16 research outputs found

    Subcarrier intensity modulated free-space optical communication systems

    Get PDF
    This thesis investigates and analyses the performance of terrestrial free-space optical communication (FSO) system based on the phase shift keying pre-modulated subcarrier intensity modulation (SIM). The results are theoretically and experimentally compared with the classical On-Off keying (OOK) modulated FSO system in the presence of atmospheric turbulence. The performance analysis is based on the bit error rate (BER) and outage probability metrics. Optical signal traversing the atmospheric channel suffers attenuation due to scattering and absorption of the signal by aerosols, fog, atmospheric gases and precipitation. In the event of thick fog, the atmospheric attenuation coefficient exceeds 100 dB/km, this potentially limits the achievable FSO link length to less than 1 kilometre. But even in clear atmospheric conditions when signal absorption and scattering are less severe with a combined attenuation coefficient of less than 1 dB/km, the atmospheric turbulence significantly impairs the achievable error rate, the outage probability and the available link margin of a terrestrial FSO communication system. The effect of atmospheric turbulence on the symbol detection of an OOK based terrestrial FSO system is presented analytically and experimentally verified. It was found that atmospheric turbulence induced channel fading will require the OOK threshold detector to have the knowledge of the channel fading strength and noise levels if the detection error is to be reduced to its barest minimum. This poses a serious design difficulty that can be circumvented by employing phase shift keying (PSK) pre-modulated SIM. The results of the analysis and experiments showed that for a binary PSK-SIM based FSO system, the symbol detection threshold level does not require the knowledge of the channel fading strength or noise level. As such, the threshold level is fixed at the zero mark in the presence or absence of atmospheric turbulence. Also for the full and seamless integration of FSO into the access network, a study of SIM-FSO performance becomes compelling because existing networks already contain subcarrier-like signals such as radio over fibre and cable television signals. The use of multiple subcarrier signals as a means of increasing the throughput/capacity is also investigated and the effect of optical source nonlinearity is found to result in intermodulation distortion. The intermodulation distortion can impose a BER floor of up to 10-4 on the system error performance. In addition, spatial diversity and subcarrier delay diversity techniques are studied as means of ameliorating the effect of atmospheric turbulence on the error and outage performance of SIM-FSO systems. The three spatial diversity linear combining techniques analysed are maximum ratio combining, equal gain combining and selection combining. The system performance based on each of these combining techniques is presented and compared under different strengths of atmospheric turbulence. The results predicted that achieving a 4 km SIM-FSO link length with no diversity technique will require about 12 dB of power more than using a 4 × 4 transmitter/receiver array system with the same data rate in a weak turbulent atmospheric channel. On the other hand, retransmitting the delayed copy of the data once on a different subcarrier frequency was found to result in a gain of up to 4.5 dB in weak atmospheric turbulence channel

