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SRAM is a significant component in high speed computer design, which serves mainly as high 

speed storage elements like register files in microprocessors, or the interface like multiple-level 

caches between high speed processing elements and low speed peripherals. One method to 

design the SRAM is to use commercial memory compiler. Such compiler can generate different 

density/speed SRAM designs with single/dual/multiple ports to fulfill design purpose. There 

are discrepancy of the SRAM timing parameters between extracted layout netlist SPICE 

simulation vs. equation-based Liberty file (.lib) by a commercial memory compiler. This 

compiler takes spec values as its input and uses them as the starting points to generate the timing 

tables/matrices in the .lib. Originally large spec values are given to guarantee design correctness. 

While such spec values are usually too pessimistic when comparing with the results from 

extracted layout SPICE simulation, which serves as the “golden” rule. Besides, there is no 

margin information built-in such .lib generated by this compiler.  

A new methodology is proposed to get accurate spec values for the input of this compiler to 

generate more realistic matrices in .lib, which will benefit during the integration of the SRAM 

IP and timing analysis. 

KEYWORDS: SRAM, Timing Parameters, SPICE, Liberty File, DFF  
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Chapter 1 Introduction 

SRAM is a kind of memory which uses bistable latching circuitry to store binary bit values 

(logic 0 or 1). Unlike the Dynamic RAM (DRAM) used, like as discrete main memories in PC, 

SRAM doesn’t require periodic refresh to keep the stored bit values. The back-to-back inverters 

in the SRAM cell keep reinforcing each other as long as the SRAM cell is powered. On the 

other hand, SRAM is volatile, which means it will lose the stored bit values if the power goes 

off[1]. 

Comparing to other kinds of volatile memories (e.g. DRAM), SRAM is fast and expensive, 

which limits its applications in high capacity, low cost areas. Because of its high performance 

(e.g. low access time), SRAM is widely utilized as cache memory in microprocessors or 

microcontrollers (MCUs)[2]. Modern microprocessors have at least two-level caches built in 

the chip, which serve as an interface between high speed processing elements and low speed 

peripherals[1]. Besides, SRAM exists in some application specific integrated circuit (ASIC) 

designs where burst transfers are needed[3]. 

Except for integrating in System on Chip (SoC), SRAM is also found in many embedded 

systems used in industrial subsystems, automotive electronics, and etc[4, 5]. Even in many 

consumer products like digital cameras, cell phones, SRAM can be found, for example, as LCD 

screen buffers[6]. 

For timing aspect, there are two different kinds of SRAM: synchronous or asynchronous. The 

operation of the synchronous SRAM is controlled by the clock edge(s). All operations happen 

on the clock edge(s). On the other hand, the asynchronous SRAM has no clock input, the data 

input/output are controlled by address transition. 

One of the key elements of the SRAM design is the SRAM cell design. There are different 

configurations of SRAM cell, which consist of different number of transistors. The typical 

configuration is 6-transistor (6T) SRAM cell shown in Figure 1[7]: 
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Figure 1. A Typical 6T SRAM Cell Configuration 

It can be seen that the transistors M1 and M2, M3 and M4 form two cross-couple inverters (back-

to-back) so that the bit values stored in the Q and Q bar are kept refreshing as long as these two 

inverters are connected to VDD and GND. The M5 and M6 are the access transistors, which serve 

as the connections between the SRAM cell and the bitlines (BL and BL bar). Both M5 and M6 

are controlled by the wordline (WL), and if the WL=1, both access transistors are open and the 

SRAM cell is connected to the bitlines. The SRAM works in reading/writing states. If WL=0, 

both access transistors are closed and the SRAM cell is isolated. The SRAM works in idle state. 

In reading state, suppose a logic 1 (VDD) is stored in the SRAM cell before reading out. The Q 

is logic 1 and Q bar is logic 0. Before accessing to the SRAM cell, both bitlines are pre-charged 

to logic 1. Then the WL signal is asserted, which turns on the access transistors M5 and M6. 

Since Q=1 which turns on M1, the BL bar is discharged through M5 and M1 while BL is clamped 

to VDD for a short period time (a short pulse of WL signal). Once BL and BL bar have enough 

difference to be amplified by the sense amplifier (sense-amp), the WL signal is off and both 

access transistor are turned off so that the stored bit value won’t be compromised. Depending 

on which bitline is lower, this small voltage swing will be amplified to full swing by the sense-

amp and asserted to output bus. 

In writing state, suppose a logic 1 is written into the SRAM cell. The write driver will charge 

BL to be logic 1, and BL bar to be logic 0. Then the WL signal is asserted and both access 

transistors are turned on. The Q is connected to BL, which will be charged to logic 1 because 

the write driver has stronger drive strength than the transistor M3 and M4. The same case for Q 

bar. After that, the WL signal is off and the SRAM cell can keep refreshing the written bit 

value. 

If not in neither reading nor writing states, the SRAM cell is in idle state, where WL=0 turns 

off both access transistors. The SRAM cell is isolated from outside. 
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There are many other configurations of the SRAM cell (4T, 8T, 10T, etc.)[8, 9]. Usually the 

less transistors, the smaller area the SRAM cell will be. A smaller SRAM cell usually results 

in higher density. One example of the 4T SRAM cell is shown in Figure 2[10]: 

 

Figure 2. A Typical 4T SRAM Cell Configuration 

It can be seen that the two PMOS in the cross-coupled inverters are replaced by polysilicon 

resistors R, which has higher demand for the process because these two polysilicon resistors 

have to be small but have large values. 

The size of a SRAM is associated with the numbers of address lines and data lines. m address 

lines means there are 2m words in this SRAM. And n data lines means each word has n bits, in 

other words, it is n bit word. So if a SRAM has 11 address lines as well as 8 data lines, the size 

of this SRAM is 2K x 8bit. 

 

Figure 3. Trends in Device Count/Chip and Feature Size of MOS Device 
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Figure 4. SRAM Bit-cell and Minimum-supply-voltage Scaling 

The Figure 3 shows technology node (feature size) trends in semiconductor industry[11], which 

is getting smaller every year following the Moore’s Law. In Figure 4, it can been seen that the 

finest technology node for SRAM is 14nm now[12]. Both Vcc and Bit size are decreasing 

alongside with the smaller technology nodes. 

Chapter 2 Literature Review 

2.1 0.35um Technology Node 

Shibata et al. proposed a 1V 100MHz MTCMOS SRAM design[13]. In this design, the authors 

used 0.35um (effective channel length 0.17um) MultiThreshold-voltage CMOS 

(MTCMOS)/Separation by IMplantation of OXygen (SIMOX) process to fabricate an 8K x 

16bit SRAM, which could reach 100MHz working frequency with 1V VDD. In order to reduce 

the large bitline delay, the low Vth transistors were used for logic gates to gain high 

performance. On the other hand, high Vth transistors were used to cut off the sub-threshold 

leakage current path so that the low power operation could be achieved. A latch type sense-amp 

was used in this design. In order to increase the working frequency, the authors proposed a 

pseudo-two-stage pipeline architecture, which featured a sensing delay. For the SRAM cell 

design, they proposed a 10T SRAM cell configuration (shown in Figure 5), which was 33% 

larger than conventional 6T SRAM cell. The cell size is 11.2um x 2.8um under their 0.35um 

MTCMOS/SIMOX process. The cycle time at the worst power supply condition (1V) is 9ns, 

and the clock access time at single fan-in load is 3.5ns. The summary of their design is shown 

in Table 1: 
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Figure 5. 10T Cell Using Extra Low-Vth NMOS to Accelerate Readout Operations 

Table 1. Design Summary of MTCMOS SRAM 

Chip Size 1.6mm x 3.2mm = 5.12mm2 

SRAM Cell Size 11.2um x 2.8um = 31.36um2 

Organization 8K x 16bit 

Minimum Cycle Time (1V) 9ns 

Power Dissipation (1.2V, 100MHz)  

Stand by 0.2uW 

Read 13.2mW 

Write 15.4mW 

 

2.2 0.25um Technology Node 

B. D. Yang et al. proposed a low power SRAM design with hierarchical bitlines and local sense-

amps (HBLSA-SRAM)[14]. In order to reduce the power dissipation and increase the speed, 

this HBLSA-SRAM reduced both capacitance and write voltage swing of bitlines by 

implementing a bitline and sub-bitlines with local sense-amps. The key idea was to apply a low 

voltage swing (VDD/10=2.5V/10=0.25V) to the high capacitive bitlines and apply a full voltage 

swing to the low capacitive sub-bitlines. An 8K x 32bit SRAM was fabricated with 0.25um 

CMOS technology, which consumed 26mW read power and 28mW write power at 253MHz 

with 2.5V power supply. Unlike read with a small voltage swing in the bitlines, conventional 

SRAM consumed more power during write cycle due to the full voltage swing in bitlines and 
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data bus, which both had high capacitance. In order to reduce the voltage swing when write, a 

hierarchical bitline consisted of a bitline and several sub-bitlines were implemented so that the 

voltage swing on the bitline was small (kept the same as the voltage swing when read), and 

only the sub-bitline of the cell accessed connected to the bitline (controlled by a global word 

line signal GWL bar) had full voltage swing. Once the small voltage swing was transferred to 

the sub-bitline, a local sense-amp would amplify it to a full voltage swing. Due to the low 

capacitance of the sub-bitline, the power dissipation of the entire two-stage operation was less 

than conventional write with a full voltage swing to the bitline. The concept of this HBLSA-

SRAM is shown in Figure 6: 

 

Figure 6. Concept of the HBLSA-SRAM 

They used conventional 6T SRAM cell, and two PMOS and a local sense-amp were added to 

each sub-bitline, which increased the length of bitlines but area overhead was small. They 

fabricated two SRAM: one was a conventional SRAM, the other was the HBLSA-SRAM, 

which used the same 0.25um technology. The comparison results showed the HBLSA-SRAM 

had 18% speed overhead with 8% area overhead, partially because of the 9% longer bitlines. 

As for the power dissipation, the HBLSA-SRAM saved 34% of the write power of the 

conventional SRAM, and they had the same read power dissipation. The summary of the 

HBLSA-SRAM design is shown in Table 2: 
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Table 2. Design Summary of HBLSA-SRAM 

Chip Size 3.26mm x 1.88mm = 6.13mm2 

Organization 8K x 32bit 

Supply Voltage 2.5V 

Frequency 220MHz 

Power Dissipation (200MHz)  

Read 28mW 

Write 26mW 

 

2.3 0.18um Technology Node 

A. Kawasumi et al. proposed a 18Mbit (1M x 18bit) 1.8V 900MHz DDR CMOS SRAM design 

with power reduction techniques[15]. The technology node was 4-metal 0.25um with gate 

length 0.18um. The final SRAM cell size was 2.25um x 2.35um, which leaded to an 11.2mm x 

19.0mm chip size. The key design in their SRAM cell was the implementation of two-stage 

sense-amps in order to reduce the read data bus capacitance, which is shown in Figure 7. A 

current sense-amp was used for the first stage, which had less dependence on the bitline 

capacitance. Then a second stage sense-amp was implemented to drive the data bus, which was 

shared with two first stages so that the number of the second stage sense-amps could be reduced. 

In their design, the read data bus capacitance was reduced 40%, the active current for sensing 

was decreased by 33%, and the sensing delay was reduced by 9.6%. The authors declared that 

this sense-amp configuration was faster than conventional latch type sense-amp. 

 

Figure 7. Schematic of a Two-Stage Sense-Amp 
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Table 3. Design Summary of DDR CMOS 

 

 

2.4 0.15um Technology Node 

J. H. Jang et al. proposed a 2.05um2 (1.3um x 1.58um) CMOS SRAM cell with 0.15um single 

gate CMOS technology[16]. Their technology had 0.15um for NMOS and 0.17um for PMOS. 

The final 16Mbit SRAM had a size of 54.13mm2. 

2.5 0.13um Technology Node 

S. Masuoka et al. proposed a loadless 4T SRAM cell design (0.99um2 area: 0.80um x 1.24um) 

with 0.13um generation CMOS technology[17]. This SRAM cell provided high stable 

operation at 1.2V from -40°C to 125°C. The key design was the loadless 4T (LL4T) SRAM 

cell, which was shown in Figure 8. 

 

Figure 8. Equivalent Circuit of a LL4T SRAM Cell and Node Voltages in a Stand-by Cycle 

This LL4T SRAM cell size was 50-65% of a conventional 6T SRAM cell, which had advantage 

to reduce the SRAM layout area. Besides, unlike the typical 4T SRAM cell shown in Figure 2, 

this LL4T SRAM cell didn’t require the pull-up resistors, which usually resulted in a challenge 

for the process. This 0.13um technology node had a 0.12um gate length. 

Chip Size 11.2mm x 19.0mm = 212.8mm2 

SRAM Cell Size 2.25um x 2.35um = 5.2875um2 

Organization 1M x 18bit, 512K x 36bit 

Supply Voltage 1.8V 

Frequency (25°C) 900MHz 

Power Dissipation (667MHz)  

Read 1.1W 

Write 1.3W 

 



9 

 

There were many other SRAM designs with various technologies. D. K. Nelson et al. proposed 

a SOI SRAM design with 0.15um technology node, which had 3-5ns access time under 5ns 

clock period[18]. Another 4Mbit 1.8V SOI CMOS SRAM (6T SRAM cell configuration) was 

implemented with 0.2um bulk CMOS process by K. Cox et al. The cell size was 3.77um2[19]. 

F. Ootsuka et al. introduced a high density, high performance SRAM design for large scale SoC 

application under 0.13um CMOS technology with 0.2um gate length[20]. The 6T SRAM cell 

size was 0.8um x 3.2um = 1.92um2. Under the same generation process, W. Kong et al. 

introduced a 6T SRAM cell of 1.87um2[21]. The comparison of different SRAM designs is 

shown in Table 4: 

Table 4. Comparison of Different SRAM Designs 

SRAM Design Designers 
Technology 

Node (um) 

Working 

Frequency 

(MHz) 

VDD 

(V) 
SRAM Cell Size 

MTCMOS 

SRAM 

Shibata et 

al. 
0.35 111 1.00 

11.2um x 2.8um 

= 31.36um2 

HBLSA-SRAM 
B. D. Yang 

et al. 
0.25 250 2.50  

SOI CMOS 

SRAM 

K. Cox et 

al. 
0.20  1.80 3.77 um2 

DDR CMOS 

SRAM 

A. 

Kawasumi 

et al. 

0.18 900 1.80 

2.25um x 

2.35um = 

5.2875um2 

SRAM Cell with 

Single Gate 

CMOS 

Technology 

J. H. Jang 

et al. 
0.15   

1.3um x 1.58um 

= 2.05um2 

SOI SRAM 

D. K. 

Nelson et 

al. 

0.15 200   

A Semiconductor 

Firm’s Design 
 0.15 83.33 1.35 

1.2um x 1.58um 

= 1.896um2 

Loadless LL4T 

SRAM Cell 

S. Masuoka 

et al. 
0.13  1.20 

0.80um x 

1.24um  = 

0.99um2 

High 

Density/Performa

nce SRAM 

F. Ootsuka 

et al. 
0.13   

0.8um x 3.2um 

= 1.92um2 

6T SRAM Cell 
W. Kong et 

al. 
0.13   1.87um2 

 

R. Castagnetti et al. investigated the effect of different chip level route techniques in order to 

get high performance SRAM design[22]. The specific route techniques they investigated by 

fabricating a 6T SRAM cell with 0.18/0.13um technology involved metal 2 (M2) and metal 3 
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(M3) layers. There were two options for routing: use M2 for horizontal WL and M3 for vertical 

bitlines and VDD and GND; or use M2 for bitlines and VDD and M3 for WL and GND. What 

they found was the capacitance of the bitlines dominated the performance of the SRAM cell, 

and using M2 for the bitlines had 25% bitline capacitance reduction. Besides, the M3 for WL 

and GND provided good shield for M2 from M4 and above, which leaded to an unrestricted 

M4 routing. The option of M2 for the bitlines was superior to the other option. 

Chapter 2 DFF Metastability 

The entire research is about to extract the timing parameters of the SRAM design. Since for the 

synchronous SRAM, all input signals are captured by the underlying DFFs in the external logic 

of the SRAM synchronized by the clock, extracting the behaviors of these underlying DFFs, 

especially setup and hold times, is a method to estimate the setup and hold times of the entire 

SRAM design. 

2.1 D Flip-Flop 

 

Figure 9. Circuit Diagram of DFF[23] 

Figure 9 shows a typical configuration of a master-slave DFF. The master latch consists of the 

back-to-back inverters X3 and X4, which is controlled by CLK, the same as the slave latch. 

These two latches are separated by a transmission gate (TG) controlled by CLK. When CLK=0, 

TG is closed so that both latches are isolated with each other. The X2 is open when CLK=0, so 

that the data appears on the input D can transmit to node M1. At the same time, X6 is also open 

controlled by the CLK, then X5 and X6 will enforce each other to hold the previous value Q to 

the output port. When CLK=1, the TG is open and X2 is closed, so that no more new value can 

transmit to the DFF, and whatever logic value in node M1 will pass the TG to arrive to X5, and 

X7, eventually to Q. The CLK will also open X4 and close X6 so that only the master latch has 

the back-to-back inverters to hold the value. 
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2.2 Setup and Hold Times of DFF 

 

Figure 10. Timing Definition of Setup/Hold Time[23] 

For synchronous DFF, the setup time is the minimum amount of time the input data D of the 

DFF should be stable before the clock CLK trigger edge arrives, so that the data can be reliably 

sampled and caught by the DFF. The hold time is the minimum amount of time the input data 

D of the DFF should hold after the clock CLK trigger edge arrives, so that the data can be 

reliably sampled. The third timing vale is the propagation delay, which measures the delay from 

the CLK trigger edge to the actual change on its output Q.[23] All three timing parameters of a 

DFF are shown in Figure 10. If either setup or hold time isn’t satisfied, the DFF will enter a 

state call metastability. 

