
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Electrical and
Computer Engineering Electrical and Computer Engineering

2015

A METHODOLOGY OF SPICE SIMULATION TO EXTRACT SRAM A METHODOLOGY OF SPICE SIMULATION TO EXTRACT SRAM

SETUP AND HOLD TIMING PARAMETERS BASED ON DFF DELAY SETUP AND HOLD TIMING PARAMETERS BASED ON DFF DELAY

DEGRADATION DEGRADATION

Xiaowei Zhang
University of Kentucky, wakenaway@hotmail.com

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Zhang, Xiaowei, "A METHODOLOGY OF SPICE SIMULATION TO EXTRACT SRAM SETUP AND HOLD
TIMING PARAMETERS BASED ON DFF DELAY DEGRADATION" (2015). Theses and Dissertations--
Electrical and Computer Engineering. 75.
https://uknowledge.uky.edu/ece_etds/75

This Master's Thesis is brought to you for free and open access by the Electrical and Computer Engineering at
UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Electrical and Computer Engineering by
an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

Xiaowei Zhang, Student

Dr. Joseph A. Elias, Major Professor

Dr. Caicheng Lu, Director of Graduate Studies

THESIS

A METHODOLOGY OF SPICE SIMULATION

TO EXTRACT SRAM SETUP AND HOLD TIMING PARAMETERS

BASED ON DFF DELAY DEGRADATION

A Thesis Submitted in Partial Fulfillment of the

Requirements for the degree of Master of Science in Electrical Engineering

in the College of Engineering

at the University of Kentucky

Xiaowei Zhang

Lexington, Kentucky

Directors: Dr. Joseph A. Elias, Adjunct Professor of Department of Electrical and

Computer Engineering

Dr. Zhi D. Chen, Professor of Department of Electrical and Computer Engineering

Lexington, Kentucky

2015

Copyright © Xiaowei Zhang 2015

By

SRAM is a significant component in high speed computer design, which serves mainly as high

speed storage elements like register files in microprocessors, or the interface like multiple-level

caches between high speed processing elements and low speed peripherals. One method to

design the SRAM is to use commercial memory compiler. Such compiler can generate different

density/speed SRAM designs with single/dual/multiple ports to fulfill design purpose. There

are discrepancy of the SRAM timing parameters between extracted layout netlist SPICE

simulation vs. equation-based Liberty file (.lib) by a commercial memory compiler. This

compiler takes spec values as its input and uses them as the starting points to generate the timing

tables/matrices in the .lib. Originally large spec values are given to guarantee design correctness.

While such spec values are usually too pessimistic when comparing with the results from

extracted layout SPICE simulation, which serves as the “golden” rule. Besides, there is no

margin information built-in such .lib generated by this compiler.

A new methodology is proposed to get accurate spec values for the input of this compiler to

generate more realistic matrices in .lib, which will benefit during the integration of the SRAM

IP and timing analysis.

KEYWORDS: SRAM, Timing Parameters, SPICE, Liberty File, DFF

ABSTRACT OF THESIS

A METHODOLOGY OF SPICE SIMULATION

TO EXTRACT SRAM SETUP AND HOLD TIMING PARAMETERS

BASED ON DFF DELAY DEGRADATION

Xiaowei Zhang

05/25/2015

 A METHODOLOGY OF SPICE SIMULATION

TO EXTRACT SRAM SETUP AND HOLD TIMING PARAMETERS

BASED ON DFF DELAY DEGRADATION

By

Xiaowei Zhang

Dr. Joseph A. Elias

Director of Thesis

Dr. Zhi D. Chen

Director of Thesis

Director of Graduate Studies

Dr. Caicheng Lu

05/25/2015

iii

Acknowledgments

I would like to thank my thesis advisor, Dr. Joseph A. Elias, for all the guidance and help I have

received from him. He was always patient and willing to answer my questions, work with me

to figure out the solutions. Besides, he always pointed out the right direction to me about my

research. This thesis would be impossible without his extensive knowledge and innovative

ideas in the VLSI field.

I would also like to thank Dr. Zhi D. Chen and Dr. Himanshu Thapliyal for serving as

committee members, and for the insightful guidance I have received from them.

Last but not least, I would like to express my deepest gratitude to my parents, for the endless

love and support I have always been with since I was born.

iv

Table of Contents

Acknowledgments .. iii

Table of Contents ..iv

List of Figures .. vii

List of Tables ... IX

Chapter 1 Introduction .. 1

Chapter 2 Literature Review ... 4

2.1 0.35um Technology Node ... 4

2.2 0.25um Technology Node ... 5

2.3 0.18um Technology Node ... 7

2.4 0.15um Technology Node ... 8

2.5 0.13um Technology Node ... 8

Chapter 2 DFF Metastability .. 10

2.1 D Flip-Flop ... 10

2.2 Setup and Hold Times of DFF ... 11

2.3 Static Timing Analysis (STA) of DFF .. 11

2.4 Metastability ... 12

Chapter 3 A Semiconductor Firm’s SRAM Design ... 14

3.1 Introduction to A Vendor’s Memory Compiler .. 14

3.2 Design Automation Using Script Languages .. 16

Chapter 4 Data Input Setup Time (tSDI) .. 17

4.1 Equation .. 17

4.2 Schematic .. 18

4.3 Logic of WE Signal ... 21

4.4 Stimulus Waveforms .. 21

4.5 Methodology ... 23

4.6 Optimization (PassFail vs. Dichotomy) ... 23

4.7 General Procedures (Vary PVTs) .. 24

4.8 Results .. 24

4.8.1 Rising Polarity ... 25

4.8.2 Falling Polarity ... 27

Chapter 5 Data Input Hold Time (tHDI) ... 28

5.1 Equation .. 28

5.2 Schematic .. 29

5.3 Stimulus Waveforms .. 29

5.4 Methodology ... 30

v

5.5 Results .. 31

5.5.1 Rising Polarity ... 32

5.5.2 Falling Polarity ... 34

Chapter 6 Data Writing Delay (tWR) ... 35

6.1 Equation .. 35

6.2 Schematic .. 36

6.3 Results .. 36

6.4 Validation ... 37

Chapter 7 Read/Write Setup Time (tSRWB) .. 37

7.1 Equation .. 37

7.2 Schematic .. 38

7.3 Pre-charge Latch .. 39

7.4 Delay Degradations of Normal DFF and Pre-charge Latch 40

7.5 Individual Simulation of Pre-charge Latch without Other Circuits 41

7.5.1 Individual Simulation vs. Extracted Layout Simulation 41

7.5.2 Varying Output Load Capacitance ... 42

7.5.3 Varying the W/L of PMOS I76 and I77 ... 43

7.5.4 Varying the Power Supply Voltage VDD .. 44

7.5.5 Varying the Process.. 44

7.5.6 Varying the PMOS Model of Output Inverters 45

7.5.7 Schematic vs. Extracted Layout Simulation ... 47

7.5.8 Different Data Input Polarities .. 48

7.5.9 Tweak of the Inverter on the Data Input Path 48

7.5.10 A Proposed Improvement of the Inverter on the Data Input Path . 50

7.5.11 Different Versions of the Modified Pre-charge Latch with Pull-down

Path .. 52

7.5.12 Final Top-level Layout of the SRAM ... 54

7.5.12 Simulation Results of Different Versions of the Modified Layouts 55

7.5.13 The Effect of M Factor on the Delay Degradation Pattern 57

7.6 Stimulus Waveforms .. 57

7.7 Methodology ... 58

7.8 Results .. 58

7.8.1 Default Layout (Rising Polarity) .. 59

7.8.2 Modified Layout Version 3 (Rising Polarity) .. 61

7.8.3 Default Layout (Falling Polarity) ... 63

7.8.4 Modified Layout Version 3 (Falling Polarity) ... 65

Chapter 8 Data Reading Delay (tRD) ... 67

8.1 Equation .. 67

vi

8.2 Schematic .. 67

8.3 Results .. 68

8.4 Validating ... 68

Chapter 9 Final Results ... 69

Appendix A: Generic Perl Script for Individual DFF Simulation 72

Appendix B: Generic Ruby Script for Individual DFF Simulation 83

References ... 94

Vita ... 97

Education ... 97

vii

List of Figures

Figure 1. A Typical 6T SRAM Cell Configuration ... 2

Figure 2. A Typical 4T SRAM Cell Configuration ... 3

Figure 3. Trends in Device Count/Chip and Feature Size of MOS Device 3

Figure 4. SRAM Bit-cell and Minimum-supply-voltage Scaling .. 4

Figure 5. 10T Cell Using Extra Low-Vth NMOS to Accelerate Readout Operations 5

Figure 6. Concept of the HBLSA-SRAM .. 6

Figure 7. Schematic of a Two-Stage Sense-Amp .. 7

Figure 8. Equivalent Circuit of a LL4T SRAM Cell and Node Voltages in a Stand-by Cycle . 8

Figure 9. Circuit Diagram of DFF[23] ... 10

Figure 10. Timing Definition of Setup/Hold Time[23] ... 11

Figure 11. DFF Environment in a Digital System[24] ... 11

Figure 12. The Metastability Window[28] .. 13

Figure 13. Definition of Setup and Hold Times[24] .. 14

Figure 14. Schematic of the Underlying DFF .. 17

Figure 15. Schematic of tSDI ... 18

Figure 16. Schematic from DI to DO ... 19

Figure 17. Schematic of RBK Block ... 20

Figure 18. Schematic of RDATA Block .. 20

Figure 19. Waveforms Indicates Isolation of Delay Degradation .. 21

Figure 20. Schematic of WE Signal ... 21

Figure 21. Stimulus Waveforms of tSDI Simulation (SS/1.35V/-40°C, Rising) 22

Figure 22. tSDI_spec Simulation Results (Rising) with Varying PVTs 25

Figure 23. tSDI_spec Simulation Results (Falling) with Varying PVTs 27

Figure 24. Schematic of tHDI .. 29

Figure 25. Stimulus Waveforms of tHDI Simulation (SS/1.35V/-40°C, Rising) 30

Figure 26. tHDI_sim Simulation Results (Rising) with Varying PVTs 32

Figure 27. tHDI_sim Simulation Results (Falling) with Varying PVTs 34

Figure 28. Schematic of tWR ... 36

Figure 29. tWR_spec Simulation Results with Varying Temperature and VDD 37

Figure 30. Schematic of tSRWB .. 38

Figure 31. Schematic of Normal DFF .. 39

Figure 32. Schematic of Pre-charge Latch ... 39

Figure 33. Comparison Between Normal DFF and Pre-charge Latch. 40

Figure 34. (a) Individual Simulation (b)(c) Extracted Layout Simulation 41

Figure 35. Pre-charge Latch Simulation Results with Varying Output Load Capacitance (a)(c)

Absolute Value (b)(d) Percentage Value ... 42

Figure 36. Pre-charge Latch Simulation Results with Varying I76/I77 Width (a) Absolute Value

(b) Percentage Value .. 43

Figure 37. Pre-charge Latch Simulation Results with Varying Vdd (a) Absolute Value (b)

Percentage Value ... 44

Figure 38. Pre-charge Latch Simulation Results with Varying Process (a) Absolute Value (b)

Percentage Value ... 44

Figure 39. Delay Degradation Patterns for Different PMOS Models 45

Figure 40. Waveforms for Different PMOS Models ... 46

Figure 41. Schematic vs. Extracted Layout Simulation (a) Rising (b) Falling 47

Figure 42. Simulation Results of Different Data Input Polarities (a) Schematic (b) Extracted

Layout .. 48

Figure 43. Simulation Results of Tweaking the Inverter ... 49

Figure 44. Rising/Falling Simulation Results without the Input Inverter 49

Figure 45. A_N Waveforms with Unchanged Netlist and Netlist without the Inverter 50

Figure 46. Portion of Pre-charge Latch Schematic Shows the Added Pull-down Path 51

Figure 47. Default Layout .. 52

file:///C:/Users/Xiaowei/Google%20Drive/0320/MS%20Thesis.docx%23_Toc421793025
file:///C:/Users/Xiaowei/Google%20Drive/0320/MS%20Thesis.docx%23_Toc421793027

viii

Figure 48. Modified Layout Version 1 .. 52

Figure 49. Modified Layout Version 2 .. 52

Figure 50. Modified Layout Version 3 .. 53

Figure 51. Final Top-level Layout ... 54

Figure 52. Zoom-in Layout Shows the Improved Pre-charge Type Latch with Pull-down Path

 ... 54

Figure 53. Simulation Results of the Default Layout .. 55

Figure 54. Simulation Results of the Version 1 ... 55

Figure 55. Simulation Results of the Version 2 ... 56

Figure 56. Simulation Results of the Version 3 ... 56

Figure 57. Simulation Results of Rising/Falling Delay Degradation Patterns with Different M

Factors .. 57

Figure 58. Stimulus Waveforms of tSRWB Simulation (SS/1.35V/-40°C, Rising) 58

Figure 59. tSRWB Simulation Results of Default Layout (Rising) with Varying PVTs 59

Figure 60. tSRWB Simulation Results of Modified Layout Version 3 (Rising) with Varying

PVTs .. 61

Figure 61. tSRWB Simulation Results of Default Layout (Falling) with Varying PVTs 63

Figure 62. tSRWB Simulation Results of Modified Layout Version 3 (Falling) with Varying

PVTs .. 65

Figure 63. Schematic of tRD ... 68

Figure 64. tRD Simulation Results with Varying Temperature and VDD 68

IX

List of Tables

Table 1. Design Summary of MTCMOS SRAM ... 5

Table 2. Design Summary of HBLSA-SRAM... 7

Table 3. Design Summary of DDR CMOS.. 8

Table 4. Comparison of Different SRAM Designs .. 9

Table 5. Some Optimistic Values in The .lib ... 16

Table 6. tHDI_sim Guardband for Different Process Corners ... 28

Table 7. tWR_spec Values for Different Processes ... 35

Table 8. Different PMOS Models in Tech Library .. 45

Table 9. Different Configurations of the Modified Layouts .. 53

Table 10. tRD_spec Values for Different Processes .. 67

Table 11. Final Results .. 69

1

Chapter 1 Introduction

SRAM is a kind of memory which uses bistable latching circuitry to store binary bit values

(logic 0 or 1). Unlike the Dynamic RAM (DRAM) used, like as discrete main memories in PC,

SRAM doesn’t require periodic refresh to keep the stored bit values. The back-to-back inverters

in the SRAM cell keep reinforcing each other as long as the SRAM cell is powered. On the

other hand, SRAM is volatile, which means it will lose the stored bit values if the power goes

off[1].

Comparing to other kinds of volatile memories (e.g. DRAM), SRAM is fast and expensive,

which limits its applications in high capacity, low cost areas. Because of its high performance

(e.g. low access time), SRAM is widely utilized as cache memory in microprocessors or

microcontrollers (MCUs)[2]. Modern microprocessors have at least two-level caches built in

the chip, which serve as an interface between high speed processing elements and low speed

peripherals[1]. Besides, SRAM exists in some application specific integrated circuit (ASIC)

designs where burst transfers are needed[3].

Except for integrating in System on Chip (SoC), SRAM is also found in many embedded

systems used in industrial subsystems, automotive electronics, and etc[4, 5]. Even in many

consumer products like digital cameras, cell phones, SRAM can be found, for example, as LCD

screen buffers[6].

For timing aspect, there are two different kinds of SRAM: synchronous or asynchronous. The

operation of the synchronous SRAM is controlled by the clock edge(s). All operations happen

on the clock edge(s). On the other hand, the asynchronous SRAM has no clock input, the data

input/output are controlled by address transition.

One of the key elements of the SRAM design is the SRAM cell design. There are different

configurations of SRAM cell, which consist of different number of transistors. The typical

configuration is 6-transistor (6T) SRAM cell shown in Figure 1[7]:

2

Figure 1. A Typical 6T SRAM Cell Configuration

It can be seen that the transistors M1 and M2, M3 and M4 form two cross-couple inverters (back-

to-back) so that the bit values stored in the Q and Q bar are kept refreshing as long as these two

inverters are connected to VDD and GND. The M5 and M6 are the access transistors, which serve

as the connections between the SRAM cell and the bitlines (BL and BL bar). Both M5 and M6

are controlled by the wordline (WL), and if the WL=1, both access transistors are open and the

SRAM cell is connected to the bitlines. The SRAM works in reading/writing states. If WL=0,

both access transistors are closed and the SRAM cell is isolated. The SRAM works in idle state.

In reading state, suppose a logic 1 (VDD) is stored in the SRAM cell before reading out. The Q

is logic 1 and Q bar is logic 0. Before accessing to the SRAM cell, both bitlines are pre-charged

to logic 1. Then the WL signal is asserted, which turns on the access transistors M5 and M6.

Since Q=1 which turns on M1, the BL bar is discharged through M5 and M1 while BL is clamped

to VDD for a short period time (a short pulse of WL signal). Once BL and BL bar have enough

difference to be amplified by the sense amplifier (sense-amp), the WL signal is off and both

access transistor are turned off so that the stored bit value won’t be compromised. Depending

on which bitline is lower, this small voltage swing will be amplified to full swing by the sense-

amp and asserted to output bus.

In writing state, suppose a logic 1 is written into the SRAM cell. The write driver will charge

BL to be logic 1, and BL bar to be logic 0. Then the WL signal is asserted and both access

transistors are turned on. The Q is connected to BL, which will be charged to logic 1 because

the write driver has stronger drive strength than the transistor M3 and M4. The same case for Q

bar. After that, the WL signal is off and the SRAM cell can keep refreshing the written bit

value.

If not in neither reading nor writing states, the SRAM cell is in idle state, where WL=0 turns

off both access transistors. The SRAM cell is isolated from outside.

3

There are many other configurations of the SRAM cell (4T, 8T, 10T, etc.)[8, 9]. Usually the

less transistors, the smaller area the SRAM cell will be. A smaller SRAM cell usually results

in higher density. One example of the 4T SRAM cell is shown in Figure 2[10]:

Figure 2. A Typical 4T SRAM Cell Configuration

It can be seen that the two PMOS in the cross-coupled inverters are replaced by polysilicon

resistors R, which has higher demand for the process because these two polysilicon resistors

have to be small but have large values.

The size of a SRAM is associated with the numbers of address lines and data lines. m address

lines means there are 2m words in this SRAM. And n data lines means each word has n bits, in

other words, it is n bit word. So if a SRAM has 11 address lines as well as 8 data lines, the size

of this SRAM is 2K x 8bit.

Figure 3. Trends in Device Count/Chip and Feature Size of MOS Device

4

Figure 4. SRAM Bit-cell and Minimum-supply-voltage Scaling

The Figure 3 shows technology node (feature size) trends in semiconductor industry[11], which

is getting smaller every year following the Moore’s Law. In Figure 4, it can been seen that the

finest technology node for SRAM is 14nm now[12]. Both Vcc and Bit size are decreasing

alongside with the smaller technology nodes.

