
PROYECTO FINAL DE CARRERA

VIZWALT: A VISUALIZATION TOOL
FOR WSN EXPERIMENTS ON THE

WALT PLATFORM BASED ON COOJA

Studies: Ingeniería de Telecomunicaciones
Author : Jorge Luis Baranguán Castro
Supervisors at INP-Grenoble: Andrzej Duda and
Franck Rousseau
Advisor at UPC : Josep Paradells Aspas
Year : March 2014

Index
1 Introduction 4

1.1 Motivation . 4
1.2 Project approach 5

2 Ensimag 6
2.1 Laboratoire d’Informatique de Grenoble (LIG) 6
2.2 Drakkar Group 7

3 Project execution 7
3.1 Initial Project Objectives 7
3.2 Implementation process 8

4 Project Modules 9
4.1 VizWalT . 9

4.1.1 Working modes 10
4.1.2 VizWalT Implementation 12
4.1.3 Usage 14

4.2 Experiment Controller 16
4.2.1 Experiment protocol used 17
4.2.2 Module development 17

4.3 RPi Controller 18
4.3.1 Firmware Translator 19
4.3.2 Message format 19

4.4 Sensor Modification 21
4.4.1 Using Energest 22
4.4.2 Traces information 22

5 Test implementation 25
5.1 First VizWalT test 25
5.2 Final VizWalT test 25

5.2.1 Simple test 25
5.2.2 Final Testbed 27

6 Conclusion 33

7 Acknowledgments 34

3

Abstract
Simulators and emulators for Wireless Sensor Networks like COOJA[1]
are a valuable tool for system development. However, it is necessary to
make tests with real sensor nodes, and when trying to test and debug
new protocols and tools with them, it becomes more difficult since nodes
just have some leds blinking to know if they are performing any action
and we missed any tool to make this work easier.
We propose a software tool to be able to replay the network behaviour

in a visualization interface. This way, we can perform an easy analysis
on what is happening in the network. Afterwards, we have implemented
a prototype testbed to test this software in a real network.

1 Introduction
1.1 Motivation
Software development in wireless sensor networks is difficult and tedious
due to the distributed nature of sensor networks, because the compiled
code should be load to a set of sensor nodes each time before test it, and
this set can be large.
The usage of COOJA, a simulator for the Contiki sensor node operat-

ing system, make the developing process easier because we can test our
code in a simulator, using the number of sensor nodes that we want and
simulate it with a speed faster than real time, being able to make long
simulations in a short time. Anyway, after this process it is necessary
to test the code in a real sensor network, either we use a testbed or
a big deployed network. At this time, we find out the problem of the
complexity to debug in a wireless sensor network (WSN) because of the
distance between nodes, the difficulty to observe the leds and, basically,
because it’s not possible to see the packets flowing in the network since
it uses the radio medium.
Some solutions have been explored using distributed sniffers to make

a non-intrusive monitoring of the network, and complex error tracking
algorithms, but our purpose is to develop a debugging tool that allow
us to perform an easy debugging even whether we don’t have much re-

sources to have enough sniffers to monitor all the network or if we don’t
believe that it is worth to develop these types of algorithms. There are
also some approaches using traces generated by the sensor nodes that
you can collect in a server and display them in your terminal. How-
ever, the terminal is not a debug-friendly interface, because reading and
understand a big amount of raw text is not easy.

1.2 Project approach
Our approach departs from the need to obtain a method to debug simply
and cheaply, and that allows us to be able to visualize what is happening
in the network. To solve this need we have decided to create a tool
called VizWalT, to be able to display the behaviour of a network in an
easy understandable interface, making the process of testing in a WSN
comfortable and cheap.
The project has consisted of the development of the debugging tool

called VizWalT, and the implementation of a prototype testbed formed
by 4 modules: VizWalT, an Experiment Controller, a RPi Control, and
a modification to the Sensor’s Radio Interface.
VizWalT is a project developed with the purpose of replaying a wireless

sensor network (WSN) behaviour through traces analysis. The main
concept on which this project is based is that sensors generate some
traces when they perform some actions and it is possible to get them
through the serial port. With this extracted information it is possible
to reproduce the behaviour of the network in a computer and using
VizWalT, to visualize the packet flow inside a WSN. This tool allows to
debug all kinds of new protocols or tools.
VizWalT is built like a COOJA plugin, as a way to integrate this tool

into the Contiki simulator. Nevertheless, it changes the paradigm of
COOJA simulator because VizWalT changes its purpose from simulate
sensors behaviour to show the behaviour of real sensors. VizWalT reuses
the Cooja graphic interface to display all the communication main events
happening in the network. Thanks to VizWalT it is possible to visualize
the transmission of a packet, the reception of a packet and the state
of the sensor node radio interface. This turns VizWalT into a usefull
tool to evaluate the performance of any protocol in terms of energy or
reliability using real sensor nodes.