2.3 Static Timing Analysis (STA) of DFF 

The typical connection between DFFs is shown below: 

 

Figure 11. DFF Environment in a Digital System[24] 

As shown in Figure 11, the setup and hold should satisfy two equations respectively.[24, 25] 

tCLK-Q + tsetup ≤ T – tLogic – tskew 

tCLK-Q – thold ≥ tskew – tLogic 

Equation 1 

In Equation 1: 
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 tCLK-Q is the propagation delay of the DFF. 

 tsetup is the setup time of the DFF. 

 thold is the hold time of the DFF. 

 T is the clock period. 

 tLogic is the delay through the combinational logic between launch and capture DFFs. 

 tskew is the delay difference of the clock tree root to the CLK port of the launch and 

capture DFFs. 

In STA of DFF, the worst setup slack (Slacksetup) and hold slack (Slackhold) are calculated by the 

STA tools by reading the design netlist, cell library and clock period. The setup and hold slacks 

are defined in Equation 2: 

Slacksetup = T – tLogic – tskew – tCLK-Q – tsetup 

Slackhold = tCLK-Q – thold – tskew + tLogic 

Equation 2 

In order to meet the timing requirements of the DFFs in a digital system, or achieving timing 

closure, the slacks of all datapath should be calculated and positive or 0. If a slack is negative, 

it’s said to be “violated”. If a setup slack Slacksetup is violated, the circuit can operate correctly 

by increasing the clock period T, in other words, in lower clock frequency. If a hold slack is 

violated, the circuit won’t function correctly until delay elements are inserted into the short 

datapaths in the combinational logic between the launch and capture DFFs.[25] 

2.4 Metastability 

Metastability is a phenomenon where a bi-stable output enters an unstable third state and 

becomes an intermediate level between logic 0 and 1.[26] DFF is subject to such metastability, 

when two inputs (D and CLK in our case) are changing at about the same time. The result is 

the output might behave unpredictably, taking much more time than nominal to settle to one 

state or the other. As CMOS technology scales, PVT variations and increasing clock frequency 

all contribute to the possibility of the metastability failure.[27] Such metastability can cause 

severe problem like corruption of data. This metastability can’t be eliminated entirely, because 

when the D and CLK is closer and closer, the DFF is forced to decide which comes first. No 

matter how fast the circuit is, there’s always a possibility these two input signals are so close to 

each other than the DFF can’t detect which happens first. But as long as the setup and hold 

times are satisfied, the metastability in DFF can be avoided. So using pre-defined metastability 

windows to measure the setup and hold times of DFF is a more practical method instead of 
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looking for the values of setup and hold times that cause the DFF to fail to operate, because a 

DFF will malfunction long before it starts to completely fail. The metastability window is 

shown below in: 

 

Figure 12. The Metastability Window[28] 

The metastability window can be determined by extract the propagation delay tCLK-Q when D is 

shifting closer to CLK from both direction.[28] First, the nominal value of the propagation 

delay tCLK-Q can be obtained by extracting under normal operation of the DFF. Then when the 

D is moving closer to CLK, the propagation delay tCLK-Q will increase exponentially.[26] When 

the propagation delay tCLK-Q reaches a pre-defined value (normally 10% larger than the nominal 

value), the DFF is considered to enter metastability. So the edges of metastability window can 

be consider to be setup and hold times. By reproducing such curves, we can accurately extract 

the setup and hold timing parameters of a DFF under different PVTs. 
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Figure 13. Definition of Setup and Hold Times[24] 

Figure 13 is an example from 0.25um process, it can be seen that the setup time tsetup is 190ps, 

allowing 5% propagation delay increase (1100ps) comparing with the nominal value (1050ps). 

The same case for hold time (thold = 400ps for 5% delay degradation). If a smaller setup time is 

allowed, e.g. 120ps, which still guarantee the correct functionality of the DFF, this will lead 

invalid timing analysis because of the dramatically increasing propagation delay tCLK-Q, which 

will probably lead a negative setup slack Slacksetup unless a large clock period T is used. In that 

case, this choice of small setup time results in a longer critical path and a slower clock frequency. 

Chapter 3 A Semiconductor Firm’s SRAM Design 

3.1 Introduction to A Vendor’s Memory Compiler 

This semiconductor firm’s SRAM design is generated by a vendor’s memory compiler with 

0.15um technology node. This compiler provides flexibility that the user can choose different 

numbers of words as well as how many bits one word has. Except for some common choices 

like 16, 32 or 64-bit for a word, arbitrary bits design is also supported. 

Besides, the user can determine the height/width ratio of the physical layout so that the 

generated layout can have different shapes/outlines to fit different requirements. It can become 

extremely high with few bitlines and many word lines. Or conversely, an extremely wide layout 

is possible with many bitlines and few word lines. 

There are many PVT (Process Voltage Temperature) conditions associated with this design. 

For the process, one of the FF (NMOS fast, PMOS fast), TT (NMOS typical, PMOS typical) 

or SS (NMOS slow, PMOS slow) can be chosen depending on the technology process. The 
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voltage range is from 1.35V to 1.95V depending on the peripherals, like power supply design. 

As for the temperature, this SRAM is required to function correctly from -40°C to 150°C. 

Since a large numbers of volume and arbitrary bitwidth are supported by this compiler, there 

can be huge amount of the final generated layouts. Besides, even for a fixed choice, the 

height/width ratio can be also adjusted. When considering the PVT variations, the actual 

choices could be hundreds of thousands of combinations.  

The user needs to know all the characteristics of the design before actual processing, like timing 

constraints, power constraints, etc. A classic way to get such information is from simulation. A 

full circuit simulation can provide some of these characteristics, while the cost is high, since a 

single runtime might take minutes or hours. Multiple simulations may be required to extract all 

information needed. In addition, there are literally hundreds of thousands of combinations of 

bitwidth, height/width ratios and PVTs, so it is impossible to simulate every single one of them 

to get information associated with this very combination, which potential customer might be 

interested in. Besides, the time from designing a new product to the market is getting shorter, 

which makes this full circuit simulation impractical. 

The compiler has a different method to come up with all the required parameters associated 

with different design combinations. This method is equation-based and will dramatically reduce 

the simulation time. Once the compiler has the values of all variables for different blocks of the 

entire circuit, it can come up with the overall characteristics by adding them together according 

to pre-defined equations. The compiler takes basic simulation results of each block as inputs, 

then it can handle all the variations (e.g. different PVTs, signal slew rate, output load 

capacitance) the user might want to use. Such method can give the user a confident margin and 

estimation of the performance of actual chip, and once it complies all the requirements, the final 

product will be in that range. 

But there is a disadvantage to use this equation-based method, which is too conservative (and 

too pessimistic) for most PVT conditions. On the other hand, the .lib for some PVT conditions 

(e.g. data writing delay (tWR) under FF/1.60V/150°C and FF/1.95V/-40°C) is optimistic 

comparing with the results we gather from the extracted layout SPICE simulation. There is 

always a trade-off between reliability and performance. If the user want to have very small data 

input setup time (tSDI) under FF/1.95V/-40°C, e.g. 0.300ns, there might be no the .lib value 

which is smaller (0.7ns in the .lib across all PVT conditions). In such case, this method will 

mislead the user that such requirement is impractical. But in fact, our extracted layout SPICE 

simulation method shows the tSDI under FF/1.95V/-40°C is 0.050ns, which satisfies the user’s 

requirement. Besides, the compiler doesn’t provide information about how much the margin 
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will be before the circuit starts to fail. For example, for the setup time, the margin could be 

relatively small for the slow circuit (SS/1.35V/-40°C), but it could be fairly large for the fast 

circuit (FF/1.95V/-40°C). In addition, the user might want to know the exact margin built-in. 

Sometimes it is not necessary to have so much margin built-in because higher performance 

could be achieved with a little margin sacrifice. 

There is another problem embedded in this equation-based method that not every parameter 

value in the .lib is pessimistic, there are some which is optimistic instead. For example, tWR 

we simulate for FF/1.60V/150°C is 1.633ns, but in the .lib, it is 0.500ns (shown in Table 5). To 

tell from our results, it is 3X larger in reality than the .lib. Except for tWR, we find the data 

reading delay (tRD) has the same issue under FF/1.60V/150°C and FF/1.95V/-40°C. There 

might be more values which are optimistic somehow. In this case, it can’t be guaranteed that 

when the .lib satisfies all the user’s requirements, the final product will do the same. 

Table 5. Some Optimistic Values in The .lib 

PVT Layout Param Polarity .lib (ns) 
Simulation 

(ns) 

FF/1.60V/150°C Default tWR Rising 0.500 1.633 

FF/1.95V/-40°C Default tWR Rising 0.500 1.075 

FF/1.60V/150°C Default tRD Falling 0.500 2.054 

FF/1.95V/-40°C Default tRD Falling 0.500 1.318 

 

So our goal is to reproduce the spec values for all the parameters in the .lib. Since the spec 

values are the major part of these values, adding some variation from other terms depending on 

the equations, once we determine the spec values, we can generate more realistic matrices for 

all of them, which guarantee the circuit will not fail as long as it satisfies all the user’s 

requirement. Besides, the information of the actual built-in margin will be also available. 

3.2 Design Automation Using Script Languages 

Since the methodology is associated with a lot of fully extracted layout simulations for different 

PVTs using SPICE simulator Eldo, many iterations of the simulation take much time to reach 

a conclusion. In order to automate the entire simulation flow (let the computer to automatically 

initialize the simulations and collect the data after completion) and minimize the human 

intervention during simulation, a script is written by the user in both Perl and Ruby to expedite 

each iteration, the source code is included in the appendices. Thanks to the script, the user can 

focus on interpreting the extracted data by computer instead of tweaking the simulation input 
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files. Such large amount of simulations couldn’t be possible without the script taking care of 

many steps in the background. 

The basic idea of the script is to read the configuration files written by the user, understanding 

the parameters for each iteration. Then the script will do pattern matching to modify the 

template input file of the simulator Eldo. After that the script will invoke the Eldo to run the 

simulation and wait for the completion, then start another run with the new parameters set. Once 

all the iterations are finished, the script will do the pattern matching of the output files of Eldo, 

extracting the results the user is interested, generating a CSV (Comma-Separated Values) file 

for human to post-process. 

Chapter 4 Data Input Setup Time (tSDI) 

4.1 Equation 

In the equation-based method, the tSDI is composed of three individual terms, 

T_DI_del_ts_r/f_a, tSDI_spec and T_CLKIO_del_ts_a. The T_DI_del_ts_r/f_a is the delay 

from top-level data input bus (DI) least significant bit (MSB) DI<0> to an internal node “N2” 

(the middle point between the master and the slave latches) of the underlying DFF of LSB in 

the datapath, which is shown in Figure 14: 

 

Figure 14. Schematic of the Underlying DFF 

The T_CLKIO_del_ts_a is the delay from the top-level clock pin (CLKin) to the local clock pin 

(CLK_LOC_N) of the underlying DFF of LSB. 

tSDI_spec is the actual central point of the matrix in the .lib. The compiler takes the tSDI_spec 

as an input which the user specifies before it constructs the matrix. It uses the tSDI_spec as the 

starting point and both T_DI_del_ts_r/f_a and T_CLKIO_del_ts_a act as variations depending 
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on different output load capacitance and input signal slew rate. We think such tSDI_spec value 

(same as other spec values) are achieved from ASIM run before. The .lib uses 0.7ns across all 

PVT conditions. 

tSDI_rr_ar = T_DI_del_ts_r_a + tSDI_spec – T_CLKIO_del_ts_a 

tSDI_rf_ar = T_DI_del_ts_f_a + tSDI_spec – T_CLKIO_del_ts_a 

Equation 3 

In Equation 3: 

 T_DI_del_ts_r_a is the delay from DI<0> to an internal node “N2” of the underlying 

DFF when DI<0> is from logic 0 to 1. 

 T_DI_del_ts_f_a is the delay from DI<0> to an internal node “N2” of the underlying 

DFF when DI<0> is from logic 1 to 0. 

 tSDI_spec is the input value the user specifies when running compiler, which serves as 

the central point of the generated matrix. 

 T_CLKIO_del_ts_a is the delay from CLKin to CLK_LOC_N of the underlying DFF 

of LSB. 

4.2 Schematic 

The Figure 15 shows the schematic of tSDI, from which it can be seen that there are two input 

signals, DI<0> and CLKin. The actual clock pin of the underlying DFF, CLK_LOC_N, is 

connected to CLKin through some delay. The compiler takes the two delays shown in Figure 

15 as parameters to vary from the tSDI_spec to generate the 5x5 matrix. 

 

Figure 15. Schematic of tSDI 

In order to reproduce tSDI_spec value equal of 0.700ns in the .lib, the worst case PVT condition 

(SS/1.35V/-40°C) is chosen. The clock period (tCYC) has to be increased from 8ns to 12ns so 

CLK_LOC_N 
DFF 

CLKin 

DI<0> 

T_CLKIO_del_ts_a 

T_DI_del_ts_r/f_a 

Q 
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that circuit can work correctly. Since circuit is slower than typical PVT condition 

(TT/1.80V/25°C), the default tCYC=8ns is not suitable anymore. 

The critical point where circuit starts to fail is 0.420ns, and the reason is the underlying DFF 

can’t catch the valid DI signal anymore. The underlying DFF shows metastability called delay 

degradation (DD). The delay degradation is the smaller time between input and the clock (Tsetup) 

is, the larger the propagation time between clock and output (Tpropagation) is than nominal value 

(computed when there is enough time between input and the clock). When Tsetup=0.500ns, the 

delay degradation is almost 9.82% already, shown in Figure 22 (a). 

The data output bus (DO) does not show any delay degradation, in other words, the delay 

degradation from the underlying DFF does not pass through to the final output DO. There is an 

internal node named DO_I_N (the white circle shown in Figure 16 and Figure 17), which is 

located before the output buffer. DO_I_N is connected to the negative output DINREG_N (the 

white circle shown in Figure 16) of the underlying DFF, but gated by WE (write enable) and 

BITEN (bit enable) (the white circles shown in Figure 16 and Figure 17). Since WE arrives 

very late comparing with DINREG_N (about 3ns after DINREG_N arrives), so that even 

though DINREG_N shows delay degradation due to the previous DFF and shifts about 0.700ns, 

as long as DINREG_N is valid before WE arrives, DO_I_N will start to toggle right after WE 

enables the transistors and DINREG_N will pass through those two transistors to DO_I_N. In 

this case, our delay degradation measurement can’t be conducted between the top-level ports 

CLKin and DO<0> because the logic mentioned before filters such delay shifting due to the 

DFF. The schematic from DI to DO is shown in Figure 16: 

 

Figure 16. Schematic from DI to DO 
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Figure 17. Schematic of RBK Block 

 

Figure 18. Schematic of RDATA Block 

As shown below in Figure 19, the black and green curves are DINREG_N signals from different 

Tsetup (2ns vs. 0.440ns), and there is observable 354ps delay indicating there is delay degradation 

from the underlying DFF. While WE and DO_I_N overlaps, which indicates the toggle of 

DO_I_N is triggered by the toggle of WE and the delay degradation shown in DINREG_N does 

not pass through to DO_I_N. That is the reason such delay degradation could not be observed 

from the final output DO<0>. 
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Figure 19. Waveforms Indicates Isolation of Delay Degradation 

4.3 Logic of WE Signal 

For WE signal, it is the logic output of three input signals, CLKin, R_WB and WLOFF (always 

logic 0 in normal operation), the Figure 20 shows the logic diagram, and the blue rectangles 

represents combination logic delay: 

 

Figure 20. Schematic of WE Signal 

4.4 Stimulus Waveforms 

There are different top-level signals need be stimulated in order to get tSDI_spec: data input 

bus (DI), address input bus (AD), chip enable (EN), bit enable (BEN), read write bar (R_WB) 

and clock (CLKin). Except for simulation of chip enable setup time (tSEN), EN will be the first 
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to be active (logic 1). Since the circuit needs time to initialize after EN goes high, there will be 

a read cycle without doing anything dedicated to that. There is a feature called “write-through” 

that in write cycle, the data written into the SRAM will appear on data output bus (DO) after 

some delay, which is required by modern cache design, when the microprocessor wants to write 

data to the cache, it can write the same data to the memory behind the cache simultaneously. 

Thus it is hard to distinguish whether writing is successful with only one write cycle simulation. 

Besides, if a writing logic 1 is to be tested (tSDI rising polarity), a logic 0 should be guaranteed 

to be written into the SRAM bitcell before the writing logic 1 happens. Same case for writing 

logic 0 (tSDI falling polarity). So two write cycles will be used, which will be the second and 

third clock cycles, write logic 0 then logic 1 for tSDI rising polarity or write logic 1 then logic 

0 (shown in Figure 21). In this case, if the internal SRAM bit flips (shown in Figure 21), it is 

assured that the write logic 1/0 is successful. Then the Tsetup can be reduced till the internal 

SRAM bit does not flip any more. In general, whether the internal SRAM bit flips will be the 

indication of whether the circuit works correctly or not. Because the worst case for setup time 

is the slowest circuit, and CLK_LOC_N is slower than CLK_LOC, the CLK_LOC_N is chosen 

in the setup time analysis. 

 

Figure 21. Stimulus Waveforms of tSDI Simulation (SS/1.35V/-40°C, Rising) 
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4.5 Methodology 

The compiler uses a pre-defined tSDI_spec across all PVT conditions to be the central point of 

all matrices. Since the worst PVT condition for a setup time is SS/1.35V/-40°C, the 0.700ns of 

tSDI_spec should represent the margin which the compiler uses in this worst case. If such 

margin is kept unchanged for all PVT conditions, all tSDI_spec values associated with those 

different PVTs can be generated instead of using the only, most conservative one for all cases. 

