h = 500 and the packet length Lp = 50bytes.
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Figure 5.7: Delay as a function of traffic load η = ηp = ηt = 0.3, 0.5, 0.7 and MAC
parameters m0 = 3, 5, 8, m = 2, 3, 4, 5, n = 0, 1, 3, 7 given probability for
generating a non-time critical packet ηd = 1, superframe and beacon order
BO = SO = 6. N = 9, h = 500 and the packet length Lp = 50bytes.
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Figure 5.8: Snapshot of number of received data packets, received request, and allocated
GTSs as a function of traffic load η = ηp = ηt = 0.1, 0.3, 0.5, 0.7, with a given
probability for generating a non-time critical packet ηd = 0.8,superframe and
beacon order BO = SO = 6, MAC parameters n = 1, mb = 8, m0 = 3,
N = 9, h = 500, the number of time critical data packets τn = 2 for each GTS
request and the packet length Lp = 50bytes.
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Figure 5.9: Reliability as a function of the traffic load η = ηp = ηt = 0.1, 0.3, 0.5, 0.7 with
a given probability for generating a non-time critical packet ηd = 0.5, 0.8, 0.9,
superframe and beacon order BO = SO = 6, and MAC parameters mb = 8,
m0 = 3, m = 4, N = 9, h = 500 and the packet length Lp = 50bytes.
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Figure 5.10: Throughput as a function of the traffic load η = ηp = ηt = 0.1, 0.3, 0.5, 0.7
with a given probability for generating a non-time critical packet ηd =
0.5, 0.8, 0.9, superframe and beacon order BO = SO = 6, and MAC pa-
rameters mb = 8, m0 = 3, m = 4, N = 9, h = 500 and the packet length
Lp = 50bytes.
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Figure 5.11: Reliability as a function of η = ηp = ηt = 0.1, 0.3, 0.6, 0.9 using slotted
with a given probability for generating a non-time critical packet ηd = 1,
superframe and beacon order BO = SO = 6, and MAC parameters mb = 8,
m0 = 3, m = 4, N = 9, h = 500 and the packet length Lp = 50bytes.

Figure 5.12: IEEE 802.15.4 and 802.11 spectrum usage in the 2.4 GHz ISM band. Source:
[16]





Chapter 6

Control applications

In this chapter, we show two practical experiments where the IEEE
802.15.4 applies.
First, we introduce the inverted pendulum process, which we choose as
our control application example to run over IEEE 802.15.4. The inverted
pendulum involves the control design and the setup of other tools. Fur-
thermore, we also apply our protocol implementation to improve the
reliability of a home smart grid [33].
We show how the use of the IEEE 802.15.4 can improve the reliability
and gives benefits than a simple radio transmission does not have.

95
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6.1 Inverted pendulum control
system

In this chapter, we show the control of single inverted pendulum as an example of
tight real-time process. This application example involves communication, a chip
software implementation, hardware modifications and a control study.

S

A Process

Wireless network

Controller

Wired network

PC

S

τ ca1

τ ca2 τ sc1

τ sc2

xt yt

yt−τscut

ut−τca

Figure 6.1: Inverted pendulum control system: One computer with NI board, three motes
and the inverted pendulum

Figure 6.1 shows the whole wireless inverted pendulum control process. For the
sensing, we use two motes transmitting sensor data to the coordinator, which is
another mote connected to the PC. For the actuation, we use a Data Acquisition
(DAQ) board to send the voltage control output to the motor.

One question that comes up is why we need to use the IEEE 802.15.4 for WPC
if it adds more complexity to our motes. We show some important points below:

• Reliability: The protocol provides a robustness mechanism to increase the
reliability comparing to a simple channel access method like Carrier Sense
Multiple Access (CSMA). IEEE 802.15.4 provides a CSMA-CA channel access
method with collision avoidance and the possibility of retransmission. In this
tight real-time process, it is really important receive all the packets or the
pendulum could fall.

• Adaptation: With the PAN coordinator role in the network, in case of failure,
a device could synchronize again and continue sending packets without any
hard-reset.