Chapter 2 Literature Review

2.1 0.35um Technology Node

Shibata et al. proposed a 1V 100MHz MTCMOS SRAM design[13]. In this design, the authors

used 0.35um (effective channel length 0.17um) MultiThreshold-voltage CMOS

(MTCMOS)/Separation by IMplantation of OXygen (SIMOX) process to fabricate an 8K x

16bit SRAM, which could reach 100MHz working frequency with 1V VDD. In order to reduce

the large bitline delay, the low Vth transistors were used for logic gates to gain high

performance. On the other hand, high Vth transistors were used to cut off the sub-threshold

leakage current path so that the low power operation could be achieved. A latch type sense-amp

was used in this design. In order to increase the working frequency, the authors proposed a

pseudo-two-stage pipeline architecture, which featured a sensing delay. For the SRAM cell

design, they proposed a 10T SRAM cell configuration (shown in Figure 5), which was 33%

larger than conventional 6T SRAM cell. The cell size is 11.2um x 2.8um under their 0.35um

MTCMOS/SIMOX process. The cycle time at the worst power supply condition (1V) is 9ns,

and the clock access time at single fan-in load is 3.5ns. The summary of their design is shown

in Table 1:

5

Figure 5. 10T Cell Using Extra Low-Vth NMOS to Accelerate Readout Operations

Table 1. Design Summary of MTCMOS SRAM

Chip Size 1.6mm x 3.2mm = 5.12mm2

SRAM Cell Size 11.2um x 2.8um = 31.36um2

Organization 8K x 16bit

Minimum Cycle Time (1V) 9ns

Power Dissipation (1.2V, 100MHz)

Stand by 0.2uW

Read 13.2mW

Write 15.4mW

2.2 0.25um Technology Node

B. D. Yang et al. proposed a low power SRAM design with hierarchical bitlines and local sense-

amps (HBLSA-SRAM)[14]. In order to reduce the power dissipation and increase the speed,

this HBLSA-SRAM reduced both capacitance and write voltage swing of bitlines by

implementing a bitline and sub-bitlines with local sense-amps. The key idea was to apply a low

voltage swing (VDD/10=2.5V/10=0.25V) to the high capacitive bitlines and apply a full voltage

swing to the low capacitive sub-bitlines. An 8K x 32bit SRAM was fabricated with 0.25um

CMOS technology, which consumed 26mW read power and 28mW write power at 253MHz

with 2.5V power supply. Unlike read with a small voltage swing in the bitlines, conventional

SRAM consumed more power during write cycle due to the full voltage swing in bitlines and

6

data bus, which both had high capacitance. In order to reduce the voltage swing when write, a

hierarchical bitline consisted of a bitline and several sub-bitlines were implemented so that the

voltage swing on the bitline was small (kept the same as the voltage swing when read), and

only the sub-bitline of the cell accessed connected to the bitline (controlled by a global word

line signal GWL bar) had full voltage swing. Once the small voltage swing was transferred to

the sub-bitline, a local sense-amp would amplify it to a full voltage swing. Due to the low

capacitance of the sub-bitline, the power dissipation of the entire two-stage operation was less

than conventional write with a full voltage swing to the bitline. The concept of this HBLSA-

SRAM is shown in Figure 6:

Figure 6. Concept of the HBLSA-SRAM

They used conventional 6T SRAM cell, and two PMOS and a local sense-amp were added to

each sub-bitline, which increased the length of bitlines but area overhead was small. They

fabricated two SRAM: one was a conventional SRAM, the other was the HBLSA-SRAM,

which used the same 0.25um technology. The comparison results showed the HBLSA-SRAM

had 18% speed overhead with 8% area overhead, partially because of the 9% longer bitlines.

As for the power dissipation, the HBLSA-SRAM saved 34% of the write power of the

conventional SRAM, and they had the same read power dissipation. The summary of the

HBLSA-SRAM design is shown in Table 2:

7

Table 2. Design Summary of HBLSA-SRAM

Chip Size 3.26mm x 1.88mm = 6.13mm2

Organization 8K x 32bit

Supply Voltage 2.5V

Frequency 220MHz

Power Dissipation (200MHz)

Read 28mW

Write 26mW

2.3 0.18um Technology Node

A. Kawasumi et al. proposed a 18Mbit (1M x 18bit) 1.8V 900MHz DDR CMOS SRAM design

with power reduction techniques[15]. The technology node was 4-metal 0.25um with gate

length 0.18um. The final SRAM cell size was 2.25um x 2.35um, which leaded to an 11.2mm x

19.0mm chip size. The key design in their SRAM cell was the implementation of two-stage

sense-amps in order to reduce the read data bus capacitance, which is shown in Figure 7. A

current sense-amp was used for the first stage, which had less dependence on the bitline

capacitance. Then a second stage sense-amp was implemented to drive the data bus, which was

shared with two first stages so that the number of the second stage sense-amps could be reduced.

In their design, the read data bus capacitance was reduced 40%, the active current for sensing

was decreased by 33%, and the sensing delay was reduced by 9.6%. The authors declared that

this sense-amp configuration was faster than conventional latch type sense-amp.

Figure 7. Schematic of a Two-Stage Sense-Amp

8

Table 3. Design Summary of DDR CMOS

2.4 0.15um Technology Node

J. H. Jang et al. proposed a 2.05um2 (1.3um x 1.58um) CMOS SRAM cell with 0.15um single

gate CMOS technology[16]. Their technology had 0.15um for NMOS and 0.17um for PMOS.

The final 16Mbit SRAM had a size of 54.13mm2.

2.5 0.13um Technology Node

S. Masuoka et al. proposed a loadless 4T SRAM cell design (0.99um2 area: 0.80um x 1.24um)

with 0.13um generation CMOS technology[17]. This SRAM cell provided high stable

operation at 1.2V from -40°C to 125°C. The key design was the loadless 4T (LL4T) SRAM

cell, which was shown in Figure 8.

Figure 8. Equivalent Circuit of a LL4T SRAM Cell and Node Voltages in a Stand-by Cycle

This LL4T SRAM cell size was 50-65% of a conventional 6T SRAM cell, which had advantage

to reduce the SRAM layout area. Besides, unlike the typical 4T SRAM cell shown in Figure 2,

this LL4T SRAM cell didn’t require the pull-up resistors, which usually resulted in a challenge

for the process. This 0.13um technology node had a 0.12um gate length.

Chip Size 11.2mm x 19.0mm = 212.8mm2

SRAM Cell Size 2.25um x 2.35um = 5.2875um2

Organization 1M x 18bit, 512K x 36bit

Supply Voltage 1.8V

Frequency (25°C) 900MHz

Power Dissipation (667MHz)

Read 1.1W

Write 1.3W

9

There were many other SRAM designs with various technologies. D. K. Nelson et al. proposed

a SOI SRAM design with 0.15um technology node, which had 3-5ns access time under 5ns

clock period[18]. Another 4Mbit 1.8V SOI CMOS SRAM (6T SRAM cell configuration) was

implemented with 0.2um bulk CMOS process by K. Cox et al. The cell size was 3.77um2[19].

F. Ootsuka et al. introduced a high density, high performance SRAM design for large scale SoC

application under 0.13um CMOS technology with 0.2um gate length[20]. The 6T SRAM cell

size was 0.8um x 3.2um = 1.92um2. Under the same generation process, W. Kong et al.

introduced a 6T SRAM cell of 1.87um2[21]. The comparison of different SRAM designs is

shown in Table 4:

Table 4. Comparison of Different SRAM Designs

SRAM Design Designers
Technology

Node (um)

Working

Frequency

(MHz)

VDD

(V)
SRAM Cell Size

MTCMOS

SRAM

Shibata et

al.
0.35 111 1.00

11.2um x 2.8um

= 31.36um2

HBLSA-SRAM
B. D. Yang

et al.
0.25 250 2.50

SOI CMOS

SRAM

K. Cox et

al.
0.20 1.80 3.77 um2

DDR CMOS

SRAM

A.

Kawasumi

et al.

0.18 900 1.80

2.25um x

2.35um =

5.2875um2

SRAM Cell with

Single Gate

CMOS

Technology

J. H. Jang

et al.
0.15

1.3um x 1.58um

= 2.05um2

SOI SRAM

D. K.

Nelson et

al.

0.15 200

A Semiconductor

Firm’s Design
 0.15 83.33 1.35

1.2um x 1.58um

= 1.896um2

Loadless LL4T

SRAM Cell

S. Masuoka

et al.
0.13 1.20

0.80um x

1.24um =

0.99um2

High

Density/Performa

nce SRAM

F. Ootsuka

et al.
0.13

0.8um x 3.2um

= 1.92um2

6T SRAM Cell
W. Kong et

al.
0.13 1.87um2

R. Castagnetti et al. investigated the effect of different chip level route techniques in order to

get high performance SRAM design[22]. The specific route techniques they investigated by

fabricating a 6T SRAM cell with 0.18/0.13um technology involved metal 2 (M2) and metal 3

10

(M3) layers. There were two options for routing: use M2 for horizontal WL and M3 for vertical

bitlines and VDD and GND; or use M2 for bitlines and VDD and M3 for WL and GND. What

they found was the capacitance of the bitlines dominated the performance of the SRAM cell,

and using M2 for the bitlines had 25% bitline capacitance reduction. Besides, the M3 for WL

and GND provided good shield for M2 from M4 and above, which leaded to an unrestricted

M4 routing. The option of M2 for the bitlines was superior to the other option.

Chapter 2 DFF Metastability

The entire research is about to extract the timing parameters of the SRAM design. Since for the

synchronous SRAM, all input signals are captured by the underlying DFFs in the external logic

of the SRAM synchronized by the clock, extracting the behaviors of these underlying DFFs,

especially setup and hold times, is a method to estimate the setup and hold times of the entire

SRAM design.

2.1 D Flip-Flop

Figure 9. Circuit Diagram of DFF[23]

Figure 9 shows a typical configuration of a master-slave DFF. The master latch consists of the

back-to-back inverters X3 and X4, which is controlled by CLK, the same as the slave latch.

These two latches are separated by a transmission gate (TG) controlled by CLK. When CLK=0,

TG is closed so that both latches are isolated with each other. The X2 is open when CLK=0, so

that the data appears on the input D can transmit to node M1. At the same time, X6 is also open

controlled by the CLK, then X5 and X6 will enforce each other to hold the previous value Q to

the output port. When CLK=1, the TG is open and X2 is closed, so that no more new value can

transmit to the DFF, and whatever logic value in node M1 will pass the TG to arrive to X5, and

X7, eventually to Q. The CLK will also open X4 and close X6 so that only the master latch has

the back-to-back inverters to hold the value.

11

2.2 Setup and Hold Times of DFF

Figure 10. Timing Definition of Setup/Hold Time[23]

For synchronous DFF, the setup time is the minimum amount of time the input data D of the

DFF should be stable before the clock CLK trigger edge arrives, so that the data can be reliably

sampled and caught by the DFF. The hold time is the minimum amount of time the input data

D of the DFF should hold after the clock CLK trigger edge arrives, so that the data can be

reliably sampled. The third timing vale is the propagation delay, which measures the delay from

the CLK trigger edge to the actual change on its output Q.[23] All three timing parameters of a

DFF are shown in Figure 10. If either setup or hold time isn’t satisfied, the DFF will enter a

state call metastability.

2.3 Static Timing Analysis (STA) of DFF

The typical connection between DFFs is shown below:

Figure 11. DFF Environment in a Digital System[24]

As shown in Figure 11, the setup and hold should satisfy two equations respectively.[24, 25]

tCLK-Q + tsetup ≤ T – tLogic – tskew

tCLK-Q – thold ≥ tskew – tLogic

Equation 1

In Equation 1:

12

 tCLK-Q is the propagation delay of the DFF.

 tsetup is the setup time of the DFF.

 thold is the hold time of the DFF.

 T is the clock period.

 tLogic is the delay through the combinational logic between launch and capture DFFs.

 tskew is the delay difference of the clock tree root to the CLK port of the launch and

capture DFFs.

In STA of DFF, the worst setup slack (Slacksetup) and hold slack (Slackhold) are calculated by the

STA tools by reading the design netlist, cell library and clock period. The setup and hold slacks

are defined in Equation 2:

Slacksetup = T – tLogic – tskew – tCLK-Q – tsetup

Slackhold = tCLK-Q – thold – tskew + tLogic

Equation 2

In order to meet the timing requirements of the DFFs in a digital system, or achieving timing

closure, the slacks of all datapath should be calculated and positive or 0. If a slack is negative,

it’s said to be “violated”. If a setup slack Slacksetup is violated, the circuit can operate correctly

by increasing the clock period T, in other words, in lower clock frequency. If a hold slack is

violated, the circuit won’t function correctly until delay elements are inserted into the short

datapaths in the combinational logic between the launch and capture DFFs.[25]

2.4 Metastability

Metastability is a phenomenon where a bi-stable output enters an unstable third state and

becomes an intermediate level between logic 0 and 1.[26] DFF is subject to such metastability,

when two inputs (D and CLK in our case) are changing at about the same time. The result is

the output might behave unpredictably, taking much more time than nominal to settle to one

state or the other. As CMOS technology scales, PVT variations and increasing clock frequency

all contribute to the possibility of the metastability failure.[27] Such metastability can cause

severe problem like corruption of data. This metastability can’t be eliminated entirely, because

when the D and CLK is closer and closer, the DFF is forced to decide which comes first. No

matter how fast the circuit is, there’s always a possibility these two input signals are so close to

each other than the DFF can’t detect which happens first. But as long as the setup and hold

times are satisfied, the metastability in DFF can be avoided. So using pre-defined metastability

windows to measure the setup and hold times of DFF is a more practical method instead of

13

looking for the values of setup and hold times that cause the DFF to fail to operate, because a

DFF will malfunction long before it starts to completely fail. The metastability window is

shown below in:

Figure 12. The Metastability Window[28]

The metastability window can be determined by extract the propagation delay tCLK-Q when D is

shifting closer to CLK from both direction.[28] First, the nominal value of the propagation

delay tCLK-Q can be obtained by extracting under normal operation of the DFF. Then when the

D is moving closer to CLK, the propagation delay tCLK-Q will increase exponentially.[26] When

the propagation delay tCLK-Q reaches a pre-defined value (normally 10% larger than the nominal

value), the DFF is considered to enter metastability. So the edges of metastability window can

be consider to be setup and hold times. By reproducing such curves, we can accurately extract

the setup and hold timing parameters of a DFF under different PVTs.

14

Figure 13. Definition of Setup and Hold Times[24]

Figure 13 is an example from 0.25um process, it can be seen that the setup time tsetup is 190ps,

allowing 5% propagation delay increase (1100ps) comparing with the nominal value (1050ps).

The same case for hold time (thold = 400ps for 5% delay degradation). If a smaller setup time is

allowed, e.g. 120ps, which still guarantee the correct functionality of the DFF, this will lead

invalid timing analysis because of the dramatically increasing propagation delay tCLK-Q, which

will probably lead a negative setup slack Slacksetup unless a large clock period T is used. In that

case, this choice of small setup time results in a longer critical path and a slower clock frequency.

Chapter 3 A Semiconductor Firm’s SRAM Design

3.1 Introduction to A Vendor’s Memory Compiler

This semiconductor firm’s SRAM design is generated by a vendor’s memory compiler with

0.15um technology node. This compiler provides flexibility that the user can choose different

numbers of words as well as how many bits one word has. Except for some common choices

like 16, 32 or 64-bit for a word, arbitrary bits design is also supported.

Besides, the user can determine the height/width ratio of the physical layout so that the

generated layout can have different shapes/outlines to fit different requirements. It can become

extremely high with few bitlines and many word lines. Or conversely, an extremely wide layout

is possible with many bitlines and few word lines.

There are many PVT (Process Voltage Temperature) conditions associated with this design.

For the process, one of the FF (NMOS fast, PMOS fast), TT (NMOS typical, PMOS typical)

or SS (NMOS slow, PMOS slow) can be chosen depending on the technology process. The

15

voltage range is from 1.35V to 1.95V depending on the peripherals, like power supply design.

As for the temperature, this SRAM is required to function correctly from -40°C to 150°C.

Since a large numbers of volume and arbitrary bitwidth are supported by this compiler, there

can be huge amount of the final generated layouts. Besides, even for a fixed choice, the

height/width ratio can be also adjusted. When considering the PVT variations, the actual

choices could be hundreds of thousands of combinations.

The user needs to know all the characteristics of the design before actual processing, like timing

constraints, power constraints, etc. A classic way to get such information is from simulation. A

full circuit simulation can provide some of these characteristics, while the cost is high, since a

single runtime might take minutes or hours. Multiple simulations may be required to extract all

information needed. In addition, there are literally hundreds of thousands of combinations of

bitwidth, height/width ratios and PVTs, so it is impossible to simulate every single one of them

to get information associated with this very combination, which potential customer might be

interested in. Besides, the time from designing a new product to the market is getting shorter,

which makes this full circuit simulation impractical.

The compiler has a different method to come up with all the required parameters associated

with different design combinations. This method is equation-based and will dramatically reduce

the simulation time. Once the compiler has the values of all variables for different blocks of the

entire circuit, it can come up with the overall characteristics by adding them together according

to pre-defined equations. The compiler takes basic simulation results of each block as inputs,

then it can handle all the variations (e.g. different PVTs, signal slew rate, output load

capacitance) the user might want to use. Such method can give the user a confident margin and

estimation of the performance of actual chip, and once it complies all the requirements, the final

product will be in that range.

But there is a disadvantage to use this equation-based method, which is too conservative (and

too pessimistic) for most PVT conditions. On the other hand, the .lib for some PVT conditions

(e.g. data writing delay (tWR) under FF/1.60V/150°C and FF/1.95V/-40°C) is optimistic

comparing with the results we gather from the extracted layout SPICE simulation. There is

always a trade-off between reliability and performance. If the user want to have very small data

input setup time (tSDI) under FF/1.95V/-40°C, e.g. 0.300ns, there might be no the .lib value

which is smaller (0.7ns in the .lib across all PVT conditions). In such case, this method will

mislead the user that such requirement is impractical. But in fact, our extracted layout SPICE

simulation method shows the tSDI under FF/1.95V/-40°C is 0.050ns, which satisfies the user’s

requirement. Besides, the compiler doesn’t provide information about how much the margin

16

will be before the circuit starts to fail. For example, for the setup time, the margin could be

relatively small for the slow circuit (SS/1.35V/-40°C), but it could be fairly large for the fast

circuit (FF/1.95V/-40°C). In addition, the user might want to know the exact margin built-in.

Sometimes it is not necessary to have so much margin built-in because higher performance

could be achieved with a little margin sacrifice.

There is another problem embedded in this equation-based method that not every parameter

value in the .lib is pessimistic, there are some which is optimistic instead. For example, tWR

we simulate for FF/1.60V/150°C is 1.633ns, but in the .lib, it is 0.500ns (shown in Table 5). To

tell from our results, it is 3X larger in reality than the .lib. Except for tWR, we find the data

reading delay (tRD) has the same issue under FF/1.60V/150°C and FF/1.95V/-40°C. There

might be more values which are optimistic somehow. In this case, it can’t be guaranteed that

when the .lib satisfies all the user’s requirements, the final product will do the same.

Table 5. Some Optimistic Values in The .lib

PVT Layout Param Polarity .lib (ns)
Simulation

(ns)

FF/1.60V/150°C Default tWR Rising 0.500 1.633

FF/1.95V/-40°C Default tWR Rising 0.500 1.075

FF/1.60V/150°C Default tRD Falling 0.500 2.054

FF/1.95V/-40°C Default tRD Falling 0.500 1.318

So our goal is to reproduce the spec values for all the parameters in the .lib. Since the spec

values are the major part of these values, adding some variation from other terms depending on

the equations, once we determine the spec values, we can generate more realistic matrices for

all of them, which guarantee the circuit will not fail as long as it satisfies all the user’s

requirement. Besides, the information of the actual built-in margin will be also available.

3.2 Design Automation Using Script Languages

Since the methodology is associated with a lot of fully extracted layout simulations for different

PVTs using SPICE simulator Eldo, many iterations of the simulation take much time to reach

a conclusion. In order to automate the entire simulation flow (let the computer to automatically

initialize the simulations and collect the data after completion) and minimize the human

intervention during simulation, a script is written by the user in both Perl and Ruby to expedite

each iteration, the source code is included in the appendices. Thanks to the script, the user can

focus on interpreting the extracted data by computer instead of tweaking the simulation input

17

files. Such large amount of simulations couldn’t be possible without the script taking care of

many steps in the background.