In this way, the compiler could generate a more realistic, more balanced (reliability vs. 

performance) tSDI matrix for each PVT condition. 

Based on the simulation of SS/1.35V/-40°C, the nominal delay from the underlying DFF 

CLK_LOC_N to DATA is 1.259ns (Tsetup=2ns). When Tsetup=0.700ns, which matches the 

tSDI_spec, the simulated delay is 1.286ns. The margin is 1.78%. Then this margin could be 

used in other PVT conditions to determine the tSDI_spec associated. All tSDI_spec values 

associated with the rest of PVT conditions can be achieved when 1.78% delay degradation 

happens. 

4.6 Optimization (PassFail vs. Dichotomy) 

The Eldo simulator provides an optimization method to automatically extract object by varying 

parameters in given range. The basic algorithm is bisectional scan with tolerance specified by 

the user. Since Eldo can’t work on any range, in other words, if there is a point where Eldo 

can’t extract the measurement, it will give error message and exit. So there is a dedicated 

PassFail (P/F) method running before the actual bisectional scan to provide the simulator a 

valid parameter range. 

The P/F method doesn’t care about the starting point. It will try to get as close as possible to 

the critical point where circuit starts to fail (the simulator can’t extract the measurement any 

more). 

Dichotomy method is purely bisectional scan. There are three options the user can specify, 

minimal and maximal value (provided by P/F) and starting point. The simulator assumes the 

measurement curve will be monotonic, the Dichotomy will start with the starting point and one 

end. The user can specify with how much tolerance the simulator will consider to stop 

comparing with last step by adjusting tol_relpar value in Eldo option. Smaller tol_relpar 

indicates higher accuracy and longer simulation time. 
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4.7 General Procedures (Vary PVTs) 

First, the P/F method need be run to get the valid range of Tsetup to simulate the delay from 

CLK_LOC_N to DATA of underlying DFF. The upper bound could choose 2ns to get the 

nominal delay. The lower bound could choose 0 in order to avoid missing the actual critical 

point where circuit starts to fail. For the first time of P/F optimization, the accuracy of Eldo 

simulation could be relaxed (by increasing tol_relpar value to 0.1, the default value is 0.001) 

so that the optimization will not take too long. Once it finishes, it will give the delay at the 

critical point, if it is larger than the margin the user want to use, this P/F optimization is enough 

because the desired point will be between the upper bound and critical point. If it is not, a more 

accurate, less relaxed P/F optimization might need to be run because the current critical point 

is too conservative. Several P/F optimizations might need to be iterated to get the reasonable 

critical point. 

Once the P/F method gives the valid range of Tsetup, the Dichotomy method could be utilized to 

find where delay is 1.78% larger than the nominal value (could choose different margin 

depending on the design). The Dichotomy method will do bisectional scan to get as close as 

possible to the Tsetup point where delay is 1.78% larger. The Dichotomy method should use the 

same/higher accuracy as the last P/F optimization. 

Once the Tsetup where delay is 1.78% larger than nominal is given by optimizations, it will be 

the central point of tSDI matrix of this very PVT condition, tSDI_spec. When tol_relpar=0.1, 

it will give the user 1E-11 accuracy. When tol_relpar=0.01, it will give the user 1E-13 accuracy. 

The feasible low accuracy will be done by specifying tol_relpar=0.1, while feasible high 

accuracy will be tol_relpar=0.05. 

4.8 Results
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4.8.1 Rising Polarity 

 

Figure 22. tSDI_spec Simulation Results (Rising) with Varying PVTs 
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It can be seen that there is some small fluctuation (<1%) from Tsetup=2ns (where the nominal 

delay is calculated) for TT/1.80V/25°C to where the delay degradation starts to appear. 

According to the methodology, for TT/1.80V/25°C, when Tsetup=0.120ns, the delay from the 

underlying DFF CLK_LOC_N to DATA is 1.78% larger than the nominal value. Comparing 

with the tSDI_spec = 0.700ns used in this PVT condition, the simulated central point of tSDI 

matrix is 4X smaller, which guarantees much smaller setup time (better performance) with 

reasonable 1.78% margin. 

Another example for FF/1.95V/-40°C. Applying the 1.78% margin, the tSDI_spec for 

FF/1.95V/-40°C is 0.050ns. Again, it is very smaller comparing with the default tSDI_spec the 

compiler uses, which gives the user better estimation of how fast the circuit could go before 

failure starts. One thing need be notified is that the delay degradation curve is very sharp once 

showing up. The 1.78% point is on the very edge of the cliff, which is not a suitable point for 

operation. If there is a little variation of the Tsetup, the circuit will probably fail. There might be 

an independent margin of these timing parameters acting like design guardband, within which 

these parameters could have a small perturbation safely without going into the catastrophic 

failure. We has 0.200ns design guardband. Once it added to the simulated tSDI_spec, a better 

estimation of tSDI_spec could be 0.050+0.200=0.250ns.
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4.8.2 Falling Polarity 

 

Figure 23. tSDI_spec Simulation Results (Falling) with Varying PVTs
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For the falling polarity, it can be seen that, for SS/1.35V/-40°C, there isn’t any delay 

degradation when Tsetup=0.700ns. So instead applying the same delay degradation percentage 

through all PVTs, we pick SS/1.35V/-40°C as a reference, then extract where the catastrophic 

failure happens (the Eldo can’t extract the CLK_LOC_N to DATA delay). The difference 

between the Tsetup where catastrophic failure happens and the 0.700ns is assumed to be the 

design guardband. For SS/1.35V/-40°C, the catastrophic failure point is Tsetup=0, since the 

tSDI_spec in .lib is 0.700ns, the design guardband is 0.700-0=0.700ns, which is maintained 

through all other PVTs. The extracted layout simulation results for all PVTs have the same 

catastrophic failure point 0ns, which leads to the same simulated tSDI_spec=0.700ns for tSDI 

falling polarity. 

Chapter 5 Data Input Hold Time (tHDI) 

5.1 Equation 

In the equation-based method, the tHDI is composed of three individual terms, 

T_DI_del_th_r/f_a, tHDI_sim and T_CLKIO_del_th_a. The T_DI_del_th_r/f_a is the delay 

from top-level data input bus (DI) most significant bit (MSB) DI<15> to an internal node “N2” 

(the middle point between the master and the slave latches) of the underlying DFF of MSB in 

the datapath, which is shown in Figure 14. 

The T_CLKIO_del_th_a is the delay from the top-level clock pin (CLKin) to the local clock 

pin (CLK_LOC) of the underlying DFF of MSB. 

tHDI_sim is a design guardbanded simulation value to be used for certain PVT. We has three 

different tHDI_sim for different process corners, which is shown in: 

Table 6. tHDI_sim Guardband for Different Process Corners 

PVT 
tHDI_sim 

(ns) 

SS/1.60V/150°C 0.980 

SS/1.60V/-40°C 0.980 

TT/1.80V/25°C 0.540 

FF/1.60V/150°C 0.560 

FF/1.95V/-40°C 0.560 
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The .lib uses 0 assumption for hold time across all PVTs, then add the associated guardband 

for different PVTs to generate the central point of the matrices. For example, for SS corner, 

regardless the voltage and temperature, all central points are 0.980ns. Same case for TT and FF. 

tHDI_rr_ar = – T_DI_del_th_r_a + tHDI_sim + T_CLKIO_del_th_a 

tHDI_rf_ar = – T_DI_del_th_f_a + tHDI_sim + T_CLKIO_del_th_a 

Equation 4 

In Equation 4: 

 T_DI_del_th_r_a is the delay from DI<15> to an internal node “N2” of the underlying 

DFF when DI<15> is from logic 0 to 1. 

 T_DI_del_th_f_a is the delay from DI<15> to an internal node “N2” of the underlying 

DFF when DI<15> is from logic 1 to 0. 

 tHDI_sim is the guardband value the user specifies when running compiler. 

 T_CLKIO_del_th_a is the delay from CLKin to CLK_LOC of the underlying DFF of 

MSB. 

5.2 Schematic 

The Figure 24 shows the schematic of tHDI, from which it can be seen that there are two input 

signals, DI<15> and CLKin. The actual clock pin of the underlying DFF, CLK_LOC, is 

connected to CLKin through some delay. The compiler takes the two delays shown in Figure 

24 as parameters to vary from the 0 + tHDI_sim to generate the 5x5 matrix. 

 

Figure 24. Schematic of tHDI 

5.3 Stimulus Waveforms 

There are different top-level signals need be stimulated in order to get tHDI_sim: DI, AD, EN, 

BEN, R_WB and CLKin. Except for simulation of tSEN, EN will be the first to be active (logic 

CLK_LOC 
DFF 

CLKin 

DI<15> 

T_CLKIO_del_ts_a 

T_DI_del_ts_r/f_a 

Q 
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1). Since the circuit needs time to initialize after EN goes high, there will be a read cycle without 

doing anything dedicated to that. Like the simulation of tSDI, there are two consecutive write 

cycles needed to make sure when we test if a logic 0/1 is written in the SRAM, a complementary 

logic 1/0 is already in the SRAM bitcell. So two write cycles will be used, which will be the 

second and third clock cycles, write logic 1 then logic 0 for tHDI rising polarity or write logic 

0 then logic 1 (shown in). In this case, if the internal SRAM bit flips (shown in), it is assured 

that the write logic 0/1 is successful. Since the hold time of the underlying DFF needs to be 

extracted, the DI<15> will be toggled shortly after the CLKin, then the delay from CLKin to 

DI<15> is the Thold for tHDI simulation. The Thold can be reduced so that the hold time of the 

data after the trigger of clock is smaller and smaller till the internal SRAM bit does not flip any 

more, which indicates the hold time of the underlying DFF isn’t satisfied anymore. In general, 

whether the internal SRAM bit flips will be the indication of whether the circuit works correctly 

or not. Because the worst case for hold time is the fastest circuit, and CLK_LOC_N is slower 

than CLK_LOC, the CLK_LOC is chosen in the hold time analysis. 

 

Figure 25. Stimulus Waveforms of tHDI Simulation (SS/1.35V/-40°C, Rising) 

5.4 Methodology 

The compiler uses a user-specified tHDI_sim for different process corners to be the central 

point of all matrices. Since the worst PVT condition for a hold time is FF/1.95V/-40°C, the 
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0.560ns of tHDI_sim should represent the guardband which the compiler uses in this worst case. 

If such guardband is kept unchanged for all PVT conditions, all tHDI_sim values associated 

with those different PVTs can be generated by adding this guardband to the actual simulated 

catastrophic failure points. In this way, the compiler could generate a more realistic, more 

balanced (reliability vs. performance) tHDI matrix for each PVT condition. 

Based on the simulation of FF/1.95V/-40°C, the catastrophic failure point is 0.030ns. Since 

0.560ns is used in the .lib, the actual guardband needed to be maintained is 0.560-

0.030=0.530ns. Then this 0.530ns guardband should be kept unchanged across all other PVTs 

when adding to the catastrophic failure points associated with those PVTs. 

5.5 Results 
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5.5.1 Rising Polarity 

 

Figure 26. tHDI_sim Simulation Results (Rising) with Varying PVTs
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Regardless of the 0.530ns guardband, the simulations across different PVTs show the actual 

catastrophic failure points are very close to 0, even negative values for hold time. Since the 

faster the circuit is, the worse the situation for hold time, it can be seen that for the slowest 

circuit, SS/1.35V/-40°C, its hold time catastrophic failure point is almost -0.300ns. With the 

circuit faster and faster, this catastrophic failure point actually shifts right, which is consistent 

with the assumption that the faster circuit is, the larger its hold time will be. 
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5.5.2 Falling Polarity 

 

Figure 27. tHDI_sim Simulation Results (Falling) with Varying PVTs
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Unlike the rising polarity, the simulations for different PVTs show that faster circuit has slightly 

smaller hold time because the catastrophic points are more on the left. Such phenomenon might 

result from the simulator accuracy, or there is some other mechanism to cause the slower circuit 

to fail earlier. But even though there is slight difference between faster and slower circuits, such 

difference isn’t as large as what we see in rising polarity. Generally for falling polarity, the user 

could consider all PVTs have a uniform hold time, which is around 0.650ns after adding the 

guardband (0.530ns) extracted from FF/1.95V/-40°C. 

Chapter 6 Data Writing Delay (tWR) 

6.1 Equation 

Similar with the tSDI, the tWR also has three terms, two from the subcircuit delay 

measurements and one spec value. The T_CLKCTL_del_r_a is the delay from top-level CLKin 

to local clock CLK_LOC which triggers the underlying DFF of LSB. The T_DO_del_r/f_a is 

the delay from DO_I_N to top-level DO<15>. Unlike the tSDI using same tSDI_spec (0.7ns) 

across all PVT conditions, the tWR_spec has three different values (minimal, typical and 

maximal). The tWR_spec has variations across process, in other words, the compiler uses the 

minimal value for FF, the typical value for TT and maximal value for SS. 

tWR_rr_ar = T_CLKCTL_del_r_a + tWR_spec + T_DO_del_r_a 

tWR_rf_ar = T_CLKCTL_del_r_a + tWR_spec + T_DO_del_f_a 

Equation 5 

In Equation 5: 

 T_CLKCTL_del_r_a is the delay from top-level CLKin to local CLK_LOC which 

triggers the underlying DFF of LSB. 

 T_DO_del_r/f_a is the delay from DO_I_N to top-level DO<15>. 

 tWR_spec has three different values for minimal, typical and maximal conditions. 

Table 7. tWR_spec Values for Different Processes 

Min (FF) Typ (TT) Max (SS) 

0.500ns 1.930ns 3.920ns 
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6.2 Schematic 

The Figure 28 shows the brief schematic of tWR. It can be seen that the equation-based method 

is literally adding all the major delays of the path from CLKin to DO. The T_CLKCTL_del_r_a 

counts the delay of clock signal, and T_DO_del_r/f_a counts the delay of output buffer (the 

blue rectangle between DO_I_N and DO<15>). We assume the delays for the rest parts is 

included in the tWR_spec and will not change with different output load capacitances and signal 

slew rate. 

 

 

6.3 Results 

For direct measurement of tWR_spec, the delay from CLKin to DO<15> in write cycle is 

considered to be tWR_spec. Different simulated tWR_spec for different PVT conditions are 

shown in Table 11. 

For the rising polarity, the maximal value of tWR_spec which the compiler uses is based on 

SS/1.60V/-40°C or SS/1.60V/150°C (depending on which is larger), but the slowest condition 

of all cases is SS/1.35V/-40°C. So it is reasonable the simulated tWR_spec of SS/1.35V/-40°C 

is larger than the maximal value in the raw data file. On the other hand, the simulated tWR_spec 

for SS/1.60V/-40°C is 3.211ns, for SS/1.60V/150°C is 3.213ns, both are smaller than 3.920ns 

as expected. Same case for TT/1.80V/25°C. The minimal value of tWR_spec is based on 

FF/1.60V/150°C or FF/1.95V/-40°C (depending on which is smaller). But with these two PVT 

conditions, the simulated tWR_spec values (1.633ns for FF/1.60V/150°C and 1.075ns for 

FF/1.95V/-40°C) are larger than 0.500ns shown in Table 11. Same case for the falling polarity.

CLK_LOC 

T_DO_del_r/f_a 

T_CLKCTL_del_r_a 

we 

saOut 

DFF 
CLKin 

DI<15> 

DO<15> DO_I_N 

Figure 28. Schematic of tWR 
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6.4 Validation 

 

Figure 29. tWR_spec Simulation Results with Varying Temperature and VDD 

At first we assumes the .lib is very pessimistic, which means our extracted layout simulation 

results should be larger than the values in the .lib. But it turns out that some values are optimistic 

instead. The tWR_spec for FF/1.95V/-40°C is about 2X larger than the .lib values (shown in 

Table 11). In order to have a sanity check to prove the methodology is correct, for both 

FF/1.60V/150°C and FF/1.95/-40°C, we vary one of the temperature (T) and voltage (VDD) 

keep the other one intact. The simulated curves are as expected, that higher temperature means 

more delay because the circuit is slower (Figure 29(a)). Higher VDD indicates faster circuit 

(Figure 29(b)). 

One interesting phenomenon is that when VDD is relatively small (VDD < 1.5V), increasing the 

temperature will actually increase the speed of the circuit, which is because the threshold 

voltage Vt of the MOSFETs is lower with temperature increasing. The lower threshold voltage 

Vt will compensate the negative effect resulting from lower mobility in higher temperature, and 

finally overcome it and make the circuit faster, which can be seen from Figure 29(b). When 

VDD is smaller than 1.5V, the circuit at 150°C has smaller data writing delay than the circuit at 

-40°C. 

Chapter 7 Read/Write Setup Time (tSRWB) 

7.1 Equation 

The tSRWB also has three terms in the equation. Except for the tSRWB_spec, the rest two are 

delays measured from subcircuits. The T_RWB_del_ts_r_a is the delay from top-level R_WB 
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to an internal node “A_N” (the invert of input A) of the underlying DFF (the very left white 

circle shown in Figure 32). The T_CLKCTL_del_ts_a is the delay from top-level CLKin to 

local clock CLKEN. The compiler has a fixed tSRWB_spec (0.5ns) across all PVT conditions. 

tSWRB = T_RWB_del_ts_r_a + tSRWB_spec - T_CLKCTL_del_ts_a 

Equation 6 

In Equation 6: 

 T_RWB_del_ts_r_a is the delay from top-level R_WB to an internal node “A_N” of 

the underlying DFF. 

 T_CLKCTL_del_ts_a is the delay from top-level CLKin to local clock CLKEN. 

 tSRWB_spec has a value of 0.5ns across all PVT conditions. 

