18,746 research outputs found

    Random Modulo: A new processor cache design for real-time critical systems

    Get PDF
    Cache memories have a huge impact on software's worst-case execution time (WCET). While enabling the seamless use of caches is key to provide the increasing levels of (guaranteed) performance required by automotive software, caches complicate timing analysis. In the context of Measurement-Based Probabilistic Timing Analysis (MBPTA) - a promising technique to ease timing analyis of complex hardware - we propose Random Modulo (RM), a new cache design that provides the probabilistic behavior required by MBPTA and with the following advantages over existing MBPTA-compliant cache designs: (i) an outstanding reduction in WCET estimates, (ii) lower latency and area overhead, and (iii) competitive average performance w.r.t conventional caches.Peer ReviewedPostprint (author's final draft

    Defending cache memory against cold-boot attacks boosted by power or EM radiation analysis

    Get PDF
    Some algorithms running with compromised data select cache memory as a type of secure memory where data is confined and not transferred to main memory. However, cold-boot attacks that target cache memories exploit the data remanence. Thus, a sudden power shutdown may not delete data entirely, giving the opportunity to steal data. The biggest challenge for any technique aiming to secure the cache memory is performance penalty. Techniques based on data scrambling have demonstrated that security can be improved with a limited reduction in performance. However, they still cannot resist side-channel attacks like power or electromagnetic analysis. This paper presents a review of known attacks on memories and countermeasures proposed so far and an improved scrambling technique named random masking interleaved scrambling technique (RM-ISTe). This method is designed to protect the cache memory against cold-boot attacks, even if these are boosted by side-channel techniques like power or electromagnetic analysis.Postprint (author's final draft

    Stochastic Modeling of Hybrid Cache Systems

    Full text link
    In recent years, there is an increasing demand of big memory systems so to perform large scale data analytics. Since DRAM memories are expensive, some researchers are suggesting to use other memory systems such as non-volatile memory (NVM) technology to build large-memory computing systems. However, whether the NVM technology can be a viable alternative (either economically and technically) to DRAM remains an open question. To answer this question, it is important to consider how to design a memory system from a "system perspective", that is, incorporating different performance characteristics and price ratios from hybrid memory devices. This paper presents an analytical model of a "hybrid page cache system" so to understand the diverse design space and performance impact of a hybrid cache system. We consider (1) various architectural choices, (2) design strategies, and (3) configuration of different memory devices. Using this model, we provide guidelines on how to design hybrid page cache to reach a good trade-off between high system throughput (in I/O per sec or IOPS) and fast cache reactivity which is defined by the time to fill the cache. We also show how one can configure the DRAM capacity and NVM capacity under a fixed budget. We pick PCM as an example for NVM and conduct numerical analysis. Our analysis indicates that incorporating PCM in a page cache system significantly improves the system performance, and it also shows larger benefit to allocate more PCM in page cache in some cases. Besides, for the common setting of performance-price ratio of PCM, "flat architecture" offers as a better choice, but "layered architecture" outperforms if PCM write performance can be significantly improved in the future.Comment: 14 pages; mascots 201

    Random masking interleaved scrambling technique as a countermeasure for DPA/DEMA attacks in cache memories

    Get PDF
    Memory remanence in SRAMs and DRAMs is usually exploited through cold-boot attacks and the targets are the main memory and the L2 cache memory. Hence, a sudden power shutdown may give an attacker the opportunity to download the contents of the memory and extract critical data. Side-channel attacks such as differential power or differential electromagnetic analysis have proven to be very effective against memory security. Furthermore, blending cold-boot attacks with DPA or DEMA can overpower even a high-level of security in cache or main memories. In this scope, data scrambling techniques have been explored and employed to improve the security, with a minor penalty in performance. Enforcing security techniques and methods in cache memories is risky because any substantial reduction in the cache memory speed might be devastating to the CPU, which is why the performance penalty must be minimal. In this paper, we introduce an improved scrambling technique which uses random masking of the scrambling vector and it is designed to protect cache memories against cold-boot and differential power or electromagnetic attacks. The technique is analyzed in terms of area, power and speed, while the level of security is evaluated through adversary models and simulated attacks

    Towards Increased Power Efficiency in Low End Embedded Processors: Can Cache Help?

    Get PDF
    Embedded processors are often characterized by limited resources and are optimized for specific applications. A rising number of battery powered applications has driven a trend towards increased energy efficiency sometimes even traded with performance. Particularly, lower power and low specification embedded processors lack on-chip cache memories. This is mainly in order to avoid the higher energy overhead a cache structure would pose in an embedded processor. This paper proposes energy and throughput models which can be used to analyze energy and time overhead for a particular application due to introduction of a data cache architecture in a previously non-cached system or alternatively can be used in reconfigurable systems for cache overhead analysis.

    RDGC: A Reuse Distance-Based Approach to GPU Cache Performance Analysis

    Get PDF
    In the present paper, we propose RDGC, a reuse distance-based performance analysis approach for GPU cache hierarchy. RDGC models the thread-level parallelism in GPUs to generate appropriate cache reference sequence. Further, reuse distance analysis is extended to model the multi-partition/multi-port parallel caches and employed by RDGC to analyze GPU cache memories. RDGC can be utilized for architectural space exploration and parallel application development through providing hit ratios and transaction counts. The results of the present study demonstrate that the proposed model has an average error of 3.72 % and 4.5 % (for L1 and L2 hit ratios, respectively). The results also indicate that the slowdown of RDGC is equal to 47 000 times compared to hardware execution, while it is 59 times faster than GPGPU-Sim simulator

    Impact of DM-LRU on WCET: A Static Analysis Approach

    Get PDF
    Cache memories in modern embedded processors are known to improve average memory access performance. Unfortunately, they are also known to represent a major source of unpredictability for hard real-time workload. One of the main limitations of typical caches is that content selection and replacement is entirely performed in hardware. As such, it is hard to control the cache behavior in software to favor caching of blocks that are known to have an impact on an application\u27s worst-case execution time (WCET). In this paper, we consider a cache replacement policy, namely DM-LRU, that allows system designers to prioritize caching of memory blocks that are known to have an important impact on an application\u27s WCET. Considering a single-core, single-level cache hierarchy, we describe an abstract interpretation-based timing analysis for DM-LRU. We implement the proposed analysis in a self-contained toolkit and study its qualitative properties on a set of representative benchmarks. Apart from being useful to compute the WCET when DM-LRU or similar policies are used, the proposed analysis can allow designers to perform WCET impact-aware selection of content to be retained in cache
    • 

    corecore