The basic idea of the script is to read the configuration files written by the user, understanding

the parameters for each iteration. Then the script will do pattern matching to modify the

template input file of the simulator Eldo. After that the script will invoke the Eldo to run the

simulation and wait for the completion, then start another run with the new parameters set. Once

all the iterations are finished, the script will do the pattern matching of the output files of Eldo,

extracting the results the user is interested, generating a CSV (Comma-Separated Values) file

for human to post-process.

Chapter 4 Data Input Setup Time (tSDI)

4.1 Equation

In the equation-based method, the tSDI is composed of three individual terms,

T_DI_del_ts_r/f_a, tSDI_spec and T_CLKIO_del_ts_a. The T_DI_del_ts_r/f_a is the delay

from top-level data input bus (DI) least significant bit (MSB) DI<0> to an internal node “N2”

(the middle point between the master and the slave latches) of the underlying DFF of LSB in

the datapath, which is shown in Figure 14:

Figure 14. Schematic of the Underlying DFF

The T_CLKIO_del_ts_a is the delay from the top-level clock pin (CLKin) to the local clock pin

(CLK_LOC_N) of the underlying DFF of LSB.

tSDI_spec is the actual central point of the matrix in the .lib. The compiler takes the tSDI_spec

as an input which the user specifies before it constructs the matrix. It uses the tSDI_spec as the

starting point and both T_DI_del_ts_r/f_a and T_CLKIO_del_ts_a act as variations depending

18

on different output load capacitance and input signal slew rate. We think such tSDI_spec value

(same as other spec values) are achieved from ASIM run before. The .lib uses 0.7ns across all

PVT conditions.

tSDI_rr_ar = T_DI_del_ts_r_a + tSDI_spec – T_CLKIO_del_ts_a

tSDI_rf_ar = T_DI_del_ts_f_a + tSDI_spec – T_CLKIO_del_ts_a

Equation 3

In Equation 3:

 T_DI_del_ts_r_a is the delay from DI<0> to an internal node “N2” of the underlying

DFF when DI<0> is from logic 0 to 1.

 T_DI_del_ts_f_a is the delay from DI<0> to an internal node “N2” of the underlying

DFF when DI<0> is from logic 1 to 0.

 tSDI_spec is the input value the user specifies when running compiler, which serves as

the central point of the generated matrix.

 T_CLKIO_del_ts_a is the delay from CLKin to CLK_LOC_N of the underlying DFF

of LSB.

4.2 Schematic

The Figure 15 shows the schematic of tSDI, from which it can be seen that there are two input

signals, DI<0> and CLKin. The actual clock pin of the underlying DFF, CLK_LOC_N, is

connected to CLKin through some delay. The compiler takes the two delays shown in Figure

15 as parameters to vary from the tSDI_spec to generate the 5x5 matrix.

Figure 15. Schematic of tSDI

In order to reproduce tSDI_spec value equal of 0.700ns in the .lib, the worst case PVT condition

(SS/1.35V/-40°C) is chosen. The clock period (tCYC) has to be increased from 8ns to 12ns so

CLK_LOC_N
DFF

CLKin

DI<0>

T_CLKIO_del_ts_a

T_DI_del_ts_r/f_a

Q

19

that circuit can work correctly. Since circuit is slower than typical PVT condition

(TT/1.80V/25°C), the default tCYC=8ns is not suitable anymore.

The critical point where circuit starts to fail is 0.420ns, and the reason is the underlying DFF

can’t catch the valid DI signal anymore. The underlying DFF shows metastability called delay

degradation (DD). The delay degradation is the smaller time between input and the clock (Tsetup)

is, the larger the propagation time between clock and output (Tpropagation) is than nominal value

(computed when there is enough time between input and the clock). When Tsetup=0.500ns, the

delay degradation is almost 9.82% already, shown in Figure 22 (a).

The data output bus (DO) does not show any delay degradation, in other words, the delay

degradation from the underlying DFF does not pass through to the final output DO. There is an

internal node named DO_I_N (the white circle shown in Figure 16 and Figure 17), which is

located before the output buffer. DO_I_N is connected to the negative output DINREG_N (the

white circle shown in Figure 16) of the underlying DFF, but gated by WE (write enable) and

BITEN (bit enable) (the white circles shown in Figure 16 and Figure 17). Since WE arrives

very late comparing with DINREG_N (about 3ns after DINREG_N arrives), so that even

though DINREG_N shows delay degradation due to the previous DFF and shifts about 0.700ns,

as long as DINREG_N is valid before WE arrives, DO_I_N will start to toggle right after WE

enables the transistors and DINREG_N will pass through those two transistors to DO_I_N. In

this case, our delay degradation measurement can’t be conducted between the top-level ports

CLKin and DO<0> because the logic mentioned before filters such delay shifting due to the

DFF. The schematic from DI to DO is shown in Figure 16:

Figure 16. Schematic from DI to DO

20

Figure 17. Schematic of RBK Block

Figure 18. Schematic of RDATA Block

As shown below in Figure 19, the black and green curves are DINREG_N signals from different

Tsetup (2ns vs. 0.440ns), and there is observable 354ps delay indicating there is delay degradation

from the underlying DFF. While WE and DO_I_N overlaps, which indicates the toggle of

DO_I_N is triggered by the toggle of WE and the delay degradation shown in DINREG_N does

not pass through to DO_I_N. That is the reason such delay degradation could not be observed

from the final output DO<0>.

21

Figure 19. Waveforms Indicates Isolation of Delay Degradation

4.3 Logic of WE Signal

For WE signal, it is the logic output of three input signals, CLKin, R_WB and WLOFF (always

logic 0 in normal operation), the Figure 20 shows the logic diagram, and the blue rectangles

represents combination logic delay:

Figure 20. Schematic of WE Signal

4.4 Stimulus Waveforms

There are different top-level signals need be stimulated in order to get tSDI_spec: data input

bus (DI), address input bus (AD), chip enable (EN), bit enable (BEN), read write bar (R_WB)

and clock (CLKin). Except for simulation of chip enable setup time (tSEN), EN will be the first

ACLK

WLOFF

_n

WE

EN

CLKin

R_WB

DFF

22

to be active (logic 1). Since the circuit needs time to initialize after EN goes high, there will be

a read cycle without doing anything dedicated to that. There is a feature called “write-through”

that in write cycle, the data written into the SRAM will appear on data output bus (DO) after

some delay, which is required by modern cache design, when the microprocessor wants to write

data to the cache, it can write the same data to the memory behind the cache simultaneously.

Thus it is hard to distinguish whether writing is successful with only one write cycle simulation.

Besides, if a writing logic 1 is to be tested (tSDI rising polarity), a logic 0 should be guaranteed

to be written into the SRAM bitcell before the writing logic 1 happens. Same case for writing

logic 0 (tSDI falling polarity). So two write cycles will be used, which will be the second and

third clock cycles, write logic 0 then logic 1 for tSDI rising polarity or write logic 1 then logic

0 (shown in Figure 21). In this case, if the internal SRAM bit flips (shown in Figure 21), it is

assured that the write logic 1/0 is successful. Then the Tsetup can be reduced till the internal

SRAM bit does not flip any more. In general, whether the internal SRAM bit flips will be the

indication of whether the circuit works correctly or not. Because the worst case for setup time

is the slowest circuit, and CLK_LOC_N is slower than CLK_LOC, the CLK_LOC_N is chosen

in the setup time analysis.

Figure 21. Stimulus Waveforms of tSDI Simulation (SS/1.35V/-40°C, Rising)

23

4.5 Methodology

The compiler uses a pre-defined tSDI_spec across all PVT conditions to be the central point of

all matrices. Since the worst PVT condition for a setup time is SS/1.35V/-40°C, the 0.700ns of

tSDI_spec should represent the margin which the compiler uses in this worst case. If such

margin is kept unchanged for all PVT conditions, all tSDI_spec values associated with those

different PVTs can be generated instead of using the only, most conservative one for all cases.

In this way, the compiler could generate a more realistic, more balanced (reliability vs.

performance) tSDI matrix for each PVT condition.

Based on the simulation of SS/1.35V/-40°C, the nominal delay from the underlying DFF

CLK_LOC_N to DATA is 1.259ns (Tsetup=2ns). When Tsetup=0.700ns, which matches the

tSDI_spec, the simulated delay is 1.286ns. The margin is 1.78%. Then this margin could be

used in other PVT conditions to determine the tSDI_spec associated. All tSDI_spec values

associated with the rest of PVT conditions can be achieved when 1.78% delay degradation

happens.

4.6 Optimization (PassFail vs. Dichotomy)

The Eldo simulator provides an optimization method to automatically extract object by varying

parameters in given range. The basic algorithm is bisectional scan with tolerance specified by

the user. Since Eldo can’t work on any range, in other words, if there is a point where Eldo

can’t extract the measurement, it will give error message and exit. So there is a dedicated

PassFail (P/F) method running before the actual bisectional scan to provide the simulator a

valid parameter range.

The P/F method doesn’t care about the starting point. It will try to get as close as possible to

the critical point where circuit starts to fail (the simulator can’t extract the measurement any

more).

Dichotomy method is purely bisectional scan. There are three options the user can specify,

minimal and maximal value (provided by P/F) and starting point. The simulator assumes the

measurement curve will be monotonic, the Dichotomy will start with the starting point and one

end. The user can specify with how much tolerance the simulator will consider to stop

comparing with last step by adjusting tol_relpar value in Eldo option. Smaller tol_relpar

indicates higher accuracy and longer simulation time.

24

4.7 General Procedures (Vary PVTs)

First, the P/F method need be run to get the valid range of Tsetup to simulate the delay from

CLK_LOC_N to DATA of underlying DFF. The upper bound could choose 2ns to get the

nominal delay. The lower bound could choose 0 in order to avoid missing the actual critical

point where circuit starts to fail. For the first time of P/F optimization, the accuracy of Eldo

simulation could be relaxed (by increasing tol_relpar value to 0.1, the default value is 0.001)

so that the optimization will not take too long. Once it finishes, it will give the delay at the

critical point, if it is larger than the margin the user want to use, this P/F optimization is enough

because the desired point will be between the upper bound and critical point. If it is not, a more

accurate, less relaxed P/F optimization might need to be run because the current critical point

is too conservative. Several P/F optimizations might need to be iterated to get the reasonable

critical point.

Once the P/F method gives the valid range of Tsetup, the Dichotomy method could be utilized to

find where delay is 1.78% larger than the nominal value (could choose different margin

depending on the design). The Dichotomy method will do bisectional scan to get as close as

possible to the Tsetup point where delay is 1.78% larger. The Dichotomy method should use the

same/higher accuracy as the last P/F optimization.

Once the Tsetup where delay is 1.78% larger than nominal is given by optimizations, it will be

the central point of tSDI matrix of this very PVT condition, tSDI_spec. When tol_relpar=0.1,

it will give the user 1E-11 accuracy. When tol_relpar=0.01, it will give the user 1E-13 accuracy.

The feasible low accuracy will be done by specifying tol_relpar=0.1, while feasible high

accuracy will be tol_relpar=0.05.

4.8 Results

25

4.8.1 Rising Polarity

Figure 22. tSDI_spec Simulation Results (Rising) with Varying PVTs

26

It can be seen that there is some small fluctuation (<1%) from Tsetup=2ns (where the nominal

delay is calculated) for TT/1.80V/25°C to where the delay degradation starts to appear.

According to the methodology, for TT/1.80V/25°C, when Tsetup=0.120ns, the delay from the

underlying DFF CLK_LOC_N to DATA is 1.78% larger than the nominal value. Comparing

with the tSDI_spec = 0.700ns used in this PVT condition, the simulated central point of tSDI

matrix is 4X smaller, which guarantees much smaller setup time (better performance) with

reasonable 1.78% margin.

Another example for FF/1.95V/-40°C. Applying the 1.78% margin, the tSDI_spec for

FF/1.95V/-40°C is 0.050ns. Again, it is very smaller comparing with the default tSDI_spec the

compiler uses, which gives the user better estimation of how fast the circuit could go before

failure starts. One thing need be notified is that the delay degradation curve is very sharp once

showing up. The 1.78% point is on the very edge of the cliff, which is not a suitable point for

operation. If there is a little variation of the Tsetup, the circuit will probably fail. There might be

an independent margin of these timing parameters acting like design guardband, within which

these parameters could have a small perturbation safely without going into the catastrophic

failure. We has 0.200ns design guardband. Once it added to the simulated tSDI_spec, a better

estimation of tSDI_spec could be 0.050+0.200=0.250ns.

27

4.8.2 Falling Polarity

Figure 23. tSDI_spec Simulation Results (Falling) with Varying PVTs

28

For the falling polarity, it can be seen that, for SS/1.35V/-40°C, there isn’t any delay

degradation when Tsetup=0.700ns. So instead applying the same delay degradation percentage

through all PVTs, we pick SS/1.35V/-40°C as a reference, then extract where the catastrophic

failure happens (the Eldo can’t extract the CLK_LOC_N to DATA delay). The difference

between the Tsetup where catastrophic failure happens and the 0.700ns is assumed to be the

design guardband. For SS/1.35V/-40°C, the catastrophic failure point is Tsetup=0, since the

tSDI_spec in .lib is 0.700ns, the design guardband is 0.700-0=0.700ns, which is maintained

through all other PVTs. The extracted layout simulation results for all PVTs have the same

catastrophic failure point 0ns, which leads to the same simulated tSDI_spec=0.700ns for tSDI

falling polarity.

Chapter 5 Data Input Hold Time (tHDI)

5.1 Equation

In the equation-based method, the tHDI is composed of three individual terms,

T_DI_del_th_r/f_a, tHDI_sim and T_CLKIO_del_th_a. The T_DI_del_th_r/f_a is the delay

from top-level data input bus (DI) most significant bit (MSB) DI<15> to an internal node “N2”

(the middle point between the master and the slave latches) of the underlying DFF of MSB in

the datapath, which is shown in Figure 14.

The T_CLKIO_del_th_a is the delay from the top-level clock pin (CLKin) to the local clock

pin (CLK_LOC) of the underlying DFF of MSB.

tHDI_sim is a design guardbanded simulation value to be used for certain PVT. We has three

different tHDI_sim for different process corners, which is shown in:

Table 6. tHDI_sim Guardband for Different Process Corners

PVT
tHDI_sim

(ns)

SS/1.60V/150°C 0.980

SS/1.60V/-40°C 0.980

TT/1.80V/25°C 0.540

FF/1.60V/150°C 0.560

FF/1.95V/-40°C 0.560

29

The .lib uses 0 assumption for hold time across all PVTs, then add the associated guardband

for different PVTs to generate the central point of the matrices. For example, for SS corner,

regardless the voltage and temperature, all central points are 0.980ns. Same case for TT and FF.

tHDI_rr_ar = – T_DI_del_th_r_a + tHDI_sim + T_CLKIO_del_th_a

tHDI_rf_ar = – T_DI_del_th_f_a + tHDI_sim + T_CLKIO_del_th_a

Equation 4

In Equation 4:

 T_DI_del_th_r_a is the delay from DI<15> to an internal node “N2” of the underlying

DFF when DI<15> is from logic 0 to 1.

 T_DI_del_th_f_a is the delay from DI<15> to an internal node “N2” of the underlying

DFF when DI<15> is from logic 1 to 0.

 tHDI_sim is the guardband value the user specifies when running compiler.

 T_CLKIO_del_th_a is the delay from CLKin to CLK_LOC of the underlying DFF of

MSB.

5.2 Schematic

The Figure 24 shows the schematic of tHDI, from which it can be seen that there are two input

signals, DI<15> and CLKin. The actual clock pin of the underlying DFF, CLK_LOC, is

connected to CLKin through some delay. The compiler takes the two delays shown in Figure

24 as parameters to vary from the 0 + tHDI_sim to generate the 5x5 matrix.

Figure 24. Schematic of tHDI

5.3 Stimulus Waveforms

There are different top-level signals need be stimulated in order to get tHDI_sim: DI, AD, EN,

BEN, R_WB and CLKin. Except for simulation of tSEN, EN will be the first to be active (logic

CLK_LOC
DFF

CLKin

DI<15>

T_CLKIO_del_ts_a

T_DI_del_ts_r/f_a

Q

30

1). Since the circuit needs time to initialize after EN goes high, there will be a read cycle without

doing anything dedicated to that. Like the simulation of tSDI, there are two consecutive write

cycles needed to make sure when we test if a logic 0/1 is written in the SRAM, a complementary

logic 1/0 is already in the SRAM bitcell. So two write cycles will be used, which will be the

second and third clock cycles, write logic 1 then logic 0 for tHDI rising polarity or write logic

0 then logic 1 (shown in). In this case, if the internal SRAM bit flips (shown in), it is assured

that the write logic 0/1 is successful. Since the hold time of the underlying DFF needs to be

extracted, the DI<15> will be toggled shortly after the CLKin, then the delay from CLKin to

DI<15> is the Thold for tHDI simulation. The Thold can be reduced so that the hold time of the

data after the trigger of clock is smaller and smaller till the internal SRAM bit does not flip any

more, which indicates the hold time of the underlying DFF isn’t satisfied anymore. In general,

whether the internal SRAM bit flips will be the indication of whether the circuit works correctly

or not. Because the worst case for hold time is the fastest circuit, and CLK_LOC_N is slower

than CLK_LOC, the CLK_LOC is chosen in the hold time analysis.

Figure 25. Stimulus Waveforms of tHDI Simulation (SS/1.35V/-40°C, Rising)

5.4 Methodology

The compiler uses a user-specified tHDI_sim for different process corners to be the central

point of all matrices. Since the worst PVT condition for a hold time is FF/1.95V/-40°C, the

31

0.560ns of tHDI_sim should represent the guardband which the compiler uses in this worst case.

If such guardband is kept unchanged for all PVT conditions, all tHDI_sim values associated

with those different PVTs can be generated by adding this guardband to the actual simulated

catastrophic failure points. In this way, the compiler could generate a more realistic, more

balanced (reliability vs. performance) tHDI matrix for each PVT condition.

Based on the simulation of FF/1.95V/-40°C, the catastrophic failure point is 0.030ns. Since

0.560ns is used in the .lib, the actual guardband needed to be maintained is 0.560-

0.030=0.530ns. Then this 0.530ns guardband should be kept unchanged across all other PVTs

when adding to the catastrophic failure points associated with those PVTs.

5.5 Results

32

5.5.1 Rising Polarity

Figure 26. tHDI_sim Simulation Results (Rising) with Varying PVTs

33

Regardless of the 0.530ns guardband, the simulations across different PVTs show the actual

catastrophic failure points are very close to 0, even negative values for hold time. Since the

faster the circuit is, the worse the situation for hold time, it can be seen that for the slowest

circuit, SS/1.35V/-40°C, its hold time catastrophic failure point is almost -0.300ns. With the

circuit faster and faster, this catastrophic failure point actually shifts right, which is consistent

with the assumption that the faster circuit is, the larger its hold time will be.

34

5.5.2 Falling Polarity

Figure 27. tHDI_sim Simulation Results (Falling) with Varying PVTs

35

Unlike the rising polarity, the simulations for different PVTs show that faster circuit has slightly

smaller hold time because the catastrophic points are more on the left. Such phenomenon might

result from the simulator accuracy, or there is some other mechanism to cause the slower circuit

to fail earlier. But even though there is slight difference between faster and slower circuits, such

difference isn’t as large as what we see in rising polarity. Generally for falling polarity, the user

could consider all PVTs have a uniform hold time, which is around 0.650ns after adding the

guardband (0.530ns) extracted from FF/1.95V/-40°C.