7.2 Schematic 

The Figure 30 shows the schematic of the tSRWB. It can be seen that the local clock ACLK 

which triggers the pre-charge latch of R_WB is gated by the EN_M, which is the registered 

signal of the EN. There are two different type of input registers: the normal DFF used in EN 

path and pre-charge latch in R_WB path. This pre-charge latch exhibits a unique delay 

degradation pattern different from the normal DFF, and that is reason we investigate it more 

and do individual simulation of this type of latch without other circuits. 

 

T_CLKCTL_del_ts_a 

T_RWB_del_ts_r_a 

R_WBREG 

ACLK 

EN_M 

CLKin 

R_WB 

Pre-Charge 

DFF 

DFF 

CLKEN CLKin 

EN 

Figure 30. Schematic of tSRWB 
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7.3 Pre-charge Latch 

According to design document, the input register used in R_WB signal path is an improved one. 

The normal input registers used for DI and EN are normal DFFs shown in Figure 31. 

 

Figure 31. Schematic of Normal DFF 

While for those input registers used for AD and R_WB, they are pre-charge latch shown in 

Figure 32. 

 

Figure 32. Schematic of Pre-charge Latch 
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When the CLK=0, it will open the PMOS I76 and I77 and shut down the NMOS I68, which 

will clamp the internal nodes “TRU” and “BAR” to be VDD all the time. Once the CLK flips to 

1, it will open the NMOS I68, and release the clamping. Now if the data input of the latch, A, 

is 0, the “TRU” node will be discharged to 0. On the other hand, if A=1, the “BAR” node will 

be discharge to 0. It works as a latch with level sensitivity of CLK. 

We keep the same methodology as the tSDI_spec simulation does. But the tSRWB_spec 

simulation exhibits quite different delay degradation pattern (shown in Figure 34(c)(d)). It can 

be seen that the delay degradation curve is not monotonically increasing as expected when Tsetup 

decreases. Especially for SS/1.35V/-40°C, there is a range where the delay increases to a 

maxima, then decreases to a certain level, then increases again. Seen from the curve, it is like a 

hill. 

Another problem we find in this methodology when applying to the tSRWB_spec simulation 

is the results are extremely small than the .lib. In Table 11, it can be seen that for 

SS/1.60V/150°C, the tSRWB_spec we simulate (0.01ns) is 50X smaller than the value in 

the .lib (0.5ns). Even though we assume that the .lib is somewhat pessimistic, but such huge 

difference leads us to investigate more about this pre-charge latch used in R_WB signal path. 

We do individual simulation of such latch to show it exhibits quite different delay degradation 

pattern from the normal DFF used in DI and EN. 

7.4 Delay Degradations of Normal DFF and Pre-charge Latch 

 

Figure 33. Comparison Between Normal DFF and Pre-charge Latch. 
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7.5 Individual Simulation of Pre-charge Latch without Other Circuits 

7.5.1 Individual Simulation vs. Extracted Layout Simulation 

 

 

Figure 34. (a) Individual Simulation (b)(c) Extracted Layout Simulation 

Comparing the red and blue curves in Figure 34(a), we can see the tuning factor play a 

significant role in simulation. With higher accuracy setting (.option tuning=accurate), the red 

curve is smoother with less unexpected spikes (e.g. the blue curve at Tsetup=1.5ns). More 

obvious is in Figure 34(b). The blue curve has a large downward spike at Tsetup=0.5ns. The low 

accuracy setting of the simulator could introduce some amount of noise into the results we have 

before. We think the actual value might not change too much, but the pattern is somehow 

changed by adding some unexpected spikes. 

Comparing Figure 34(b) and (c), the pre-charge latch has different delay degradation patterns 

under SS/1.35V/-40°C and TT/1.80V/25°C respectively. There is a large hill at Tsetup=0.5ns 
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with height of more than 25% delay degradation in SS/1.35V/-40°C. But in TT/1.80V/25°C, 

the general trend of curves is monotonically increasing with Tsetup decreasing. 

If comparing with Figure 34(b) and (c), we could see the pre-charge latch behaves worse 

individually than it with entire circuit. The Figure 34(c) and (d) are done with entire circuit. But 

if considering the same Tsetup=0.5ns for Figure 34(b) and (c), for the entire circuit simulation, it 

only gives us 3.5% delay degradation, which should be used across all PVT simulations. While 

the individual simulation gives us more than 25% delay degradation at Tsetup=0.5ns, which 

should be considered as catastrophic failure. 

7.5.2 Varying Output Load Capacitance 

 

 

Figure 35. Pre-charge Latch Simulation Results with Varying Output Load Capacitance (a)(c) 

Absolute Value (b)(d) Percentage Value 
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From Figure 35, we can tell different output capacitance will result in different delay. But from 

Figure 35(a) and (c), the basic patterns are the same. Besides, from Figure 35(b) and (d), the 

percentage of delay degradation along with decreasing Tsetup doesn’t change too much. Even 

without output load capacitance, this pre-charge latch under SS/1.35V/-40°C still shows more 

than 25% delay degradation at Tsetup=0.5ns. And the blue curve is actually above the red curve 

(with 5fF output load capacitance), which means without output capacitance has worse delay 

degradation distortion. 

7.5.3 Varying the W/L of PMOS I76 and I77 

From Figure 32, we could see PMOS I76 and I77 provide the pre-charging path for the “TRU” 

and “BAR” nodes. When CLK=0, both PMOS are turned on and “TRU” and “BAR” are 

clamped to VDD. The drive strength of these PMOS determine how fast the two nodes (with 

other nodes like the drain of I64, and capacitance associated with) are pre-charging. Larger W/L 

ratio can offer larger drive strength, larger charging current, which will reduce the time for 

these node to be pre-charged to a certain voltage. We want to know if the drive strength of these 

two PMOS, or the relative strength between these two and NMOS I70 can affect the shape or 

height of the abnormal hill in the delay degradation pattern found in simulation. 

 

Figure 36. Pre-charge Latch Simulation Results with Varying I76/I77 Width (a) Absolute 

Value (b) Percentage Value 

As we can see in Figure 36, increasing the width of both PMOS (I76 and I77) can help reducing 

the height of the hill between Tsetup=0.1ns and 0.5ns. While the pattern shape keeps the similar. 
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7.5.4 Varying the Power Supply Voltage VDD 

 

Figure 37. Pre-charge Latch Simulation Results with Varying Vdd (a) Absolute Value (b) 

Percentage Value 

It can be seen that increasing the VDD can greatly reduce the height of hill. Besides, for 

VDD=1.8V, the abnormal hill disappears, and the entire delay degradation pattern comes back 

to the normal fashion. 

7.5.5 Varying the Process 

 

 

Figure 38. Pre-charge Latch Simulation Results with Varying Process (a) Absolute Value (b) 

Percentage Value 
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Similar with increasing the VDD, using fast corners FF can reduce the height of hill. It can be 

still seen a little bit hill for TT corner, but there is none for the FF corner. The assumption, 

which still needs to be proven, is that the abnormal pattern (hill) could be dampened or 

eliminated with lower threshold voltage (Vth) of MOS, fast device or higher power supply (VDD). 

7.5.6 Varying the PMOS Model of Output Inverters 

There are several PMOS models available in the tech library. The presumption is that with 

lower Vth PMOS of output inverters, it can dampen the hill in delay degradation pattern. The 

reason is, with lower Vth, the inverters will flip earlier than those with higher Vth. The different 

PMOS models with different Vth are shown in Table 8: 

Table 8. Different PMOS Models in Tech Library 

Model Vth (mV) W/L (um) 

phighvt 942 2 x 1.65/0.15 

plowvt 602 2 x 3.00/0.35 

pshort 790 2 x 1.65/0.15 

 

 

Figure 39. Delay Degradation Patterns for Different PMOS Models 



46 

 

 

Figure 40. Waveforms for Different PMOS Models 

By changing the PMOS model of the inverters (I41 and I72) from phighvt (W/L=2 x 1.62/0.15) 

to plowvt (W/L=2 x 3.00/0.35), the hill in delay degradation is damped a lot. But it can observed 

that the “TRU” and “BAR” have no longer enough pre-charging current to be charged close to 

VDD. So the width (from 0.42/0.15 to 0.55/0.15) of PMOS of both pre-charge path (I76 and I77) 

is increased to provide enough pre-charging current before clock arrives. One thing noticed is 

that by changing from phighvt to plowvt, the inverter actually flips earlier than before. In the 

pre-charge period (before CLK arrives), the output Q will rise higher, from less than 0.5VDD to 

VDD. Considering the next stage is a gating for CLK, as long as the CLK keeps 0, it will not be 

a problem. According to the design document, only the logic when CLK is active (=1) is 

considered. 

Changing from phighvt to pshort has similar effect. But it doesn’t require increasing the drive 

strength of PMOS of the pre-charge paths. 
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7.5.7 Schematic vs. Extracted Layout Simulation 

 

Figure 41. Schematic vs. Extracted Layout Simulation (a) Rising (b) Falling 

From Figure 41(a) it can be seen that both schematic and extracted layout simulations show 

this non-monotonic delay degradation pattern with data input rising. These two curves are close 

to each other till Tsetup<0.1ns. After Tsetup<0.1ns, the schematic simulation shows larger 

increasing rate. 

While from Figure 41 (b), this pre-charge type latch demonstrates monotonic delay degradation 

pattern, which is similar as the normal DFF does in Figure 33 (b). It is unexpected that even 

schematic simulation shows this asymmetry because in the simulation with only transistors 

(schematic netlist), both paths (“TRU” and “BAR”) have identical transistor parameters (e.g. 

W/L, model type, Vth, etc.). The only difference in the schematic is there is an extra inverter to 

generate the reciprocal input signal A_N by taking the A as input, which is shown in Figure 32. 

Another thing from Figure 41 (b) is the schematic simulation is worse than extracted layout 

simulation. The blue curve (schematic) is above the red curve (layout), and when Tsetup=0.5ns 

(which is the tSRWB_spec value in the .lib), the extracted layout simulation gives us 40% delay 

degradation while the circuit fails before Tsetup reaches 0.5ns in the schematic simulation. 
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7.5.8 Different Data Input Polarities 

 

Figure 42. Simulation Results of Different Data Input Polarities (a) Schematic (b) Extracted 

Layout 

From Figure 42 it can be seen that both schematic and extracted layout simulations shows 

different delay degradation patterns for different data input polarities (rising vs. falling). This 

pre-charge latch favors the rising data input signal because the red curve in Figure 42 shows 

much smaller delay degradation than the blue curve does, which means faster propagation. The 

presumption, which still needs to be proven, is the inverter on the input side causes this 

asymmetry because, for schematic, the rest logic paths are symmetric. In order to answer this 

question, we tweak the MOS in this inverter by changing the drive strength, Vth, etc. to see if it 

actually affects this non-monotonic patterns and asymmetric response. 

7.5.9 Tweak of the Inverter on the Data Input Path 

The idea is since the inverter on the data input side is the only asymmetric part in the entire 

schematic, this non-monotonic patterns showing only in data input rising polarity should result 

from it. By tweaking the W/L of either the NMOS or PMOS in this inverter, or completely 

removing this subcircuit, we could have a better understanding its effect on the non-monotonic 

pattern. 
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Figure 43. Simulation Results of Tweaking the Inverter 

It can be proven from Figure 43 that this non-monotonic pattern results from the asymmetry 

caused by this inverter. If completely eliminating the inverter (apply stimulus directly on the 

output of this inverter “A_N”), this non-monotonic pattern disappears. 

 

Figure 44. Rising/Falling Simulation Results without the Input Inverter 

From Figure 44 it can be seen that both rising and falling are monotonic. One thing needs to be 

noticed is that there is still observable asymmetry from the curves, falling has larger delay 

degradation than rising does. Another thing is the shapes of both curves change comparing with 

Figure 42(b). The reason might be the clock is always positive edge sensitive, which might 

introduce this asymmetry. 
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7.5.10 A Proposed Improvement of the Inverter on the Data Input Path 

By comparing the waveforms from the simulations with both the unchanged netlist and netlist 

without the inverter, we propose the reason causing the non-monotonic pattern is the delay from 

the asymmetric existing of the inverter on the data input path. 

 

Figure 45. A_N Waveforms with Unchanged Netlist and Netlist without the Inverter 

From Figure 45, it can be seen that the waveforms of the actual A_N generated by the inverter 

is quite different from the waveforms directly forced in the simulation with the netlist without 

the inverter. So we think the non-monotonic is caused by the delay introduced by the inverter. 

With this delay, the actual A_N signal can’t drop to logic 0 before the CLK becomes active 

when Tsetup is small enough. If there is much setup time (Tsetup is large enough), in other words, 

input A toggles early enough before the CLK toggles, the inverted signal A_N could have 

enough time drop from logic 1 to 0. When the input A is more and more close to the CLK, 

considering the delay introduced by the inverter, the A_N will be high enough to be considered 

logic 1 when the CLK is active. In this case, both A and A_N are logic 1 when the latch 

evaluates the input, which turns on both discharge paths and results in a temporary speed up. 
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Figure 46. Portion of Pre-charge Latch Schematic Shows the Added Pull-down Path 

In order to eliminate this non-monotonic pattern, we try to compensate the delay introduced by 

the inverter. A pull-down path (shown in Figure 46) is added to the A_N node to pre-discharge 

the value of A_N to logic 0 so that it doesn’t need to wait for the effective input A to arrive. 

This pull-down path is control by the logic value of input A and CLK so that it will be only 

turned on when A is logic 0 and CLK is inactive. For the rising polarity scenario (input signal 

A toggles from logic 0 to 1), this pull-down path turns on for a while then shuts off. For the 

falling polarity scenario (input signal A toggles from logic 1 to 0), this pull-down path shuts off 

for a while then turns on, and after a short time, it will be turned off again because CLK is 

active. Because we tweak the drive strength of the NMOS I74 (W/L=0.42/0.15) used in this 

pull-down path very weak comparing with the PMOS I34 (W/L=3.00/0.15) in the inverter, this 

pull-down path can’t affect the output logic of the inverter (shown in Figure 46). 
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7.5.11 Different Versions of the Modified Pre-charge Latch with Pull-down Path 

 

Figure 47. Default Layout 

 

Figure 48. Modified Layout Version 1 

 

Figure 49. Modified Layout Version 2 
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Figure 50. Modified Layout Version 3 

Table 9. Different Configurations of the Modified Layouts 

 Default Version 1 Version 2 Version 3 

Size 

10.20um x 

3.93um = 

40.04um2 

10.63um x 

6.49um = 

68.90um2 

10.20um x 

5.22um = 

53.19um2 

10.2um x 

5.34um = 

54.62um2 

With Pull-down 

Path 
No Yes Yes Yes 

PMOS I34 W/L 

(um) 
0.42/0.15 3.00/0.15 4x0.84/0.15 2x1.65/0.15 

M Factor of PMOS 

I34 
1 1 4 2 

 

Based on the default layout, according to the pull-down path design (shown in Figure 46), 4 

more transistors needed to be added to the existing layout. Besides that, the W/L of the PMOS 

I34 (shown in Figure 46) needed to be increased. The version 1 was the first modified design, 

which confirmed the design correction without taking layout area into consideration. The 

increased area for version 1 was 69.8%. 

Since large area made the version 1 very difficult to fit into the default SRAM layout, much 

effort was made to shrink the layout. The version 2 was based on the version 1, in order to save 

area, the M factor of the PMOS I34 was increased, which ended up with 4x0.84/0.15 from 

3.00/0.15. The equivalent W/L is larger (4x0.84/0.15 = 3.36/0.15). The simulation results 

showed this large M factor (leads to different Vth) actually affected the falling behavior a lot 

(discussed in next section), which made the version 2 impractical. 
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The version 3 was proposed based on the version 2 with decreasing the high M factor from 4 

to 2. The W/L of the PMOS I34 was 2x1.65/0.15. The simulation results showed good trade-

off between M factor (the low M factor, the better rising/falling behaviors) and small area. 

7.5.12 Final Top-level Layout of the SRAM 

 

Figure 51. Final Top-level Layout 

In order to make space for the extra logic (4 more transistors and 1 PMOS with increased W/L), 

the entire ring was moved down 2um. The modified top-level layout is 2.365% larger than the 

default one. 

 

Figure 52. Zoom-in Layout Shows the Improved Pre-charge Type Latch with Pull-down Path 
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It can be seen that except for the extra space, the added logic of the pull-down path didn’t affect 

any re-route of the default layout, which preserved the hierarchy instantiation. 

7.5.12 Simulation Results of Different Versions of the Modified Layouts 

 

Figure 53. Simulation Results of the Default Layout 

 

Figure 54. Simulation Results of the Version 1 
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Figure 55. Simulation Results of the Version 2 

 

Figure 56. Simulation Results of the Version 3 

It can be seen that the simulation result of the rising edge of the default layout had a large bump 

shown in the delay degradation pattern. The delay degradation pattern for the falling edge was 

monotonically increasing. 

In order to eliminate the large bump shown in the rising edge delay degradation pattern, the 

pull-down path was added to the default design. From the simulation results of the version 1, it 

can be seen that the bump was eliminated, and both rising and falling edge delay degradation 

patterns were monotonically increasing. 

In order to save area, the version 2 was based on the version 1. But with large M factor (4), the 

simulation results of the version 2 showed distortion for the falling edge. The M factor had 

large effect (different Vth) on the falling edge delay degradation pattern, which is shown in next 

section. 
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The version 3 was a good trade-off between M factor and small area. With relative small M 

factor (2), the version 3 kept similar delay degradation patterns (rising/falling) as those of the 

version 1 with smaller layout area. This design was chosen to be integrated into the SRAM 

layout, which is shown in Figure 51 Figure 52. 