5

The prototype testbed has been developed to permit us to test VizWalT
with a real network. This testbed is composed of the Experiment Con-
troller, which can be placed in the same computer in which VizWalT
is or in other computer closer to the nodes. Each node is composed of
a Raspberry Pi and one or more sensors. The Raspberry Pi controlls
the configuration of the sensors and communicates the sensors with the
Experiment Controller through their USB. The sensors that we use are
the ST Harvesting Sensor GreenNote V.2.1.1, and we have introduced
some modifications into their radio interface code to be able to extract
the needed information to use VizWalT.
This document reports what has been done in the project during 6

months at Drakkar Group of Laboratoire d’Informatique de Grenoble
(LIG).

2 Ensimag
Ensimag is the school belonging to the Grenoble INP group (Grenoble
Institut of Technology). Ensimag is one of the top French educational
institutions specialized in computer science, applied mathematics and
Telecommunications. Students at Ensimag are admitted after strong
competition during two years of undergraduate studies. Studies at En-
simag are of three years’ duration and lead to the French degree “Diplôme
National d’Ingénieur”.

2.1 Laboratoire d’Informatique de Grenoble (LIG)
LIG, Grenoble Informatics Laboratory, is the largest research labora-
tory of Informatics in Grenoble, France. It’s the union of the 24 re-
search teams coming from Ensimag, INRIA Rhône-Alpes, the CNRS
(National Scientific Research Centre), Joseph Fourier University, Pierre-
Mendes France University and Stendhal University. Over 500 people,
researchers, PhD students, and professor-researchers work at LIG. The
scientific project of the LIG is “ambient and sustainable IT”. The goal
is to leverage the complementary nature and recognised quality of the
23 research teams of the LIG to contribute to fundamental aspects of
the discipline (modelling, languages, methods, algorithms) and to create

6

a synergy between the conceptual, technological and societal challenges
that surround this theme.[2]

2.2 Drakkar Group
The Drakkar group investigates various aspects of network protocols and
multimedia applications with the emphasis on wireless networks and
sensors networks. The Drakkar group is part of the LIG Laboratory.
My final studies project has been made in the Drakkar group, under
the supervision of Andrzej Duda, Franck Rousseau and Etienne Dublé.
Drakkar group is developing project consisting on a wireless sensor net-
work testbed called WalT, and VizWalT is designed to be a module of
this project. The aim is to have a tool that allow the researchers to
visualize what is happening inside this wireless sensor network testbed.

3 Project execution
3.1 Initial Project Objectives
The initial project objectives were to create a modular implementation
of a WSN testbed prototype. This prototype should be a base to the
development of a WSN testbed called WalT that is going to be deployed
at Ensimag building by the Drakkar group. WalT has the objective of
being a place to test all the research studies developed by some research
groups, including Drakkar group. WalT should be a low-budget WSN
testbed, so it is necessary to find solutions to implement all the necessary
modules in the easier and cheaper way.
Due to the partnership between the Drakkar group and France Tele-

com, WalT should be as compatible as possible with the France Telecom
analysis tools, that use tools so extended like WireShark, which uses
pcap format. That is one of the main reasons to make a modular imple-
mentation, that allows us to make our software tool really compatible
with any software we want to use, by making few changes. That is thanks
to the little dependency between nodes, that allows us to replace one of
the modules without having to change the code of the other modules.

7

Figure 1: Project overview

3.2 Implementation process
This project was programmed to be realized in 5 phases. Each phase is
based on the development of an autonomous software module that can
be joined to the other modules to create the WSN testbed. These 5
phases are structured in the development of four modules and the test
of the testbed. The modules that we have developed are VizWalT, the
Experiment Controller, the RPi Control and the Sensors modification.
VizWalT is a visualization tool for replaying the network in a graphic

interface. VizWalT is the first developed moduled, because it can work
with the rest of the modules of the testbed or act as a standalone module,
replaying an input file properly formatted.
The Experiment Controller is the module that manages the experiment

of the wireless sensor network, and makes the communication between
the network and VizWalT.
The Raspberry Pi Controller is a part of the network, and manages

the performance of the sensor, the flashing of the sensors, to upload
the code, and to transmit the traces extracted from the sensors to the
Experiment Controller.