Chapter 6 Data Writing Delay (tWR)

6.1 Equation

Similar with the tSDI, the tWR also has three terms, two from the subcircuit delay

measurements and one spec value. The T_CLKCTL_del_r_a is the delay from top-level CLKin

to local clock CLK_LOC which triggers the underlying DFF of LSB. The T_DO_del_r/f_a is

the delay from DO_I_N to top-level DO<15>. Unlike the tSDI using same tSDI_spec (0.7ns)

across all PVT conditions, the tWR_spec has three different values (minimal, typical and

maximal). The tWR_spec has variations across process, in other words, the compiler uses the

minimal value for FF, the typical value for TT and maximal value for SS.

tWR_rr_ar = T_CLKCTL_del_r_a + tWR_spec + T_DO_del_r_a

tWR_rf_ar = T_CLKCTL_del_r_a + tWR_spec + T_DO_del_f_a

Equation 5

In Equation 5:

 T_CLKCTL_del_r_a is the delay from top-level CLKin to local CLK_LOC which

triggers the underlying DFF of LSB.

 T_DO_del_r/f_a is the delay from DO_I_N to top-level DO<15>.

 tWR_spec has three different values for minimal, typical and maximal conditions.

Table 7. tWR_spec Values for Different Processes

Min (FF) Typ (TT) Max (SS)

0.500ns 1.930ns 3.920ns

36

6.2 Schematic

The Figure 28 shows the brief schematic of tWR. It can be seen that the equation-based method

is literally adding all the major delays of the path from CLKin to DO. The T_CLKCTL_del_r_a

counts the delay of clock signal, and T_DO_del_r/f_a counts the delay of output buffer (the

blue rectangle between DO_I_N and DO<15>). We assume the delays for the rest parts is

included in the tWR_spec and will not change with different output load capacitances and signal

slew rate.

6.3 Results

For direct measurement of tWR_spec, the delay from CLKin to DO<15> in write cycle is

considered to be tWR_spec. Different simulated tWR_spec for different PVT conditions are

shown in Table 11.

For the rising polarity, the maximal value of tWR_spec which the compiler uses is based on

SS/1.60V/-40°C or SS/1.60V/150°C (depending on which is larger), but the slowest condition

of all cases is SS/1.35V/-40°C. So it is reasonable the simulated tWR_spec of SS/1.35V/-40°C

is larger than the maximal value in the raw data file. On the other hand, the simulated tWR_spec

for SS/1.60V/-40°C is 3.211ns, for SS/1.60V/150°C is 3.213ns, both are smaller than 3.920ns

as expected. Same case for TT/1.80V/25°C. The minimal value of tWR_spec is based on

FF/1.60V/150°C or FF/1.95V/-40°C (depending on which is smaller). But with these two PVT

conditions, the simulated tWR_spec values (1.633ns for FF/1.60V/150°C and 1.075ns for

FF/1.95V/-40°C) are larger than 0.500ns shown in Table 11. Same case for the falling polarity.

CLK_LOC

T_DO_del_r/f_a

T_CLKCTL_del_r_a

we

saOut

DFF
CLKin

DI<15>

DO<15> DO_I_N

Figure 28. Schematic of tWR

37

6.4 Validation

Figure 29. tWR_spec Simulation Results with Varying Temperature and VDD

At first we assumes the .lib is very pessimistic, which means our extracted layout simulation

results should be larger than the values in the .lib. But it turns out that some values are optimistic

instead. The tWR_spec for FF/1.95V/-40°C is about 2X larger than the .lib values (shown in

Table 11). In order to have a sanity check to prove the methodology is correct, for both

FF/1.60V/150°C and FF/1.95/-40°C, we vary one of the temperature (T) and voltage (VDD)

keep the other one intact. The simulated curves are as expected, that higher temperature means

more delay because the circuit is slower (Figure 29(a)). Higher VDD indicates faster circuit

(Figure 29(b)).

One interesting phenomenon is that when VDD is relatively small (VDD < 1.5V), increasing the

temperature will actually increase the speed of the circuit, which is because the threshold

voltage Vt of the MOSFETs is lower with temperature increasing. The lower threshold voltage

Vt will compensate the negative effect resulting from lower mobility in higher temperature, and

finally overcome it and make the circuit faster, which can be seen from Figure 29(b). When

VDD is smaller than 1.5V, the circuit at 150°C has smaller data writing delay than the circuit at

-40°C.

Chapter 7 Read/Write Setup Time (tSRWB)

7.1 Equation

The tSRWB also has three terms in the equation. Except for the tSRWB_spec, the rest two are

delays measured from subcircuits. The T_RWB_del_ts_r_a is the delay from top-level R_WB

38

to an internal node “A_N” (the invert of input A) of the underlying DFF (the very left white

circle shown in Figure 32). The T_CLKCTL_del_ts_a is the delay from top-level CLKin to

local clock CLKEN. The compiler has a fixed tSRWB_spec (0.5ns) across all PVT conditions.

tSWRB = T_RWB_del_ts_r_a + tSRWB_spec - T_CLKCTL_del_ts_a

Equation 6

In Equation 6:

 T_RWB_del_ts_r_a is the delay from top-level R_WB to an internal node “A_N” of

the underlying DFF.

 T_CLKCTL_del_ts_a is the delay from top-level CLKin to local clock CLKEN.

 tSRWB_spec has a value of 0.5ns across all PVT conditions.

7.2 Schematic

The Figure 30 shows the schematic of the tSRWB. It can be seen that the local clock ACLK

which triggers the pre-charge latch of R_WB is gated by the EN_M, which is the registered

signal of the EN. There are two different type of input registers: the normal DFF used in EN

path and pre-charge latch in R_WB path. This pre-charge latch exhibits a unique delay

degradation pattern different from the normal DFF, and that is reason we investigate it more

and do individual simulation of this type of latch without other circuits.

T_CLKCTL_del_ts_a

T_RWB_del_ts_r_a

R_WBREG

ACLK

EN_M

CLKin

R_WB

Pre-Charge

DFF

DFF

CLKEN CLKin

EN

Figure 30. Schematic of tSRWB

39

7.3 Pre-charge Latch

According to design document, the input register used in R_WB signal path is an improved one.

The normal input registers used for DI and EN are normal DFFs shown in Figure 31.

Figure 31. Schematic of Normal DFF

While for those input registers used for AD and R_WB, they are pre-charge latch shown in

Figure 32.

Figure 32. Schematic of Pre-charge Latch

40

When the CLK=0, it will open the PMOS I76 and I77 and shut down the NMOS I68, which

will clamp the internal nodes “TRU” and “BAR” to be VDD all the time. Once the CLK flips to

1, it will open the NMOS I68, and release the clamping. Now if the data input of the latch, A,

is 0, the “TRU” node will be discharged to 0. On the other hand, if A=1, the “BAR” node will

be discharge to 0. It works as a latch with level sensitivity of CLK.

We keep the same methodology as the tSDI_spec simulation does. But the tSRWB_spec

simulation exhibits quite different delay degradation pattern (shown in Figure 34(c)(d)). It can

be seen that the delay degradation curve is not monotonically increasing as expected when Tsetup

decreases. Especially for SS/1.35V/-40°C, there is a range where the delay increases to a

maxima, then decreases to a certain level, then increases again. Seen from the curve, it is like a

hill.

Another problem we find in this methodology when applying to the tSRWB_spec simulation

is the results are extremely small than the .lib. In Table 11, it can be seen that for

SS/1.60V/150°C, the tSRWB_spec we simulate (0.01ns) is 50X smaller than the value in

the .lib (0.5ns). Even though we assume that the .lib is somewhat pessimistic, but such huge

difference leads us to investigate more about this pre-charge latch used in R_WB signal path.

We do individual simulation of such latch to show it exhibits quite different delay degradation

pattern from the normal DFF used in DI and EN.

7.4 Delay Degradations of Normal DFF and Pre-charge Latch

Figure 33. Comparison Between Normal DFF and Pre-charge Latch.

41

7.5 Individual Simulation of Pre-charge Latch without Other Circuits

7.5.1 Individual Simulation vs. Extracted Layout Simulation

Figure 34. (a) Individual Simulation (b)(c) Extracted Layout Simulation

Comparing the red and blue curves in Figure 34(a), we can see the tuning factor play a

significant role in simulation. With higher accuracy setting (.option tuning=accurate), the red

curve is smoother with less unexpected spikes (e.g. the blue curve at Tsetup=1.5ns). More

obvious is in Figure 34(b). The blue curve has a large downward spike at Tsetup=0.5ns. The low

accuracy setting of the simulator could introduce some amount of noise into the results we have

before. We think the actual value might not change too much, but the pattern is somehow

changed by adding some unexpected spikes.

Comparing Figure 34(b) and (c), the pre-charge latch has different delay degradation patterns

under SS/1.35V/-40°C and TT/1.80V/25°C respectively. There is a large hill at Tsetup=0.5ns

42

with height of more than 25% delay degradation in SS/1.35V/-40°C. But in TT/1.80V/25°C,

the general trend of curves is monotonically increasing with Tsetup decreasing.

If comparing with Figure 34(b) and (c), we could see the pre-charge latch behaves worse

individually than it with entire circuit. The Figure 34(c) and (d) are done with entire circuit. But

if considering the same Tsetup=0.5ns for Figure 34(b) and (c), for the entire circuit simulation, it

only gives us 3.5% delay degradation, which should be used across all PVT simulations. While

the individual simulation gives us more than 25% delay degradation at Tsetup=0.5ns, which

should be considered as catastrophic failure.

7.5.2 Varying Output Load Capacitance

Figure 35. Pre-charge Latch Simulation Results with Varying Output Load Capacitance (a)(c)

Absolute Value (b)(d) Percentage Value

43

From Figure 35, we can tell different output capacitance will result in different delay. But from

Figure 35(a) and (c), the basic patterns are the same. Besides, from Figure 35(b) and (d), the

percentage of delay degradation along with decreasing Tsetup doesn’t change too much. Even

without output load capacitance, this pre-charge latch under SS/1.35V/-40°C still shows more

than 25% delay degradation at Tsetup=0.5ns. And the blue curve is actually above the red curve

(with 5fF output load capacitance), which means without output capacitance has worse delay

degradation distortion.

7.5.3 Varying the W/L of PMOS I76 and I77

From Figure 32, we could see PMOS I76 and I77 provide the pre-charging path for the “TRU”

and “BAR” nodes. When CLK=0, both PMOS are turned on and “TRU” and “BAR” are

clamped to VDD. The drive strength of these PMOS determine how fast the two nodes (with

other nodes like the drain of I64, and capacitance associated with) are pre-charging. Larger W/L

ratio can offer larger drive strength, larger charging current, which will reduce the time for

these node to be pre-charged to a certain voltage. We want to know if the drive strength of these

two PMOS, or the relative strength between these two and NMOS I70 can affect the shape or

height of the abnormal hill in the delay degradation pattern found in simulation.

Figure 36. Pre-charge Latch Simulation Results with Varying I76/I77 Width (a) Absolute

Value (b) Percentage Value

As we can see in Figure 36, increasing the width of both PMOS (I76 and I77) can help reducing

the height of the hill between Tsetup=0.1ns and 0.5ns. While the pattern shape keeps the similar.

44

7.5.4 Varying the Power Supply Voltage VDD

Figure 37. Pre-charge Latch Simulation Results with Varying Vdd (a) Absolute Value (b)

Percentage Value

It can be seen that increasing the VDD can greatly reduce the height of hill. Besides, for

VDD=1.8V, the abnormal hill disappears, and the entire delay degradation pattern comes back

to the normal fashion.

7.5.5 Varying the Process

Figure 38. Pre-charge Latch Simulation Results with Varying Process (a) Absolute Value (b)

Percentage Value

45

Similar with increasing the VDD, using fast corners FF can reduce the height of hill. It can be

still seen a little bit hill for TT corner, but there is none for the FF corner. The assumption,

which still needs to be proven, is that the abnormal pattern (hill) could be dampened or

eliminated with lower threshold voltage (Vth) of MOS, fast device or higher power supply (VDD).

7.5.6 Varying the PMOS Model of Output Inverters

There are several PMOS models available in the tech library. The presumption is that with

lower Vth PMOS of output inverters, it can dampen the hill in delay degradation pattern. The

reason is, with lower Vth, the inverters will flip earlier than those with higher Vth. The different

PMOS models with different Vth are shown in Table 8:

Table 8. Different PMOS Models in Tech Library

Model Vth (mV) W/L (um)

phighvt 942 2 x 1.65/0.15

plowvt 602 2 x 3.00/0.35

pshort 790 2 x 1.65/0.15

Figure 39. Delay Degradation Patterns for Different PMOS Models

46

Figure 40. Waveforms for Different PMOS Models

By changing the PMOS model of the inverters (I41 and I72) from phighvt (W/L=2 x 1.62/0.15)

to plowvt (W/L=2 x 3.00/0.35), the hill in delay degradation is damped a lot. But it can observed

that the “TRU” and “BAR” have no longer enough pre-charging current to be charged close to

VDD. So the width (from 0.42/0.15 to 0.55/0.15) of PMOS of both pre-charge path (I76 and I77)

is increased to provide enough pre-charging current before clock arrives. One thing noticed is

that by changing from phighvt to plowvt, the inverter actually flips earlier than before. In the

pre-charge period (before CLK arrives), the output Q will rise higher, from less than 0.5VDD to

VDD. Considering the next stage is a gating for CLK, as long as the CLK keeps 0, it will not be

a problem. According to the design document, only the logic when CLK is active (=1) is

considered.

Changing from phighvt to pshort has similar effect. But it doesn’t require increasing the drive

strength of PMOS of the pre-charge paths.

47

7.5.7 Schematic vs. Extracted Layout Simulation

Figure 41. Schematic vs. Extracted Layout Simulation (a) Rising (b) Falling

From Figure 41(a) it can be seen that both schematic and extracted layout simulations show

this non-monotonic delay degradation pattern with data input rising. These two curves are close

to each other till Tsetup<0.1ns. After Tsetup<0.1ns, the schematic simulation shows larger

increasing rate.

While from Figure 41 (b), this pre-charge type latch demonstrates monotonic delay degradation

pattern, which is similar as the normal DFF does in Figure 33 (b). It is unexpected that even

schematic simulation shows this asymmetry because in the simulation with only transistors

(schematic netlist), both paths (“TRU” and “BAR”) have identical transistor parameters (e.g.

W/L, model type, Vth, etc.). The only difference in the schematic is there is an extra inverter to

generate the reciprocal input signal A_N by taking the A as input, which is shown in Figure 32.

Another thing from Figure 41 (b) is the schematic simulation is worse than extracted layout

simulation. The blue curve (schematic) is above the red curve (layout), and when Tsetup=0.5ns

(which is the tSRWB_spec value in the .lib), the extracted layout simulation gives us 40% delay

degradation while the circuit fails before Tsetup reaches 0.5ns in the schematic simulation.

48

7.5.8 Different Data Input Polarities

Figure 42. Simulation Results of Different Data Input Polarities (a) Schematic (b) Extracted

Layout

From Figure 42 it can be seen that both schematic and extracted layout simulations shows

different delay degradation patterns for different data input polarities (rising vs. falling). This

pre-charge latch favors the rising data input signal because the red curve in Figure 42 shows

much smaller delay degradation than the blue curve does, which means faster propagation. The

presumption, which still needs to be proven, is the inverter on the input side causes this

asymmetry because, for schematic, the rest logic paths are symmetric. In order to answer this

question, we tweak the MOS in this inverter by changing the drive strength, Vth, etc. to see if it

actually affects this non-monotonic patterns and asymmetric response.

7.5.9 Tweak of the Inverter on the Data Input Path

The idea is since the inverter on the data input side is the only asymmetric part in the entire

schematic, this non-monotonic patterns showing only in data input rising polarity should result

from it. By tweaking the W/L of either the NMOS or PMOS in this inverter, or completely

removing this subcircuit, we could have a better understanding its effect on the non-monotonic

pattern.

49

Figure 43. Simulation Results of Tweaking the Inverter

It can be proven from Figure 43 that this non-monotonic pattern results from the asymmetry

caused by this inverter. If completely eliminating the inverter (apply stimulus directly on the

output of this inverter “A_N”), this non-monotonic pattern disappears.

Figure 44. Rising/Falling Simulation Results without the Input Inverter

From Figure 44 it can be seen that both rising and falling are monotonic. One thing needs to be

noticed is that there is still observable asymmetry from the curves, falling has larger delay

degradation than rising does. Another thing is the shapes of both curves change comparing with

Figure 42(b). The reason might be the clock is always positive edge sensitive, which might

introduce this asymmetry.

50

7.5.10 A Proposed Improvement of the Inverter on the Data Input Path

By comparing the waveforms from the simulations with both the unchanged netlist and netlist

without the inverter, we propose the reason causing the non-monotonic pattern is the delay from

the asymmetric existing of the inverter on the data input path.

Figure 45. A_N Waveforms with Unchanged Netlist and Netlist without the Inverter

From Figure 45, it can be seen that the waveforms of the actual A_N generated by the inverter

is quite different from the waveforms directly forced in the simulation with the netlist without

the inverter. So we think the non-monotonic is caused by the delay introduced by the inverter.

With this delay, the actual A_N signal can’t drop to logic 0 before the CLK becomes active

when Tsetup is small enough. If there is much setup time (Tsetup is large enough), in other words,

input A toggles early enough before the CLK toggles, the inverted signal A_N could have

enough time drop from logic 1 to 0. When the input A is more and more close to the CLK,

considering the delay introduced by the inverter, the A_N will be high enough to be considered

logic 1 when the CLK is active. In this case, both A and A_N are logic 1 when the latch

evaluates the input, which turns on both discharge paths and results in a temporary speed up.

51

Figure 46. Portion of Pre-charge Latch Schematic Shows the Added Pull-down Path

In order to eliminate this non-monotonic pattern, we try to compensate the delay introduced by

the inverter. A pull-down path (shown in Figure 46) is added to the A_N node to pre-discharge

the value of A_N to logic 0 so that it doesn’t need to wait for the effective input A to arrive.

This pull-down path is control by the logic value of input A and CLK so that it will be only

turned on when A is logic 0 and CLK is inactive. For the rising polarity scenario (input signal

A toggles from logic 0 to 1), this pull-down path turns on for a while then shuts off. For the

falling polarity scenario (input signal A toggles from logic 1 to 0), this pull-down path shuts off

for a while then turns on, and after a short time, it will be turned off again because CLK is

active. Because we tweak the drive strength of the NMOS I74 (W/L=0.42/0.15) used in this

pull-down path very weak comparing with the PMOS I34 (W/L=3.00/0.15) in the inverter, this

pull-down path can’t affect the output logic of the inverter (shown in Figure 46).

52

7.5.11 Different Versions of the Modified Pre-charge Latch with Pull-down Path

Figure 47. Default Layout

Figure 48. Modified Layout Version 1

Figure 49. Modified Layout Version 2

53

Figure 50. Modified Layout Version 3

Table 9. Different Configurations of the Modified Layouts

 Default Version 1 Version 2 Version 3

Size

10.20um x

3.93um =

40.04um2

10.63um x

6.49um =

68.90um2

10.20um x

5.22um =

53.19um2

10.2um x

5.34um =

54.62um2

With Pull-down

Path
No Yes Yes Yes

PMOS I34 W/L

(um)
0.42/0.15 3.00/0.15 4x0.84/0.15 2x1.65/0.15

M Factor of PMOS

I34
1 1 4 2

Based on the default layout, according to the pull-down path design (shown in Figure 46), 4

more transistors needed to be added to the existing layout. Besides that, the W/L of the PMOS

I34 (shown in Figure 46) needed to be increased. The version 1 was the first modified design,

which confirmed the design correction without taking layout area into consideration. The

increased area for version 1 was 69.8%.