7.5.13 The Effect of M Factor on the Delay Degradation Pattern 

 

Figure 57. Simulation Results of Rising/Falling Delay Degradation Patterns with Different M 

Factors 

It can be seen that different M factor (the equivalent W/L were similar, around 3.00/0.15) had 

minor effect on the rising edge delay degradation patterns. But it had huge effect on the falling 

edge delay degradation patterns. The falling edge delay degradation patterns with large M factor 

(3/4) had distortion. Even though the drive strength PMOS I34 is kept similar, different M 

factor results in different Vth, which leads to unexpected behavior (distortion) of the pre-charge 

type latch. 

7.6 Stimulus Waveforms 

EN will be the first to be active. Since the circuit needs time to initialize after EN goes high, 

there will be a read cycle without doing anything dedicated to that. There is a feature called 

“feed-through” that in write cycle, the data written into the SRAM will appear on DO after 

some delay. Thus it is hard to distinguish whether reading is successful if trying reading the 

same data right after writing. So two write cycles will be used, which will be the second and 

third clock cycles, write 0 at address 111111 then write 1 at 000000. After that, in the fourth 

clock cycle, the simulator will try to read 0 from address 111111 (shown in Figure 58). In this 

case, if the output DO flips (shown in Figure 58), it is assured that the read 0 at 111111 is 

successful. Then the Tsetup can be reduced till the output DO does not flip any more (stay in 
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high). In general, whether the output DO flips will be the indication of whether the circuit works 

correctly or not. 

 

Figure 58. Stimulus Waveforms of tSRWB Simulation (SS/1.35V/-40°C, Rising) 

7.7 Methodology 

To use the same approach as tSDI_spec, the Tsetup=2ns point is simulated to get the nominal 

delay from the underlying DFF ACLK to R_WBREG with SS/1.35V/-40°C. The Tsetup=0.5ns 

(the same as tSRWB_spec in the .lib) will give the delay at that point. Then a margin of 3.5% 

can be achieved, which will be used in the rest to get the tSRWB_spec associated with these 

PVT conditions. 

7.8 Results 



59 

 

7.8.1 Default Layout (Rising Polarity) 

 

Figure 59. tSRWB Simulation Results of Default Layout (Rising) with Varying PVTs
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According to the tSRWB_spec in the .lib, when Tsetup=0.5ns, for SS/1.35V/-40°C, the delay 

degradation is 3.6%. When applying 3.6% delay degradation to other PVTs, the new 

tSRWB_spec values are extracted, which are shown in Table 11. The simulation results of 

tSRWB aren’t quite consistent with those of tSDI, that tSRWB_spec values for SS and TT are 

smaller than those for FF, which is the reason why the underlying pre-charge latch is studied, 

and modified to eliminate the non-monotonic delay degradation pattern in the individual 

simulations. We believe such non-monotonic pattern results from the imbalance of the pre-

charge latch circuit. 

Besides, the non-monotonic delay degradation pattern shown in individual simulations 

disappears in full circuit simulations for SS corner. But for TT and FF corners, the non-

monotonic hills can be still seen in the curves. 
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7.8.2 Modified Layout Version 3 (Rising Polarity) 

 

Figure 60. tSRWB Simulation Results of Modified Layout Version 3 (Rising) with Varying 

PVTs
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The modified layout version 3 is designed to eliminate the non-monotonic delay degradation 

pattern shown in the simulations of the pre-charge latch. The individual simulations, which are 

shown in previous section (Figure 53 vs Figure 56), confirm the added pull-down path can 

eliminate the non-monotonic pattern resulting from the imbalance of the input paths (A and 

A_N). The full circuit simulations shown in Figure 60 indicate such non-monotone, which still 

exist in TT and FF corners of the default layout (Figure 59 (d)(e)), almost disappear (only a 

small hill for FF/1.95V/-40°C) with the modified layout version 3.
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7.8.3 Default Layout (Falling Polarity) 

 

Figure 61. tSRWB Simulation Results of Default Layout (Falling) with Varying PVTs
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For the falling polarity, the simulations of the default layout show ideal monotonic delay 

degradation pattern, with which the tSRWB_spec values associated with each PVT can be 

easily extracted. For SS/1.35V/-40°C, the tSRWB_spec used in the .lib is 0.5ns. When applying 

Tsetup=0.5ns, it gives us 3% delay degradation, which are used in other PVTs to get each 

tSRWB_spec. The simulation results (shown in Table 11) are consistent with the assumption 

that faster circuit has smaller tSRWB_spec value.   
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7.8.4 Modified Layout Version 3 (Falling Polarity) 

 

Figure 62. tSRWB Simulation Results of Modified Layout Version 3 (Falling) with Varying 

PVTs
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Even through the modified layout version 3 works well for the rising polarity, the simulation 

results for the falling polarity are abnormal. Especially for SS corner, the delay degradation 

patterns are falling instead of rising when Tsetup gets smaller. Even for TT and FF corners, 

although the general trend is increasing when Tsetup gets smaller, there’re a lot of fluctuation 

which doesn’t show in the simulations of the default layout. Our modified layout version 3 

somehow doesn’t work well for the falling polarity, preventing further use before fixing this 

issue.
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Chapter 8 Data Reading Delay (tRD) 

8.1 Equation 

Similar with the tWR, the tRD also has three terms, two from the subcircuit delay measurement 

and one spec value. The T_CLKCTL_del_r_a is the delay from top-level CLKin to local clock 

CLK_LOC which triggers the underlying DFF. The T_DO_del_r/f_a is the delay from DO_I_N 

to top-level DO. Like tWR, the tRD_spec has three different values (minimal, typical and 

maximal). The tRD_spec has variation across process, in other words, the compiler uses the 

minimal value for FF, the typical value for TT and maximal value for SS. 

tRD_rr_ar = T_CLKCTL_del_r_a + tRD_spec + T_DO_del_r_a 

tRD_rf_ar = T_CLKCTL_del_r_a + tRD_spec + T_DO_del_f_a 

Equation 7 

In Equation 7: 

 T_CLKCTL_del_r_a is the delay from top-level CLKin to local CLK_LOC which 

triggers the underlying DFF. 

 T_DO_del_r/f_a is the delay from DO_I_N to top-level DO. 

 tRD_spec has three different values for minimal, typical and maximal conditions. 

Table 10. tRD_spec Values for Different Processes 

Min (FF) Typ (TT) Max (SS) 

0.500ns 2.330ns 4.620ns 

 

8.2 Schematic 

The Figure 63 shows the brief schematic of tRD. It can be seen that the equation-based method 

is literally adding all the major delays of the path from CLKin to DO. The T_CLKCTL_del_r_a 

counts the delay of clock signal, and T_DO_del_r_a counts the delay of output buffer (the blue 

rectangle between DO_I_N and DO). We assume the delays for the rest parts is included in the 

tRD_spec and will not change with different output load capacitances and signal ramp time. 
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Figure 63. Schematic of tRD 

8.3 Results 

For direct measurement of tRD_spec, the delay from CLKin to DO in read cycle is considered 

to be tRD_spec. Different simulated tRD_spec for different PVT conditions are shown in Table 

11. 

For the rising polarity, similar like tWR_spec, since the maximum value of tRD_spec is based 

on SS/1.60V/-40°C or SS/1.60V/150°C (depending on which one is larger), it is reasonable that 

simulated tRD_spec of SS/1.35V/-40°C is larger than the maximum value here. But for the 

minimal value, which should be based on FF/1.60V/150°C or FF/1.95V/-40°C (depending on 

which one is smaller), the simulated values are larger than 0.5ns unexpectedly. Same case for 

the falling polarity. 

8.4 Validating 

 

Figure 64. tRD Simulation Results with Varying Temperature and VDD 

The tRD_spec for FF/1.95V/-40°C is 2.6X larger than the .lib values (shown in Table 11). In 

order to have a sanity check to prove the methodology is correct, for both FF/1.60V/150°C and 

FF/1.95V/-40°C, we vary one of the temperature (T) and voltage (VDD) keep the other one intact. 

DO 

T_DO_del_r/f_a 

T_CLKCTL_del_r_a 

we 

saOut 

DFF 

CLKin 
CLK_LOC 

DI 

DO_I_N 
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The simulated curves are as expected, that higher temperature means more delay because the 

circuit is slower (Figure 64(a)). Higher VDD indicates faster circuit (Figure 64(b)). 

Chapter 9 Final Results 

Table 11. Final Results 

PVT Layout Param Polarity .lib (ns) 
Simulation 

(ns) 

SS/1.35V/-40°C Default tSDI Rising 0.700 0.700 

SS/1.60V/-40°C Default tSDI Rising 0.700 0.300 

SS/1.60V/150°C Default tSDI Rising 0.700 0.250 

TT/1.80V/25°C Default tSDI Rising 0.700 0.120 

FF/1.60V/150°C Default tSDI Rising 0.700 0.090 

FF/1.95V/-40°C Default tSDI Rising 0.700 0.050 

SS/1.35V/-40°C Default tSDI Falling 0.700 0.700 

SS/1.60V/-40°C Default tSDI Falling 0.700 0.700 

SS/1.60V/150°C Default tSDI Falling 0.700 0.600 

TT/1.80V/25°C Default tSDI Falling 0.700 0.700 

FF/1.60V/150°C Default tSDI Falling 0.700 0.700 

FF/1.95V/-40°C Default tSDI Falling 0.700 0.700 

SS/1.35V/-40°C Default tHDI Rising 0.980 0.200 

SS/1.60V/-40°C Default tHDI Rising 0.980 0.400 

SS/1.60V/150°C Default tHDI Rising 0.980 0.460 

TT/1.80V/25°C Default tHDI Rising 0.540 0.500 

FF/1.60V/150°C Default tHDI Rising 0.560 0.530 

FF/1.95V/-40°C Default tHDI Rising 0.560 0.560 

SS/1.35V/-40°C Default tHDI Falling 0.980 0.720 

SS/1.60V/-40°C Default tHDI Falling 0.980 0.640 

SS/1.60V/150°C Default tHDI Falling 0.980 0.700 

TT/1.80V/25°C Default tHDI Falling 0.540 0.600 

FF/1.60V/150°C Default tHDI Falling 0.560 0.640 

FF/1.95V/-40°C Default tHDI Falling 0.560 0.560 

SS/1.35V/-40°C Default tWR Rising 4.040 6.563 
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SS/1.60V/-40°C Default tWR Rising 4.040 3.211 

SS/1.60V/150°C Default tWR Rising 4.040 3.213 

TT/1.80V/25°C Default tWR Rising 1.960 1.698 

FF/1.60V/150°C Default tWR Rising 0.500 1.633 

FF/1.95V/-40°C Default tWR Rising 0.500 1.075 

SS/1.35V/-40°C Default tWR Falling 4.040 6.581 

SS/1.60V/-40°C Default tWR Falling 4.040 3.136 

SS/1.60V/150°C Default tWR Falling 4.040 3.128 

TT/1.80V/25°C Default tWR Falling 1.960 1.653 

FF/1.60V/150°C Default tWR Falling 0.500 1.622 

FF/1.95V/-40°C Default tWR Falling 0.500 1.040 

SS/1.35V/-40°C Default tSRWB Rising 0.500 0.500 

SS/1.60V/150°C Default tSRWB Rising 0.500 0.010 

SS/1.60V/-40°C Default tSRWB Rising 0.500 0.010 

TT/1.80V/25°C Default tSRWB Rising 0.500 0.010 

FF/1.60V/150°C Default tSRWB Rising 0.500 0.030 

FF/1.95V/-40°C Default tSRWB Rising 0.500 0.050 

SS/1.35V/-40°C Mod Ver 3 tSRWB Rising 0.500 0.500 

SS/1.60V/150°C Mod Ver 3 tSRWB Rising 0.500 0.650 

SS/1.60V/-40°C Mod Ver 3 tSRWB Rising 0.500 0.010 

TT/1.80V/25°C Mod Ver 3 tSRWB Rising 0.500 0.150 

FF/1.60V/150°C Mod Ver 3 tSRWB Rising 0.500 0.400 

FF/1.95V/-40°C Mod Ver 3 tSRWB Rising 0.500 0.080 

SS/1.35V/-40°C Default tSRWB Falling 0.500 0.500 

SS/1.60V/150°C Default tSRWB Falling 0.500 0.200 

SS/1.60V/-40°C Default tSRWB Falling 0.500 0.130 

TT/1.80V/25°C Default tSRWB Falling 0.500 0.100 

FF/1.60V/150°C Default tSRWB Falling 0.500 0.090 

FF/1.95V/-40°C Default tSRWB Falling 0.500 0.080 

SS/1.35V/-40°C Mod Ver 3 tSRWB Falling 0.500 0.500 

SS/1.60V/150°C Mod Ver 3 tSRWB Falling 0.500 
Can’t 

Measure 
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SS/1.60V/-40°C Mod Ver 3 tSRWB Falling 0.500 
Can’t 

Measure 

TT/1.80V/25°C Mod Ver 3 tSRWB Falling 0.500 
Can’t 

Measure 

FF/1.60V/150°C Mod Ver 3 tSRWB Falling 0.500 
Can’t 

Measure 

FF/1.95V/-40°C Mod Ver 3 tSRWB Falling 0.500 
Can’t 

Measure 

SS/1.35V/-40°C Default tRD Falling 4.740 7.636 

SS/1.60V/150°C Default tRD Falling 4.740 3.924 

SS/1.60V/-40°C Default tRD Falling 4.740 3.866 

TT/1.80V/25°C Default tRD Falling 2.360 2.082 

FF/1.60V/150°C Default tRD Falling 0.500 2.054 

FF/1.95V/-40°C Default tRD Falling 0.500 1.318 

SS/1.35V/-40°C Mod Ver 3 tRD Falling 4.740 7.733 

SS/1.60V/150°C Mod Ver 3 tRD Falling 4.740 3.923 

SS/1.60V/-40°C Mod Ver 3 tRD Falling 4.740 3.866 

TT/1.80V/25°C Mod Ver 3 tRD Falling 2.360 2.082 

FF/1.60V/150°C Mod Ver 3 tRD Falling 0.500 2.052 

FF/1.95V/-40°C Mod Ver 3 tRD Falling 0.500 1.317 

 

The simulations for tSDI_spec, tHDI_sim, tWR and tRD meet our expectation that such 

methodology can provide an insight for the SRAM design by extracting more realistic central 

points of the timing matrices in .lib when the commercial memory compiler uses them as the 

starting point to generate entire timing table. The simulations of tSRWB_spec are abnormal 

mainly because the register used in the R_WB datapath is a kind of pre-charge type latch which 

exhibits non-monotonic delay degradation pattern. By adding a pull-down path to the existing 

design, such non-monotonic pattern can be mitigated, but the falling polarity scenario is worse 

than before. In general, the original design is a better trade-off between both polarities.
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Appendix A: Generic Perl Script for Individual DFF Simulation 

#!/usr/local/bin/perl 

# Developer: Xiaowei Zhang 

 

use 5.008; 

use warnings; 

use diagnostics; 

use strict; 

use Switch; 

 

if(@ARGV != 1){ 

    &syntax; 

} 

 

my $input_cor = shift; 

#my $input_cir = shift; 

my $counter = 0; 

#my $line = <STDIN>; 

#chomp($line); 

 

open CORNER, '<', $input_cor or die "Cannot open $input_cor: $!"; 

my @line_cor = <CORNER>; 

close CORNER; 

 

foreach(@line_cor){ 

    my $proc = 'tt'; 

    my $vdd = '1.8'; 

    my $temp = '25'; 

    my $load = '5f'; 

    my $ramp = '0.5n'; 

    my $tuning = 'accurate'; 

    my $step = '0.001n'; 

    my $end = '12n'; 

 

    my $nl = 's8tssc_lf_dff.nl'; 

    my $nl_flag = 0; 

 

    my $subckt = 's8tssc_lf_dff'; 

    my $ports = 'vgnd vpwr vnb clk q q_n vpb a'; 

    my $a = 'd'; 

 

    my $clk = 'clk'; 

    my $clk_flag = 0; 

 

    my $clk_n = 'clk_n'; 

    my $clk_n_flag = 0; 

 

    my $q = 'q'; 

 

    my $tmod = 'test'; 

    my $tm_val = 'vdd'; 

    my $tm_flag = 0; 

 

    my $reset = 'reset'; 

    my $reset_val = 'vdd'; 

    my $reset_flag = 0; 

 

    my $set = 'set'; 

    my $set_val = 'vdd'; 

    my $set_flag = 0; 

 

    my $start = '2n'; 

    my $stop = '0.1n'; 

    my $incr = '0.1n'; 

 

    my $modes = 'linear'; 
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    my $md_flag = 0; 

 

    my $type = 'setup'; 

    my $delta = '2n'; 

    my $opmod = 'passfail'; 

    my $tol = 0.01; 

    my $opstart = '1n'; 

    my $lower = '0.1n'; 

    my $upper = '2n'; 

    my $perc = 1.05; 

    my $nom = '0.12n'; 

    my $goal = '0.13n'; 

    my $output_cir = 'dff.cir'; 

 

    $counter++; 

    chomp; 

    if(/\A\*.*/i or /\A\#.*/i){ 

        next; 

    } 

 

    s/\s+//g; 

    my @param_pair = split /;/; 

    foreach(@param_pair){ 

        chomp; 

        my $key; 

        my $value; 

        ($key, $value) = split /=/; 

        chomp($key); 

        chomp($value); 

 

        switch($key){ 

            case 'proc'{ 

                $proc = $value; 

                print "Process: $proc\n"; 

            } 

            case 'vdd'{ 

                $vdd = $value; 

                print "Vdd = $vdd\n"; 

            } 

            case 'temp'{ 

                $temp = $value; 

                print "Temp = $temp\n"; 