8

Figure 2: GreenNet sensor

Sensor code modifications is the module that introduces some modifi-
cations and tools into the sensors code to extract some traces that allow
us to replay what happens in the network in the graphic interface of
VizWalT.
The last phase is the real test in a small testbed with the GreenNet

harvesting sensors from ST Microelectronics (See Figure ?? and ??). To
that purpose we have implemented a testbed consisting of 3 sensors, two
Raspberry Pis, and a laptop.

4 Project Modules
4.1 VizWalT
We first present a high-level overview of VizWalT before describing how
VizWalT achieves to display the network simulation.
VizWalT, as a Cooja plugin, is a Java-based plugin that introduces

a new window to the basic COOJA interface where it is possible to see
some properties, instructions and to choose some options. As COOJA
is a Contiki OS simulatior, and VizWalT is a COOJA plugin it has an
event driven approach.
VizWalT is designed to work in two possible scenarios: post-analysis

9

Figure 3: GreenNet sensor

and real-time simulation. In the second one, VizWalT reads in real time
the information provided by the traces extracted from the sensor nodes.

4.1.1 Working modes

Real-Time simulation In the Real-Time scenario, VizWalT works on
“pseudo real time”. This means that VizWalT will replay the behaviour
of the WSN with a delay of 1 second from the event happening. This
delay is introduced to permit VizWalT to make some computations and
determine some properties as which sensors are receiving each transmit-
ted packet. This time has been set to 1 second because, despite the
delay between the sending and the reception of a packet through the
radio medium, 1 second is larger than any expectant delay in a “normal
dimensioned” WSN, so it is expected to be a big enough “guard interval”.
This working mode has been designed to integrate VizWalT like a

module of a more complex system. It has been developed to work with
a WSN and distributed data testbed called WalT, created by UJF/INP
(Grenoble - FR). The communication between VizWalT and the module
who creates this input information is through the standard input. See
Figure 5.

10

Figure 4: VizWalT interface

Post-Analysis Simulation In the Post-Analysis scenario, VizWalT reads
a whole log file properly formatted, and afterwards it replays all the
events supplied by this file. This log file is a text file extracted from a
simulation of the nodes, and properly formatted to be able to be read by
VizWalT. This working mode has been implemented to allow any person
to use VizWalT without having the testbed that we have developed to
work with WalT, if they already send the necessary information to use
VizWalt, by formatting this log file a posteriori.
The information we need from the network to be able to replay are

basically the following events:

Radio ON
Radio OFF
Transmission started + unique packet info
Transmission ended
Reception started

11

Figure 5: VizWalT real-time scheme

Reception ended + unique packet info
Position (Optional)

The unique packet info should be any data that identifies unequivocally
a packet. It can be defined, for instance, as a hash of the payload of
the packet, or a combination of the sender id, the source address and
the sequence number. If all the information is already available from the
network it is not necessary to make any modification to the sensor code
to use VizWalT.

4.1.2 VizWalT Implementation

This section discusses in detail the implementation of VizWalT. The fo-
cus will be on how the VizWalT motes used in COOJA have been defined
and the main modules we have implemented to add to the COOJA code,
in order to be able to change how it works as well as on how VizWalT
receives the information needed to replay the network.

COOJA plugin VizWalT, as we have already said, is defined as a
COOJA plugin and it permits us to add some modules to COOJA and,
without modifying any part of the COOJA original code, add that new
functionality to this simulator. The main modules of VizWalT are the
VizWalT plugin, the VizWalT RadioMedium, the VizWalT Controller,
the VizWalT Mote and the Log line Manager.

12

VizWalT Plugin is the class that permit us to integrate VizWalT
in COOJA. It is the user interface to VizWalT and it displays some
messages, instructions, and when working in the Post-Analysis mode, it
permits the user to select different log files to load and replay in VizWalT.
VizWalT RadioMedium is an extension of the basic COOJA Ab-

stractRadioMedium class. VizWalT RadioMedium implements the func-
tion that creates the radio connections between the different motes and
allows us to specify which should be the receivers of any sent packet.
VizWalT Controller is the main class of VizWalT. It controlls the

VizWalT is simulation and perform the send of the packets between the
different motes.
VizWalT Mote is a Java Mote that extends the AbstractApplication-

Mote COOJA’s class. This customized mote type allows us to specify
what to do when a packet is received or sent, and how and when VizWalT
creates its motes.
Log Line Manager is the class that performs the reception of the

packets from the standard input and schedule all the events that VizWalT
Controller should manage.