Since large area made the version 1 very difficult to fit into the default SRAM layout, much

effort was made to shrink the layout. The version 2 was based on the version 1, in order to save

area, the M factor of the PMOS I34 was increased, which ended up with 4x0.84/0.15 from

3.00/0.15. The equivalent W/L is larger (4x0.84/0.15 = 3.36/0.15). The simulation results

showed this large M factor (leads to different Vth) actually affected the falling behavior a lot

(discussed in next section), which made the version 2 impractical.

54

The version 3 was proposed based on the version 2 with decreasing the high M factor from 4

to 2. The W/L of the PMOS I34 was 2x1.65/0.15. The simulation results showed good trade-

off between M factor (the low M factor, the better rising/falling behaviors) and small area.

7.5.12 Final Top-level Layout of the SRAM

Figure 51. Final Top-level Layout

In order to make space for the extra logic (4 more transistors and 1 PMOS with increased W/L),

the entire ring was moved down 2um. The modified top-level layout is 2.365% larger than the

default one.

Figure 52. Zoom-in Layout Shows the Improved Pre-charge Type Latch with Pull-down Path

55

It can be seen that except for the extra space, the added logic of the pull-down path didn’t affect

any re-route of the default layout, which preserved the hierarchy instantiation.

7.5.12 Simulation Results of Different Versions of the Modified Layouts

Figure 53. Simulation Results of the Default Layout

Figure 54. Simulation Results of the Version 1

56

Figure 55. Simulation Results of the Version 2

Figure 56. Simulation Results of the Version 3

It can be seen that the simulation result of the rising edge of the default layout had a large bump

shown in the delay degradation pattern. The delay degradation pattern for the falling edge was

monotonically increasing.

In order to eliminate the large bump shown in the rising edge delay degradation pattern, the

pull-down path was added to the default design. From the simulation results of the version 1, it

can be seen that the bump was eliminated, and both rising and falling edge delay degradation

patterns were monotonically increasing.

In order to save area, the version 2 was based on the version 1. But with large M factor (4), the

simulation results of the version 2 showed distortion for the falling edge. The M factor had

large effect (different Vth) on the falling edge delay degradation pattern, which is shown in next

section.

57

The version 3 was a good trade-off between M factor and small area. With relative small M

factor (2), the version 3 kept similar delay degradation patterns (rising/falling) as those of the

version 1 with smaller layout area. This design was chosen to be integrated into the SRAM

layout, which is shown in Figure 51 Figure 52.

7.5.13 The Effect of M Factor on the Delay Degradation Pattern

Figure 57. Simulation Results of Rising/Falling Delay Degradation Patterns with Different M

Factors

It can be seen that different M factor (the equivalent W/L were similar, around 3.00/0.15) had

minor effect on the rising edge delay degradation patterns. But it had huge effect on the falling

edge delay degradation patterns. The falling edge delay degradation patterns with large M factor

(3/4) had distortion. Even though the drive strength PMOS I34 is kept similar, different M

factor results in different Vth, which leads to unexpected behavior (distortion) of the pre-charge

type latch.

7.6 Stimulus Waveforms

EN will be the first to be active. Since the circuit needs time to initialize after EN goes high,

there will be a read cycle without doing anything dedicated to that. There is a feature called

“feed-through” that in write cycle, the data written into the SRAM will appear on DO after

some delay. Thus it is hard to distinguish whether reading is successful if trying reading the

same data right after writing. So two write cycles will be used, which will be the second and

third clock cycles, write 0 at address 111111 then write 1 at 000000. After that, in the fourth

clock cycle, the simulator will try to read 0 from address 111111 (shown in Figure 58). In this

case, if the output DO flips (shown in Figure 58), it is assured that the read 0 at 111111 is

successful. Then the Tsetup can be reduced till the output DO does not flip any more (stay in

58

high). In general, whether the output DO flips will be the indication of whether the circuit works

correctly or not.

Figure 58. Stimulus Waveforms of tSRWB Simulation (SS/1.35V/-40°C, Rising)

7.7 Methodology

To use the same approach as tSDI_spec, the Tsetup=2ns point is simulated to get the nominal

delay from the underlying DFF ACLK to R_WBREG with SS/1.35V/-40°C. The Tsetup=0.5ns

(the same as tSRWB_spec in the .lib) will give the delay at that point. Then a margin of 3.5%

can be achieved, which will be used in the rest to get the tSRWB_spec associated with these

PVT conditions.

7.8 Results

59

7.8.1 Default Layout (Rising Polarity)

Figure 59. tSRWB Simulation Results of Default Layout (Rising) with Varying PVTs

60

According to the tSRWB_spec in the .lib, when Tsetup=0.5ns, for SS/1.35V/-40°C, the delay

degradation is 3.6%. When applying 3.6% delay degradation to other PVTs, the new

tSRWB_spec values are extracted, which are shown in Table 11. The simulation results of

tSRWB aren’t quite consistent with those of tSDI, that tSRWB_spec values for SS and TT are

smaller than those for FF, which is the reason why the underlying pre-charge latch is studied,

and modified to eliminate the non-monotonic delay degradation pattern in the individual

simulations. We believe such non-monotonic pattern results from the imbalance of the pre-

charge latch circuit.

Besides, the non-monotonic delay degradation pattern shown in individual simulations

disappears in full circuit simulations for SS corner. But for TT and FF corners, the non-

monotonic hills can be still seen in the curves.

61

7.8.2 Modified Layout Version 3 (Rising Polarity)

Figure 60. tSRWB Simulation Results of Modified Layout Version 3 (Rising) with Varying

PVTs

62

The modified layout version 3 is designed to eliminate the non-monotonic delay degradation

pattern shown in the simulations of the pre-charge latch. The individual simulations, which are

shown in previous section (Figure 53 vs Figure 56), confirm the added pull-down path can

eliminate the non-monotonic pattern resulting from the imbalance of the input paths (A and

A_N). The full circuit simulations shown in Figure 60 indicate such non-monotone, which still

exist in TT and FF corners of the default layout (Figure 59 (d)(e)), almost disappear (only a

small hill for FF/1.95V/-40°C) with the modified layout version 3.

63

7.8.3 Default Layout (Falling Polarity)

Figure 61. tSRWB Simulation Results of Default Layout (Falling) with Varying PVTs

64

For the falling polarity, the simulations of the default layout show ideal monotonic delay

degradation pattern, with which the tSRWB_spec values associated with each PVT can be

easily extracted. For SS/1.35V/-40°C, the tSRWB_spec used in the .lib is 0.5ns. When applying

Tsetup=0.5ns, it gives us 3% delay degradation, which are used in other PVTs to get each

tSRWB_spec. The simulation results (shown in Table 11) are consistent with the assumption

that faster circuit has smaller tSRWB_spec value.

65

7.8.4 Modified Layout Version 3 (Falling Polarity)

Figure 62. tSRWB Simulation Results of Modified Layout Version 3 (Falling) with Varying

PVTs

66

Even through the modified layout version 3 works well for the rising polarity, the simulation

results for the falling polarity are abnormal. Especially for SS corner, the delay degradation

patterns are falling instead of rising when Tsetup gets smaller. Even for TT and FF corners,

although the general trend is increasing when Tsetup gets smaller, there’re a lot of fluctuation

which doesn’t show in the simulations of the default layout. Our modified layout version 3

somehow doesn’t work well for the falling polarity, preventing further use before fixing this

issue.

67

Chapter 8 Data Reading Delay (tRD)

8.1 Equation

Similar with the tWR, the tRD also has three terms, two from the subcircuit delay measurement

and one spec value. The T_CLKCTL_del_r_a is the delay from top-level CLKin to local clock

CLK_LOC which triggers the underlying DFF. The T_DO_del_r/f_a is the delay from DO_I_N

to top-level DO. Like tWR, the tRD_spec has three different values (minimal, typical and

maximal). The tRD_spec has variation across process, in other words, the compiler uses the

minimal value for FF, the typical value for TT and maximal value for SS.

tRD_rr_ar = T_CLKCTL_del_r_a + tRD_spec + T_DO_del_r_a

tRD_rf_ar = T_CLKCTL_del_r_a + tRD_spec + T_DO_del_f_a

Equation 7

In Equation 7:

 T_CLKCTL_del_r_a is the delay from top-level CLKin to local CLK_LOC which

triggers the underlying DFF.

 T_DO_del_r/f_a is the delay from DO_I_N to top-level DO.

 tRD_spec has three different values for minimal, typical and maximal conditions.

Table 10. tRD_spec Values for Different Processes

Min (FF) Typ (TT) Max (SS)

0.500ns 2.330ns 4.620ns

8.2 Schematic

The Figure 63 shows the brief schematic of tRD. It can be seen that the equation-based method

is literally adding all the major delays of the path from CLKin to DO. The T_CLKCTL_del_r_a

counts the delay of clock signal, and T_DO_del_r_a counts the delay of output buffer (the blue

rectangle between DO_I_N and DO). We assume the delays for the rest parts is included in the

tRD_spec and will not change with different output load capacitances and signal ramp time.

68

Figure 63. Schematic of tRD

8.3 Results

For direct measurement of tRD_spec, the delay from CLKin to DO in read cycle is considered

to be tRD_spec. Different simulated tRD_spec for different PVT conditions are shown in Table

11.

For the rising polarity, similar like tWR_spec, since the maximum value of tRD_spec is based

on SS/1.60V/-40°C or SS/1.60V/150°C (depending on which one is larger), it is reasonable that

simulated tRD_spec of SS/1.35V/-40°C is larger than the maximum value here. But for the

minimal value, which should be based on FF/1.60V/150°C or FF/1.95V/-40°C (depending on

which one is smaller), the simulated values are larger than 0.5ns unexpectedly. Same case for

the falling polarity.

8.4 Validating

Figure 64. tRD Simulation Results with Varying Temperature and VDD

The tRD_spec for FF/1.95V/-40°C is 2.6X larger than the .lib values (shown in Table 11). In

order to have a sanity check to prove the methodology is correct, for both FF/1.60V/150°C and

FF/1.95V/-40°C, we vary one of the temperature (T) and voltage (VDD) keep the other one intact.

DO

T_DO_del_r/f_a

T_CLKCTL_del_r_a

we

saOut

DFF

CLKin
CLK_LOC

DI

DO_I_N

69

The simulated curves are as expected, that higher temperature means more delay because the

circuit is slower (Figure 64(a)). Higher VDD indicates faster circuit (Figure 64(b)).

Chapter 9 Final Results

Table 11. Final Results

PVT Layout Param Polarity .lib (ns)
Simulation

(ns)

SS/1.35V/-40°C Default tSDI Rising 0.700 0.700

SS/1.60V/-40°C Default tSDI Rising 0.700 0.300

SS/1.60V/150°C Default tSDI Rising 0.700 0.250

TT/1.80V/25°C Default tSDI Rising 0.700 0.120

FF/1.60V/150°C Default tSDI Rising 0.700 0.090

FF/1.95V/-40°C Default tSDI Rising 0.700 0.050

SS/1.35V/-40°C Default tSDI Falling 0.700 0.700

SS/1.60V/-40°C Default tSDI Falling 0.700 0.700

SS/1.60V/150°C Default tSDI Falling 0.700 0.600

TT/1.80V/25°C Default tSDI Falling 0.700 0.700

FF/1.60V/150°C Default tSDI Falling 0.700 0.700

FF/1.95V/-40°C Default tSDI Falling 0.700 0.700

SS/1.35V/-40°C Default tHDI Rising 0.980 0.200

SS/1.60V/-40°C Default tHDI Rising 0.980 0.400

SS/1.60V/150°C Default tHDI Rising 0.980 0.460

TT/1.80V/25°C Default tHDI Rising 0.540 0.500

FF/1.60V/150°C Default tHDI Rising 0.560 0.530

FF/1.95V/-40°C Default tHDI Rising 0.560 0.560

SS/1.35V/-40°C Default tHDI Falling 0.980 0.720

SS/1.60V/-40°C Default tHDI Falling 0.980 0.640

SS/1.60V/150°C Default tHDI Falling 0.980 0.700

TT/1.80V/25°C Default tHDI Falling 0.540 0.600

FF/1.60V/150°C Default tHDI Falling 0.560 0.640

FF/1.95V/-40°C Default tHDI Falling 0.560 0.560

SS/1.35V/-40°C Default tWR Rising 4.040 6.563

70

SS/1.60V/-40°C Default tWR Rising 4.040 3.211

SS/1.60V/150°C Default tWR Rising 4.040 3.213

TT/1.80V/25°C Default tWR Rising 1.960 1.698

FF/1.60V/150°C Default tWR Rising 0.500 1.633

FF/1.95V/-40°C Default tWR Rising 0.500 1.075

SS/1.35V/-40°C Default tWR Falling 4.040 6.581

SS/1.60V/-40°C Default tWR Falling 4.040 3.136

SS/1.60V/150°C Default tWR Falling 4.040 3.128

TT/1.80V/25°C Default tWR Falling 1.960 1.653

FF/1.60V/150°C Default tWR Falling 0.500 1.622

FF/1.95V/-40°C Default tWR Falling 0.500 1.040

SS/1.35V/-40°C Default tSRWB Rising 0.500 0.500

SS/1.60V/150°C Default tSRWB Rising 0.500 0.010

SS/1.60V/-40°C Default tSRWB Rising 0.500 0.010

TT/1.80V/25°C Default tSRWB Rising 0.500 0.010

FF/1.60V/150°C Default tSRWB Rising 0.500 0.030

FF/1.95V/-40°C Default tSRWB Rising 0.500 0.050

SS/1.35V/-40°C Mod Ver 3 tSRWB Rising 0.500 0.500

SS/1.60V/150°C Mod Ver 3 tSRWB Rising 0.500 0.650

SS/1.60V/-40°C Mod Ver 3 tSRWB Rising 0.500 0.010

TT/1.80V/25°C Mod Ver 3 tSRWB Rising 0.500 0.150

FF/1.60V/150°C Mod Ver 3 tSRWB Rising 0.500 0.400

FF/1.95V/-40°C Mod Ver 3 tSRWB Rising 0.500 0.080

SS/1.35V/-40°C Default tSRWB Falling 0.500 0.500

SS/1.60V/150°C Default tSRWB Falling 0.500 0.200

SS/1.60V/-40°C Default tSRWB Falling 0.500 0.130

TT/1.80V/25°C Default tSRWB Falling 0.500 0.100

FF/1.60V/150°C Default tSRWB Falling 0.500 0.090

FF/1.95V/-40°C Default tSRWB Falling 0.500 0.080

SS/1.35V/-40°C Mod Ver 3 tSRWB Falling 0.500 0.500

SS/1.60V/150°C Mod Ver 3 tSRWB Falling 0.500
Can’t

Measure

71

SS/1.60V/-40°C Mod Ver 3 tSRWB Falling 0.500
Can’t

Measure

TT/1.80V/25°C Mod Ver 3 tSRWB Falling 0.500
Can’t

Measure

FF/1.60V/150°C Mod Ver 3 tSRWB Falling 0.500
Can’t

Measure

FF/1.95V/-40°C Mod Ver 3 tSRWB Falling 0.500
Can’t

Measure

SS/1.35V/-40°C Default tRD Falling 4.740 7.636

SS/1.60V/150°C Default tRD Falling 4.740 3.924

SS/1.60V/-40°C Default tRD Falling 4.740 3.866

TT/1.80V/25°C Default tRD Falling 2.360 2.082

FF/1.60V/150°C Default tRD Falling 0.500 2.054

FF/1.95V/-40°C Default tRD Falling 0.500 1.318

SS/1.35V/-40°C Mod Ver 3 tRD Falling 4.740 7.733

SS/1.60V/150°C Mod Ver 3 tRD Falling 4.740 3.923

SS/1.60V/-40°C Mod Ver 3 tRD Falling 4.740 3.866

TT/1.80V/25°C Mod Ver 3 tRD Falling 2.360 2.082

FF/1.60V/150°C Mod Ver 3 tRD Falling 0.500 2.052

FF/1.95V/-40°C Mod Ver 3 tRD Falling 0.500 1.317

The simulations for tSDI_spec, tHDI_sim, tWR and tRD meet our expectation that such

methodology can provide an insight for the SRAM design by extracting more realistic central

points of the timing matrices in .lib when the commercial memory compiler uses them as the

starting point to generate entire timing table. The simulations of tSRWB_spec are abnormal

mainly because the register used in the R_WB datapath is a kind of pre-charge type latch which

exhibits non-monotonic delay degradation pattern. By adding a pull-down path to the existing

design, such non-monotonic pattern can be mitigated, but the falling polarity scenario is worse

than before. In general, the original design is a better trade-off between both polarities.