            } 

            case 'load'{ 

                $load = $value; 

                print "Cap load = $load\n"; 

            } 

            case 'ramp'{ 

                $ramp = $value; 

                print "Ramp rate = $ramp\n"; 

            } 

            case 'tuning'{ 

                $tuning = $value; 

                print "Tuning factor: $tuning\n"; 

            } 

            case 'step'{ 

                $step = $value; 

                print "Sim stepwise = $step\n"; 

            } 

            case 'end'{ 

                $end = $value; 

                print "Sim length = $end\n"; 

            } 

            case 'netlist'{ 

                $nl = $value; 

                print "Netlist file: $nl\n"; 

            } 

            case 'input'{ 
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                $a = $value; 

            } 

            case 'clk'{ 

                $clk = $value; 

                $clk_flag = 1; 

            } 

            case 'clk_n'{ 

                $clk_n = $value; 

                $clk_n_flag = 1; 

            } 

            case 'output'{   

                $q = $value; 

            } 

            case 'tmod'{ 

                $tmod = $value; 

                $tm_flag = 1; 

            } 

            case 'tmod_val'{ 

                $tm_val = $value; 

            } 

            case 'reset'{ 

                $reset = $value; 

                $reset_flag = 1; 

            } 

            case 'reset_val'{ 

                $reset_val = $value; 

            } 

            case 'set'{ 

                $set = $value; 

                $set_flag = 1; 

            } 

            case 'set_val'{ 

                $set_val = $value; 

            } 

            case 'mode'{ 

                $modes = $value; 

                print "Sim mode: $modes\n"; 

            } 

            case 'type'{ 

                $type = $value; 

                print "Sim Type: $type\n"; 

            } 

            case 'delta'{ 

                $delta = $value; 

                print "Delay from clk to output = $delta\n"; 

            } 

            case 'start'{ 

                $start = $value; 

                print "Linear sweep start = $start\n"; 

            } 

            case 'stop'{ 

                $stop = $value; 

                print "Linear sweep stop = $stop\n"; 

            } 

            case 'incr'{ 

                $incr = $value; 

                print "Linear sweep increment = $incr\n"; 

            } 

            case 'opmod'{ 

                $opmod = $value; 

                print "Optimization mode: $opmod\n"; 

            } 

            case 'tol'{ 

                $tol = $value; 

                print "Optimization tolerance = $tol\n"; 

            } 

            case 'opstart'{ 

                $opstart = $value; 
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                print "Optimization start = $opstart\n"; 

            } 

            case 'lower'{ 

                $lower = $value; 

                print "Optimization lower band = $lower\n"; 

            } 

            case 'upper'{ 

                $upper = $value; 

                print "Optimization upper band = $upper\n"; 

            } 

            case 'perc'{ 

                $perc = $value; 

                print "Delay degradation percentage = $perc\n"; 

            } 

            case 'nom'{ 

                $nom = $value; 

                print "Nominal delay = $nom\n"; 

            } 

            else{} 

        } 

    }        

 

    open NETLIST, '<', $nl or die "Cannot open $nl: $!"; 

    my @line_nl = <NETLIST>; 

    close NETLIST; 

    while(@line_nl){ 

        $_ = shift @line_nl; 

        chomp; 

        if(/.*subckt\s*(\w*)\s*(.*)/i){ 

            $nl_flag = 1; 

            $subckt = $1; 

            $ports = $2; 

            #LOOP: 

            $_ = shift @line_nl; 

            chomp; 

            #if(/\A\+(.*)/i){ 

            while(/\A\+(.*)/i){ 

                $ports = "$ports"." "."$1"; 

                #goto LOOP; 

                $_ = shift @line_nl; 

                chomp; 

            } 

        } 

    } 

    if($nl_flag == 0){ 

        die "Can't find subckt in netlist $nl\n"; 

    } 

 

    $_ = $ports; 

    if(/\A$a\s.*/i or /.*\s$a\s.*/i or /.*\s$a\z/i){ 

        print "Input port name: $a\n"; 

    }else{ 

        die "Can't find input port $a in netlist $nl\n"; 

    } 

    if($clk_flag == 1){ 

        if(/\A$clk\s.*/i or /.*\s$clk\s.*/i or /.*\s$clk\z/i){ 

            print "Clk port name: $clk\n"; 

        }else{ 

            die "Can't find clk port $clk in netlist $nl\n"; 

        } 

    } 

    if($clk_n_flag == 1){ 

        if(/\A$clk_n\s.*/i or /.*\s$clk_n\s.*/i or /.*\s$clk_n\z/i){ 

            print "Clk_n port name: $clk_n\n"; 

        }else{ 

            die "Can't find clk_n port $clk_n in netlist $nl\n"; 

        } 

    } 
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    if($clk_flag == 0 and $clk_n_flag == 0){ 

        die "Can't find clk port in netlist $nl\n"; 

    } 

    if(/\A$q\s.*/i or /.*\s$q\s.*/i or /.*\s$q\z/i){ 

        print "Output port name: $q\n"; 

    }else{ 

        die "Can't find output port $q in netlist $nl\n"; 

    } 

    if($tm_flag == 1){ 

        if(/\A$tmod\s.*/i or /.*\s$tmod\s.*/i or /.*\s$tmod\z/i){ 

            print "Test mode port name: $tmod\n"; 

        }else{ 

            die "Can't find test mode port $tmod in netlist $nl\n"; 

        } 

    } 

    if($reset_flag == 1){ 

        if(/\A$reset\s.*/i or /.*\s$reset\s.*/i or /.*\s$reset\z/i){ 

            print "Reset port name: $reset\n"; 

        }else{ 

            die "Can't find reset port $reset in netlist $nl\n"; 

        } 

    } 

    if($set_flag == 1){ 

        if(/\A$set\s.*/i or /.*\s$set\s.*/i or /.*\s$set\z/i){ 

            print "Set port name: $set\n"; 

        }else{ 

            die "Can't find set port $set in netlist $nl\n"; 

        } 

    } 

 

    if($modes eq 'single'){ 

        $output_cir = 

"$proc"."_"."$vdd"."_"."$temp"."_"."$subckt"."_"."$modes"."_"."$type"."_"."$

delta"; 

        $md_flag = 1; 

    }elsif($modes eq 'linear'){ 

        $output_cir = 

"$proc"."_"."$vdd"."_"."$temp"."_"."$subckt"."_"."$modes"."_"."$type"."_"."$

start"."_"."$stop"."_"."$incr"; 

        $md_flag = 2; 

    }else{ 

        if($opmod ne 'passfail'){ 

            $output_cir = 

"$proc"."_"."$vdd"."_"."$temp"."_"."$subckt"."_"."$modes"."_"."$opmod"."_"."

$tol"."_"."$opstart"."_"."$lower"."_"."$upper"."_"."$perc"."_"."$nom"; 

            $md_flag = 3; 

        }else{ 

            $output_cir = 

"$proc"."_"."$vdd"."_"."$temp"."_"."$subckt"."_"."$modes"."_"."$opmod"."_"."

$tol"."_"."$lower"."_"."$upper"; 

            $md_flag = 4; 

        } 

    } 

     

    $nom =~ s/(\d+)\w+/$1/i; 

    $goal = $perc * $nom; 

    $goal = "$goal"."n"; 

 

    #open CIR, '<', $input_cir or die "Cannot open $input_cir: $!"; 

    #my @line_cir = <CIR>; 

    my @line_cir = split /\n/, &eldoTemplate; 

    #close CIR; 

    open OUTPUT, '>', "$output_cir.cir" or die "Cannot open $output_cir: 

$!"; 

 

    foreach (@line_cir){ 

        chomp; 

        if($proc eq 'ff'){ 
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            s/\*?(.*include.*ff.*.cor)/$1/i; 

            s/\*?(.*include.*tt.*.cor)/\*$1/i; 

            s/\*?(.*include.*ss.*.cor)/\*$1/i; 

        }elsif($proc eq 'tt'){ 

            s/\*?(.*include.*ff.*.cor)/\*$1/i; 

            s/\*?(.*include.*tt.*.cor)/$1/i; 

            s/\*?(.*include.*ss.*.cor)/\*$1/i; 

        }else{ 

            s/\*?(.*include.*ff.*.cor)/\*$1/i; 

            s/\*?(.*include.*tt.*.cor)/\*$1/i; 

            s/\*?(.*include.*ss.*.cor)/$1/i; 

        } 

        s/(.*param.*vdd.*=).*/$1$vdd/i; 

        s/(.*param\s+t\s*=).*/$1$temp/i; 

        s/(.*param.*capVal.*=).*/$1$load/i; 

        s/(.*param.*slope.*=).*/$1$ramp/i; 

        s/(.*option.*tuning.*=).*/$1$tuning/i; 

        s/(.*param.*xStep.*=).*/$1$step/i; 

        s/(.*param.*xEnd.*=).*/$1$end/i; 

        s/(.*include.*)s8tssc_lf_dff\.nl/$1$nl/i; 

        s/(.*X1\s).*/$1$ports $subckt/i; 

        s/X1\.a/X1\.$a/i; 

        if($clk_flag == 1){ 

            s/\*?(.*vin1.*)/$1/i; 

            s/(.*vin1.*X1.*)clk(.*)/$1$clk$2/i; 

        }else{ 

            s/\*?(.*vin1.*)/\*$1/i; 

        } 

        if($clk_n_flag == 1){ 

            s/\*?(.*vin3.*)/$1/i; 

            s/(.*vin3.*X1.*)clk_n(.*)/$1$clk_n$2/i; 

        }else{ 

            s/\*?(.*vin3.*)/\*$1/i; 

        } 

        if($clk_flag == 1){ 

            s/(.*tpduu.*X1.)clk(.*)/$1$clk$2/i; 

        }elsif($clk_n_flag == 1){ 

            s/(.*tpd)u(.*X1.)clk(.*)/$1d$2$clk_n$3/i; 

        }else{ 

            die "Neither clk nor clk_n port is specified\n"; 

        } 

        s/X1\.q/X1\.$q/i; 

        if($tm_flag == 1){ 

            if($tm_val eq 'vdd'){ 

                s/\*?(.*vvpwr3.*)/$1/i; 

                s/(.*vvpwr3\s)smode_n(.*)/$1$tmod$2/i; 

            }elsif($tm_val eq 'gnd'){ 

                s/\*?(.*vvgnd12.*)/$1/i; 

                s/(.*vvgnd12\s)smode_n(.*)/$1$tmod$2/i; 

            }else{ 

                die "Incorrect test mode port value\n"; 

            } 

        } 

        if($reset_flag == 1){ 

            if($reset_val eq 'vdd'){ 

                s/\*?(.*vvpwr4.*)/$1/i; 

                s/(.*vvpwr4\s)resetb(.*)/$1$reset$2/i; 

            }elsif($reset_val eq 'gnd'){ 

                s/\*?(.*vvgnd13.*)/$1/i; 

                s/(.*vvgnd13\s)resetb(.*)/$1$reset$2/i; 

            }else{ 

                die "Incorrect reset port value\n"; 

            } 

        } 

        if($set_flag == 1){ 

            if($set_val eq 'vdd'){ 

                s/\*?(.*vvpwr5.*)/$1/i; 

                s/(.*vvpwr5\s)setb(.*)/$1$set$2/i; 
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            }elsif($set_val eq 'gnd'){ 

                s/\*?(.*vvgnd14.*)/$1/i; 

                s/(.*vvgnd14\s)setb(.*)/$1$set$2/i; 

            }else{ 

                die "Incorrect set port value\n"; 

            } 

        } 

        s/(.*param.*xStart.*=).*/$1$start/i; 

        s/(.*param.*xStop.*=).*/$1$stop/i; 

        s/(.*param.*xIncr.*=).*/$1$incr/i; 

        s/(.*tran.*delta\s).*/$1$start $stop -$incr/i; 

        if($modes eq 'single'){ 

            if($type eq 'setup'){ 

                s/\*?(.*vin2.*0 vdd.*10n).(delta.*)/$1-$2/i; 

                s/\*?(.*vin2.*vdd 0.*)/*$1/i 

            }elsif($type eq 'hold'){ 

                s/\*?(.*vin2.*vdd 0.*10n).(delta.*)/$1+$2/i; 

                s/\*?(.*vin2.*0 vdd.*)/*$1/i 

            }else{ 

                die "Incompatible sim type"; 

            } 

            s/(.*param.*delta.*=).*/$1$delta/i; 

            s/\*?(.*tran.*uic\z)/$1/i; 

            s/\*?(.*tran.*delta.*)/\*$1/i; 

            s/\*?(.*optimize)/\*$1/i; 

            s/\*?(.*method.*)/\*$1/i; 

            s/\*?(.*tol_rel.*)/\*$1/i; 

            s/\*?(.*paramopt.*)/\*$1/i; 

            s/\*?(.*goal.*)/\*$1/i; 

        }elsif($modes eq 'linear'){ 

            if($type eq 'setup'){ 

                s/\*?(.*vin2.*0 vdd.*10n).(delta.*)/$1-$2/i; 

                s/\*?(.*vin2.*vdd 0.*)/*$1/i 

            }elsif($type eq 'hold'){ 

                s/\*?(.*vin2.*vdd 0.*10n).(delta.*)/$1+$2/i; 

                s/\*?(.*vin2.*0 vdd.*)/*$1/i 

            }else{ 

                die "Incompatible sim type"; 

            } 

            s/\*?(.*tran.*uic\z)/\*$1/i; 

            s/\*?(.*tran.*delta.*)/$1/i; 

            s/\*?(.*optimize)/\*$1/i; 

            s/\*?(.*method.*)/\*$1/i; 

            s/\*?(.*tol_rel.*)/\*$1/i; 

            s/\*?(.*paramopt.*)/\*$1/i; 

            s/\*?(.*goal.*)/\*$1/i; 

        }else{ 

            s/\*?(.*tran.*uic\z)/$1/i; 

            s/\*?(.*tran.*delta.*)/\*$1/i; 

            s/\*?(.*optimize)/$1/i; 

            if($opmod eq 'passfail'){ 

                s/\*?(.*method.*=.*passfail)/$1/i; 

                s/\*?(.*method.*=.*dichotomy)/\*$1/i; 

                s/\*?(.*method.*=.*secant)/\*$1/i; 

            }elsif($opmod eq 'dichotomy'){ 

                s/\*?(.*method.*=.*passfail)/\*$1/i; 

                s/\*?(.*method.*=.*dichotomy)/$1/i; 

                s/\*?(.*method.*=.*secant)/\*$1/i; 

                s/\*?(.*goal.*=).*/$1$goal/i; 

            }else{ 

                s/\*?(.*method.*=.*passfail)/\*$1/i; 

                s/\*?(.*method.*=.*dichotomy)/\*$1/i; 

                s/\*?(.*method.*=.*secant)/$1/i; 

                s/\*?(.*goal.*=).*/$1$goal/i; 

            } 

            s/\*?(.*tol_relpar.*=).*/$1$tol/i; 

            s/\*?(.*paramopt.*=).*/$1\($opstart,$lower,$upper\)/i; 

        } 
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        print OUTPUT "$_\n"; 

    } 

    close OUTPUT; 

 

    my $sim_cmd = "eldo $output_cir.cir -queue -noconf"; 

    print "$sim_cmd\n"; 

    system "mkdir -p WA/$input_cor/$counter/eldo"; 

    system "$sim_cmd > ./WA/$input_cor/$counter/$output_cir.log 2>&1"; 

    if($? != 0){ 

        exit $?; 

    } 

 

    open LOG, '<', "./WA/$input_cor/$counter/$output_cir.log" or die "Can't 

open $output_cir.log: $!"; 

    my @line_log = <LOG>; 

    close LOG; 

    open CSV, '>>', "./WA/$input_cor/$counter/$output_cir.csv" or die "Can't 

open $output_cir.csv: $!"; 

    my $nom_delay = 0; 

    while(@line_log){ 

        $_ = shift @line_log; 

        chomp; 

        if($md_flag == 1 or $md_flag == 2){ 

            if(/.*value.*of.*parameter.*/i){ 

                s/.*value.*of.*parameter\s*\w*\s*is\s*(.*)/$1/i; 

                print CSV "$_".",\t"; 

            }elsif(/.*clk2q.*=.*/i){ 

                s/.*clk2q.*=\s*(.*)\s+Sec/$1/i; 

                #Works on cobb instead of wildcat 

                if($nom_delay == 0){ 

                    $nom_delay = $_; 

                } 

                my $dd = $_ / $nom_delay; 

                print CSV "$_,\t$dd\n"; 

            }elsif(/.*clk2q cannot.*/i){ 

                print CSV "Can't be measured,\tCan't be measured\n"; 

            } 

        }else{ 

            if(/.*\*\*\* OPTIMIZATION \*\*\*.*/i){ 

                until(/.*\*\*\*>MESSAGE SUMMARY.*/i){ 

                    #unless(/\A\s+\z/i or /\A\n\z/i){ 

                        print CSV "$_\n"; 

                    #} 

                    $_ = shift @line_log; 

                    chomp; 

                } 

            } 

        }    

    } 

    system "mv $output_cir*.* ./WA/$input_cor/$counter/eldo"; 

} 

close CSV; 

exit 0; 

 

sub eldoTemplate{ 

    my $template = "* DFF Sim 

 

.option brief probe 

.notrc 

*.option strict 

.option nomod 

.option printlg=10000 

.option compat 

.option post=1 

.option ingold=1 

.option numdgt=10 

.option gmin=1.0e-18 

.option gmindc=1.0e-18 
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.option nojwdb 

.option tuning=accurate 

.option interp=1 

 

*.include /tools/cadflow/t/4.4/s8p-5r/models/ff.cor 

.include /tools/cadflow/t/4.4/s8p-5r/models/tt.cor 

*.include /tools/cadflow/t/4.4/s8p-5r/models/ss.cor 

 