• Scalability: The inclusion of new sensors do not influence in the other, even
if the sample rate is really high. In this case, we add two sensors one for the
θ angle and one for the cart position. In case of using a simple CSMA, the
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use of two sensors affects directly to the reliability, because they would find
the channel busy, or would create collisions in the network.

For the pendulum we use the IEEE 802.15.4 with the beacon-enabled mode.
Mention that we transmit during the CAP period using slotted CSMA-CA instead
of the CFP. In this case, with only two motes transmitting we reach a high reliability
and the interferences between each mote, is almost negligible. So it is not needed
the use of the GTS mechanism. In case of increasing the number of processes in
the same network, I would be necessary the use of the GTS in order to remove the
collisions between packets, and assure a high reliability.

To whom is interested in knowing the steps with the problems found in our
implementation, Appendix A shows a detailed description. Some videos of the
demostration are shows in [24].

6.1.1 Platform and hardware

In this section, we describe the platforms and hardware involved in the wireless
inverted pendulum control system. First of all, we see the single inverted pendulum
provided be Quanser. Then, we show the counter board that we build to get an
accurate resolution from the encoders. Finally the DAQ board and the software to
communicate between the PC and the hardware is described.

6.1.1.1 Single Inverted Pendulum

Figure 6.2 shows the inverted pendulum with the modifications, two motes with
their counter boards attached to the encoder. The inverted pendulum is provided
by Quanser. Quanser offers a guide with the system model. Moreover provides
Simulink and Matlab files to run the pendulum using a DAQ board to get the
values from the encoders. [35, 36, 37]

The model of the system with the non-linear Equations of Motion (EOM) is
characterized with the two equations below:

∂2

∂t2
xc =

(
∂2

∂t2
xc

)
(xc, α, Fc) (6.1)

∂2

∂t2
α =

(
∂2

∂t2
α

)
(xc, α, Fc) (6.2)

(6.3)

Figure 6.3 show the schematic of the inverted pendulum. [36] explains step by
step all the equations of the physical model, in order to solve the partial derivation
of the non-linear EOM.
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Figure 6.2: Wireless inverted pendulum with the motes and the controller (PC)
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(6.5)
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Figure 6.3: Schematic of the single inverted pendulum

In order to design and implement a linear-quadratic regulator (LQR) for our
system, a state-space representation of that system needs to be derived. Therefore
the EOM should be linearised around a quiescent point of operation. In case of the
inverted pendulum, the operating range corresponds to small departure angles, α,
from the upright vertical position.

According to the system,

Ẋ = AX +BU, (6.6)

where X is the system’s state vector, defined as,

XT =
[
xc(t), α(t), d

dt
xc(t),

d

dt
α(t)

]
, (6.7)

and U is linear cart driving force, which is converted to the cart’s DC motor voltage.

When we linearise the equations (6.5) and (6.5), the matrix A and B are:

A =



0 0 1 0
0 0 0 1

0
gM2

p l
2
p

(Mc +Mp)Ip +McMpl2p
−

Beq(Mpl
2
p + Ip)

(Mc +Mp)Ip +McMpl2p
− MplpBeq

(Mc +Mp)Ip +McMpl2p

0 Mpglp(Mc +Mp)
(Mc +Mp)Ip +McMpl2p

− MplpBeq
(Mc +Mp)Ip +McMpl2p

− (Mc +Mp)Bp
(Mc +Mp)Ip +McMpl2p


(6.8)
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B =



0
0

Ip +Mpl
2
p

(Mc +Mp)Ip +Mpl2pMc

Mplp
(Mc +Mp)Ip +Mpl2pMc


(6.9)

6.1.1.2 Counter board

LS7366R To be able to use this Serial Peripheral Interface (SPI) external counter
and avoid the bias that is present using the mote as a quadrature counter, we needed
to implement a complete stack for this chip, as the one existent for CC2420 (radio
stack) or STM25P (flash memory). These chips are also using the SPI channel num-
ber 0. Hence, it is necessary to build a robust implementation with bus arbitration,
otherwise they will try access to the resource at the same time, and the program
will crash or act in an unpredictable way.

