51 research outputs found

    Design of variation-tolerant synchronizers for multiple clock and voltage domains

    Get PDF
    PhD ThesisParametric variability increasingly affects the performance of electronic circuits as the fabrication technology has reached the level of 32nm and beyond. These parameters may include transistor Process parameters (such as threshold voltage), supply Voltage and Temperature (PVT), all of which could have a significant impact on the speed and power consumption of the circuit, particularly if the variations exceed the design margins. As systems are designed with more asynchronous protocols, there is a need for highly robust synchronizers and arbiters. These components are often used as interfaces between communication links of different timing domains as well as sampling devices for asynchronous inputs coming from external components. These applications have created a need for new robust designs of synchronizers and arbiters that can tolerate process, voltage and temperature variations. The aim of this study was to investigate how synchronizers and arbiters should be designed to tolerate parametric variations. All investigations focused mainly on circuit-level and transistor level designs and were modeled and simulated in the UMC90nm CMOS technology process. Analog simulations were used to measure timing parameters and power consumption along with a “Monte Carlo” statistical analysis to account for process variations. Two main components of synchronizers and arbiters were primarily investigated: flip-flop and mutual-exclusion element (MUTEX). Both components can violate the input timing conditions, setup and hold window times, which could cause metastability inside their bistable elements and possibly end in failures. The mean-time between failures is an important reliability feature of any synchronizer delay through the synchronizer. The MUTEX study focused on the classical circuit, in addition to a number of tolerance, based on increasing internal gain by adding current sources, reducing the capacitive loading, boosting the transconductance of the latch, compensating the existing Miller capacitance, and adding asymmetry to maneuver the metastable point. The results showed that some circuits had little or almost no improvements, while five techniques showed significant improvements by reducing τ and maintaining high tolerance. Three design approaches are proposed to provide variation-tolerant synchronizers. wagging synchronizer proposed to First, the is significantly increase reliability over that of the conventional two flip-flop synchronizer. The robustness of the wagging technique can be enhanced by using robust τ latches or adding one more cycle of synchronization. The second approach is the Metastability Auto-Detection and Correction (MADAC) latch which relies on swiftly detecting a metastable event and correcting it by enforcing the previously stored logic value. This technique significantly reduces the resolution time down from uncertain synchronization technique is proposed to transfer signals between Multiple- Voltage Multiple-Clock Domains (MVD/MCD) that do not require conventional level-shifters between the domains or multiple power supplies within each domain. This interface circuit uses a synchronous set and feedback reset protocol which provides level-shifting and synchronization of all signals between the domains, from a wide range of voltage-supplies and clock frequencies. Overall, synchronizer circuits can tolerate variations to a greater extent by employing the wagging technique or using a MADAC latch, while MUTEX tolerance can suffice with small circuit modifications. Communication between MVD/MCD can be achieved by an asynchronous handshake without a need for adding level-shifters.The Saudi Arabian Embassy in London, Umm Al-Qura University, Saudi Arabi

    Aika-digitaalimuunnin laajakaistaisiin aikapohjaisiin analogia-digitaalimuuntimiin