72

Appendix A: Generic Perl Script for Individual DFF Simulation

#!/usr/local/bin/perl

Developer: Xiaowei Zhang

use 5.008;

use warnings;

use diagnostics;

use strict;

use Switch;

if(@ARGV != 1){

 &syntax;

}

my $input_cor = shift;

#my $input_cir = shift;

my $counter = 0;

#my $line = <STDIN>;

#chomp($line);

open CORNER, '<', $input_cor or die "Cannot open $input_cor: $!";

my @line_cor = <CORNER>;

close CORNER;

foreach(@line_cor){

 my $proc = 'tt';

 my $vdd = '1.8';

 my $temp = '25';

 my $load = '5f';

 my $ramp = '0.5n';

 my $tuning = 'accurate';

 my $step = '0.001n';

 my $end = '12n';

 my $nl = 's8tssc_lf_dff.nl';

 my $nl_flag = 0;

 my $subckt = 's8tssc_lf_dff';

 my $ports = 'vgnd vpwr vnb clk q q_n vpb a';

 my $a = 'd';

 my $clk = 'clk';

 my $clk_flag = 0;

 my $clk_n = 'clk_n';

 my $clk_n_flag = 0;

 my $q = 'q';

 my $tmod = 'test';

 my $tm_val = 'vdd';

 my $tm_flag = 0;

 my $reset = 'reset';

 my $reset_val = 'vdd';

 my $reset_flag = 0;

 my $set = 'set';

 my $set_val = 'vdd';

 my $set_flag = 0;

 my $start = '2n';

 my $stop = '0.1n';

 my $incr = '0.1n';

 my $modes = 'linear';

73

 my $md_flag = 0;

 my $type = 'setup';

 my $delta = '2n';

 my $opmod = 'passfail';

 my $tol = 0.01;

 my $opstart = '1n';

 my $lower = '0.1n';

 my $upper = '2n';

 my $perc = 1.05;

 my $nom = '0.12n';

 my $goal = '0.13n';

 my $output_cir = 'dff.cir';

 $counter++;

 chomp;

 if(/\A*.*/i or /\A\#.*/i){

 next;

 }

 s/\s+//g;

 my @param_pair = split /;/;

 foreach(@param_pair){

 chomp;

 my $key;

 my $value;

 ($key, $value) = split /=/;

 chomp($key);

 chomp($value);

 switch($key){

 case 'proc'{

 $proc = $value;

 print "Process: $proc\n";

 }

 case 'vdd'{

 $vdd = $value;

 print "Vdd = $vdd\n";

 }

 case 'temp'{

 $temp = $value;

 print "Temp = $temp\n";

 }

 case 'load'{

 $load = $value;

 print "Cap load = $load\n";

 }

 case 'ramp'{

 $ramp = $value;

 print "Ramp rate = $ramp\n";

 }

 case 'tuning'{

 $tuning = $value;

 print "Tuning factor: $tuning\n";

 }

 case 'step'{

 $step = $value;

 print "Sim stepwise = $step\n";

 }

 case 'end'{

 $end = $value;

 print "Sim length = $end\n";

 }

 case 'netlist'{

 $nl = $value;

 print "Netlist file: $nl\n";

 }

 case 'input'{

74

 $a = $value;

 }

 case 'clk'{

 $clk = $value;

 $clk_flag = 1;

 }

 case 'clk_n'{

 $clk_n = $value;

 $clk_n_flag = 1;

 }

 case 'output'{

 $q = $value;

 }

 case 'tmod'{

 $tmod = $value;

 $tm_flag = 1;

 }

 case 'tmod_val'{

 $tm_val = $value;

 }

 case 'reset'{

 $reset = $value;

 $reset_flag = 1;

 }

 case 'reset_val'{

 $reset_val = $value;

 }

 case 'set'{

 $set = $value;

 $set_flag = 1;

 }

 case 'set_val'{

 $set_val = $value;

 }

 case 'mode'{

 $modes = $value;

 print "Sim mode: $modes\n";

 }

 case 'type'{

 $type = $value;

 print "Sim Type: $type\n";

 }

 case 'delta'{

 $delta = $value;

 print "Delay from clk to output = $delta\n";

 }

 case 'start'{

 $start = $value;

 print "Linear sweep start = $start\n";

 }

 case 'stop'{

 $stop = $value;

 print "Linear sweep stop = $stop\n";

 }

 case 'incr'{

 $incr = $value;

 print "Linear sweep increment = $incr\n";

 }

 case 'opmod'{

 $opmod = $value;

 print "Optimization mode: $opmod\n";

 }

 case 'tol'{

 $tol = $value;

 print "Optimization tolerance = $tol\n";

 }

 case 'opstart'{

 $opstart = $value;

75

 print "Optimization start = $opstart\n";

 }

 case 'lower'{

 $lower = $value;

 print "Optimization lower band = $lower\n";

 }

 case 'upper'{

 $upper = $value;

 print "Optimization upper band = $upper\n";

 }

 case 'perc'{

 $perc = $value;

 print "Delay degradation percentage = $perc\n";

 }

 case 'nom'{

 $nom = $value;

 print "Nominal delay = $nom\n";

 }

 else{}

 }

 }

 open NETLIST, '<', $nl or die "Cannot open $nl: $!";

 my @line_nl = <NETLIST>;

 close NETLIST;

 while(@line_nl){

 $_ = shift @line_nl;

 chomp;

 if(/.*subckt\s*(\w*)\s*(.*)/i){

 $nl_flag = 1;

 $subckt = $1;

 $ports = $2;

 #LOOP:

 $_ = shift @line_nl;

 chomp;

 #if(/\A\+(.*)/i){

 while(/\A\+(.*)/i){

 $ports = "$ports"." "."$1";

 #goto LOOP;

 $_ = shift @line_nl;

 chomp;

 }

 }

 }

 if($nl_flag == 0){

 die "Can't find subckt in netlist $nl\n";

 }

 $_ = $ports;

 if(/\A$a\s.*/i or /.*\s$a\s.*/i or /.*\s$a\z/i){

 print "Input port name: $a\n";

 }else{

 die "Can't find input port $a in netlist $nl\n";

 }

 if($clk_flag == 1){

 if(/\A$clk\s.*/i or /.*\s$clk\s.*/i or /.*\s$clk\z/i){

 print "Clk port name: $clk\n";

 }else{

 die "Can't find clk port $clk in netlist $nl\n";

 }

 }

 if($clk_n_flag == 1){

 if(/\A$clk_n\s.*/i or /.*\s$clk_n\s.*/i or /.*\s$clk_n\z/i){

 print "Clk_n port name: $clk_n\n";

 }else{

 die "Can't find clk_n port $clk_n in netlist $nl\n";

 }

 }

76

 if($clk_flag == 0 and $clk_n_flag == 0){

 die "Can't find clk port in netlist $nl\n";

 }

 if(/\A$q\s.*/i or /.*\s$q\s.*/i or /.*\s$q\z/i){

 print "Output port name: $q\n";

 }else{

 die "Can't find output port $q in netlist $nl\n";

 }

 if($tm_flag == 1){

 if(/\A$tmod\s.*/i or /.*\s$tmod\s.*/i or /.*\s$tmod\z/i){

 print "Test mode port name: $tmod\n";

 }else{

 die "Can't find test mode port $tmod in netlist $nl\n";

 }

 }

 if($reset_flag == 1){

 if(/\A$reset\s.*/i or /.*\s$reset\s.*/i or /.*\s$reset\z/i){

 print "Reset port name: $reset\n";

 }else{

 die "Can't find reset port $reset in netlist $nl\n";

 }

 }

 if($set_flag == 1){

 if(/\A$set\s.*/i or /.*\s$set\s.*/i or /.*\s$set\z/i){

 print "Set port name: $set\n";

 }else{

 die "Can't find set port $set in netlist $nl\n";

 }

 }

 if($modes eq 'single'){

 $output_cir =

"$proc"."_"."$vdd"."_"."$temp"."_"."$subckt"."_"."$modes"."_"."$type"."_"."$

delta";

 $md_flag = 1;

 }elsif($modes eq 'linear'){

 $output_cir =

"$proc"."_"."$vdd"."_"."$temp"."_"."$subckt"."_"."$modes"."_"."$type"."_"."$

start"."_"."$stop"."_"."$incr";

 $md_flag = 2;

 }else{

 if($opmod ne 'passfail'){

 $output_cir =

"$proc"."_"."$vdd"."_"."$temp"."_"."$subckt"."_"."$modes"."_"."$opmod"."_"."

$tol"."_"."$opstart"."_"."$lower"."_"."$upper"."_"."$perc"."_"."$nom";

 $md_flag = 3;

 }else{

 $output_cir =

"$proc"."_"."$vdd"."_"."$temp"."_"."$subckt"."_"."$modes"."_"."$opmod"."_"."

$tol"."_"."$lower"."_"."$upper";

 $md_flag = 4;

 }

 }

 $nom =~ s/(\d+)\w+/$1/i;

 $goal = $perc * $nom;

 $goal = "$goal"."n";

 #open CIR, '<', $input_cir or die "Cannot open $input_cir: $!";

 #my @line_cir = <CIR>;

 my @line_cir = split /\n/, &eldoTemplate;

 #close CIR;

 open OUTPUT, '>', "$output_cir.cir" or die "Cannot open $output_cir:

$!";

 foreach (@line_cir){

 chomp;

 if($proc eq 'ff'){

77

 s/*?(.*include.*ff.*.cor)/$1/i;

 s/*?(.*include.*tt.*.cor)/*$1/i;

 s/*?(.*include.*ss.*.cor)/*$1/i;

 }elsif($proc eq 'tt'){

 s/*?(.*include.*ff.*.cor)/*$1/i;

 s/*?(.*include.*tt.*.cor)/$1/i;

 s/*?(.*include.*ss.*.cor)/*$1/i;

 }else{

 s/*?(.*include.*ff.*.cor)/*$1/i;

 s/*?(.*include.*tt.*.cor)/*$1/i;

 s/*?(.*include.*ss.*.cor)/$1/i;

 }

 s/(.*param.*vdd.*=).*/1vdd/i;

 s/(.*param\s+t\s*=).*/1temp/i;

 s/(.*param.*capVal.*=).*/1load/i;

 s/(.*param.*slope.*=).*/1ramp/i;

 s/(.*option.*tuning.*=).*/1tuning/i;

 s/(.*param.*xStep.*=).*/1step/i;

 s/(.*param.*xEnd.*=).*/1end/i;

 s/(.*include.*)s8tssc_lf_dff\.nl/1nl/i;

 s/(.*X1\s).*/1ports $subckt/i;

 s/X1\.a/X1\.$a/i;

 if($clk_flag == 1){

 s/*?(.*vin1.*)/$1/i;

 s/(.*vin1.*X1.*)clk(.*)/1clk$2/i;

 }else{

 s/*?(.*vin1.*)/*$1/i;

 }

 if($clk_n_flag == 1){

 s/*?(.*vin3.*)/$1/i;

 s/(.*vin3.*X1.*)clk_n(.*)/1clk_n$2/i;

 }else{

 s/*?(.*vin3.*)/*$1/i;

 }

 if($clk_flag == 1){

 s/(.*tpduu.*X1.)clk(.*)/1clk$2/i;

 }elsif($clk_n_flag == 1){

 s/(.*tpd)u(.*X1.)clk(.*)/$1d$2clk_n3/i;

 }else{

 die "Neither clk nor clk_n port is specified\n";

 }

 s/X1\.q/X1\.$q/i;

 if($tm_flag == 1){

 if($tm_val eq 'vdd'){

 s/*?(.*vvpwr3.*)/$1/i;

 s/(.*vvpwr3\s)smode_n(.*)/1tmod$2/i;

 }elsif($tm_val eq 'gnd'){

 s/*?(.*vvgnd12.*)/$1/i;

 s/(.*vvgnd12\s)smode_n(.*)/1tmod$2/i;

 }else{

 die "Incorrect test mode port value\n";

 }

 }

 if($reset_flag == 1){

 if($reset_val eq 'vdd'){

 s/*?(.*vvpwr4.*)/$1/i;

 s/(.*vvpwr4\s)resetb(.*)/1reset$2/i;

 }elsif($reset_val eq 'gnd'){

 s/*?(.*vvgnd13.*)/$1/i;

 s/(.*vvgnd13\s)resetb(.*)/1reset$2/i;

 }else{

 die "Incorrect reset port value\n";

 }

 }

 if($set_flag == 1){

 if($set_val eq 'vdd'){

 s/*?(.*vvpwr5.*)/$1/i;

 s/(.*vvpwr5\s)setb(.*)/1set$2/i;

78

 }elsif($set_val eq 'gnd'){

 s/*?(.*vvgnd14.*)/$1/i;

 s/(.*vvgnd14\s)setb(.*)/1set$2/i;

 }else{

 die "Incorrect set port value\n";

 }

 }

 s/(.*param.*xStart.*=).*/1start/i;

 s/(.*param.*xStop.*=).*/1stop/i;

 s/(.*param.*xIncr.*=).*/1incr/i;

 s/(.*tran.*delta\s).*/1start $stop -$incr/i;

 if($modes eq 'single'){

 if($type eq 'setup'){

 s/*?(.*vin2.*0 vdd.*10n).(delta.*)/$1-$2/i;

 s/*?(.*vin2.*vdd 0.*)/*$1/i

 }elsif($type eq 'hold'){

 s/*?(.*vin2.*vdd 0.*10n).(delta.*)/$1+$2/i;

 s/*?(.*vin2.*0 vdd.*)/*$1/i

 }else{

 die "Incompatible sim type";

 }

 s/(.*param.*delta.*=).*/1delta/i;

 s/*?(.*tran.*uic\z)/$1/i;

 s/*?(.*tran.*delta.*)/*$1/i;

 s/*?(.*optimize)/*$1/i;

 s/*?(.*method.*)/*$1/i;

 s/*?(.*tol_rel.*)/*$1/i;

 s/*?(.*paramopt.*)/*$1/i;

 s/*?(.*goal.*)/*$1/i;

 }elsif($modes eq 'linear'){

 if($type eq 'setup'){

 s/*?(.*vin2.*0 vdd.*10n).(delta.*)/$1-$2/i;

 s/*?(.*vin2.*vdd 0.*)/*$1/i

 }elsif($type eq 'hold'){

 s/*?(.*vin2.*vdd 0.*10n).(delta.*)/$1+$2/i;

 s/*?(.*vin2.*0 vdd.*)/*$1/i

 }else{

 die "Incompatible sim type";

 }

 s/*?(.*tran.*uic\z)/*$1/i;

 s/*?(.*tran.*delta.*)/$1/i;

 s/*?(.*optimize)/*$1/i;

 s/*?(.*method.*)/*$1/i;

 s/*?(.*tol_rel.*)/*$1/i;

 s/*?(.*paramopt.*)/*$1/i;

 s/*?(.*goal.*)/*$1/i;

 }else{

 s/*?(.*tran.*uic\z)/$1/i;

 s/*?(.*tran.*delta.*)/*$1/i;

 s/*?(.*optimize)/$1/i;

 if($opmod eq 'passfail'){

 s/*?(.*method.*=.*passfail)/$1/i;

 s/*?(.*method.*=.*dichotomy)/*$1/i;

 s/*?(.*method.*=.*secant)/*$1/i;

 }elsif($opmod eq 'dichotomy'){

 s/*?(.*method.*=.*passfail)/*$1/i;

 s/*?(.*method.*=.*dichotomy)/$1/i;

 s/*?(.*method.*=.*secant)/*$1/i;

 s/*?(.*goal.*=).*/1goal/i;

 }else{

 s/*?(.*method.*=.*passfail)/*$1/i;

 s/*?(.*method.*=.*dichotomy)/*$1/i;

 s/*?(.*method.*=.*secant)/$1/i;

 s/*?(.*goal.*=).*/1goal/i;

 }

 s/*?(.*tol_relpar.*=).*/1tol/i;

 s/*?(.*paramopt.*=).*/$1\($opstart,$lower,$upper\)/i;

 }

79

 print OUTPUT "$_\n";

 }

 close OUTPUT;

 my $sim_cmd = "eldo $output_cir.cir -queue -noconf";

 print "$sim_cmd\n";

 system "mkdir -p WA/$input_cor/$counter/eldo";

 system "$sim_cmd > ./WA/$input_cor/$counter/$output_cir.log 2>&1";

 if($? != 0){

 exit $?;

 }

 open LOG, '<', "./WA/$input_cor/$counter/$output_cir.log" or die "Can't

open $output_cir.log: $!";

 my @line_log = <LOG>;

 close LOG;

 open CSV, '>>', "./WA/$input_cor/$counter/$output_cir.csv" or die "Can't

open $output_cir.csv: $!";

 my $nom_delay = 0;

 while(@line_log){

 $_ = shift @line_log;

 chomp;

 if($md_flag == 1 or $md_flag == 2){

 if(/.*value.*of.*parameter.*/i){

 s/.*value.*of.*parameter\s*\w*\s*is\s*(.*)/$1/i;

 print CSV "$_".",\t";

 }elsif(/.*clk2q.*=.*/i){

 s/.*clk2q.*=\s*(.*)\s+Sec/$1/i;

 #Works on cobb instead of wildcat

 if($nom_delay == 0){

 $nom_delay = $_;

 }

 my $dd = $_ / $nom_delay;

 print CSV "$_,\t$dd\n";

 }elsif(/.*clk2q cannot.*/i){

 print CSV "Can't be measured,\tCan't be measured\n";

 }

 }else{

 if(/.**** OPTIMIZATION ***.*/i){

 until(/.****>MESSAGE SUMMARY.*/i){

 #unless(/\A\s+\z/i or /\A\n\z/i){

 print CSV "$_\n";

 #}

 $_ = shift @line_log;

 chomp;

 }

 }

 }

 }

 system "mv $output_cir*.* ./WA/$input_cor/$counter/eldo";

}

close CSV;

exit 0;

sub eldoTemplate{

 my $template = "* DFF Sim

.option brief probe

.notrc

*.option strict

.option nomod

.option printlg=10000

.option compat

.option post=1

.option ingold=1

.option numdgt=10

.option gmin=1.0e-18

.option gmindc=1.0e-18

80

.option nojwdb

.option tuning=accurate

.option interp=1

*.include /tools/cadflow/t/4.4/s8p-5r/models/ff.cor

.include /tools/cadflow/t/4.4/s8p-5r/models/tt.cor

*.include /tools/cadflow/t/4.4/s8p-5r/models/ss.cor

*.include /tools/cadflow/t/4.4/s8p-5r/models/hrlc.cor

.include /tools/cadflow/t/4.4/s8p-5r/models/trtc.cor

*.include /tools/cadflow/t/4.4/s8p-5r/models/lrhc.cor

*.include /tools/cadflow/t/4.4/s8p-5r/models/ffcell.cor

.include /tools/cadflow/t/4.4/s8p-5r/models/ttcell.cor

*.include /tools/cadflow/t/4.4/s8p-5r/models/sscell.cor

.include ./s8tssc_lf_dff.nl

X1 vgnd vpwr vnb clk q q_n vpb a s8tssc_lf_dff

.param capVal=5f

.param t=-40

.param delta=2n

.param vdd=1.35

.param period=6n

.param slope=0.5n

.param xStep=0.001n

.param xEnd=20n

.param xStart=2n

.param xStop=0.1n

.param xIncr=0.1n

.temp t

cL0 q 0 capVal

cL1 q_n 0 capVal

vvpwr1 vpb 0 vdd

vvpwr2 vpwr 0 vdd

*vvpwr3 smode_n 0 vdd

*vvpwr4 resetb 0 vdd

*vvpwr5 setb 0 vdd

vvgnd10 vgnd 0 0

vvgnd11 vnb 0 0

*vvgnd12 smode_n 0 0

*vvgnd13 resetb 0 0

*vvgnd14 setb 0 0

vin1 X1.clk 0 pulse(0 vdd 10n slope slope 'period-slope' '2*period')

vin2 X1.a 0 pulse(0 vdd '10n-delta' slope slope 100n 200n)

*vin2 X1.a 0 pulse(vdd 0 '10n-delta' slope slope 100n 200n)

*vin3 X1.clk_n 0 pulse(vdd 0 10n slope slope 'period-slope' '2*period')

.plot tran

+v(X1.clk)

+v(X1.a)

+v(X1.q)

+v(X1.q_n)

+v(X1.true)

+v(X1.bar)

+isub(X1.vpwr)

+isub(X1.vpb)

+power

+ix(X1.7)

.tran xStep xEnd uic

81

*.tran xStep xEnd uic sweep delta 0.1n 2n 0.1n

*.optimize

*+method=passfail

*+method=dichotomy

*+method=secant

*+tol_relpar=0.1

*+tol_reltarg=0.01

*.paramopt delta=(1n,0.1n,2n)

.extract

+tran

+label=clk2q

+tpduu(v(X1.clk),v(X1.q),vth='0.5*vdd',after=0)

*+goal=0.215n

.end";

 $template;

}

sub syntax{

 print "extract.pl <corner file>\n";

 print "corner file structure\n";

 print "|_Process, <proc>\n";

 print "|_Voltage, <vdd>\n";

 print "|_Temp, <temp>\n";

 print "|_Cap load, <load>\n";

 print "|_Ramp rate, <ramp>\n";

 print "|_Tuning factor, <tuning>\n";

 print "|_Sim stepwise, <step>\n";

 print "|_Sim length, <end>\n";

 print "|_netlist, <nl>\n";

 print "|_Input port, <input>\n";

 print "|_Clk port, <clk>\n";

 print "|_Clk_n port, <clk_n>\n";

 print "|_Output port, <output>\n";

 print "|_Test mode port, <tmod>\n";

 print "| |_Test mode port value, <tmod_val>\n";

 print "|_Reset port, <reset>\n";

 print "| |_Reset port value, <reset_val>\n";

 print "|_Set port, <set>\n";

 print "| |_Set port value, <set_val>\n";

 print "|_Sim mode, <mode>\n";

 print " |_Single sim\n";

 print " | |_Sim type, <type>\n";

 print " | |_Single sim delta, <delta>\n";

 print " |_Linear sweep\n";

 print " | |_Sim type, <type>\n";

 print " | |_Linear sweep start, <start>\n";

 print " | |_Linear sweep stop, <stop>\n";

 print " | |_Linear sweep increment, <incr>\n";

 print " |_Optimization\n";

 print " |_Optimization mode, <opmod>\n";

 print " |_Optimization tolerance, <tol>\n";

 print " |_Optimization start point, <opstart>\n";

 print " |_Lower band, <lower>\n";

 print " |_upper band, <upper>\n";

 print " |_Dichotomy/secant\n";

 print " |_Delay degradation percentage, <perc>\n";

 print " |_Nominal delay, <nom>\n";

 print "Example:\n";

 print "proc=tt; vdd=1.8; temp=25; load=5f; ramp=0.5n; tuning=accurate;

step=0.01n; end=12n; netlist=s8tssc_lf_dff.nl; input=a; clk=clk; output=q;

mode=optimization; opmod=dichotomy; tol=0.05; opstart=1n; lower=0.1n;

upper=2n; perc=1.05; nom=0.1190n\n";