Content Directory in the TinyOS-2 Tree for LS7336R
LS7336R chip implementation

control components tos/chips/ls7366r/control
interfaces tos/chips/ls7366r/interfaces
SPI components tos/chips/ls7366r/spi
test applications apps/test/ls7336r

Platform specific code for TelosB
ports configuration files tos/platforms/telosb/chips/ls7336r

Table 6.1: TKN15.4 directories in the TinyOS-2 tree for LS7336R chip implementation

Table 6.1 shows the directories where the LS7336R implementation has been
placed. Some modifications in Makerules and Makefile files are necessary to com-
pile the programs successfully.

In the Appendix A, we show the schematics for these boards.

6.1.1.3 Data acquisition

To communicate between the inverted pendulum and the PC, and send the control
voltage back to the pendulum motor we use the DAQ board (NI-6221 PCI) provided
by National Instruments (NI). [17]

Features

• 16 Analog input (AI). 8 differential or 16 single ended
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Figure 6.4: NI 6221-PCI board Source: [17]

• Analog-Digital converter (ADC) resolution of 16 bits

• AI with a maximum sampling rate of 250 kS/s and 50 ns of time resolution

• 2 Analog output (AO)

• Digital-Analog converter (DAC) resolution of 16 bits

• Maximum AO rate of 833 kS/S

• AO range ± 10 V

• 24 digital input/outputs

6.1.1.4 NI LabView

NI LabView has been selected as the software to use the DAQ board to send the
voltage to the motor. We implement the control loop using MathScript RT module
which allows to do the calculations efficiently in LabView. In the Appendix A are
screenshots of the VI LabView file.

6.1.2 Control over WSN

Our Networked Control System can be modelled as in Figure 6.5.

The received measurements from the process are subjected with delays and
losses. The most important issue in our model is the delay from sensor to the
controller τ sc.

For practical experiments, we assume a delay h > τcs, where h = 25ms. In order
to have a stable controller even with the delay, it is necessary to estimate our state
while compensating for the delay τ sc and then we use a LQR. Note that we follow
the notation of [3].

The controller is designed following the methodology in [31]. Figure 6.6 shows
the block diagram of our controller.
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Figure 6.5: Model of our networked control system

Controller
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yk+τ ′sc

yk+τ ′sc
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x̂k+τ ′

uk−1

Figure 6.6: Block diagram of the controller

6.1.3 Problem formulation

The process to be controlled is described by the continuous-time model in

dx = Axdt+Budt+ dvc, (6.10)

where A, B may be time-varying matrices. The process vc has mean value of
zero and uncorrelated increments. x(t) ∈ <4 is the plant state and u(t) ∈ < is the
control signal.

A time-varying discrete-time sampled system, with sampling time h can be
written as

xk+1 = Φxk + Γuk + vk (6.11)
yk = Cxk + ek, (6.12)

where Φ is the fundamental matrix of (6.10) and vk and ek are discrete-time
Gaussian white-noise processes with zero-mean value,
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Φ = eAh (6.13)

Γ =
∫ h

0
eAsdsB (6.14)

R1 = E[vkvTk ] (6.15)
R12 = E[vkeTk ] (6.16)
R2 = E[ekeTk ] (6.17)

6.1.3.1 Time-varying Kalman Filters

With a time-varying Kalman filter we estimate the states by computing a new
Kalman gain with the received measurements data. The first step is to predict the
next value of the states with the knowledge of the previous state and the system
model. Optimal Kalman filter equations are given by the equations (6.18) - (6.25).

τ ′

k k + 1k + τ ′k − 1

Figure 6.7: Prediction and delay compensation

The Kalman filter could be separated in two steps, the prediction and the cor-
rection.

Prediction step In the prediction step, it tries to estimate the next state given
the estimation of the present state and the control input sent to the process previ-
ously,

x̂k+τ ′|k = Φτ x̂k|k + Γτuk−1 (6.18)
x̂k+1|k = Φhx̂k|k + Γhuk

= Φh−τ x̂k+τ ′|k + Γh−τuk (6.19)
Pk+1|k = ΦhPk|kΦT

h +R1, (6.20)
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where Pk is defined as the variance of the estimation error,

Pk = E
[
(x̂k − E(x̂k)) (x̂k − E(x̂k))T

]
(6.21)

τ ′ = τ sc

h
(6.22)

In (6.19) we apply a delay compensation because the sample that we get is
delayed, and it arrives after the sample time h.