    Get PDF
    Modern deeply scaled semiconductor processes make the design of voltage-domain circuits increasingly challenging. On the contrary, the area and power consumption of digital circuits are improving with every new process node. Consequently, digital solutions are designed in place of their purely analog counterparts in applications such as analog-to-digital (A/D) conversion. Time-based analog-to-digital converters (ADC) employ digital-intensive architectures by processing analog quantities in time-domain. The quantization step of the time-based A/D-conversion is carried out by a time-to-digital converter (TDC). A free-running ring oscillator -based TDC design is presented for use in wideband time-based ADCs. The proposed architecture aims to maximize time resolution and full-scale range, and to achieve error resilient conversion performance with minimized power and area consumptions. The time resolution is maximized by employing a high-frequency multipath ring oscillator, and the full-scale range is extended using a high-speed gray counter. The error resilience is achieved by custom sense-amplifier -based sampling flip-flops, gray coded counter and a digital error correction algorithm for counter sampling error correction. The implemented design achieves up to 9-bit effective resolution at 250 MS/s with 4.3 milliwatt power consumption.Modernien puolijohdeteknologioiden skaalautumisen seurauksena jännitetason piirien suunnittelu tulee entistä haasteellisemmaksi. Toisaalta digitaalisten piirirakenteiden pinta-ala sekä tehonkulutus pienenevät prosessikehityksen myötä. Tästä syystä digitaalisia ratkaisuja suunnitellaan vastaavien puhtaasti analogisien rakenteiden tilalle. Analogia-digitaalimuunnos (A/D-muunnos) voidaan toteuttaa jännitetason sijaan aikatasossa käyttämällä aikapohjaisia A/D-muuntimia, jotka ovat rakenteeltaan pääosin digitaalisia. Kvantisointivaihe aikapohjaisessa A/D-muuntimessa toteutetaan aika-digitaalimuuntimella. Työ esittelee vapaasti oskilloivaan silmukkaoskillaattoriin perustuvan aika-digitaalimuuntimen, joka on suunniteltu käytettäväksi laajakaistaisessa aikapohjaisessa A/D-muuntimessa. Esitelty rakenne pyrkii maksimoimaan muuntimen aikaresoluution sekä muunnosalueen, sekä saavuttamaan virhesietoisen muunnostoiminnan minimoidulla tehon sekä pinta-alan kulutuksella. Aikaresoluutio on maksimoitu hyödyntämällä suuritaajuista monipolkuista silmukkaoskillaattoria, ja muunnosalue on maksimoitu nopealla Gray-koodi -laskuripiirillä. Muunnosprosessin virhesietoisuus on saavutettu toteuttamalla näytteistys herkillä kiikkuelementeillä, hyödyntämällä Gray-koodattua laskuria, sekä jälkiprosessoimalla laskurin näytteistetyt arvot virheenkorjausalgoritmilla. Esitelty muunnintoteutus saavuttaa 9 bitin efektiivisen resoluution 250 MS/s näytetaajuudella ja 4.3 milliwatin tehonkulutuksella

    An Energy-Efficient System with Timing-Reliable Error-Detection Sequentials

    Get PDF
    A new type of energy-efficient digital system that integrate EDS and DVS circuits has been developed. In these systems, EDS-monitored paths convert the PVT variations into timing variations. Nevertheless, the conversion can suffer from the reliability issue (extrinsic EDS-reliability). EDS circuits detect the unfavorable timing variations (so called ``error'') and guide DVS circuits to adjust the operating voltage to a proper lower level to save the energy. However, the error detection is generally susceptible to the metastability problem (intrinsic EDS-reliability) due to the synchronizer in EDS circuits. The MTBF due to metastability is exponentially related to the synchronizer delay. This dissertation proposes a new EDS circuit deployment strategy to enhance the extrinsic EDS-reliability. This strategy requires neither buffer insertion nor an extra clock and is applicable for FPGA implementations. An FPGA-based Discrete Cosine Transform with EDS and DVS circuits deployed in this fashion demonstrates up to 16.5\% energy savings over a conventional design at equivalent frequency setting and image quality, with a 0.8\% logic element and 3.5\% maximum frequency penalties. VBSs are proposed to improve the synchronizer delay under single low-voltage supply environments. A VBS consists of a Jamb latch and a switched-capacitor-based charge pump that provides a voltage boost to the Jamb Latch to speed up the metastability resolution. The charge pump can be either CVBS or MVBS. A new methodology for extracting the metastability parameters of synchronizers under changing biasing currents is proposed. For a 1-year MTBF specification, MVBS and CVBS show 2.0 to 2.7 and 5.1 to 9.8 times the delay improvement over the basic Jamb latch, respectively, without large power consumption. Optimization techniques including transistor sizing, FBB and dynamic implementation are further applied. For a common MTBF specification at typical PVT conditions, the optimized MVBS and CVBS show 2.97 to 7.57 and 4.14 to 8.13 times the delay improvement over the basic Jamb latch, respectively. In post-Layout simulations, MVBS and CVBS are 1.84 and 2.63 times faster than the basic Jamb latch, respectively