82

 die "Eldo sim abort";

}

83

Appendix B: Generic Ruby Script for Individual DFF Simulation

#!/usr/local/bin/ruby

Developer: Xiaowei Zhang

def main

 syntax if ARGV.length == 0

 cor_name = ARGV[0]

 counter = 0

 cor_file = File.open(cor_name, "r")

 until cor_file.eof do

 line_cor = cor_file.gets.strip.chomp

 counter += 1

 proc = "tt"

 vdd = "1.8"

 temp = "25"

 load = "5f"

 ramp = "0.5n"

 tuning = "accurate"

 step = "0.001n"

 sim_end = "20n"

 nl = Attr.new("s8tssc_lf_dff.nl", 0)

 subckt = "s8tssc_lf_dff"

 ports = "vgnd vpwr vnb clk q q_n vpb a"

 a = "d"

 clk = Port.new("clk", 0)

 clk_n = Port.new("clk_n", 0)

 q = "q"

 tmod = Port.new("test", 0, "vdd")

 reset = Port.new("reset", 0, "vdd")

 set = Port.new("set", 0, "vdd")

 start = "2n"

 stop = "0.1n"

 incr = "0.1n"

 modes = Attr.new("linear", 0)

 type = "setup"

 # Need more work to distinguish master-slave & pre-charge type FFs

 # Pre-charge type FFs need to have two output q & q_cmp

 # polarity = "rising"

 delta = "2n"

 opmod = "passfail"

 tol = 0.01

 opstart = "1n"

 lower = "0.1n"

 upper = "2n"

 perc = 1.05

 nom = "0.12n"

 goal = "0.13n"

 output_cir = "dff.cir"

 # Never use match block, use "if" instead

 if /\A(*|\#).*/i.match(line_cor)

 next

 end

 line_cor.gsub!(/\s+/i, "")

 param_pair = line_cor.split(/;/)

 param_pair.each do |param|

 #param_hash = Hash.new

 (key, val) = param.split(/=/)

 case key

 when "proc"

 proc = val

 puts "Process: #{proc}"

84

 when "vdd"

 vdd = val

 puts "Vdd = #{vdd}"

 when "temp"

 temp = val

 puts "Temp = #{temp}"

 when "load"

 load = val

 puts "Cap load = #{load}"

 when "ramp"

 ramp = val

 puts "Slew rate = #{ramp}"

 when "tuning"

 tuning = val

 puts "Tuning factor: #{tuning}"

 when "step"

 step = val

 puts "Sim stepwise = #{step}"

 when "end"

 sim_end = val

 puts "Sim length = #{sim_end}"

 when "netlist"

 nl.name = val

 puts "Netlist file: #{nl.name}"

 when "input"

 a = val

 when "clk"

 clk.name = val

 clk.flag = 1

 when "clk_n"

 clk_n.name = val

 clk_n.flag = 1

 when "output"

 q = val

 when "tmod"

 tmod.name = val

 tmod.flag = 1

 when "tmod_val"

 tmod.val = val

 when "reset"

 reset.name = val

 reset.flag = 1

 when "reset_val"

 reset.val = val

 when "set"

 set.name = val

 set.flag = 1

 when "set_val"

 set.val = val

 when "mode"

 modes.name = val

 puts "Sim mode: #{modes.name}"

 when "type"

 type = val

 puts "Sim Type: #{type}"

 # when "polarity"

 # polarity = val

 # puts "Input polarity: #{polarity}"

 when "delta"

 delta = val

 puts "Delay from clk to output = #{delta}"

 when "start"

 start = val

 puts "Linear sweep start = #{start}"

 when "stop"

 stop = val

 puts "Linear sweep stop = #{stop}"

 when "incr"

85

 incr = val

 puts "Linear sweep increment = #{incr}"

 when "opmod"

 opmod = val

 puts "Optimization mode: #{opmod}"

 when "tol"

 tol = val

 puts "Optimization tolerance = #{tol}"

 when "opstart"

 opstart = val

 puts "Optimization start = #{opstart}"

 when "lower"

 lower = val

 puts "Optimization lower band = #{lower}"

 when "upper"

 upper = val

 puts "Optimization upper band = #{upper}"

 when "perc"

 perc = val

 puts "Delay degradation percentage = #{perc}"

 when "nom"

 nom = val

 puts "Nominal delay = #{nom}"

 else

 puts "Incompatible param"

 exit

 end

 end

 nl_file = File.open(nl.name, "r")

 until nl_file.eof do

 line_nl = nl_file.gets.strip.chomp

 if /.*subckt\s*(\w*)\s*(.*)/i.match(line_nl)

 nl.flag = 1

 subckt = $1

 ports = $2

 line_nl = nl_file.gets.strip.chomp

 while /\A\+(.*)/i.match(line_nl) do

 ports = ports + " " + $1

 line_nl = nl_file.gets.strip.chomp

 end

 end

 end

 if nl.flag == 0

 puts "Can't find subckt in netlist #{nl.name}"

 exit

 end

 # "or" or "|" doesn't work well in Ruby unlike in Perl, use

Regexp.union instead

 if Regexp.union(/\A#{a}\s.*/i, /.*\s#{a}\s.*/i,

/.*\s#{a}\z/i).match(ports)

 puts "Input port name: #{a}"

 else

 puts "Can't find input port #{a} in netlist #{nl.name}"

 exit

 end

 if clk.flag == 1

 if Regexp.union(/\A#{clk.name}\s.*/i, /.*\s#{clk.name}\s.*/i,

/.*\s#{clk.name}\z/i).match(ports)

 puts "Clk port name: #{clk.name}"

 else

 puts "Can't find clk port #{clk.name} in netlist #{nl.name}"

 exit

 end

 end

 if clk_n.flag == 1

86

 if Regexp.union(/\A#{clk_n.name}\s.*/i,

/.*\s#{clk_n.name}\s.*/i, /.*\s#{clk_n.name}\z/i).match(ports)

 puts "Clk port name: #{clk_n.name}"

 else

 puts "Can't find clk port #{clk_n.name} in netlist

#{nl.name}"

 exit

 end

 end

 if clk.flag == 0 && clk_n.flag == 0

 puts "Can't find clk port in netlist #{nl.name}"

 end

 if Regexp.union(/\A#[6]\s.*/i, /.*\s#[6]\s.*/i,

/.*\s#[6]\z/i).match(ports)

 puts "Input port name: #[6]"

 else

 puts "Can't find input port #[6] in netlist #{nl.name}"

 exit

 end

 if tmod.flag == 1

 if Regexp.union(/\A#{tmod.name}\s.*/i, /.*\s#{tmod.name}\s.*/i,

/.*\s#{tmod.name}\z/i).match(ports)

 puts "Clk port name: #{tmod.name}"

 else

 puts "Can't find test port #{tmod.name} in netlist

#{nl.name}"

 exit

 end

 end

 if reset.flag == 1

 if Regexp.union(/\A#{reset.name}\s.*/i,

/.*\s#{reset.name}\s.*/i, /.*\s#{reset.name}\z/i).match(ports)

 puts "Clk port name: #{reset.name}"

 else

 puts "Can't find reset port #{reset.name} in netlist

#{nl.name}"

 exit

 end

 end

 if set.flag == 1

 if Regexp.union(/\A#{set.name}\s.*/i, /.*\s#{set.name}\s.*/i,

/.*\s#{set.name}\z/i).match(ports)

 puts "Clk port name: #{set.name}"

 else

 puts "Can't find set port #{set.name} in netlist #{nl.name}"

 exit

 end

 end

 case modes.name

 when "single"

 output_cir = proc + "_" + vdd + "_" + temp + "_" + subckt +

"_" + modes.name + "_" + type + "_" + delta

 modes.flag = 1

 when "linear"

 output_cir = proc + "_" + vdd + "_" + temp + "_" + subckt +

"_" + modes.name + "_" + type + "_" + start + "_" + stop + "_" + incr

 modes.flag = 2

 when "optimization"

 if opmod == dichotomy

 output_cir = proc + "_" + vdd + "_" + temp + "_" +

subckt + "_" + modes.name + "_" + opmod + "_" + tol + "_" + opstart + "_" +

lower + "_" + upper + "_" + perc + "_" + nom

 modes.flag = 3

 elsif opmode == passfail

 output_cir = proc + "_" + vdd + "_" + temp + "_" +

subckt + "_" + modes.name + "_" + opmod + "_" + tol + "_" + lower + "_" +

upper

87

 modes.flag = 4

 else

 puts "Incompatible optimization mode"

 exit

 end

 else

 puts "Incompatible sim mode"

 exit

 end

 # Use \1 instead of $1, $1 can only be used in block for back-

reference

 # Use '' instead of ""

 # If it is a double-quoted string, both back-references must be

preceded by an additional backslash.

 # However, within replacement the special match variables, such as

&$, will not refer to the current match.

 nom.sub!(/(.*)n/i, '\1')

 goal = perc * nom.to_f

 goal = goal.to_s + "n"

 line_cir = EldoTemplate::TEMPLATE.split(/\n/)

 output = File.open("#{output_cir}.cir", "w")

 line_cir.each do |line|

 line.chomp

 case proc

 when "ff"

 line.sub!(/*?(.*include.*ff.*.cor)/i, '\1')

 line.sub!(/*?(.*include.*tt.*.cor)/i, '*' + '\1')

 line.sub!(/*?(.*include.*ss.*.cor)/i, '*' + '\1')

 when "tt"

 line.sub!(/*?(.*include.*ff.*.cor)/i, '*' + '\1')

 line.sub!(/*?(.*include.*tt.*.cor)/i, '\1')

 line.sub!(/*?(.*include.*ss.*.cor)/i, '*' + '\1')

 when "ss"

 line.sub!(/*?(.*include.*ff.*.cor)/i, '*' + '\1')

 line.sub!(/*?(.*include.*tt.*.cor)/i, '*' + '\1')

 line.sub!(/*?(.*include.*ss.*.cor)/i, '\1')

 else

 puts "Incompatible process"

 exit

 end

 line.sub!(/(.*param.*vdd.*=).*/i, '\1' + vdd)

 line.sub!(/(.*param\s+t\s*=).*/i, '\1' + temp)

 line.sub!(/(.*param.*capVal.*=).*/i, '\1' + load)

 line.sub!(/(.*param.*slope.*=).*/i, '\1' + ramp)

 line.sub!(/(.*option.*tuning.*=).*/i, '\1' + tuning)

 line.sub!(/(.*param.*xStep.*=).*/i, '\1' + step)

 line.sub!(/(.*param.*xEnd.*=).*/i, '\1' + sim_end)

 line.sub!(/(.*include.*)s8tssc_lf_dff\.nl/i, '\1' + nl.name)

 line.sub!(/(.*X1\s).*/i, '\1' + ports + ' ' + subckt)

 line.sub!(/X1\.a/i, "X1." + a)

 if clk.flag == 1

 line.sub!(/*?(.*vin1.*)/i, '\1')

 line.sub!(/(.*vin1.*X1.*)clk(.*)/i, '\1' + clk.name + '\2')

 else

 line.sub!(/*?(.*vin1.*)/i, '*' + '\1')

 end

 if clk_n.flag == 1

 line.sub!(/*?(.*vin3.*)/i, '\1')

 line.sub!(/(.*vin3.*X1.*)clk_n(.*)/i, '\1' + clk_n.name +

'\2')

 else

 line.sub!(/*?(.*vin3.*)/i, '*' + '\1')

 end

 # If both clk and clk_n are present, use clk in "extract"

 if clk.flag == 1

88

 line.sub!(/(.*tpduu.*X1.)clk(.*)/i, '\1' + clk.name + '\2')

 elsif clk_n.flag == 1

 line.sub!(/(.*tpd)u(.*X1.)clk(.*)/i, '\1' + 'd' + '\2' +

clk_n.name + '\3')

 else

 puts "Neither clk nor clk_n port is specified"

 exit

 end

 line.sub!(/X1\.q/i, "X1." + q)

 if tmod.flag == 1

 if tmod.val == "vdd"

 line.sub!(/*?(.*vvpwr3\s)smode_n(.*)/i, '\1' +

tmod.name + '\2')

 elsif tmod.val == "gnd"

 line.sub!(/*?(.*vvgnd12\s)smode_n(.*)/i, '\1' +

tmod.name + '\2')

 else

 puts "Incorrect test mode port value"

 exit

 end

 else

 line.sub!(/*?(.*vvpwr3.*)/i, '*' + '\1')

 line.sub!(/*?(.*vvgnd12.*)/i, '*' + '\1')

 end

 if reset.flag == 1

 if reset.val == "vdd"

 line.sub!(/*?(.*vvpwr4\s)resetb(.*)/i, '\1' +

reset.name + '\2')

 elsif reset.val == "gnd"

 line.sub!(/*?(.*vvgnd13\s)resetb(.*)/i, '\1' +

reset.name + '\2')

 else

 puts "Incorrect reset mode port value"

 exit

 end

 else

 line.sub!(/*?(.*vvpwr4.*)/i, '*' + '\1')

 line.sub!(/*?(.*vvgnd13.*)/i, '*' + '\1')

 end

 if set.flag == 1

 if set.val == "vdd"

 line.sub!(/*?(.*vvpwr5\s)setb(.*)/i, '\1' + set.name +

'\2')

 elsif set.val == "gnd"

 line.sub!(/*?(.*vvgnd14\s)setb(.*)/i, '\1' + set.name +

'\2')

 else

 puts "Incorrect set mode port value"

 exit

 end

 else

 line.sub!(/*?(.*vvpwr5.*)/i, '*' + '\1')

 line.sub!(/*?(.*vvgnd14.*)/i, '*' + '\1')

 end

 line.sub!(/(.*param.*xStart.*=).*/i, '\1' + start)

 line.sub!(/(.*param.*xStop.*=).*/i, '\1' + stop)

 line.sub!(/(.*param.*xIncr.*=).*/i, '\1' + incr)

 line.sub!(/(.*tran.*delta\s).*/i, '\1' + start + ' ' + stop + '

-' + incr)

 case modes.name

 when "single"

 # Add sim timing param type & polarity

 if type == "setup"

 line.sub!(/*?(.*vin2.*0 vdd.*10n).(delta.*)/i, '\1'

+ '-' + '\2')

 line.sub!(/*?(.*vin2.*vdd 0.*)/i, '*' + '\1')

 # line.sub!(/*?(.*tpd.*clk.*q)/i, '\1')

 # line.sub!(/*?(.*tpd.*q.*clk)/i, '*' + '\1')

89

 elsif type == "hold"

 line.sub!(/*?(.*vin2.*vdd 0.*10n).(delta.*)/i, '\1'

+ '+' + '\2')

 line.sub!(/*?(.*vin2.*0 vdd.*)/i, '*' + '\1')

 else

 puts "Incompatible sim type"

 exit

 end

 # if polarity == "rising"

 # line.sub!(/*?(.*vin2.*0 vdd.*)/i, '\1')

 # line.sub!(/*?(.*vin2.*vdd 0.*)/i, '*' + '\1')

 # line.sub!(/(.*tpd)..(.*clk.*q)/i, '\1' + 'uu' +

'\2')

 # line.sub!(/(.*tpd)..(.*q.*clk)/i, '\1' + 'uu' +

'\2')

 # elsif polarity == "falling"

 # line.sub!(/*?(.*vin2.*0 vdd.*)/i, '*' + '\1')

 # line.sub!(/*?(.*vin2.*vdd 0.*)/i, '\1')

 # line.sub!(/(.*tpd)..(.*clk.*q)/i, '\1' + 'ud' +

'\2')

 # line.sub!(/(.*tpd)..(.*q.*clk)/i, '\1' + 'du' +

'\2')

 # else

 # puts "Incompatible input polarity"

 # exit

 # end

 line.sub!(/(.*param.*delta.*=).*/i, '\1' + delta)

 line.sub!(/*?(.*tran.*uic\z)/i, '\1')

 line.sub!(/*?(.*tran.*delta.*)/i, '*' + '\1')

 line.sub!(/*?(.*optimize)/i, '*' + '\1')

 line.sub!(/*?(.*method.*)/i, '*' + '\1')

 line.sub!(/*?(.*tol_rel.*)/i, '*' + '\1')

 line.sub!(/*?(.*paramopt.*)/i, '*' + '\1')

 line.sub!(/*?(.*goal.*)/i, '*' + '\1')

 when "linear"

 if type == "setup"

 line.sub!(/*?(.*vin2.*0 vdd.*10n).(delta.*)/i, '\1'

+ '-' + '\2')

 line.sub!(/*?(.*vin2.*vdd 0.*)/i, '*' + '\1')

 # line.sub!(/*?(.*tpd.*clk.*q)/i, '\1')

 # line.sub!(/*?(.*tpd.*q.*clk)/i, '*' + '\1')

 elsif type == "hold"

 line.sub!(/*?(.*vin2.*vdd 0.*10n).(delta.*)/i, '\1'

+ '+' + '\2')

 line.sub!(/*?(.*vin2.*0 vdd.*)/i, '*' + '\1')

 else

 puts "Incompatible sim type"

 exit

 end

 # if polarity == "rising"

 # line.sub!(/*?(.*vin2.*0 vdd.*)/i, '\1')

 # line.sub!(/*?(.*vin2.*vdd 0.*)/i, '*' + '\1')

 # line.sub!(/(.*tpd)..(.*clk.*q)/i, '\1' + 'uu' +

'\2')

 # line.sub!(/(.*tpd)..(.*q.*clk)/i, '\1' + 'uu' +

'\2')

 # elsif polarity == "falling"

 # line.sub!(/*?(.*vin2.*0 vdd.*)/i, '*' + '\1')

 # line.sub!(/*?(.*vin2.*vdd 0.*)/i, '\1')

 # line.sub!(/(.*tpd)..(.*clk.*q)/i, '\1' + 'ud' +

'\2')

 # line.sub!(/(.*tpd)..(.*q.*clk)/i, '\1' + 'du' +

'\2')

 # else

 # puts "Incompatible input polarity"

 # exit

 # end

 line.sub!(/*?(.*tran.*uic\z)/i, '*' + '\1')