Correction step When a measurement is received the predicted state can be
corrected by calculating the new Kalman gain,

Kk = Pk|k−1C
T
(
CPk|k−1C

T +R2
)−1

(6.23)

x̂k|k = x̂k|k−1 +Kk

(
yk − Cx̂k|k−1

)
(6.24)

Pk|k = Pk|k−1 −KkCPk|k−1 (6.25)

6.1.3.2 Linear Quadratic Regulator

The linear-quadratic (LQ)-control is solved for the case of complete state informa-
tion. We assume the deterministic case, where vk = 0 and ek = 0. The discrete
state-feedback law

uk = −Lkx̂k. (6.26)

It minimizes a discrete cost function equivalent to the continuous cost function

J = lim
T→∞

1
2T

∫ T

−T
(x̂Tt Qx̂t + uTt Rut)dt. (6.27)

We determine the discrete state-space model,

x̂k = Ahx̂k +Bhuk (6.28)

where,

x̂k =


x̂c
θ̂
˙̂xc
˙̂
θ

 (6.29)

We get control gain by using the dlqr function in Matlab.

To summarize, the steps needed in LabView are:
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1. Correct the state x̂k|k given the measurements of yk.

2. Predict the actual state x̂k+τ |k given the state x̂k|k and the control signal uk.

3. Predict the next state x̂k+1|k given the state of x̂k+τ and the control signal
uk+τ .

4. Apply the LQR to compute the control signal at k + τ given the estimation
of x̂k+τ |k

uk+τ = −Lx̂k+τ |k (6.30)

6.1.4 Performance evaluation

Along this section, we use the process for 2 minutes, and during this time, we
have stable period, without any problems and few packets errors, and two different
interferences intervals. To make interference on the network we use a scrambling
mote.

The scrambling mote consists in a mote sending dummy data to an non-existent
mote using the same channel that the sensors and coordinator are using, but trans-
mitting in a unslotted CSMA-CA. This node tries to simulate high traffic in the
network and interferences. Note that with the highest sampling rate, the mote in-
fluences in the beacon reception of the motes, making them losing beacons, as we
have seen in Section 3.3.2.2.

Below, we show different figures which make it is possible to detect this behaviour
from different data, and/or from different points of view. First we see the exported
data from LabView, where we see the sensor data and the control output. Then
we show different information from the protocol analyser board, where from the
time between packets we can detect when we get retransmissions and packet loss.
Moreover, once we analyse the data we show the accumulated errors for each node,
and the instant of failure.

Between the start time at 18:12:57 and 18:13:49 the inverted pendulum process
is stable, with few packets loss and few oscillation in the pendulum angle and cart
position. After this time, the scrambling mote starts sending data with a 100 ms
period. It makes the mote number 1, cart position, start failing and not sending
packets, making some read from the carts position invalid, but the pendulum is still
upright. Once we increase the sampling rate with the scrambling mote, at 18:14:25,
the mote number 2 starts failing as well, which is a very critical measurement for
the control of the pendulum, and the pendulum falls.

6.1.4.1 Sensing values

Figure 6.8 shows the information read from the coordinator, when Figure 6.8a shows
the pendulum angle θ, and Figure 6.8b the cart position. During the stable position,
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(a) Angle θ of the pendulum

(b) Cart position

(c) Control output to apply to the cart motor

Figure 6.8: Values read from the mote while running the pendulum in a stable position

θ varies around ± 0.02 rad (1.146 degrees) and the cart position 80 mm. Note that
all the figures related to the inverted pendulum have the same timestamps. Hence
they are all related although we get ones from LabView and other from the protocol
analyser.