*.include /tools/cadflow/t/4.4/s8p-5r/models/hrlc.cor 

.include /tools/cadflow/t/4.4/s8p-5r/models/trtc.cor 

*.include /tools/cadflow/t/4.4/s8p-5r/models/lrhc.cor 

 

*.include /tools/cadflow/t/4.4/s8p-5r/models/ffcell.cor 

.include /tools/cadflow/t/4.4/s8p-5r/models/ttcell.cor 

*.include /tools/cadflow/t/4.4/s8p-5r/models/sscell.cor 

 

.include ./s8tssc_lf_dff.nl 

 

X1 vgnd vpwr vnb clk q q_n vpb a s8tssc_lf_dff 

 

.param capVal=5f 

.param t=-40 

.param delta=2n 

.param vdd=1.35 

.param period=6n 

.param slope=0.5n 

.param xStep=0.001n 

.param xEnd=20n 

.param xStart=2n 

.param xStop=0.1n 

.param xIncr=0.1n 

.temp t 

 

cL0 q       0 capVal 

cL1 q_n     0 capVal 

 

vvpwr1  vpb     0 vdd 

vvpwr2  vpwr        0 vdd 

*vvpwr3 smode_n     0 vdd 

*vvpwr4 resetb      0 vdd 

*vvpwr5 setb        0 vdd 

 

vvgnd10     vgnd    0 0 

vvgnd11     vnb 0 0 

*vvgnd12    smode_n 0 0 

*vvgnd13    resetb  0 0 

*vvgnd14    setb    0 0 

 

vin1    X1.clk 0    pulse(0 vdd 10n slope slope 'period-slope' '2*period') 

vin2    X1.a 0      pulse(0 vdd '10n-delta' slope slope 100n 200n) 

*vin2   X1.a 0      pulse(vdd 0 '10n-delta' slope slope 100n 200n) 

*vin3   X1.clk_n 0  pulse(vdd 0 10n slope slope 'period-slope' '2*period') 

 

.plot tran 

+v(X1.clk) 

+v(X1.a) 

+v(X1.q) 

+v(X1.q_n) 

+v(X1.true) 

+v(X1.bar) 

 

+isub(X1.vpwr) 

+isub(X1.vpb) 

 

+power 

+ix(X1.7) 

 

.tran xStep xEnd uic 
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*.tran xStep xEnd uic sweep delta 0.1n 2n 0.1n 

 

*.optimize 

*+method=passfail 

*+method=dichotomy 

*+method=secant 

 

*+tol_relpar=0.1 

*+tol_reltarg=0.01 

 

*.paramopt delta=(1n,0.1n,2n) 

 

.extract 

+tran 

+label=clk2q 

+tpduu(v(X1.clk),v(X1.q),vth='0.5*vdd',after=0) 

*+goal=0.215n 

 

.end"; 

 

    $template; 

} 

 

sub syntax{ 

    print "extract.pl <corner file>\n"; 

    print "corner file structure\n"; 

    print "|_Process, <proc>\n"; 

    print "|_Voltage, <vdd>\n"; 

    print "|_Temp, <temp>\n"; 

    print "|_Cap load, <load>\n"; 

    print "|_Ramp rate, <ramp>\n"; 

    print "|_Tuning factor, <tuning>\n"; 

    print "|_Sim stepwise, <step>\n"; 

    print "|_Sim length, <end>\n"; 

    print "|_netlist, <nl>\n"; 

    print "|_Input port, <input>\n"; 

    print "|_Clk port, <clk>\n"; 

    print "|_Clk_n port, <clk_n>\n"; 

    print "|_Output port, <output>\n"; 

    print "|_Test mode port, <tmod>\n"; 

    print "|    |_Test mode port value, <tmod_val>\n"; 

    print "|_Reset port, <reset>\n"; 

    print "|    |_Reset port value, <reset_val>\n"; 

    print "|_Set port, <set>\n"; 

    print "|    |_Set port value, <set_val>\n"; 

    print "|_Sim mode, <mode>\n"; 

    print "     |_Single sim\n"; 

    print "     |   |_Sim type, <type>\n"; 

    print "     |   |_Single sim delta, <delta>\n"; 

    print "     |_Linear sweep\n"; 

    print "     |   |_Sim type, <type>\n"; 

    print "     |   |_Linear sweep start, <start>\n"; 

    print "     |   |_Linear sweep stop, <stop>\n"; 

    print "     |   |_Linear sweep increment, <incr>\n"; 

    print "     |_Optimization\n"; 

    print "         |_Optimization mode, <opmod>\n"; 

    print "         |_Optimization tolerance, <tol>\n"; 

    print "         |_Optimization start point, <opstart>\n"; 

    print "         |_Lower band, <lower>\n"; 

    print "         |_upper band, <upper>\n"; 

    print "         |_Dichotomy/secant\n"; 

    print "                 |_Delay degradation percentage, <perc>\n"; 

    print "                 |_Nominal delay, <nom>\n"; 

    print "Example:\n"; 

    print "proc=tt; vdd=1.8; temp=25; load=5f; ramp=0.5n; tuning=accurate; 

step=0.01n; end=12n; netlist=s8tssc_lf_dff.nl; input=a; clk=clk; output=q; 

mode=optimization; opmod=dichotomy; tol=0.05; opstart=1n; lower=0.1n; 

upper=2n; perc=1.05; nom=0.1190n\n"; 
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    die "Eldo sim abort"; 

}
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Appendix B: Generic Ruby Script for Individual DFF Simulation 

#!/usr/local/bin/ruby 

# Developer: Xiaowei Zhang 

 

def main 

    syntax if ARGV.length == 0 

    cor_name = ARGV[0] 

    counter = 0 

     

    cor_file = File.open(cor_name, "r") 

    until cor_file.eof do 

        line_cor = cor_file.gets.strip.chomp 

        counter += 1 

         

        proc = "tt" 

        vdd = "1.8" 

        temp = "25" 

        load = "5f" 

        ramp = "0.5n" 

        tuning = "accurate" 

        step = "0.001n" 

        sim_end = "20n" 

        nl = Attr.new("s8tssc_lf_dff.nl", 0) 

        subckt = "s8tssc_lf_dff" 

        ports = "vgnd vpwr vnb clk q q_n vpb a" 

        a = "d" 

        clk = Port.new("clk", 0) 

        clk_n = Port.new("clk_n", 0) 

        q = "q" 

        tmod = Port.new("test", 0, "vdd") 

        reset = Port.new("reset", 0, "vdd") 

        set = Port.new("set", 0, "vdd") 

        start = "2n" 

        stop = "0.1n" 

        incr = "0.1n" 

        modes = Attr.new("linear", 0) 

        type = "setup" 

        # Need more work to distinguish master-slave & pre-charge type FFs 

        # Pre-charge type FFs need to have two output q & q_cmp 

        # polarity = "rising" 

        delta = "2n" 

        opmod = "passfail" 

        tol = 0.01 

        opstart = "1n" 

        lower = "0.1n" 

        upper = "2n" 

        perc = 1.05 

        nom = "0.12n" 

        goal = "0.13n" 

        output_cir = "dff.cir" 

 

        # Never use match block, use "if" instead 

        if /\A(\*|\#).*/i.match(line_cor) 

            next 

        end 

         

        line_cor.gsub!(/\s+/i, "") 

        param_pair = line_cor.split(/;/) 

        param_pair.each do |param| 

            #param_hash = Hash.new 

            (key, val) = param.split(/=/) 

             

            case key 

                when "proc" 

                    proc = val 

                    puts "Process: #{proc}" 
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                when "vdd" 

                    vdd = val 

                    puts "Vdd = #{vdd}" 

                when "temp" 

                    temp = val 

                    puts "Temp = #{temp}" 

                when "load" 

                    load = val 

                    puts "Cap load = #{load}" 

                when "ramp" 

                    ramp = val 

                    puts "Slew rate = #{ramp}" 

                when "tuning" 

                    tuning = val 

                    puts "Tuning factor: #{tuning}" 

                when "step" 

                    step = val 

                    puts "Sim stepwise = #{step}" 

                when "end" 

                    sim_end = val 

                    puts "Sim length = #{sim_end}" 

                when "netlist" 

                    nl.name = val 

                    puts "Netlist file: #{nl.name}" 

                when "input" 

                    a = val 

                when "clk" 

                    clk.name = val 

                    clk.flag = 1 

                when "clk_n" 

                    clk_n.name = val 

                    clk_n.flag = 1 

                when "output" 

                    q = val 

                when "tmod" 

                    tmod.name = val 

                    tmod.flag = 1 

                when "tmod_val" 

                    tmod.val = val 

                when "reset" 

                    reset.name = val 

                    reset.flag = 1 

                when "reset_val" 

                    reset.val = val 

                when "set" 

                    set.name = val 

                    set.flag = 1 

                when "set_val" 

                    set.val = val 

                when "mode" 

                    modes.name = val 

                    puts "Sim mode: #{modes.name}" 

                when "type" 

                    type = val 

                    puts "Sim Type: #{type}" 

                # when "polarity" 

                    # polarity = val 

                    # puts "Input polarity: #{polarity}" 

                when "delta" 

                    delta = val 

                    puts "Delay from clk to output = #{delta}" 

                when "start" 

                    start = val 

                    puts "Linear sweep start = #{start}" 

                when "stop" 

                    stop = val 

                    puts "Linear sweep stop = #{stop}" 

                when "incr" 
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                    incr = val 

                    puts "Linear sweep increment = #{incr}" 

                when "opmod" 

                    opmod = val 

                    puts "Optimization mode: #{opmod}" 

                when "tol" 

                    tol = val 

                    puts "Optimization tolerance = #{tol}" 

                when "opstart" 

                    opstart = val 

                    puts "Optimization start = #{opstart}" 

                when "lower" 

                    lower = val 

                    puts "Optimization lower band = #{lower}" 

                when "upper" 

                    upper = val 

                    puts "Optimization upper band = #{upper}" 

                when "perc" 

                    perc = val 

                    puts "Delay degradation percentage = #{perc}" 

                when "nom" 

                    nom = val 

                    puts "Nominal delay = #{nom}" 

                else 

                    puts "Incompatible param" 

                    exit 

            end 

        end 

         

        nl_file = File.open(nl.name, "r") 

        until nl_file.eof do 

            line_nl = nl_file.gets.strip.chomp 

            if /.*subckt\s*(\w*)\s*(.*)/i.match(line_nl) 

                nl.flag = 1 

                subckt = $1 

                ports = $2 

                line_nl = nl_file.gets.strip.chomp 

                while /\A\+(.*)/i.match(line_nl) do 

                    ports = ports + " " + $1 

                    line_nl = nl_file.gets.strip.chomp 

                end 

            end 

        end 

        if nl.flag == 0 

            puts "Can't find subckt in netlist #{nl.name}" 

            exit 

        end 

         

        # "or" or "|" doesn't work well in Ruby unlike in Perl, use 

Regexp.union instead 

        if Regexp.union(/\A#{a}\s.*/i, /.*\s#{a}\s.*/i, 

/.*\s#{a}\z/i).match(ports) 

            puts "Input port name: #{a}" 

        else 

            puts "Can't find input port #{a} in netlist #{nl.name}" 

            exit 

        end 

        if clk.flag == 1 

            if Regexp.union(/\A#{clk.name}\s.*/i, /.*\s#{clk.name}\s.*/i, 

/.*\s#{clk.name}\z/i).match(ports) 

                puts "Clk port name: #{clk.name}" 

            else 

                puts "Can't find clk port #{clk.name} in netlist #{nl.name}" 

                exit 

            end 

        end 

        if clk_n.flag == 1 
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            if Regexp.union(/\A#{clk_n.name}\s.*/i, 

/.*\s#{clk_n.name}\s.*/i, /.*\s#{clk_n.name}\z/i).match(ports) 

                puts "Clk port name: #{clk_n.name}" 

            else 

                puts "Can't find clk port #{clk_n.name} in netlist 

#{nl.name}" 

                exit 

            end 

        end 

        if clk.flag == 0 && clk_n.flag == 0 

            puts "Can't find clk port in netlist #{nl.name}" 

        end 

        if Regexp.union(/\A#[6]\s.*/i, /.*\s#[6]\s.*/i, 

/.*\s#[6]\z/i).match(ports) 

            puts "Input port name: #[6]" 

        else 

            puts "Can't find input port #[6] in netlist #{nl.name}" 

            exit 

        end 

        if tmod.flag == 1 

            if Regexp.union(/\A#{tmod.name}\s.*/i, /.*\s#{tmod.name}\s.*/i, 

/.*\s#{tmod.name}\z/i).match(ports) 

                puts "Clk port name: #{tmod.name}" 

            else 

                puts "Can't find test port #{tmod.name} in netlist 

#{nl.name}" 

                exit 

            end 

        end 

        if reset.flag == 1 

            if Regexp.union(/\A#{reset.name}\s.*/i, 

/.*\s#{reset.name}\s.*/i, /.*\s#{reset.name}\z/i).match(ports) 

                puts "Clk port name: #{reset.name}" 

            else 

                puts "Can't find reset port #{reset.name} in netlist 

#{nl.name}" 

                exit 

            end 

        end 

        if set.flag == 1 

            if Regexp.union(/\A#{set.name}\s.*/i, /.*\s#{set.name}\s.*/i, 

/.*\s#{set.name}\z/i).match(ports) 

                puts "Clk port name: #{set.name}" 

            else 

                puts "Can't find set port #{set.name} in netlist #{nl.name}" 

                exit 

            end 

        end 

         

        case modes.name 

            when "single" 

                output_cir = proc + "_" + vdd + "_" + temp + "_" + subckt + 

"_" + modes.name + "_" + type + "_" + delta 

                modes.flag = 1 

            when "linear" 

                output_cir = proc + "_" + vdd + "_" + temp + "_" + subckt + 

"_" + modes.name + "_" + type + "_" + start + "_" + stop + "_" + incr 

                modes.flag = 2 

            when "optimization" 

                if opmod == dichotomy 

                    output_cir = proc + "_" + vdd + "_" + temp + "_" + 

subckt + "_" + modes.name + "_" + opmod + "_" + tol + "_" + opstart + "_" + 

lower + "_" + upper + "_" + perc + "_" + nom 

                    modes.flag = 3 

                elsif opmode == passfail 

                    output_cir = proc + "_" + vdd + "_" + temp + "_" + 

subckt + "_" + modes.name + "_" + opmod + "_" + tol + "_" + lower + "_" + 

upper 
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                    modes.flag = 4 

                else 

                    puts "Incompatible optimization mode" 

                    exit 

                end 

            else 

                puts "Incompatible sim mode" 

                exit 

        end 

         

        # Use \1 instead of $1, $1 can only be used in block for back-

reference 

        # Use '' instead of "" 

        # If it is a double-quoted string, both back-references must be 

preceded by an additional backslash. 

        # However, within replacement the special match variables, such as 

&$, will not refer to the current match. 

        nom.sub!(/(.*)n/i, '\1') 

        goal = perc * nom.to_f 

        goal = goal.to_s + "n" 

         

        line_cir = EldoTemplate::TEMPLATE.split(/\n/) 

        output = File.open("#{output_cir}.cir", "w") 