90

 line.sub!(/*?(.*tran.*delta.*)/i, '\1')

 line.sub!(/*?(.*optimize)/i, '*' + '\1')

 line.sub!(/*?(.*method.*)/i, '*' + '\1')

 line.sub!(/*?(.*tol_rel.*)/i, '*' + '\1')

 line.sub!(/*?(.*paramopt.*)/i, '*' + '\1')

 line.sub!(/*?(.*goal.*)/i, '*' + '\1')

 when "optimization"

 line.sub!(/*?(.*tran.*uic\z)/i, '\1')

 line.sub!(/*?(.*tran.*delta.*)/i, '*' + '\1')

 line.sub!(/*?(.*optimize)/i, '\1')

 case opmod

 when "passfail"

 line.sub!(/*?(.*method.*=.*passfail)/i, '\1')

 line.sub!(/*?(.*method.*=.*dichotomy)/i, '*' +

'\1')

 line.sub!(/*?(.*method.*=.*secant)/i, '*' +

'\1')

 line.sub!(/*?(.*goal.*=.*)/i, '*' + '\1')

 when "dichotomy"

 line.sub!(/*?(.*method.*=.*passfail)/i, '*' +

'\1')

 line.sub!(/*?(.*method.*=.*dichotomy)/i, '\1')

 line.sub!(/*?(.*method.*=.*secant)/i, '*' +

'\1')

 line.sub!(/*?(.*goal.*=).*/i, '\1' + goal)

 when "secant"

 line.sub!(/*?(.*method.*=.*passfail)/i, '*' +

'\1')

 line.sub!(/*?(.*method.*=.*dichotomy)/i, '*' +

'\1')

 line.sub!(/*?(.*method.*=.*secant)/i, '\1')

 line.sub!(/*?(.*goal.*=).*/i, '\1' + goal)

 else

 puts "Incompatible optimization mode"

 exit

 end

 line.sub!(/*?(.*tol_relpar.*=).*/i, '\1' + tol)

 line.sub!(/*?(.*paramopt.*=).*/i, '\1' + '(' + opstart

+ ', ' + lower + ', ' + upper + ')')

 else

 puts "Incompatible sim mode"

 exit

 end

 output.printf("#{line}\n")

 end

 output.close

 sim_cmd = "eldo #{output_cir}.cir -queue -noconf"

 puts sim_cmd

 system("mkdir -p WA/#{cor_name}/#{counter}/eldo")

 system("#{sim_cmd} > ./WA/#{cor_name}/#{counter}/#{output_cir}.log

2>&1")

 log = File.open("./WA/#{cor_name}/#{counter}/#{output_cir}.log",

"r")

 csv = File.open("./WA/#{cor_name}/#{counter}/#{output_cir}.csv",

"w")

 nom_delay = 0

 until log.eof do

 line_log = log.gets.strip.chomp

 if modes.flag == 1 || modes.flag == 2

 if /.*value.*of.*parameter.*/i.match(line_log)

 if

line_log.sub!(/.*value.*of.*parameter\s*\w*\s*is\s*(.*)/i, '\1')

 csv.printf("#{$1},\t")

 end

 elsif /.*clk2q.*=.*/i.match(line_log)

 if line_log.sub!(/.*clk2q.*=\s*(.*)\s+Sec/i, '\1')

91

 nom_delay = $1.to_f if nom_delay == 0

 dd = $1.to_f / nom_delay

 csv.printf("#{$1},\t#{dd}\n")

 end

 elsif /.*clk2q cannot.*/i.match(line_log)

 csv.printf("Can't be measured,\tCan't be measured\n")

 end

 else

 if /.**** OPTIMIZATION ***.*/i.match(line_log)

 until /.****>MESSAGE SUMMARY.*/i.match(line_log)

 csv.printf("#{line_log}\n")

 line_log = log.gets.strip.chomp

 end

 end

 end

 end

 system("mv #{output_cir}*.* ./WA/#{cor_name}/#{counter}/eldo")

 log.close

 csv.close

 end

end

class Attr

 attr_accessor :name

 attr_accessor :flag

 def initialize(name, flag = 0)

 @name = name

 @flag = flag

 end

end

class Port

 attr_accessor :name

 attr_accessor :flag

 attr_accessor :val

 def initialize(name, flag = 0, val = "vdd")

 @name = name

 @flag = flag

 @val = val

 end

end

module EldoTemplate

 TEMPLATE = "* DFF Sim

.option brief probe

.notrc

*.option strict

.option nomod

.option printlg=10000

.option compat

.option post=1

.option ingold=1

.option numdgt=10

.option gmin=1.0e-18

.option gmindc=1.0e-18

.option nojwdb

.option tuning=accurate

.option interp=1

*.include /tools/cadflow/t/4.4/s8p-5r/models/ff.cor

.include /tools/cadflow/t/4.4/s8p-5r/models/tt.cor

*.include /tools/cadflow/t/4.4/s8p-5r/models/ss.cor

*.include /tools/cadflow/t/4.4/s8p-5r/models/hrlc.cor

.include /tools/cadflow/t/4.4/s8p-5r/models/trtc.cor

92

*.include /tools/cadflow/t/4.4/s8p-5r/models/lrhc.cor

*.include /tools/cadflow/t/4.4/s8p-5r/models/ffcell.cor

.include /tools/cadflow/t/4.4/s8p-5r/models/ttcell.cor

*.include /tools/cadflow/t/4.4/s8p-5r/models/sscell.cor

.include ./s8tssc_lf_dff.nl

X1 vgnd vpwr vnb clk q q_n vpb a s8tssc_lf_dff

.param capVal=5f

.param t=-40

.param delta=2n

.param vdd=1.35

.param period=6n

.param slope=0.5n

.param xStep=0.001n

.param xEnd=20n

.param xStart=2n

.param xStop=0.1n

.param xIncr=0.1n

.temp t

cL0 q 0 capVal

cL1 q_n 0 capVal

vvpwr1 vpb 0 vdd

vvpwr2 vpwr 0 vdd

*vvpwr3 smode_n 0 vdd

*vvpwr4 resetb 0 vdd

*vvpwr5 setb 0 vdd

vvgnd10 vgnd 0 0

vvgnd11 vnb 0 0

*vvgnd12 smode_n 0 0

*vvgnd13 resetb 0 0

*vvgnd14 setb 0 0

vin1 X1.clk 0 pulse(0 vdd 10n slope slope 'period-slope' '2*period')

vin2 X1.a 0 pulse(0 vdd '10n-delta' slope slope 100n 200n)

*vin2 X1.a 0 pulse(vdd 0 '10n-delta' slope slope 100n 200n)

*vin3 X1.clk_n 0 pulse(vdd 0 10n slope slope 'period-slope' '2*period')

.plot tran

+v(X1.clk)

+v(X1.a)

+v(X1.q)

+v(X1.q_n)

+v(X1.true)

+v(X1.bar)

+isub(X1.vpwr)

+isub(X1.vpb)

+power

+ix(X1.7)

.tran xStep xEnd uic

*.tran xStep xEnd uic sweep delta 0.1n 2n 0.1n

*.optimize

*+method=passfail

*+method=dichotomy

*+method=secant

*+tol_relpar=0.1

*+tol_reltarg=0.01

93

*.paramopt delta=(1n,0.1n,2n)

.extract

+tran

+label=clk2q

+tpduu(v(X1.clk),v(X1.q),vth='0.5*vdd',after=0)

*+goal=0.215n

.end";

end

def syntax

 puts "extract.rb <corner file>"

 puts "corner file structure:"

 puts "|_Process, <proc>"

 puts "|_Voltage, <vdd>"

 puts "|_Temp, <temp>"

 puts "|_Cap load, <load>"

 puts "|_Ramp rate, <ramp>"

 puts "|_Tuning factor, <tuning>"

 puts "|_Sim stepwise, <step>"

 puts "|_Sim length, <end>"

 puts "|_netlist, <nl>"

 puts "|_Input port, <input>"

 puts "|_Clk port, <clk>"

 puts "|_Clk_n port, <clk_n>"

 puts "|_Output port, <output>"

 puts "|_Test mode port, <tmod>"

 puts "| |_Test mode port value, <tmod_val>"

 puts "|_Reset port, <reset>"

 puts "| |_Reset port value, <reset_val>"

 puts "|_Set port, <set>"

 puts "| |_Set port value, <set_val>"

 puts "|_Sim mode, <mode>"

 puts " |_Single sim"

 puts " | |_Sim type, <type>"

 puts " | |_Single sim delta, <delta>"

 puts " |_Linear sweep"

 puts " | |_Sim type, <type>"

 puts " | |_Linear sweep start, <start>"

 puts " | |_Linear sweep stop, <stop>"

 puts " | |_Linear sweep increment, <incr>"

 puts " |_Optimization"

 puts " |_Optimization mode, <opmod>"

 puts " |_Optimization tolerance, <tol>"

 puts " |_Optimization start point, <opstart>"

 puts " |_Lower band, <lower>"

 puts " |_upper band, <upper>"

 puts " |_Dichotomy/secant"

 puts " |_Delay degradation percentage, <perc>"

 puts " |_Nominal delay, <nom>"

 puts "Example:\n";

 puts "proc=tt; vdd=1.8; temp=25; load=5f; ramp=0.5n; tuning=accurate;

step=0.01n; end=12n; netlist=s8tssc_lf_dff.nl; input=a; clk=clk; output=q;

mode=optimization; opmod=dichotomy; tol=0.05; opstart=1n; lower=0.1n;

upper=2n; perc=1.05; nom=0.1190n"

 puts "Eldo sim abort"

 exit

end

main

94

References

[1] J. Wawrzynek, A. Krste, and J. Lazzaro, "UC Berkely CS250 VLSI Systems Design

Lecture 8: Memory," ed.

[2] "University of Washington CSE471: Main Memory," ed.

[3] IDP. What is Pipeline Burst SRAM? Available:

https://www.idp.net/sysinfo/motherboards.asp#5

[4] M. Barr, "Memory types," Embedded Systems Programming, vol. 14, pp. 103-104,

2001.

[5] I. S. S. Inc. Selecting the Right ISSI Industrial Grade Memory. Available:

http://www.issi.com/WW/pdf/Ind-Memory.pdf

[6] B. L. Star Sung, Jacques Baudier (TITC). Display Driver with on-chip frame buffer

and a scalable image compression engine. Available: http://www.design-

reuse.com/articles/33274/display-driver-with-on-chip-frame-buffer-and-a-scalable-

image-compression-engine.html

[7] Q. Chen, H. Mahmoodi, S. Bhunia, and K. Roy, "Efficient testing of SRAM with

optimized march sequences and a novel DFT technique for emerging failures due to

process variations," Very Large Scale Integration (VLSI) Systems, IEEE Transactions

on, vol. 13, pp. 1286-1295, 2005.

[8] Wikipedia. Static random-access memory. Available:

http://en.wikipedia.org/wiki/Static_random-access_memory

[9] J. P. Kulkarni, K. Kim, and K. Roy, "A 160 mV robust schmitt trigger based

subthreshold SRAM," Solid-State Circuits, IEEE Journal of, vol. 42, pp. 2303-2313,

2007.

[10] R. P. Preston, "14 REGISTER FILES AND CACHES," Design of High-Performance

Microprocessor Circuits, p. 285, 2001.

[11] H. Sunami, Dimension Increase in Metal-Oxide-Semiconductor Memories and

Transistors: INTECH Open Access Publisher, 2010.

https://www.idp.net/sysinfo/motherboards.asp#5
http://www.issi.com/WW/pdf/Ind-Memory.pdf
http://www.design-reuse.com/articles/33274/display-driver-with-on-chip-frame-buffer-and-a-scalable-image-compression-engine.html
http://www.design-reuse.com/articles/33274/display-driver-with-on-chip-frame-buffer-and-a-scalable-image-compression-engine.html
http://www.design-reuse.com/articles/33274/display-driver-with-on-chip-frame-buffer-and-a-scalable-image-compression-engine.html
http://en.wikipedia.org/wiki/Static_random-access_memory

95

[12] S. Narenda, L. Fujino, and K. Smith, "Through the Looking Glass Continued (III):

Update to Trends in Solid-State Circuits and Systems from ISSCC 2014 [ISSCC

Trends]," Solid-State Circuits Magazine, IEEE, vol. 6, pp. 49-53, 2014.

[13] N. Shibata, H. Morimura, and M. Harada, "1-V 100-MHz embedded SRAM

techniques for battery-operated MTCMOS/SIMOX ASICs," Solid-State Circuits,

IEEE Journal of, vol. 35, pp. 1396-1407, 2000.

[14] B.-D. Yang and L.-S. Kim, "A low-power SRAM using hierarchical bit line and local

sense amplifiers," Solid-State Circuits, IEEE Journal of, vol. 40, pp. 1366-1376,

2005.

[15] A. Kawasumi, A. Suzuki, H. Hatada, Y. Takeyama, O. Hirabayashi, Y. Kameda, et

al., "a 1.8 v 18 mb ddr cmos sram with power reduction techniques," in VLSI

Circuits, 2000. Digest of Technical Papers. 2000 Symposium on, 2000, pp. 72-73.

[16] J. Jang, H. Kim, H. Baek, J. Na, K. Lee, D. Seo, et al., "A 2.05 um/sup 2/full CMOS

ultra-low power SRAM cell with 0.15 nm generation single gate CMOS technology,"

in Electron Devices Meeting, 2000. IEDM'00. Technical Digest. International, 2000,

pp. 579-582.

[17] S. Masuoka, K. Noda, S. Ito, K. Matsui, K. Imai, N. Yasuzato, et al., "A 0.99-/spl

mu/m/sup 2/loadless four-transistor SRAM cell in 0.13-/spl mu/m generation CMOS

technology," in VLSI Technology, 2000. Digest of Technical Papers. 2000

Symposium on, 2000, pp. 164-165.

[18] D. K. Nelson, H. Liu, K. Golke, and A. Kohli, "150nm SOI embedded SRAMs with

very low SER," in SOI Conference, 2005. Proceedings. 2005 IEEE International,

2005, pp. 188-190.

[19] K. Cox, J. Scott, S. Bishop, M. Bhat, B. Nettleton, D. Pan, et al., "A partially depleted

1.8 V SOI CMOS SRAM technology featuring a 3.77/spl mu/m/sup 2/cell," in VLSI

Technology, 2000. Digest of Technical Papers. 2000 Symposium on, 2000, pp. 170-

171.

[20] F. Ootsuka, S. Wakahara, K. Ichinose, A. Honzawa, S. Wada, H. Sato, et al., "A

highly dense, high-performance 130 nm node CMOS technology for large scale

system-on-a-chip applications," in Electron Devices Meeting, 2000. IEDM'00.

Technical Digest. International, 2000, pp. 575-578.

96

[21] W. Kong, R. Venkatraman, R. Castagnetti, F. Duan, and S. Ramesh, "High-density

and high-performance 6T-SRAM for system-on-chip in 130 nm CMOS technology,"

in VLSI Technology, 2001. Digest of Technical Papers. 2001 Symposium on, 2001,

pp. 105-106.

[22] R. Castagnetti, R. Venkatraman, B. Bartz, C. Monzel, T. Briscoe, A. Teene, et al., "A

high-performance SRAM technology with reduced chip-level routing congestion for

SoC," in Quality of Electronic Design, 2005. ISQED 2005. Sixth International

Symposium on, 2005, pp. 193-196.

[23] T. Okumura and M. Hashimoto, "Setup time, hold time and clock-to-Q delay

computation under dynamic supply noise," IEICE TRANSACTIONS on Fundamentals

of Electronics, Communications and Computer Sciences, vol. 94, pp. 1948-1953,

2011.

[24] D. Markovic, B. Nikolic, and R. Brodersen, "Analysis and design of low-energy flip-

flops," in Proceedings of the 2001 international symposium on Low power electronics

and design, 2001, pp. 52-55.

[25] H. Abrishami, S. Hatami, and M. Pedram, "Design and Multi-Corner Optimization of

the Energy-Delay Product of CMOS Flip-Flops under the NBTI Effect."

[26] D. Li, P. Chuang, and M. Sachdev, "Comparative analysis and study of metastability

on high-performance flip-flops," in Quality Electronic Design (ISQED), 2010 11th

International Symposium on, 2010, pp. 853-860.

[27] D. Rennie, D. Li, M. Sachdev, B. L. Bhuva, S. Jagannathan, S. Wen, et al.,

"Performance, metastability, and soft-error robustness trade-offs for flip-flops in 40

nm CMOS," Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 59,

pp. 1626-1634, 2012.

[28] C. Foley, "Characterizing metastability," in Advanced Research in Asynchronous

Circuits and Systems, 1996. Proceedings., Second International Symposium on, 1996,

pp. 175-184.

97

Vita

Xiaowei Zhang was born in Leshan, Sichuan, P.R. China.

Education

August, 2012 ─ Present

MSEE

Dept. of Electrical and Computer Engineering, University of Kentucky

August, 2007 ─ May, 2011

BSEE

School of Microelectronics and Solid-state Electronics, University of Electronic Science and

Technology of China

	A METHODOLOGY OF SPICE SIMULATION TO EXTRACT SRAM SETUP AND HOLD TIMING PARAMETERS BASED ON DFF DELAY DEGRADATION
	Recommended Citation

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	Chapter 2 Literature Review
	2.1 0.35um Technology Node
	2.2 0.25um Technology Node
	2.3 0.18um Technology Node
	2.4 0.15um Technology Node
	2.5 0.13um Technology Node

	Chapter 2 DFF Metastability
	2.1 D Flip-Flop
	2.2 Setup and Hold Times of DFF
	2.3 Static Timing Analysis (STA) of DFF
	2.4 Metastability

	Chapter 3 A Semiconductor Firm’s SRAM Design
	3.1 Introduction to A Vendor’s Memory Compiler
	3.2 Design Automation Using Script Languages

	Chapter 4 Data Input Setup Time (tSDI)
	4.1 Equation
	4.2 Schematic
	4.3 Logic of WE Signal
	4.4 Stimulus Waveforms
	4.5 Methodology
	4.6 Optimization (PassFail vs. Dichotomy)
	4.7 General Procedures (Vary PVTs)
	4.8 Results
	4.8.1 Rising Polarity
	4.8.2 Falling Polarity

	Chapter 5 Data Input Hold Time (tHDI)
	5.1 Equation
	5.2 Schematic
	5.3 Stimulus Waveforms
	5.4 Methodology
	5.5 Results
	5.5.1 Rising Polarity
	5.5.2 Falling Polarity

	Chapter 6 Data Writing Delay (tWR)
	6.1 Equation
	6.2 Schematic
	6.3 Results
	6.4 Validation

	Chapter 7 Read/Write Setup Time (tSRWB)
	7.1 Equation
	7.2 Schematic
	7.3 Pre-charge Latch
	7.4 Delay Degradations of Normal DFF and Pre-charge Latch
	7.5 Individual Simulation of Pre-charge Latch without Other Circuits
	7.5.1 Individual Simulation vs. Extracted Layout Simulation
	7.5.2 Varying Output Load Capacitance
	7.5.3 Varying the W/L of PMOS I76 and I77
	7.5.4 Varying the Power Supply Voltage VDD
	7.5.5 Varying the Process
	7.5.6 Varying the PMOS Model of Output Inverters
	7.5.7 Schematic vs. Extracted Layout Simulation
	7.5.8 Different Data Input Polarities
	7.5.9 Tweak of the Inverter on the Data Input Path
	7.5.10 A Proposed Improvement of the Inverter on the Data Input Path
	7.5.11 Different Versions of the Modified Pre-charge Latch with Pull-down Path
	7.5.12 Final Top-level Layout of the SRAM
	7.5.12 Simulation Results of Different Versions of the Modified Layouts
	7.5.13 The Effect of M Factor on the Delay Degradation Pattern

	7.6 Stimulus Waveforms
	7.7 Methodology
	7.8 Results
	7.8.1 Default Layout (Rising Polarity)
	7.8.2 Modified Layout Version 3 (Rising Polarity)
	7.8.3 Default Layout (Falling Polarity)
	7.8.4 Modified Layout Version 3 (Falling Polarity)

	Chapter 8 Data Reading Delay (tRD)
	8.1 Equation
	8.2 Schematic
	8.3 Results
	8.4 Validating

	Chapter 9 Final Results
	Appendix A: Generic Perl Script for Individual DFF Simulation
	Appendix B: Generic Ruby Script for Individual DFF Simulation
	References
	Vita
	Education