Communication with VizWalT In the Post-Analysis working mode
VizWalT reads directly from the input file, but in the Real-Time work-
ing mode is necessary to stablish a communication channel between the
network and VizwalT. The communication with VizWalT is through its
standard input. We have decided to use this method because it allows
us to link processes just with a shell pipe (i.e. ’|’), and thanks to that
we obtain a really modular project. It also permits us to combine our
modules with the standard tools like ssh. Particularly, this way we can
communicate a process that is running in another machine, as a Rasp-
berry Pi, with VizWalT by using ssh and we can visualize in VizWalT a
remote experiment that is happening in another place.
i . e . s sh rp i () RPiControl . py | v i zwa l t . sh
Due to the fact that Cooja is launch with the ant tool, and ant cannot

read directly from its standard input, we had a problem on how to send
the logs from the Experiment Controller to VizWalT. To solve it, we
have created the vizwalt.sh script, that creates a fifo file in which it sends

13

Figure 6: VizWalT input

the logs, and it launch VizWalT. Afterwards, VizWalT reads these logs
directly in the fifo, solving this problem. See Figure 6.

4.1.3 Usage

Input definition The input of VizWalT should be always a log line
properly formatted. This line can be obtained from the input log file in
the Post-Analysis mode, or from the fifo file in the Real-Time mode. The
format of the log line should be as follows: <time(s)>:<moteID>:<packet_type>(:<data>)
(:<position>)
Where each field corresponds to:

Time: The event time in seconds.
SensorId: Number Id.
PacketType: It’s the packet type which defines the event. There is 7

possibilities:
– RadioON
– RadioOFF
– Tx_start (+ sent packet data)
– Tx_end
– Rx_start
– Rx_end (+ received packet data)
– MoveTo (+ position)

14

Figure 7: VizWalT script

Data: (If necessary) It is some data extracted from the packet and it
is what determines who are the sender and the receiver/s of the
packet. It is in hexadecimal format.

Position: (If necessary) It is defined as <x>,<y>,<z>, and it repre-
sents the position in the visualizer of cooja. Its usefull to represent
a determined sensor distribution.

E.g.: 5.3335:5:Tx_start:33ef33babacd

In case of using the Post-Analysis mode the log file should have the
same format explained above in all of its lines separated with a line
break.
E.g.:
1.000:1:Tx_start:abac1384ba32
1.000:2:Rx_start
1.000:1:Tx_end
1.000:2:Rx_end:abac1384ba32

VizWalT script Our main purpose is to make VizWalT usage really
simple, and to achieve this goal we have created a script, vizwalt.sh
(See the figure 7). It defines two possibilities to launch the program
depending on the working mode. To work in the Real-Time scenario
this script should be launched as follows:
<input−program> | . / v i zwa l t . sh
The input program can be a script that gets the logs from the gateway or
a server and prints them in the standard output. The vizwalt.sh script
gets the lines from the pipe and retransmits the lines from its standard
input to the fifo file, to have the lines available in the fifo, in order that

15

VizWalT could read them. In this working mode VizWalT schedules
the events respecting the given timestamp, but there is the possibility to
send to VizWalT a “ignore_timestamp” message, and after this message
VizWalT ignores the timestamp and schedules the events 1 second after
it reads.
To work in the Post-Analysis scenario the script should be launched

as:
. / v i zwa l t . sh <input− f i l e . txt>
The input file should be formatted as it is explained in 4.1.3.

4.2 Experiment Controller
The experiment Controller module is responsible for controlling the sim-
ulation and it communicates VizWalT with the Raspberry Pi’s. This
module has been designed with the purpose of having a testbed com-
posed by many Raspberry Pi’s and some sensors attached to each of
them. It is also in charge of sending the instructions to begin a simu-
lation correctly. Its function is to ensure that each node is flashed and
rebooted with the code we are using in the simulation. It sends the in-
structions to the RPis and waits until the sensor starts sending packets
to VizWalT.
The Experiment Controller is also in charge of sending packets to

VizWalT through the standard output. In the first design, these packets
could have two formats a log string or a Google Protocol Buffer message,
that was also defined in VizWalT. This second option made possible to
send more complex packets with some extra information that can be
added to the information extracted from sensor in the RPis or in the
Experiment Controller, as the sender node ID, or mac addresses, and we
thought that it was interesting tool in WalT.
However, once we saw the usefulness of the VizWalT plugin, we thought

about proposing to the Contiki Community the integration of VizWalT
in their project. But the possibility of using Google Protocol Buffer in
the messaging format was implying a too much heavy dependance in
order to apply to Contiki for the VizWalT integration, so we decided
to remove this message formatting possibility between the Experiment
Controller and VizWalT and to keep it between the other parts of WalT

16

platform.