         

        line_cir.each do |line| 

            line.chomp 

            case proc 

                when "ff" 

                    line.sub!(/\*?(.*include.*ff.*.cor)/i, '\1') 

                    line.sub!(/\*?(.*include.*tt.*.cor)/i, '*' + '\1') 

                    line.sub!(/\*?(.*include.*ss.*.cor)/i, '*' + '\1') 

                when "tt" 

                    line.sub!(/\*?(.*include.*ff.*.cor)/i, '*' + '\1') 

                    line.sub!(/\*?(.*include.*tt.*.cor)/i, '\1') 

                    line.sub!(/\*?(.*include.*ss.*.cor)/i, '*' + '\1') 

                when "ss" 

                    line.sub!(/\*?(.*include.*ff.*.cor)/i, '*' + '\1') 

                    line.sub!(/\*?(.*include.*tt.*.cor)/i, '*' + '\1') 

                    line.sub!(/\*?(.*include.*ss.*.cor)/i, '\1') 

                else 

                    puts "Incompatible process" 

                    exit 

            end 

            line.sub!(/(.*param.*vdd.*=).*/i, '\1' + vdd) 

            line.sub!(/(.*param\s+t\s*=).*/i, '\1' + temp) 

            line.sub!(/(.*param.*capVal.*=).*/i, '\1' + load) 

            line.sub!(/(.*param.*slope.*=).*/i, '\1' + ramp) 

            line.sub!(/(.*option.*tuning.*=).*/i, '\1' + tuning) 

            line.sub!(/(.*param.*xStep.*=).*/i, '\1' + step) 

            line.sub!(/(.*param.*xEnd.*=).*/i, '\1' + sim_end) 

            line.sub!(/(.*include.*)s8tssc_lf_dff\.nl/i, '\1' + nl.name) 

            line.sub!(/(.*X1\s).*/i, '\1' + ports + ' ' + subckt) 

            line.sub!(/X1\.a/i, "X1." + a) 

            if clk.flag == 1 

                line.sub!(/\*?(.*vin1.*)/i, '\1') 

                line.sub!(/(.*vin1.*X1.*)clk(.*)/i, '\1' + clk.name + '\2') 

            else 

                line.sub!(/\*?(.*vin1.*)/i, '*' + '\1') 

            end 

            if clk_n.flag == 1 

                line.sub!(/\*?(.*vin3.*)/i, '\1') 

                line.sub!(/(.*vin3.*X1.*)clk_n(.*)/i, '\1' + clk_n.name + 

'\2') 

            else 

                line.sub!(/\*?(.*vin3.*)/i, '*' + '\1') 

            end 

            # If both clk and clk_n are present, use clk in "extract" 

            if clk.flag == 1 
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                line.sub!(/(.*tpduu.*X1.)clk(.*)/i, '\1' + clk.name + '\2') 

            elsif clk_n.flag == 1 

                line.sub!(/(.*tpd)u(.*X1.)clk(.*)/i, '\1' + 'd' + '\2' + 

clk_n.name + '\3') 

            else 

                puts "Neither clk nor clk_n port is specified" 

                exit 

            end 

            line.sub!(/X1\.q/i, "X1." + q) 

            if tmod.flag == 1 

                if tmod.val == "vdd" 

                    line.sub!(/\*?(.*vvpwr3\s)smode_n(.*)/i, '\1' + 

tmod.name + '\2') 

                elsif tmod.val == "gnd" 

                    line.sub!(/\*?(.*vvgnd12\s)smode_n(.*)/i, '\1' + 

tmod.name + '\2') 

                else 

                    puts "Incorrect test mode port value" 

                    exit 

                end 

            else 

                line.sub!(/\*?(.*vvpwr3.*)/i, '*' + '\1') 

                line.sub!(/\*?(.*vvgnd12.*)/i, '*' + '\1') 

            end 

            if reset.flag == 1 

                if reset.val == "vdd" 

                    line.sub!(/\*?(.*vvpwr4\s)resetb(.*)/i, '\1' + 

reset.name + '\2') 

                elsif reset.val == "gnd" 

                    line.sub!(/\*?(.*vvgnd13\s)resetb(.*)/i, '\1' + 

reset.name + '\2') 

                else 

                    puts "Incorrect reset mode port value" 

                    exit 

                end 

            else 

                line.sub!(/\*?(.*vvpwr4.*)/i, '*' + '\1') 

                line.sub!(/\*?(.*vvgnd13.*)/i, '*' + '\1') 

            end 

            if set.flag == 1 

                if set.val == "vdd" 

                    line.sub!(/\*?(.*vvpwr5\s)setb(.*)/i, '\1' + set.name + 

'\2') 

                elsif set.val == "gnd" 

                    line.sub!(/\*?(.*vvgnd14\s)setb(.*)/i, '\1' + set.name + 

'\2') 

                else 

                    puts "Incorrect set mode port value" 

                    exit 

                end 

            else 

                line.sub!(/\*?(.*vvpwr5.*)/i, '*' + '\1') 

                line.sub!(/\*?(.*vvgnd14.*)/i, '*' + '\1') 

            end 

            line.sub!(/(.*param.*xStart.*=).*/i, '\1' + start) 

            line.sub!(/(.*param.*xStop.*=).*/i, '\1' + stop) 

            line.sub!(/(.*param.*xIncr.*=).*/i, '\1' + incr) 

            line.sub!(/(.*tran.*delta\s).*/i, '\1' + start + ' ' + stop + ' 

-' + incr) 

            case modes.name 

                when "single" 

                    # Add sim timing param type & polarity 

                    if type == "setup" 

                        line.sub!(/\*?(.*vin2.*0 vdd.*10n).(delta.*)/i, '\1' 

+ '-' + '\2') 

                        line.sub!(/\*?(.*vin2.*vdd 0.*)/i, '*' + '\1') 

                        # line.sub!(/\*?(.*tpd.*clk.*q)/i, '\1') 

                        # line.sub!(/\*?(.*tpd.*q.*clk)/i, '*' + '\1') 
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                    elsif type == "hold" 

                        line.sub!(/\*?(.*vin2.*vdd 0.*10n).(delta.*)/i, '\1' 

+ '+' + '\2') 

                        line.sub!(/\*?(.*vin2.*0 vdd.*)/i, '*' + '\1') 

                    else 

                        puts "Incompatible sim type" 

                        exit 

                    end 

                    # if polarity == "rising" 

                        # line.sub!(/\*?(.*vin2.*0 vdd.*)/i, '\1') 

                        # line.sub!(/\*?(.*vin2.*vdd 0.*)/i, '*' + '\1') 

                        # line.sub!(/(.*tpd)..(.*clk.*q)/i, '\1' + 'uu' + 

'\2') 

                        # line.sub!(/(.*tpd)..(.*q.*clk)/i, '\1' + 'uu' + 

'\2') 

                    # elsif polarity == "falling" 

                        # line.sub!(/\*?(.*vin2.*0 vdd.*)/i, '*' + '\1') 

                        # line.sub!(/\*?(.*vin2.*vdd 0.*)/i, '\1') 

                        # line.sub!(/(.*tpd)..(.*clk.*q)/i, '\1' + 'ud' + 

'\2') 

                        # line.sub!(/(.*tpd)..(.*q.*clk)/i, '\1' + 'du' + 

'\2') 

                    # else 

                        # puts "Incompatible input polarity" 

                        # exit 

                    # end 

                    line.sub!(/(.*param.*delta.*=).*/i, '\1' + delta) 

                    line.sub!(/\*?(.*tran.*uic\z)/i, '\1') 

                    line.sub!(/\*?(.*tran.*delta.*)/i, '*' + '\1') 

                    line.sub!(/\*?(.*optimize)/i, '*' + '\1') 

                    line.sub!(/\*?(.*method.*)/i, '*' + '\1') 

                    line.sub!(/\*?(.*tol_rel.*)/i, '*' + '\1') 

                    line.sub!(/\*?(.*paramopt.*)/i, '*' + '\1') 

                    line.sub!(/\*?(.*goal.*)/i, '*' + '\1') 

                when "linear" 

                    if type == "setup" 

                        line.sub!(/\*?(.*vin2.*0 vdd.*10n).(delta.*)/i, '\1' 

+ '-' + '\2') 

                        line.sub!(/\*?(.*vin2.*vdd 0.*)/i, '*' + '\1') 

                        # line.sub!(/\*?(.*tpd.*clk.*q)/i, '\1') 

                        # line.sub!(/\*?(.*tpd.*q.*clk)/i, '*' + '\1') 

                    elsif type == "hold" 

                        line.sub!(/\*?(.*vin2.*vdd 0.*10n).(delta.*)/i, '\1' 

+ '+' + '\2') 

                        line.sub!(/\*?(.*vin2.*0 vdd.*)/i, '*' + '\1') 

                    else 

                        puts "Incompatible sim type" 

                        exit 

                    end 

                    # if polarity == "rising" 

                        # line.sub!(/\*?(.*vin2.*0 vdd.*)/i, '\1') 

                        # line.sub!(/\*?(.*vin2.*vdd 0.*)/i, '*' + '\1') 

                        # line.sub!(/(.*tpd)..(.*clk.*q)/i, '\1' + 'uu' + 

'\2') 

                        # line.sub!(/(.*tpd)..(.*q.*clk)/i, '\1' + 'uu' + 

'\2') 

                    # elsif polarity == "falling" 

                        # line.sub!(/\*?(.*vin2.*0 vdd.*)/i, '*' + '\1') 

                        # line.sub!(/\*?(.*vin2.*vdd 0.*)/i, '\1') 

                        # line.sub!(/(.*tpd)..(.*clk.*q)/i, '\1' + 'ud' + 

'\2') 

                        # line.sub!(/(.*tpd)..(.*q.*clk)/i, '\1' + 'du' + 

'\2') 

                    # else 

                        # puts "Incompatible input polarity" 

                        # exit 

                    # end 

                    line.sub!(/\*?(.*tran.*uic\z)/i, '*' + '\1') 
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                    line.sub!(/\*?(.*tran.*delta.*)/i, '\1') 

                    line.sub!(/\*?(.*optimize)/i, '*' + '\1') 

                    line.sub!(/\*?(.*method.*)/i, '*' + '\1') 

                    line.sub!(/\*?(.*tol_rel.*)/i, '*' + '\1') 

                    line.sub!(/\*?(.*paramopt.*)/i, '*' + '\1') 

                    line.sub!(/\*?(.*goal.*)/i, '*' + '\1') 

                when "optimization" 

                    line.sub!(/\*?(.*tran.*uic\z)/i, '\1') 

                    line.sub!(/\*?(.*tran.*delta.*)/i, '*' + '\1') 

                    line.sub!(/\*?(.*optimize)/i, '\1') 

                    case opmod 

                        when "passfail" 

                            line.sub!(/\*?(.*method.*=.*passfail)/i, '\1') 

                            line.sub!(/\*?(.*method.*=.*dichotomy)/i, '*' + 

'\1') 

                            line.sub!(/\*?(.*method.*=.*secant)/i, '*' + 

'\1') 

                            line.sub!(/\*?(.*goal.*=.*)/i, '*' + '\1') 

                        when "dichotomy" 

                            line.sub!(/\*?(.*method.*=.*passfail)/i, '*' + 

'\1') 

                            line.sub!(/\*?(.*method.*=.*dichotomy)/i, '\1') 

                            line.sub!(/\*?(.*method.*=.*secant)/i, '*' + 

'\1') 

                            line.sub!(/\*?(.*goal.*=).*/i, '\1' + goal) 

                        when "secant" 

                            line.sub!(/\*?(.*method.*=.*passfail)/i, '*' + 

'\1') 

                            line.sub!(/\*?(.*method.*=.*dichotomy)/i, '*' + 

'\1') 

                            line.sub!(/\*?(.*method.*=.*secant)/i, '\1') 

                            line.sub!(/\*?(.*goal.*=).*/i, '\1' + goal) 

                        else 

                            puts "Incompatible optimization mode" 

                            exit 

                    end 

                    line.sub!(/\*?(.*tol_relpar.*=).*/i, '\1' + tol) 

                    line.sub!(/\*?(.*paramopt.*=).*/i, '\1' + '(' + opstart 

+ ', ' + lower + ', ' + upper + ')') 

                else 

                    puts "Incompatible sim mode" 

                    exit 

            end 

            output.printf("#{line}\n") 

        end 

        output.close 

         

        sim_cmd = "eldo #{output_cir}.cir -queue -noconf" 

        puts sim_cmd 

        system("mkdir -p WA/#{cor_name}/#{counter}/eldo") 

        system("#{sim_cmd} > ./WA/#{cor_name}/#{counter}/#{output_cir}.log 

2>&1") 

         

        log = File.open("./WA/#{cor_name}/#{counter}/#{output_cir}.log", 

"r") 

        csv = File.open("./WA/#{cor_name}/#{counter}/#{output_cir}.csv", 

"w") 

        nom_delay = 0 

        until log.eof do 

            line_log = log.gets.strip.chomp 

            if modes.flag == 1 || modes.flag == 2 

                if /.*value.*of.*parameter.*/i.match(line_log) 

                    if 

line_log.sub!(/.*value.*of.*parameter\s*\w*\s*is\s*(.*)/i, '\1') 

                        csv.printf("#{$1},\t") 

                    end 

                elsif /.*clk2q.*=.*/i.match(line_log) 

                    if line_log.sub!(/.*clk2q.*=\s*(.*)\s+Sec/i, '\1') 
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                        nom_delay = $1.to_f if nom_delay == 0 

                        dd = $1.to_f / nom_delay 

                        csv.printf("#{$1},\t#{dd}\n") 

                    end 

                elsif /.*clk2q cannot.*/i.match(line_log) 

                    csv.printf("Can't be measured,\tCan't be measured\n") 

                end 

            else 

                if /.*\*\*\* OPTIMIZATION \*\*\*.*/i.match(line_log) 

                    until /.*\*\*\*>MESSAGE SUMMARY.*/i.match(line_log) 

                        csv.printf("#{line_log}\n") 

                        line_log = log.gets.strip.chomp 

                    end 

                end 

            end 

        end 

        system("mv #{output_cir}*.* ./WA/#{cor_name}/#{counter}/eldo") 

        log.close 

        csv.close 

    end 

end 

 

class Attr 

    attr_accessor :name 

    attr_accessor :flag 

 

    def initialize(name, flag = 0) 

        @name = name 

        @flag = flag 

    end 

end 

 

class Port 

    attr_accessor :name 

    attr_accessor :flag 

    attr_accessor :val 

 

    def initialize(name, flag = 0, val = "vdd") 

        @name = name 

        @flag = flag 

        @val = val 

    end 

end 

 

module EldoTemplate 

    TEMPLATE = "* DFF Sim 

 

.option brief probe 

.notrc 

*.option strict 

.option nomod 

.option printlg=10000 

.option compat 

.option post=1 

.option ingold=1 

.option numdgt=10 

.option gmin=1.0e-18 

.option gmindc=1.0e-18 

.option nojwdb 

.option tuning=accurate 

.option interp=1 

 

*.include /tools/cadflow/t/4.4/s8p-5r/models/ff.cor 

.include /tools/cadflow/t/4.4/s8p-5r/models/tt.cor 

*.include /tools/cadflow/t/4.4/s8p-5r/models/ss.cor 

 

*.include /tools/cadflow/t/4.4/s8p-5r/models/hrlc.cor 

.include /tools/cadflow/t/4.4/s8p-5r/models/trtc.cor 
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*.include /tools/cadflow/t/4.4/s8p-5r/models/lrhc.cor 

 

*.include /tools/cadflow/t/4.4/s8p-5r/models/ffcell.cor 

.include /tools/cadflow/t/4.4/s8p-5r/models/ttcell.cor 

*.include /tools/cadflow/t/4.4/s8p-5r/models/sscell.cor 

 

.include ./s8tssc_lf_dff.nl 

 

X1 vgnd vpwr vnb clk q q_n vpb a s8tssc_lf_dff 

 

.param capVal=5f 

.param t=-40 

.param delta=2n 

.param vdd=1.35 

.param period=6n 

.param slope=0.5n 

.param xStep=0.001n 

.param xEnd=20n 

.param xStart=2n 

.param xStop=0.1n 

.param xIncr=0.1n 

.temp t 

 

cL0 q       0 capVal 

cL1 q_n     0 capVal 

 

vvpwr1  vpb     0 vdd 

vvpwr2  vpwr        0 vdd 

*vvpwr3 smode_n     0 vdd 

*vvpwr4 resetb      0 vdd 

*vvpwr5 setb        0 vdd 

 

vvgnd10     vgnd    0 0 

vvgnd11     vnb 0 0 

*vvgnd12    smode_n 0 0 

*vvgnd13    resetb  0 0 

*vvgnd14    setb    0 0 

 

vin1    X1.clk 0    pulse(0 vdd 10n slope slope 'period-slope' '2*period') 

vin2    X1.a 0      pulse(0 vdd '10n-delta' slope slope 100n 200n) 

*vin2   X1.a 0      pulse(vdd 0 '10n-delta' slope slope 100n 200n) 

*vin3   X1.clk_n 0  pulse(vdd 0 10n slope slope 'period-slope' '2*period') 

 

.plot tran 

+v(X1.clk) 

+v(X1.a) 

+v(X1.q) 

+v(X1.q_n) 

+v(X1.true) 

+v(X1.bar) 

 

+isub(X1.vpwr) 

+isub(X1.vpb) 

 

+power 

+ix(X1.7) 

 

.tran xStep xEnd uic 

*.tran xStep xEnd uic sweep delta 0.1n 2n 0.1n 

 

*.optimize 

*+method=passfail 

*+method=dichotomy 

*+method=secant 

 

*+tol_relpar=0.1 

*+tol_reltarg=0.01 
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*.paramopt delta=(1n,0.1n,2n) 

 

.extract 

+tran 

+label=clk2q 

+tpduu(v(X1.clk),v(X1.q),vth='0.5*vdd',after=0) 

*+goal=0.215n 

 

.end"; 

end 

 

def syntax 

    puts "extract.rb <corner file>" 

    puts "corner file structure:" 

    puts "|_Process, <proc>" 

    puts "|_Voltage, <vdd>" 

    puts "|_Temp, <temp>" 

    puts "|_Cap load, <load>" 

    puts "|_Ramp rate, <ramp>" 

    puts "|_Tuning factor, <tuning>" 

    puts "|_Sim stepwise, <step>" 

    puts "|_Sim length, <end>" 

    puts "|_netlist, <nl>" 

    puts "|_Input port, <input>" 

    puts "|_Clk port, <clk>" 

    puts "|_Clk_n port, <clk_n>" 

    puts "|_Output port, <output>" 

    puts "|_Test mode port, <tmod>" 

    puts "| |_Test mode port value, <tmod_val>" 

    puts "|_Reset port, <reset>" 

    puts "| |_Reset port value, <reset_val>" 

    puts "|_Set port, <set>" 

    puts "| |_Set port value, <set_val>" 

    puts "|_Sim mode, <mode>" 

    puts "      |_Single sim" 

    puts "      |   |_Sim type, <type>" 

    puts "      |   |_Single sim delta, <delta>" 

    puts "      |_Linear sweep" 

    puts "      |   |_Sim type, <type>" 

    puts "      |   |_Linear sweep start, <start>" 

    puts "      |   |_Linear sweep stop, <stop>" 

    puts "      |   |_Linear sweep increment, <incr>" 

    puts "      |_Optimization" 

    puts "          |_Optimization mode, <opmod>" 

    puts "          |_Optimization tolerance, <tol>" 

    puts "          |_Optimization start point, <opstart>" 

    puts "          |_Lower band, <lower>" 

    puts "          |_upper band, <upper>" 

    puts "          |_Dichotomy/secant" 

    puts "                  |_Delay degradation percentage, <perc>" 

    puts "                  |_Nominal delay, <nom>" 

    puts "Example:\n"; 

    puts "proc=tt; vdd=1.8; temp=25; load=5f; ramp=0.5n; tuning=accurate; 

step=0.01n; end=12n; netlist=s8tssc_lf_dff.nl; input=a; clk=clk; output=q; 

mode=optimization; opmod=dichotomy; tol=0.05; opstart=1n; lower=0.1n; 

upper=2n; perc=1.05; nom=0.1190n" 

    puts "Eldo sim abort" 

    exit 

end 

 

main
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