    Subcarrier intensity modulated free-space optical communication systems

    Get PDF
    This thesis investigates and analyses the performance of terrestrial free-space optical communication (FSO) system based on the phase shift keying pre-modulated subcarrier intensity modulation (SIM). The results are theoretically and experimentally compared with the classical On-Off keying (OOK) modulated FSO system in the presence of atmospheric turbulence. The performance analysis is based on the bit error rate (BER) and outage probability metrics. Optical signal traversing the atmospheric channel suffers attenuation due to scattering and absorption of the signal by aerosols, fog, atmospheric gases and precipitation. In the event of thick fog, the atmospheric attenuation coefficient exceeds 100 dB/km, this potentially limits the achievable FSO link length to less than 1 kilometre. But even in clear atmospheric conditions when signal absorption and scattering are less severe with a combined attenuation coefficient of less than 1 dB/km, the atmospheric turbulence significantly impairs the achievable error rate, the outage probability and the available link margin of a terrestrial FSO communication system. The effect of atmospheric turbulence on the symbol detection of an OOK based terrestrial FSO system is presented analytically and experimentally verified. It was found that atmospheric turbulence induced channel fading will require the OOK threshold detector to have the knowledge of the channel fading strength and noise levels if the detection error is to be reduced to its barest minimum. This poses a serious design difficulty that can be circumvented by employing phase shift keying (PSK) pre-modulated SIM. The results of the analysis and experiments showed that for a binary PSK-SIM based FSO system, the symbol detection threshold level does not require the knowledge of the channel fading strength or noise level. As such, the threshold level is fixed at the zero mark in the presence or absence of atmospheric turbulence. Also for the full and seamless integration of FSO into the access network, a study of SIM-FSO performance becomes compelling because existing networks already contain subcarrier-like signals such as radio over fibre and cable television signals. The use of multiple subcarrier signals as a means of increasing the throughput/capacity is also investigated and the effect of optical source nonlinearity is found to result in intermodulation distortion. The intermodulation distortion can impose a BER floor of up to 10-4 on the system error performance. In addition, spatial diversity and subcarrier delay diversity techniques are studied as means of ameliorating the effect of atmospheric turbulence on the error and outage performance of SIM-FSO systems. The three spatial diversity linear combining techniques analysed are maximum ratio combining, equal gain combining and selection combining. The system performance based on each of these combining techniques is presented and compared under different strengths of atmospheric turbulence. The results predicted that achieving a 4 km SIM-FSO link length with no diversity technique will require about 12 dB of power more than using a 4 × 4 transmitter/receiver array system with the same data rate in a weak turbulent atmospheric channel. On the other hand, retransmitting the delayed copy of the data once on a different subcarrier frequency was found to result in a gain of up to 4.5 dB in weak atmospheric turbulence channel.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Optical Wireless Data Center Networks

    Get PDF
    Bandwidth and computation-intensive Big Data applications in disciplines like social media, bio- and nano-informatics, Internet-of-Things (IoT), and real-time analytics, are pushing existing access and core (backbone) networks as well as Data Center Networks (DCNs) to their limits. Next generation DCNs must support continuously increasing network traffic while satisfying minimum performance requirements of latency, reliability, flexibility and scalability. Therefore, a larger number of cables (i.e., copper-cables and fiber optics) may be required in conventional wired DCNs. In addition to limiting the possible topologies, large number of cables may result into design and development problems related to wire ducting and maintenance, heat dissipation, and power consumption. To address the cabling complexity in wired DCNs, we propose OWCells, a class of optical wireless cellular data center network architectures in which fixed line of sight (LOS) optical wireless communication (OWC) links are used to connect the racks arranged in regular polygonal topologies. We present the OWCell DCN architecture, develop its theoretical underpinnings, and investigate routing protocols and OWC transceiver design. To realize a fully wireless DCN, servers in racks must also be connected using OWC links. There is, however, a difficulty of connecting multiple adjacent network components, such as servers in a rack, using point-to-point LOS links. To overcome this problem, we propose and validate the feasibility of an FSO-Bus to connect multiple adjacent network components using NLOS point-to-point OWC links. Finally, to complete the design of the OWC transceiver, we develop a new class of strictly and rearrangeably non-blocking multicast optical switches in which multicast is performed efficiently at the physical optical (lower) layer rather than upper layers (e.g., application layer). Advisors: Jitender S. Deogun and Dennis R. Alexande