4.2.1 Experiment protocol used

The protocol used by the experiment to start the simulation is the fol-
lowing:

1. Send a "Flash Sensor" message to RPis.
2. Receive the "Sensor Rebooted" message from each sensor.
3. Wait until all sensors have been rebooted correctly.
4. Send a "Platform Ready" message to VizWalT to notify that it is

going to receive messages from sensors.
5. Send a "Start Sensor" message to RPis.
6. Start receiving packets from the sensors via RPis.
7. Format this packets properly before forwarding them if necessary

(Google Protocol Buffer).
8. Send packets to VizWalT.

It communicates with the RPis through a zeromq socket, with a Publisher-
Subscriber pattern to send the instructions to all RPis connected to Ex-
periment Controller, and a Push-Pull pattern to receive the messages
from RPis to the Experiment Controller. See figures 9 and 8 .

4.2.2 Module development

This module has been developed in Python and implements some func-
tionalities to improve the performance of the simulation. A Mac Address
Manager has been developed to be able to treat the information related
to mac addresses. Each sensor sends a packet indicating which is its
mac address. In the Mac Address Manager a mote ID is assigned to
each sensor, and there is a table that matchs the sensor id while provid-
ing the mac address. In this way, we can receive the packets with the
mac address, MacID packets, and translate it into mote ID to display it
in VizWalT. Due to the possibility to use short mac addresses (2 Bytes)
or long mac addresses (8 Bytes) in the procotol IEEE 802.15.4[3], sensors
can send both of them to the Experiment Controller, and they will be

17

Figure 8: Scheme of pull-push pattern of zmq

stored, so a packet received with the sender mac address long or short
will allow the Experiment Controller to know which is the sender mote
ID, and to specify it in the message sent to VizWalT.

4.3 RPi Controller
The RPi Controller module is the module in charge of managing the sen-
sors and of communicating the sensors with the Experiment Controler.
This module has been developed in Python and it will be compiled

and charged on each RPi composing the testbed. The function of this
module is basically to flash the sensors, loading the corresponding code
to this sensors and to manage the messages extracted from the sensors
to allow VizWalT to display the real performance of the network.
The main trouble we have found in the communication between the

sensors and VizWalT is that the sensors are connected to RPis through
a serial link, which is not really fast, so it is not possible to send large
amounts of data through it without disturbing the normal behaviour of
the sensors.

18

The solution applied to solve this problem is to send as little informa-
tion as possible from the sensors to the RPis. To do that we have made
a study of which is the essential information in each type of message and
we have developed a Firmware Translator.

4.3.1 Firmware Translator

The Firmware Translator parses the packets providing this essential in-
formation in a packet with all the necessary information. The essential
information we have fixed is the following:

• SensorRebooted: ‘B:<mac>’
• MacId: ‘I:<mac>’
• RadioOn: ‘N’
• RadioOff: ‘F’
• Tx_start: ‘T:<packet_info>’
• Tx_end: ‘E’
• Rx_start: ‘R’
• Rx_end: ‘X:packet_info’
• MoveTo: ‘M:x:y’

We have considered this is the essential information to VizWalT be-
cause we consider that with this information we can know what is hap-
pening in the network as we can get the information of the duty cycle,
when is the radio interface listening, sending or receiving a packet and,
by looking for which sensor has received a packet with the same packet
info as the transmitted packet, we can know which is the sender, and
which the receiver or receivers of a packet.

4.3.2 Message format

To ensure the reliability of the source and destination of each packet we
have defined this packet information as a combination of 3 mac fields:
the sequence number, the source address and the frame control type.
With this 3 mac fields, we have an unequivocal identifier for each packet

19

transmission. So we will add to the Tx_start and the Rx_end messages
this packet information. The packet information format is:
4 Bytes = @shortmac (2B)+seq_num(1B)+FC_type(1B)
As the RPis are connected to the sensors through a serial link, this

link is constant, so once the sensor has sent its mac address, using the
MacId message, the RPis can add the information related to the mac
address of the sensor that has transmitted a message through the serial
link, and as we mentioned above, the Experiment Controller will assign
the mote ID to the packet.
Finally, the RPi controller is the responsible for adding a timestamp

to the message in order to be able to represent the packets in the correct
order. To get a good accuracy in the events time, the synchronization
of all RPis is required. This synchronization is not trivial, so we let this
improvement for the people following with this project. For the moment,
we have two possibilities, to add a timestamp relative to the system
time, or to add a 1.000 second time and activate the ignore_timestamp
flag by sending a message requiring this functionality. If VizWalt works
with this flag on, VizWalT replays the events when it receives the logs,
without taking into account the timestamp of them.
Summing up, we will receive a little packet (from 1 Byte to 6 Bytes)

and we will obtain a log with the essential information to replay the
network properly.
For instance, we will receive a sequence and will translate it as follows