Observe that the cart position values fail around 18:14:15 after 24 seconds of low
rate scrambling data. In the same instant, Figure 6.8c, the control voltage changes.
The new voltage levels made the cart move faster, so the pendulum angle oscillations
that we get are different than the stable position. After that, the pendulum comes
to the stable position again for 5 seconds, and at this moment, after a lot of packets
errors from a mote, the pendulum falls and it does not come back on track again.
Here we can measure that packet losses critically affect the pendulum, mainly packet
losses in node 2 which transmit critical packets with the pendulum angle.
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(a) Time between packets for mote ID=1 (cart position)

(b) Time between packets for mote ID=2 (pendulum angle)

Figure 6.9: Time between packets for motes 1 and 2

6.1.4.2 Time between packets

Figure 6.9 shows the time between sent packets for each node. Observe a delay jitter
of 3 ms with a mean value of 25 ms. The packets under the mean value and the
jitter are due to retransmissions and the packets above are packets loss. Therefore,
in Figure 6.9a we observe problems in the transmission from 18:13:50 but in Figure
6.9b the errors start around 18:14:10.

The difference between the instant 18:13:49 and 18:14:06 is the position of the
scrambling mote. During these times, the scrambling mote is moved from mote
ID=1 towards mote ID=2.

6.1.4.3 Reliability and probability of error

In Figure 6.10 we show the probability of error and reliability. Figure 6.10a shows
the instants of errors differentiating between the errors coming from a CCA failure
and retransmission failure. Mainly we have errors due to a retransmission failure,
meaning that the influence of the clock drift, saw in Section 3.3.2.2, does not influ-
ence too much and they are transmitting in different backoff slots. In Figure 6.10b,
we see the equivalent plot, providing the reliability with a window of 20 packets. So
each point in the plot, represents the reliability for 20 packets.

6.1.4.4 Accumulated errors

Figure 6.11 shows the evolution and behaviour of the error packets, the number of
accumulated packet errors. Until 18:13:50 it is almost constant. Then it increase
slowly until 18:14:15 and finally it increases really fast. It is easy to show with that
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(a) Instant of failure

(b) Reliability with sliding window

Figure 6.10: Comparative between reliability, or probability of failure and the control
output send by the PC

figure the influence of the scrambling mote, for both motes. The node 1, in Figure
6.11a has more errors because the scrambling mote is close to him than the node 2.
Notice that even with a huge number of error between 18:13:40 and 18:14:24, is not
until 18:14:24 that the pendulum does not fail. Again, we can notice the criticality
of node 2.

To summarize, in this chapter we have seen the indispensable tools and plat-
forms needed for the wireless inverted pendulum. The delay and the tight real-time
requirements of the process, have forced to use a robust control design. The Kalman
filter with the delay compensator has been the pillar of the control, with this es-
timator the influence of the delay has been relieved. From now onward, we could
see the IEEE 802.15.4 as the standard for wireless process control tight real-time
process control.

6.2 Home smart grid
Another application where the IEEE 802.15.4 would give benefits is the Home smart
grid. Where a large deployment is needed and the packets losses have to be reduced.
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(a) Packets errors accumulation for mote
ID=1 (Cart position)

(b) Packets errors accumulation for mote
ID=2 (Pendulum angle)

(c) Total packets errors accumulation

Figure 6.11: Packets errors accumulation while running the pendulum in a stable position

6.2.1 Introduction

In this work, a system to detect water and electricity consumption is introduced
to identify resource waste and inform the consumers about it. For this purpose,
many sensors are deployed in the kitchen of the department in order to gather data
of the consumption. These sensors are an alternative to other ways of getting this
information that are usually considered invasive, like a camera. Due to the amount
of sensors involved and the large area covered, this application is highly suitable to
the use of IEEE 802.15.4 to gather data from all the sensors.[33]

Our contribution in this project is the adaptation of the communication. By
default, the TinyOS uses CSMA as a channel access method, which does not give any
collision avoidance or any ACK mechanism. In order to provide more a robustness
to the application, we adapt the programs to use the IEEE 802.15.4.

Figure 6.12 shows the communication diagram in this deployment The topology
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Figure 6.12: Communication in the wireless sensor network Source: [33]

used is a start network where we have some RFD devices, which are the sensors,
a FFD who makes the connection between the PC and the PAN coordinator. The
coordinator is situated in the middle of the kitchen, some sensors around it, and
a base station connected to the PC in order to log the date coming from the base
station. The coordinator in case of the IEEE 802.15.4, actuates as the PAN coordi-
nator sending the beacon frame periodically, and as a bridge between the network
and the PC, where it retransmits all the packets received from the sensors to the
base station.