    Transition technologies towards 6G networks

    Full text link
    [EN] The sixth generation (6G) mobile systems will create new markets, services, and industries making possible a plethora of new opportunities and solutions. Commercially successful rollouts will involve scaling enabling technologies, such as cloud radio access networks, virtualization, and artificial intelligence. This paper addresses the principal technologies in the transition towards next generation mobile networks. The convergence of 6G key-performance indicators along with evaluation methodologies and use cases are also addressed. Free-space optics, Terahertz systems, photonic integrated circuits, softwarization, massive multiple-input multiple-output signaling, and multi-core fibers, are among the technologies identified and discussed. Finally, some of these technologies are showcased in an experimental demonstration of a mobile fronthaul system based on millimeter 5G NR OFDM signaling compliant with 3GPP Rel. 15. The signals are generated by a bespoke 5G baseband unit and transmitted through both a 10 km prototype multi-core fiber and 4 m wireless V-band link using a pair of directional 60 GHz antennas with 10 degrees beamwidth. Results shown that the 5G and beyond fronthaul system can successfully transmit signals with both wide bandwidth (up to 800 MHz) and fully centralized signal processing. As a result, this system can support large capacity and accommodate several simultaneous users as a key candidate for next generation mobile networks. Thus, these technologies will be needed for fully integrated, heterogeneous solutions to benefit from hardware commoditization and softwarization. They will ensure the ultimate user experience, while also anticipating the quality-of-service demands that future applications and services will put on 6G networks.This work was partially funded by the blueSPACE and 5G-PHOS 5G-PPP phase 2 projects, which have received funding from the European Union's Horizon 2020 programme under Grant Agreements Number 762055 and 761989. D. PerezGalacho acknowledges the funding of the Spanish Science Ministry through the Juan de la Cierva programme.Raddo, TR.; Rommel, S.; Cimoli, B.; Vagionas, C.; Pérez-Galacho, D.; Pikasis, E.; Grivas, E.... (2021). Transition technologies towards 6G networks. EURASIP Journal on Wireless Communications and Networking. 2021(1):1-22. https://doi.org/10.1186/s13638-021-01973-91222021

    Optical Communication

    Get PDF
    Optical communication is very much useful in telecommunication systems, data processing and networking. It consists of a transmitter that encodes a message into an optical signal, a channel that carries the signal to its desired destination, and a receiver that reproduces the message from the received optical signal. It presents up to date results on communication systems, along with the explanations of their relevance, from leading researchers in this field. The chapters cover general concepts of optical communication, components, systems, networks, signal processing and MIMO systems. In recent years, optical components and other enhanced signal processing functions are also considered in depth for optical communications systems. The researcher has also concentrated on optical devices, networking, signal processing, and MIMO systems and other enhanced functions for optical communication. This book is targeted at research, development and design engineers from the teams in manufacturing industry, academia and telecommunication industries

    NASA Thesaurus. Volume 2: Access vocabulary

    Get PDF
    The NASA Thesaurus -- Volume 2, Access Vocabulary -- contains an alphabetical listing of all Thesaurus terms (postable and nonpostable) and permutations of all multiword and pseudo-multiword terms. Also included are Other Words (non-Thesaurus terms) consisting of abbreviations, chemical symbols, etc. The permutations and Other Words provide 'access' to the appropriate postable entries in the Thesaurus

    NASA thesaurus. Volume 2: Access vocabulary

    Get PDF
    The access vocabulary, which is essentially a permuted index, provides access to any word or number in authorized postable and nonpostable terms. Additional entries include postable and nonpostable terms, other word entries and pseudo-multiword terms that are permutations of words that contain words within words. The access vocabulary contains almost 42,000 entries that give increased access to the hierarchies in Volume 1 - Hierarchical Listing

    NASA thesaurus. Volume 2: Access vocabulary

    Get PDF
    The Access Vocabulary, which is essentially a permuted index, provides access to any word or number in authorized postable and nonpostable terms. Additional entries include postable and nonpostable terms, other word entries, and pseudo-multiword terms that are permutations of words that contain words within words. The Access Vocabulary contains 40,738 entries that give increased access to the hierarchies in Volume 1 - Hierarchical Listing

    ATS F and G /phases B and C/, volume 1 Final report

    Get PDF
    Design parameters and program objectives of Applications Technology Satellites 7 and

    Cumulative index to NASA Tech Briefs, 1986-1990, volumes 10-14

    Get PDF
    Tech Briefs are short announcements of new technology derived from the R&D activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This cumulative index of Tech Briefs contains abstracts and four indexes (subject, personal author, originating center, and Tech Brief number) and covers the period 1986 to 1990. The abstract section is organized by the following subject categories: electronic components and circuits, electronic systems, physical sciences, materials, computer programs, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences
    corecore