102 research outputs found

    ASIdE: Using Autocorrelation-Based Size Estimation for Scheduling Bursty Workloads.

    Get PDF
    Temporal dependence in workloads creates peak congestion that can make service unavailable and reduce system performance. To improve system performability under conditions of temporal dependence, a server should quickly process bursts of requests that may need large service demands. In this paper, we propose and evaluateASIdE, an Autocorrelation-based SIze Estimation, that selectively delays requests which contribute to the workload temporal dependence. ASIdE implicitly approximates the shortest job first (SJF) scheduling policy but without any prior knowledge of job service times. Extensive experiments show that (1) ASIdE achieves good service time estimates from the temporal dependence structure of the workload to implicitly approximate the behavior of SJF; and (2) ASIdE successfully counteracts peak congestion in the workload and improves system performability under a wide variety of settings. Specifically, we show that system capacity under ASIdE is largely increased compared to the first-come first-served (FCFS) scheduling policy and is highly-competitive with SJF. © 2012 IEEE

    Design of an adaptive-rate video-streaming service with different classes of users

    Get PDF
    The provision of end-to-end Quality of Service (QoS) for multimedia services over IP-based networks is already an open issue. To achieve this goal, service providers need to manage Service Level Agreements (SLAs), which specify parameters of the services operation such as availability and performance. Additional mechanisms are needed to quantitatively evaluate the user-level SLA parameters. This work is focused on the evaluation and assessment of different design options of an adaptive VoD service providing several classes of users and fulfilling the SLA commitments. Based on a straightforward Markov Chain, Markov-Reward Chain (MRC) models are developed in order to obtain various QoS measures of the adaptive VoD service. The MRC model has a clear understanding with the design and operation of the VoD system.5th IFIP International Conference on Network Control & Engineering for QoS, Security and MobilityRed de Universidades con Carreras en Informática (RedUNCI

    Design of an adaptive-rate video-streaming service with different classes of users

    Get PDF
    The provision of end-to-end Quality of Service (QoS) for multimedia services over IP-based networks is already an open issue. To achieve this goal, service providers need to manage Service Level Agreements (SLAs), which specify parameters of the services operation such as availability and performance. Additional mechanisms are needed to quantitatively evaluate the user-level SLA parameters. This work is focused on the evaluation and assessment of different design options of an adaptive VoD service providing several classes of users and fulfilling the SLA commitments. Based on a straightforward Markov Chain, Markov-Reward Chain (MRC) models are developed in order to obtain various QoS measures of the adaptive VoD service. The MRC model has a clear understanding with the design and operation of the VoD system.5th IFIP International Conference on Network Control & Engineering for QoS, Security and MobilityRed de Universidades con Carreras en Informática (RedUNCI

    Decision Support in Cooperative QoS Management

    Get PDF
    Cooperative QoS management is a new quality of service management scheme which is based on QoS agents distributed within a system and cooperating with each other to provide the QoS negotiated with users, thereby ameliorating the overail system's resource usage and decreasing the communication costs. During their operations, agents have to take decisions in order to react on QoS violations, initiate QoS renegotiation processes or react on renegotiation requests from other QoS agents. In this paper, we present two tools which support cooperating QoS agents in their decision processes: a model called Quality of Operation, based on a mathematical formula, and an approach based on a new variant of Stochastic Petri Nets, so-called Controlled Stochastic Petri Nets

    Modelling and performance evaluation of wireless and mobile communication systems in heterogeneous environments

    Get PDF
    It is widely expected that next generation wireless communication systems will be heterogeneous, integrating a wide variety of wireless access networks. Of particular interest recently is the integration of cellular networks (GSM, GPRS, UMTS, EDGE and LTE) and wireless local area networks (WLANs) to provide complementary features in terms of coverage, capacity and mobility support. These different networks will work together using vertical handover techniques and hence understanding how well these mechanisms perform is a significant issue. In this thesis, these networks are modelled to yield performance results such as mean queue lengths and blocking probabilities over a range of different conditions. The results are then analysed using network constraints to yield operational graphs based on handover probabilities to different networks. Firstly, individual networks with horizontal handover are analysed using performability techniques. The thesis moves on to look at vertical handovers between cellular networks using pure performance models. Then the integration of cellular networks and WLAN is considered. While analysing these results it became clear that the common models that were being used were subjected to handover hysteresis resulting from feedback loops in the model. A new analytical model was developed which addressed this issue but was shown to be problematic in developing state probabilities for more complicated scenarios. Guard channels analysis, which is normally used to give priority to handover traffic in mobile networks, was employed as a practical solution to the observed handover hysteresis. Overall, using different analytical techniques as well as simulation, the results of this work form an important part in the design and development of future mobile systems

    Design of an adaptive-rate video-streaming service with different classes of users

    Get PDF
    The provision of end-to-end Quality of Service (QoS) for multimedia services over IP-based networks is already an open issue. To achieve this goal, service providers need to manage Service Level Agreements (SLAs), which specify parameters of the services operation such as availability and performance. Additional mechanisms are needed to quantitatively evaluate the user-level SLA parameters. This work is focused on the evaluation and assessment of different design options of an adaptive VoD service providing several classes of users and fulfilling the SLA commitments. Based on a straightforward Markov Chain, Markov-Reward Chain (MRC) models are developed in order to obtain various QoS measures of the adaptive VoD service. The MRC model has a clear understanding with the design and operation of the VoD system.5th IFIP International Conference on Network Control & Engineering for QoS, Security and MobilityRed de Universidades con Carreras en Informática (RedUNCI

    Two methods for computing bounds for the distribution of cumulative reward for large Markov models

    Get PDF
    Degradable fault-tolerant systems can be evaluated using rewarded continuous-time Markov chain (CTMC) models. In that context, a useful measure to consider is the distribution of the cumulative reward over a time interval [0, t]. All currently available numerical methods for computing that measure tend to be very expensive when the product of the maximum output rate of the CTMC model and t is large and, in that case, their application is limited to CTMC models of moderate size. In this paper, we develop two methods to compute bounds for the cumulative reward distribution of CTMC models with reward rates associated with states: BT/RT (Bounding Transformation/Regenerative Transformation) and BT/BRT (Bounding Transformation/ Bounding Regenerative Transformation). The methods require the selection of a regenerative state, are numerically stable and compute the bounds with well-controlled error. For a class of rewarded CTMC models, class C′′′_1 , and a particular, natural selection for the regenerative state the BT/BRT method allows to trade off bounds tightness with computational cost and will provide bounds at a moderate computational cost in many cases of interest. For a class of models, class C′′_1, slightly wider than class C′′′_1 , and a particular, natural selection for the regenerative state, the BT/RT method will yield tighter bounds at a higher computational cost. Under additional conditions, the bounds obtained by the less expensive version of BT/BRT and BT/RT seem to be tight for any value of t or not small values of t, depending on the initial probability distribution of the model. Class C′′_1 and class C′′′_1 models with those additional conditions include both exact and bounding typical failure/repair performability models of fault-tolerant systems with exponential failure and repair time distributions and repair in every state with failed components and a reward rate structure which is a non-increasing function of the collection of failed components. We illustrate both the applicability and the performance of the methods using a large CTMC performability example of a fault-tolerant multiprocessor system.Postprint (published version
    • …
    corecore