6.2.2 Performance evaluation

6.2.2.1 Reliability

In this application, a low sample rate is used, so comparing with results showed in
Chapter 5, we expect a very high reliability.

The analysis done in this section are based on the sniffer data. As far as it is
an external device, that does not play any role on the network, the results that
are shown in this section are not accurate, because the protocol analyser could not
receive all the packets.

CSMA shows the reliability using the default channel access method implemented
in TinyOS. When the sender is ready to transmit data, it checks if the physical
medium is busy. It senses the medium continually until it becomes idle, and
the it transmits the frame. The collision are not detected by the sender, so it
assumes that the packet has received without problems.

TDMA shows the reliability using the default radio communication implemented
in TinyOS with a previous scheduled times. It is not a strict Time Division



6.2. HOME SMART GRID 111

Multiple Access (TDMA), because we do not have any time slots mechanism,
but the sender try to transmit in a different instant of time with this protocol.
It provides a synchronization mechanism in order to have this behaviour.

IEEE 802.15.4 shows the reliability in a beacon-enabled transmitting during the
CAP. As we have seen, we transmit using CSMA-CA, a modification of CSMA
where Collision Avoidance (CA) is used to improve the performance of CSMA
by attempting to keep the less busy the channel. If the channel is sensed busy
before transmission then the transmission is deferred for a random interval.

Reliability [ % ]
Sensor CSMA TDMA CSMA-CA

802.15.4

Powerplug 1 94.00 91.03 99.91
Powerplug 2 95.81 99.45 99.98
Vibration fridge 95.92 99.44 99.91
Vibration sink 84.19 96.20 100.00
Light sensor 1 95.75 99.43 99.98
Light sensor 2 94.56 98.61 100.00
Temperature sensor 1 95.14 98.85 99.98
Temperature sensor 2 94.19 98.71 100.00
IR 1 95.68 99.50 99.98
IR 2 64.47 98.72 99.98
IR 3 95.29 99.47 100.00

Total 92.26 % 97.53 % 99.97 %

Table 6.2: Reliability for the different communications algorithms and protocols. Source:
[33]

Table 6.2 shows the reliability for the different sensors deployed in the kitchen.
In the columns we have the different types of communications. The first column
(CSMA) has the worst reliability because there are no retransmission and no colli-
sion detection, where the motes are not aligned each other. In the second column
(TDMA) we have the motes aligned and transmitting in different instants of time,
so the are no collision between each other, but as far as it is not a strict TDMA and
no ACK mechanism and no retransmission, in case of failure they do not retransmit
the packet. Therefore, in the IEEE 802.15.4 transmitting using CSMA-CA during
the CAP, we have a collision detections with a ACK mechanism and retransmission,
which give the highest reliability.

Figure 6.13 shows the number of accumulated error that we get during one hour
of running the application.
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Figure 6.13: Accumulated errors in Home Smart Grid application

12:57:36 13:04:48 13:12:00 13:19:12 13:26:24
0

1

Timestamp

 

 

Retransmission failure

CCA failure

Figure 6.14: Instant of packet failure

Figure 6.14 shows the instant of time where we get a failure, where it could be
due to (1) CCA failure or (2) Retx failure.



Chapter 7

Conclusion and future work

7.1 Conclusion

In this thesis, we describe the necessary steps to reach the wireless inverted pendu-
lum process. First of all, we have described briefly the IEEE 802.15.4 in order to
know the benefits and problems that the protocol provides.

The first critical point was the selection of a protocol implementation that pro-
vides us a protocol as close as possible to the standard defined in [26]. A comparison
between the two main implementations is done through the experiments to validate
the feasibility of the implementations. The IPP implementation [9], against our
thoughts, had critical problems. It is impermissible that the motes stop working
after some time and the timing for the beacons were not as good as it was possible
given the motes used. The TKN15.4 provides a solid implementation but it was
not completely implemented. For this reason we expand the functionalities of the
implementation and we provide the necessary mechanisms to transmit during the
CFP period. These mechanisms involves: GTS allocation, GTS deallocation, GTS
expiration and GTS reallocation.