(sender short @mac:0241, sequence number: 7a, FC type beacon: 00):

• ‘N’ −−−−−−−−−−−−−−−−→ ‘1.424:2:RadioOn’

• ‘N’ −−−−−−−−−−−−−−−−→ ‘1.425:1:RadioOn’

• ‘T:02417a00’ −−−−−−−−→ 1.427:1:Tx_start:02417a00’

• ‘R’ −−−−−−−−−−−−−−−−→ ‘1.428:2:Rx_start’

• ‘E’ −−−−−−−−−−−−−−−−→ ‘1.432:1:Tx_end’

• ‘F’ −−−−−−−−−−−−−−−−→ ‘1.433:1:RadioOff’

• ‘X:02417a00’ −−−−−−−−→ ‘1.434:2:Rx_end:02417a00’

20

Figure 9: Scheme of publisher-subscriber pattern of zmq

• ‘F’ −−−−−−−−−−−−−−−−→ ‘1.435:2:RadioOff’

The reception of this packet is through the serial link, and in order to
send this formatted logs to the Experiment Controller we have used two
zeromq sockets. One with the publisher-subscriber pattern to read from
the experiment controller, and other with push-pull pattern to send the
logs from the RPi Controller to the Experiment Controller. See figure 9
and figure 8 .

4.4 Sensor Modification
This module is the last module developed in this project and its goal is to
introduce a modification to the sensor code to obtain the traces needed
to generate the logs that allows VizWalT to replay what is happening in
the network. This module is implemented in C, as the sensor we have
used are developed using Contiki OS, whose programming language is
C.
The objective is to make these modifications as least intrusive as pos-

sible, without modifying the behaviour of the sensors while they are
performing any application. To make this possible we have decided to
advantage of the Energest Contiki application. In order to know how

21

to obtain all the event information we need, we have studied the Con-
tikiMAC protocol[4], and we will use the Energest tool to obtain them.

4.4.1 Using Energest

This Contiki application measures the time that the sensor is in the
different states, and it has been developed to calculate the amount of
energy spent by the sensors. We found that Energest fills almost all
of our requirements because it calculates the time that the radio inter-
face is listening to the radio medium and the amount of time that it is
transmitting. The only information we miss is the time that the sen-
sor is receiving a packet.In order to solve this lack, we have added one
reception state to Energest.
The advantage of using Energest is that this application is already

implemented in lots of sensor drivers, and it specifies when the sensor
starts transmitting or when the sensor switchs on its radio interface to
listen to the radio medium to know if a packet is being transmitted to
itself. So we just had to add the energest calls in the radio driver to set
when a packet is being received.
The final modification to the sensor code is to extract the traces from

energest. To do that we added a printf() function to print the traces that
needs to be formatted to include variables and send the packet informa-
tion, and putchar() function to print the other traces, since putchar()
function is much lighter than printf().

4.4.2 Traces information

To achieve a good debugging we have considered necessary not only
to see that a packet has been sent or received, but also which type of
packet it is. To obtain this information we have formatted the packet
information we are providing to VizWalT as four bytes, one byte for the
sequence number, 2 bytes to the short mac address and one byte for the
packet type. We print this values as hexadecimal values, and we can
get back the information in VizWalT to know the sequence number, the
source address and the packet type.
To know the packet type we need to use the Frame Type field defined

in the IEEE 802.15.4 MAC protocol [3], that defines 3 bits to distinguish

22

the 4 types of messages.

Frame type value Description
000 Beacon
001 Data
010 Acknowledgment
011 MAC command

But to make easier the debugging process, we thought that if the
frame type is a MAC command, it is interesting to know which type of
MAC command frame the packet is. To make this we have added to
this 4 packet types the information needed to know the 9 types of MAC
command frames. This information is provided by the Command frame
identifier field [3] in the MAC command frame.