    Timing-Error Tolerance Techniques for Low-Power DSP: Filters and Transforms

    Get PDF
    Low-power Digital Signal Processing (DSP) circuits are critical to commercial System-on-Chip design for battery powered devices. Dynamic Voltage Scaling (DVS) of digital circuits can reclaim worst-case supply voltage margins for delay variation, reducing power consumption. However, removing static margins without compromising robustness is tremendously challenging, especially in an era of escalating reliability concerns due to continued process scaling. The Razor DVS scheme addresses these concerns, by ensuring robustness using explicit timing-error detection and correction circuits. Nonetheless, the design of low-complexity and low-power error correction is often challenging. In this thesis, the Razor framework is applied to fixed-precision DSP filters and transforms. The inherent error tolerance of many DSP algorithms is exploited to achieve very low-overhead error correction. Novel error correction schemes for DSP datapaths are proposed, with very low-overhead circuit realisations. Two new approximate error correction approaches are proposed. The first is based on an adapted sum-of-products form that prevents errors in intermediate results reaching the output, while the second approach forces errors to occur only in less significant bits of each result by shaping the critical path distribution. A third approach is described that achieves exact error correction using time borrowing techniques on critical paths. Unlike previously published approaches, all three proposed are suitable for high clock frequency implementations, as demonstrated with fully placed and routed FIR, FFT and DCT implementations in 90nm and 32nm CMOS. Design issues and theoretical modelling are presented for each approach, along with SPICE simulation results demonstrating power savings of 21 – 29%. Finally, the design of a baseband transmitter in 32nm CMOS for the Spectrally Efficient FDM (SEFDM) system is presented. SEFDM systems offer bandwidth savings compared to Orthogonal FDM (OFDM), at the cost of increased complexity and power consumption, which is quantified with the first VLSI architecture

    Cross-Layer Optimization for Power-Efficient and Robust Digital Circuits and Systems

    Full text link
    With the increasing digital services demand, performance and power-efficiency become vital requirements for digital circuits and systems. However, the enabling CMOS technology scaling has been facing significant challenges of device uncertainties, such as process, voltage, and temperature variations. To ensure system reliability, worst-case corner assumptions are usually made in each design level. However, the over-pessimistic worst-case margin leads to unnecessary power waste and performance loss as high as 2.2x. Since optimizations are traditionally confined to each specific level, those safe margins can hardly be properly exploited. To tackle the challenge, it is therefore advised in this Ph.D. thesis to perform a cross-layer optimization for digital signal processing circuits and systems, to achieve a global balance of power consumption and output quality. To conclude, the traditional over-pessimistic worst-case approach leads to huge power waste. In contrast, the adaptive voltage scaling approach saves power (25% for the CORDIC application) by providing a just-needed supply voltage. The power saving is maximized (46% for CORDIC) when a more aggressive voltage over-scaling scheme is applied. These sparsely occurred circuit errors produced by aggressive voltage over-scaling are mitigated by higher level error resilient designs. For functions like FFT and CORDIC, smart error mitigation schemes were proposed to enhance reliability (soft-errors and timing-errors, respectively). Applications like Massive MIMO systems are robust against lower level errors, thanks to the intrinsically redundant antennas. This property makes it applicable to embrace digital hardware that trades quality for power savings.Comment: 190 page