Dealing with a real implementation, we face challenges related to the techno-
logical limitations of the platforms under use. All of these present more challenges
that had to be mitigated to enable the experimental validation and a released imple-
mentation. During this particular implementation and experimental efforts, some
of those difficulties were re-encountered, namely in what concerns the behaviour
of the Tmote Sky/TelosB motes: (i) Memory constraints (ii) Hardware platforms
and debugging (iii) CC2420 transceiver limitations (iv) Timing and synchronization
requirements (v) TinyOS task scheduler .

On the other hand, with a IEEE 802.15.4 implementation we provided a evalua-
tion with which the behaviour is proven. The performance evaluation shows which is

113



114 CHAPTER 7. CONCLUSION AND FUTURE WORK

the real behaviour of our implementation for different network scenarios, in terms of
packet deliver loss and delay. For the slotted version, we analysed the characteristics
and performance transmitting during the CAP and CFP. Analysing the reliability
and delay as a function of the MAC parameters, we have seen the importance of the
macMinBE respect to macMaxCSMABackoffs and macMaxFrameRetries in term of
average delay. It is also important to mention that with the number retransmissions
n we increase the reliability, but for a given n, it saturates and keep constant. An
analysis for the hybrid MAC was also performed.

Finally, with the IEEE 802.15.4 working and with the performance evaluation
done that assures that the protocol implementation gives a proper performance, it
was the moment to continue and focus on the main goal of this thesis, prove and
show the benefits in wireless process control that the standard would give. We use
the process with tight real-time requirements available in our lab, a single inverted.
We prove that is possible to use IEEE 802.15.4 in a tight real-time control system,
opening the possibility to prove different researches in a practical environment.

Another application were the IEEE 802.15.4 provides large benefits is in Home
Smart Grid deployment. Using the protocol in the deployment of [33], the reliability
increases around 7 % against a simple CSMA transmission mechanism.

7.2 Future work
Along this thesis, we have seen different chapters with its own “Future work”: GTS
implementation in Section 4.4 (1) Performance evaluation in Section 5.3.Moreover
we posed some discussion in the GTS implementation in Section 4.3.

For the IEEE 802.15.4 implementation, we have seen some issues that does not
allow to have a standard compliant implementation. Some improvements are related
to software and hardware. As soon as the new MSP430 series have been launched
and the Zolertia company has the motes with this MCU, the acquisition of those
and future modification of the clock will reduce the present hardware limitations.
Furthermore, in the software development is needed an extensive debugging in order
to conform every part of the standard and improve the performance of the code.

Having a full standard compliant implementation, a comprehensive performance
evaluation and comparison with the theoretical model would give us more informa-
tion and the certification that the implementation is correct. In papers [30, 29, 28]
exist a complete and extensive description of the theoretical model with its charac-
teristics to compare with.

There are some researches where hybrid MAC is applied for control applications.
With a IEEE 802.15.4 implemented and the possibility to transmit during the CAP
and CFP, we have opened the door to apply different control mechanism, event-
driven, hybrid control, etc. [20]. To see projects related to our lab visit [24].
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Appendix A

Inverted pendulum

Nomenclature

Symbol Description
xc Cart linear positions
d

dt
xc Cart linear velocity
α Pendulum angle from the upright position
d

dt
α Cart linear velocity

Fc Cart driving force produced by the motor
Ip Pendulum moment of inertia
Mp Pendulum mass
lp Pendulum length from pivot to the centre of gravity
Beq Equivalent viscous damping coefficient for cart
Bp Equivalent viscous coefficient for pendulum
Mc Lumped mass of the cart system, including the Rotor Inertia
X State vector
A State-Space Matrix
B State-Space Matrix
U Control signal

Table A.1: Model nomenclature
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Steps for our approach
We think that it is important to show the evolution and different steps that we made
to have the inverted pendulum sensing through wireless and the IEEE 802.15.4. It
could be a good section to read to whom want to reach such a challenge with its
own.

1. Simulink with serial blocks: Quanser provides a large number of files
with documentation, maple files with the model, matlab files with the control
design and a simulink schema to run the application with its hardware or any
DAC board that simulink supports, like ours.
To be able to get the sensing data from the BaseStation mote instead of the
DAC board, it is needed the communication between mote and PC through
serial (Universal Serial Bus (USB)). But due to the use of a Real-time envi-
ronment in Simulink, it was impossible to apply and use the serial blocks.