Command frame identifier Command name
0x01 Association request
0x02 Association response
0x03 Disassociation notification
0x04 Data request
0x05 PAN ID conflict notification
0x06 Orphan notification
0x07 Beacon request
0x08 Coordinator realignment
0x09 GTS request
0x13 DSME Association request
0x14 DSME Association response
0x15 DSME GTS request
0x16 DSME GTS reply
0x17 DSME GTS notify
0x18 DSME Information request
0x19 DSME Information reply
0x1a DSME Beacon allocation notification
0x1b DSME Beacon collision notification
0x1c DSME link status report

23

In order to send all the information without having to send 2 Bytes, we
have defined an only scale that let us know which is the Frame Type and,
in case that it is a MAC command, which is the command name. We’ve
shifted up the MAC command type 3 positions to join all in a single
table, so the packet information format that we are sending VizWalT is
the following:

Packet information field Type of packet
0x00 Beacon
0x01 Data
0x02 Acknowledgment
0x03 MAC command
0x04 Association request
0x05 Association response
0x06 Disassociation notification
0x07 Data request
0x08 PAN ID conflict notification
0x09 Orphan notification
0x0a Beacon request
0x0b Coordinator realignment
0x0c GTS request
0x16 DSME Association request
0x17 DSME Association response
0x18 DSME GTS request
0x19 DSME GTS reply
0x1a DSME GTS notify
0x1b DSME Information request
0x1c DSME Information reply
0x1d DSME Beacon allocation notification
0x1e DSME Beacon collision notification
0x20 DSME link status report

For example, if a sensor is sending an association request, and this
packet is the first packet, the traces that the sensor will send to the RPi
will be:
T:01024c04 → 1.434:2:Tx_start:01024c04
E → 1.436:2:Tx_end

24

And VizWalT will display in Cooja:
00:01.434 ID:2 Mac command: Association request sent with packet

id: 1.

5 Test implementation
5.1 First VizWalT test
To check that the different modules work properly, we have made some
tests during the development of VizWalT. After finishing each module
we have created a simple test to check if it works properly. Once we
have had the VizWalT module, the Experiment Controller and the RPi
Controller developed, we have created a Python script that sends the
packet with the same format as the sensor does. And we have been able
to visualize in Cooja all the events that we’ve introduced in the Python
script, so we can say that we have checked that it works properly.

5.2 Final VizWalT test
To test the success of the VizWalT project, we have implemented a small
testbed composed by 3 sensors ST harvesting nodes GreenNet V.2.1.1,
and two Raspberry Pi’s. In order to be able to develop this test we’ve
implemented it in two steps. Firstly we have made some simple test
with 2 sensors connected directly to a laptop and we tried to visualize
the discussion between the 2 sensors. Secondly we’ve implemented the
final testbed where we’ve introduced another sensor and the Raspberry
Pis between the sensors and VizWalT.

5.2.1 Simple test

In this first simple test, we have introduced the sensor modification mod-
ule in a simple example, and we have loaded it into the sensors. We have
used the contiki example of one border-router and one leaf.

25

Figure 10: 2 Sensors in a discussion

Figure 11: First test scheme

We have run the python code of the Firmware Translator in the laptop,
and we read from the serial link the sensor traces, and we send the
information to VizWalT through a pipe.

26

Figure 12: Screenshot of VizWalT

As we can see in figure 12, we have been able to visualize the discussion
between the 2 sensors successfully.

5.2.2 Final Testbed

As we have said, in this final Testbed we use 3 Sensors, 2 Raspberry Pis
and one Laptop where we run Cooja. See figure 13.
These 3 sensors are connected through the serial link to the different

ports of the Raspberry Pis. And the Raspberry Pis are connected to a
computer where VizWalT is running. The sensors will be flashed with the
code from the Raspberry Pi. After being flashed, sensors start commu-
nicating between them, and they start to print the traces through their
serial link to the Raspberry Pi. We will run the python RPiController
program from the Experiment Controller using ssh. The Raspberry Pis
will parse this traces, and they will create the properly formatted logs.
This logs will be sent to the Experiment Controller where a python se-
lect module will manage the packet arrivals from the 2 Raspberry Pis.
VizWalT will receive the messages by piping the standard output of the
Experiment Controller program, to the standard input of the VizWalT
running script.

27

Figure 13: Final testbed scheme

Figure 14: Final testbed

Finally we can observe in the Cooja graphic interface what is hap-
pening in the network. We are focusing in two events, the association
procedure (see fig 15), and the sensor association in the beaconed DSME
Mac protocol. We can see the first one in the figure 16.