    Dependable Embedded Systems

    Get PDF
    This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems

    A METHODOLOGY OF SPICE SIMULATION TO EXTRACT SRAM SETUP AND HOLD TIMING PARAMETERS BASED ON DFF DELAY DEGRADATION

    Get PDF
    SRAM is a significant component in high speed computer design, which serves mainly as high speed storage elements like register files in microprocessors, or the interface like multiple-level caches between high speed processing elements and low speed peripherals. One method to design the SRAM is to use commercial memory compiler. Such compiler can generate different density/speed SRAM designs with single/dual/multiple ports to fulfill design purpose. There are discrepancy of the SRAM timing parameters between extracted layout netlist SPICE simulation vs. equation-based Liberty file (.lib) by a commercial memory compiler. This compiler takes spec values as its input and uses them as the starting points to generate the timing tables/matrices in the .lib. Originally large spec values are given to guarantee design correctness. While such spec values are usually too pessimistic when comparing with the results from extracted layout SPICE simulation, which serves as the “golden” rule. Besides, there is no margin information built-in such .lib generated by this compiler. A new methodology is proposed to get accurate spec values for the input of this compiler to generate more realistic matrices in .lib, which will benefit during the integration of the SRAM IP and timing analysis

    Circuit Techniques for Low-Power and Secure Internet-of-Things Systems

    Full text link
    The coming of Internet of Things (IoT) is expected to connect the physical world to the cyber world through ubiquitous sensors, actuators and computers. The nature of these applications demand long battery life and strong data security. To connect billions of things in the world, the hardware platform for IoT systems must be optimized towards low power consumption, high energy efficiency and low cost. With these constraints, the security of IoT systems become a even more difficult problem compared to that of computer systems. A new holistic system design considering both hardware and software implementations is demanded to face these new challenges. In this work, highly robust and low-cost true random number generators (TRNGs) and physically unclonable functions (PUFs) are designed and implemented as security primitives for secret key management in IoT systems. They provide three critical functions for crypto systems including runtime secret key generation, secure key storage and lightweight device authentication. To achieve robustness and simplicity, the concept of frequency collapse in multi-mode oscillator is proposed, which can effectively amplify the desired random variable in CMOS devices (i.e. process variation or noise) and provide a runtime monitor of the output quality. A TRNG with self-tuning loop to achieve robust operation across -40 to 120 degree Celsius and 0.6 to 1V variations, a TRNG that can be fully synthesized with only standard cells and commercial placement and routing tools, and a PUF with runtime filtering to achieve robust authentication, are designed based upon this concept and verified in several CMOS technology nodes. In addition, a 2-transistor sub-threshold amplifier based "weak" PUF is also presented for chip identification and key storage. This PUF achieves state-of-the-art 1.65% native unstable bit, 1.5fJ per bit energy efficiency, and 3.16% flipping bits across -40 to 120 degree Celsius range at the same time, while occupying only 553 feature size square area in 180nm CMOS. Secondly, the potential security threats of hardware Trojan is investigated and a new Trojan attack using analog behavior of digital processors is proposed as the first stealthy and controllable fabrication-time hardware attack. Hardware Trojan is an emerging concern about globalization of semiconductor supply chain, which can result in catastrophic attacks that are extremely difficult to find and protect against. Hardware Trojans proposed in previous works are based on either design-time code injection to hardware description language or fabrication-time modification of processing steps. There have been defenses developed for both types of attacks. A third type of attack that combines the benefits of logical stealthy and controllability in design-time attacks and physical "invisibility" is proposed in this work that crosses the analog and digital domains. The attack eludes activation by a diverse set of benchmarks and evades known defenses. Lastly, in addition to security-related circuits, physical sensors are also studied as fundamental building blocks of IoT systems in this work. Temperature sensing is one of the most desired functions for a wide range of IoT applications. A sub-threshold oscillator based digital temperature sensor utilizing the exponential temperature dependence of sub-threshold current is proposed and implemented. In 180nm CMOS, it achieves 0.22/0.19K inaccuracy and 73mK noise-limited resolution with only 8865 square micrometer additional area and 75nW extra power consumption to an existing IoT system.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138779/1/kaiyuan_1.pd
    corecore