807 research outputs found

    On the expected number of perfect matchings in cubic planar graphs

    Get PDF
    A well-known conjecture by Lov\'asz and Plummer from the 1970s asserted that a bridgeless cubic graph has exponentially many perfect matchings. It was solved in the affirmative by Esperet et al. (Adv. Math. 2011). On the other hand, Chudnovsky and Seymour (Combinatorica 2012) proved the conjecture in the special case of cubic planar graphs. In our work we consider random bridgeless cubic planar graphs with the uniform distribution on graphs with nn vertices. Under this model we show that the expected number of perfect matchings in labeled bridgeless cubic planar graphs is asymptotically cγnc\gamma^n, where c>0c>0 and γ∼1.14196\gamma \sim 1.14196 is an explicit algebraic number. We also compute the expected number of perfect matchings in (non necessarily bridgeless) cubic planar graphs and provide lower bounds for unlabeled graphs. Our starting point is a correspondence between counting perfect matchings in rooted cubic planar maps and the partition function of the Ising model in rooted triangulations.Comment: 19 pages, 4 figure

    On the expected number of perfect matchings in cubic planar graphs

    Get PDF
    A well-known conjecture by Lov'asz and Plummer from the 1970s asserted that a bridgeless cubic graph has exponentially many perfect matchings. It was solved in the affirmative by Esperet et al. ([13]). On the other hand, Chudnovsky and Seymour ([8]) proved the conjecture in the special case of cubic planar graphs. In our work we consider random bridgeless cubic planar graphs with the uniform distribution on graphs with n vertices. Under this model we show that the expected number of perfect matchings in labeled bridgeless cubic planar graphs is asymptotically cγn, where c > 0 and γ ∼ 1.14196 is an explicit algebraic number. We also compute the expected number of perfect matchings in (not necessarily bridgeless) cubic planar graphs and provide lower bounds for unlabeled graphs. Our starting point is a correspondence between counting perfect matchings in rooted cubic planar maps and the partition function of the Ising model in rooted triangulations

    A superlinear bound on the number of perfect matchings in cubic bridgeless graphs

    Get PDF
    Lovasz and Plummer conjectured in the 1970's that cubic bridgeless graphs have exponentially many perfect matchings. This conjecture has been verified for bipartite graphs by Voorhoeve in 1979, and for planar graphs by Chudnovsky and Seymour in 2008, but in general only linear bounds are known. In this paper, we provide the first superlinear bound in the general case.Comment: 54 pages v2: a short (missing) proof of Lemma 10 was adde

    Counting Shortest Two Disjoint Paths in Cubic Planar Graphs with an NC Algorithm

    Get PDF
    Given an undirected graph and two disjoint vertex pairs s1,t1s_1,t_1 and s2,t2s_2,t_2, the Shortest two disjoint paths problem (S2DP) asks for the minimum total length of two vertex disjoint paths connecting s1s_1 with t1t_1, and s2s_2 with t2t_2, respectively. We show that for cubic planar graphs there are NC algorithms, uniform circuits of polynomial size and polylogarithmic depth, that compute the S2DP and moreover also output the number of such minimum length path pairs. Previously, to the best of our knowledge, no deterministic polynomial time algorithm was known for S2DP in cubic planar graphs with arbitrary placement of the terminals. In contrast, the randomized polynomial time algorithm by Bj\"orklund and Husfeldt, ICALP 2014, for general graphs is much slower, is serial in nature, and cannot count the solutions. Our results are built on an approach by Hirai and Namba, Algorithmica 2017, for a generalisation of S2DP, and fast algorithms for counting perfect matchings in planar graphs

    Cuts in matchings of 3-connected cubic graphs

    Full text link
    We discuss conjectures on Hamiltonicity in cubic graphs (Tait, Barnette, Tutte), on the dichromatic number of planar oriented graphs (Neumann-Lara), and on even graphs in digraphs whose contraction is strongly connected (Hochst\"attler). We show that all of them fit into the same framework related to cuts in matchings. This allows us to find a counterexample to the conjecture of Hochst\"attler and show that the conjecture of Neumann-Lara holds for all planar graphs on at most 26 vertices. Finally, we state a new conjecture on bipartite cubic oriented graphs, that naturally arises in this setting.Comment: 12 pages, 5 figures, 1 table. Improved expositio

    The Cost of Perfection for Matchings in Graphs

    Full text link
    Perfect matchings and maximum weight matchings are two fundamental combinatorial structures. We consider the ratio between the maximum weight of a perfect matching and the maximum weight of a general matching. Motivated by the computer graphics application in triangle meshes, where we seek to convert a triangulation into a quadrangulation by merging pairs of adjacent triangles, we focus mainly on bridgeless cubic graphs. First, we characterize graphs that attain the extreme ratios. Second, we present a lower bound for all bridgeless cubic graphs. Third, we present upper bounds for subclasses of bridgeless cubic graphs, most of which are shown to be tight. Additionally, we present tight bounds for the class of regular bipartite graphs

    Perfect Matchings in Claw-free Cubic Graphs

    Full text link
    Lovasz and Plummer conjectured that there exists a fixed positive constant c such that every cubic n-vertex graph with no cutedge has at least 2^(cn) perfect matchings. Their conjecture has been verified for bipartite graphs by Voorhoeve and planar graphs by Chudnovsky and Seymour. We prove that every claw-free cubic n-vertex graph with no cutedge has more than 2^(n/12) perfect matchings, thus verifying the conjecture for claw-free graphs.Comment: 6 pages, 2 figure

    Fullerene graphs have exponentially many perfect matchings

    Full text link
    A fullerene graph is a planar cubic 3-connected graph with only pentagonal and hexagonal faces. We show that fullerene graphs have exponentially many perfect matchings.Comment: 7 pages, 3 figure
    • …
    corecore