28

Figure 15: Association Request procedure

Figure 16: VizWalT screenshot of Association Request procedure

29

And we’re able to see the some other things like how is the perfor-
mance of the beacon enabled IEEE 802.15.4, for example we visualize
the GTS allocation [5] in this protocol (see figure 17), and the data
message sending between sensors(see figure 18).

Figure 17: GTS allocation in beacon enabled IEEE 802.15.4

To implement this test, we have created a team with Joao Guilherme
Zeni and Iacob Juc, in order to mix some parts of our work made under
the WalT project, to create a most interesting test. Joao Guilherme
Zeni is the person entrusted to continue this project. In the following
step, he is in charge of implementing a Direct Memory Access method
to be able to print the traces without interfering in the sensor CPU
performance and manage the communication between the sensors and
the RPi in a faster and more efficient way. Iacob Juc has worked in a
protocol modification, that has been loaded in the sensors, and we have
been able to observe this modification in an understandable way thanks
to VizWalT.
A Workshop has been scheduled at ST Microelectronics in Crolles

(France) on 7th April, and we have decided to make a demonstration

30

Figure 18: Data message exchange in beacon enabled IEEE 802.15.4

there. As we didn’t have much time to incorporate all the parts de-
veloped by Joao, Iacob and me to this test, we have fit the different
modules to be able to join them without a great complexity, but keeping
the main structure. We have decided to implement the RPi Controller
and the Experiment Controller in a lighter version in the Raspberry Pis
and the computer on which VizWalT will run. Consequently, we don’t
have to use zeromq sockets to communicate between RPis and the Ex-
periment Controller, and we are not going to use Google Protocol Buffer
messages, because we read directly from the serial link, we parse the
messages and we print it to the standard output where VizWalT will
read them.
From my point of view, this demonstration is a good way to close

a master thesis because we will have the possibility to show that this
project is really useful.

31

6 Conclusion
The project subject on making easier the debug of Wireless Sensor Net-
works (WSN) is an interesting improvement in the development of WSN
protocols and services.
The studying part of this subject has been very instructive because it

has allowed me to deepen my understanding of the behaviour of this net-
works, and also to understand the difficulties when debugging WSN, due
to the wireless nature of this technology and its still short life, resulting
in the lack of developing tools that makes easier and more comfortable
the development of WSN.
Since the main project, WalT, in which VizWalT was integrated, was in

an initial phase, the project goal has been continuously modified, making
that we have been adapting VizWalT to each moment requirements.
This has caused that we have centered more in some objectives, and we
have left apart some of the other initial objectives, as the compatibility
with France Telecom analysis tools. Anyway, thanks to the modular
structure of the developed project, this is not a closed door, because it is
not very difficult to add a translator module from the VizWalT format
to pcap.
The modular programming, using different languages like Python, Java

or C, for the different modules, and the completely different purpose of
each module has brought to me a wide range of issues from wich I learnt
a lot while trying to solve them.
Working with Etienne Dublé and Franck Rousseau has taught me how

to focus a problem, and try to find a solution, showing that a simple
and smart solution is often much better than a complex solution with a
lot of new and difficult technologies, and I think this will help me in the
future.

7 Acknowledgments
First of all, I would like to acknowledge the ETSETB, for forming me
during those hard five years, and the INP-Grenoble, and particularly the
Laboratoire d’Informatique de Grenoble for hosting and mentoring me
during those last 7 months.
I want to express my very great appreciation to my advisor Josep

Paradells for agreeing to be my advisor and for solving all my doubts
and guide me. Also to Professor Andrzej Duda, for offering me this great
opportunity and hosting me in his research group; to Franck Rousseau
and Etienne Dublé for showing me all their work, teaching me so many
things on how to research and for being always so much willing to solve
my doubts and help me with all the issues I found; and to all the group
members for making me feel so comfortable working with them. Thank
you all for your help.

References
[1] Fredrik Österlind, Adam Dunkels, Joakim Eriksson, Niclas Finne,

Thiemo Voigt, Swedish Institute of Computer science,
Cross-Level Sensor Network Simulation with COOJA. 2006.

[2] Hervé Martin, LIG Director, http://www.liglab.fr/spip.php?article107.

[3] IEEE Std 802.15.4-2011, Part 15.4: Low-Rate Wireless Personal
Area Networks (LR-WPANs). 2011.

[4] Adam Dunkels, SICS, The ContikiMAC Radio Duty Cycling Protocol.
December 2011.

[5] Pangun Park, Carlo Fischione, Karl Henrik Johansson, Performance
analysis of GTS allocation in Beacon Enabled IEEE 802.15.4. June
2009.