2. Simulink with S-functions Our second try was the implementation of func-
tions to read the serial port. We had tried to program functions in C and C++,
and include them as S-functions, but Simulink did not allow use the USB in
any way.
As we can see we tried some options with Matlab, because we think that it
was the best option to apply control process, reducing delays, easy way to
implement transfer functions, matrix multiplications,.... but it was necessary
to give it up in order to reach our challenge.

3. LabView: The next option available, once we did not find any options with
Simulink, was LabView. LabView is a programs focus in the communication
between external hardware and the PC. For our approach, with a high sample
rate, we were quite sceptical about its behaviour but it was the unique option
in mind. The control toolbox for LabView had some timing problems and
it was not an option for our applications. Therefore, we continue with the
MathScript toolbox which allows us to implement the control manually.
When LabView was running the LQR control and controlling the pendulum in
real-time, we realized that there was a huge bias between the real value read
from the NI board and the value that we are receiving with the BaseStation.
Moreover, there was a delay between the samples. It was around 50 ms, time
that would crash the pendulum because it is a tight process.
So, in this step we realized that we got a bias. This bias is due to the no task
priority in the TinyOS. Although it exists some mechanism of pre-emption
like task, asynchronous and synchronous functions, it was not enough to read
and listen all the events coming from the DAC.
The delay introduced on the samples it could be introduced by the com-
munication between mote and PC, the buffers on the operating system, the
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communication between OS and LabView, or the time to process the serial
data in LabView. But we can exclude the time between the mote and PC
because we know that the delay introduced by the mote is around 5 ms.

4. Labview and LS7366R to avoid bias As soon as we realized that there
were nothing to improve in the mote application, the only way to continue
dealing with the pendulum was the introduction of an external counter. It
will liberate the mote and we will get the exact value.

The counter selected was a quadrature counter with SPI communication,
LS7366R [40], which provides us a wide settings and different counter con-
figurations, and an easy communication with the mote.

Finally with that external counter, we completely remove the bias but the de-
lay problem was still there. For this, we tried to use the RS232 communication
instead of using the USB.

5. LabView and LS7366R and RS232: To test the RS232, we get the data
from the input of the FDMI driver, pin 25, in the mote and apply this signal
to a MAX232 to converter the signal levels to a RS232 standard ones [22,
“Applications examples”]. But the delay accomplished with the RS232 was
the same as the USB, and the packets loss increased.

6. LabView and LS7366R with Kalman filter: Following with our delay
deal, we came up on the idea of estimate the state of the process and compen-
sate the delay. For this we applied a Kalman filter with delay compensation
which allowed us to predict the next state of the plant and moreover manage
the delay. So, applying the estimated states to the LQR we were able to have
the inverted pendulum stable for long time.

Counter board
Figure A.1 shows the schematic of the circuit needed for the SIP external counter.
The components are: (a) 3.3 Voltage regulator, FAN2504 (b) Operational Amplifier
(OPAM) LM324 (c) The SPI counter LS7366 (d) Crystal oscillator, CMACKD 20.00
(e) Capacitors and resistors . The connector at the bottom (U13) is the expansion
pack in the mote.

LabView
Figure A.4 shows the time loop used read the values from the BaseStation. Actually,
we read the values from the Transport Control Protocol (TCP) port, where we are
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Figure A.1: Schematic of the circuit

running a Serial Forwarder. Serial Forwarder check the Frame Check Sequence
(FCS) and sends to LabView the correct packets.

Figure A.5 shows the time loop used for compute the control output. On the
left, we see the reads of the motes, as a local variables, in the middle the MathScript
node where the control in calculated, and on the right we see the DAQ assistant
block used to configure the DAQ board and send the output voltage back to the
motor. We also used a Write measurements block in order to be able to save the
data and compare them with the sniffer data.
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Figure A.2: General layout with the board and the mote

(a) (b)

Figure A.3: Detailed layout with the board

Figure A.4: Screenshot of the VI file from LabView with the time loop to read the values
from the BaseStation
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Figure A.5: Screenshot of the VI file from LabView with the time loop for control
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