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Abstract
Given an undirected graph and two disjoint vertex pairs s1, t1 and s2, t2, the Shortest two disjoint
paths problem (S2DP) asks for the minimum total length of two vertex disjoint paths connecting
s1 with t1, and s2 with t2, respectively.

We show that for cubic planar graphs there are NC algorithms, uniform circuits of polynomial
size and polylogarithmic depth, that compute the S2DP and moreover also output the number
of such minimum length path pairs.

Previously, to the best of our knowledge, no deterministic polynomial time algorithm was
known for S2DP in cubic planar graphs with arbitrary placement of the terminals. In contrast,
the randomized polynomial time algorithm by Björklund and Husfeldt, ICALP 2014, for general
graphs is much slower, is serial in nature, and cannot count the solutions.

Our results are built on an approach by Hirai and Namba, Algorithmica 2017, for a general-
isation of S2DP, and fast algorithms for counting perfect matchings in planar graphs.
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1 Introduction

Shortest disjoint A,B-paths, introduced by Hirai and Namba [12], is the following problem:
Let G be an undirected graph with two non-empty disjoint vertex subsets A,B ⊆ V (G) of
even size and an edge length function ` : E(G)→ {1, . . . , L}. An edge subset E′ ⊆ E(G) is a
solution to Disjoint A,B-paths if it consists of 1

2 (|A|+ |B|) disjoint paths with endpoints both
in A or both in B. The length `(E′) of a solution is

∑
e∈E′ `(e), and a shortest solution has

length `A,B = minE′ `(E′). The objective is to compute `A,B . The special case |A| = |B| = 2
is a well-studied problem called Shortest two disjoint paths.

We write SA,B for the number of solutions of length `A,B . A graph is cubic (sometimes
called 3-regular) if every vertex has degree 3. We prove the following:
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Figure 1 A solution of minimum length `A,B = 11 to Shortest disjoint A, B-paths with A =
{a1, a2} and B = {b1, b2}. Since |A| = |B| = 2, this is also an example of Shortest two disjoint paths.
Note that neither path is a shortest path between its terminals.

I Theorem 1. For any cubic planar n-vertex graph G, disjoint vertex subsets A and B, and
edge length function ` : E(G)→ {1, . . . , L}, we can compute `A,B and SA,B in deterministic
Õ(2|A∪B|nω/2+2L2) time1, where ω < 2.373 is the exponent of square matrix multiplication.

In particular, for |A|+ |B| = O(1), the algorithm runs in deterministic time Õ(nω/2+2L2).
To the best of our knowledge, no polynomial-time deterministic algorithm was known even

for |A| = |B| = 2. Hirai and Namba’s algorithm [12] works for general graphs in randomized
time nO(|A∪B|), so Theorem 1 also shows that cubic planar graphs allow better exponential
dependency on |A ∪B|. In the appendix we show that all our algorithms extend to the case
where the graph has maximum degree 3.

Because we can count the solutions we can use well-known techniques to retrieve a witness
for the shortest length. By using our algorithm as a subroutine, we can retrieve the ith
witness in a lexicographical order of the solutions by a polynomial overhead self reduction,
by peeling off edges one at a time and remeasuring the number of solutions. In particular, by
choosing i uniformly from {1, . . . , SA,B}, we can sample uniformly over the solutions without
first explicitly constructing the list of solutions.

Our algorithm is based on counting perfect matchings in a planar graph. Vazirani [30]
showed how every bit in the number of perfect matchings in a planar graph can be decided
by an NC algorithm, i.e., uniform polylogarithmically shallow polynomial size circuits, an
observation he attributes to Luby. Using his algorithm as a subroutine, we arrive at an
efficient parallel algorithm. We state the result for Shortest two disjoint paths:

I Theorem 2. For any cubic planar n-vertex graph G, disjoint vertex subsets A and B with
|A| = |B| = 2, and edge length function ` : E(G) → {1, . . . , L}, we can compute `A,B and
SA,B by an NC algorithm.

The same statement holds as long as |A|+ |B| is logarithmic in n.
Via the Isolation lemma of Mulmuley et al. [23] we can also obtain a witness, i.e., a

solution E′ of length `(E′) = `A,B, with a randomized NC algorithm. We note that the
recent breakthrough result showing how to find a perfect matching in a planar graph in
NC by Anari and Vazirani [2] doesn’t seem to be directly applicable to our problem. Our
algorithm counts the solutions to Shortest two disjoint paths by an annihilation sieve, i.e.
the number of solutions is an alternating sum of perfect matchings in a set of graphs, but
many of the terms cancel each other. Hence there are many perfect matchings that do not
correspond to a solution. Finding one deterministically won’t help us.

We also provide evidence that the exponential dependence on |A|+ |B| is necessary:

1 The Õ(f(n)) notation suppresses factors polylogarithmic in f(n).
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I Theorem 3. It is #P-hard to simultaneously compute the length and the number of
solutions to Shortest disjoint A,B-paths in cubic planar graphs.

1.1 Hirai and Namba’s Result
Hirai and Namba [12] shows that Shortest disjoint A,B-paths has a randomized algorithm
running in nO(|A∪B|) time, that w.h.p. finds the length of the shortest disjoint paths. Their
algorithm is inspired by the algorithm of Gallai [9] that can be used to address the special case
B = ∅, and the algorithm by Björklund and Husfeldt [4] for the special case |A| = |B| = 2.
They apply a two-step method: First, expand G into another edge weighted graph G′ using
so-called Gallai paths, in a way that the weighted perfect matchings in G′ can be used to
obtain the solution to the original problem. Then it uses the fact that counting perfect
matchings in G′ modulo 2k has a nO(k) time algorithm. In their reduction, each solution is
counted 2|A∪B|/2 times, so they need to set k > 1

2 |A ∪ B| to count something meaningful,
but still small enough to keep the running time down. Thus, their algorithm is capable only
of counting the solutions modulo a fixed small power of 2. The Isolation lemma [23] ensures
that the number of solutions is not divisible by this small power of two. This is why [12]
need randomness; the same problem appears in the shortest paths algorithm of [4].

1.2 Our Approach
We apply Hirai and Namba’s approach to the planar cubic case. It is well-known that in any
planar graph we can count the perfect matchings in polynomial time. In particular we don’t
just obtain the result modulo a small power of two. We use this, but there is one obstacle
that needs to be addressed to accomplish this: The reduction Hirai and Namba use does
not preserve planarity. Our contribution is to show that for cubic planar graphs, we can
construct a set of 2|A∪B|/2 cubic planar graphs, each having non-negative edge weights, so
that a linear combination of the number of weighted perfect matchings in these graphs can
be used to deduce the number of solutions to the Shortest disjoint A,B-paths in the original
instance. We are inspired by the result of Galluccio and Loebl [10] that shows how to count
perfect matchings in graphs of genus g by constructing 4g orientations and computing the
Pfaffian for each of them. We choose to use a more direct approach instead of reducing to
their result to make the description of our algorithm more self contained.

1.3 Related Work
Björklund and Husfeldt [4] showed that Shortest two disjoint paths in a general unweighted
undirected graph has a polynomial time Monte Carlo algorithm. Colin de Verdiére and
Schrijver [8], and Kobayachi and Sommer [19] showed that for planar graphs, deterministic
polynomial-time algorithms for the Shortest two disjoint paths exist if the four terminals lie
on the boundary of at most two faces. The algorithm in the present paper works no matter
where the terminals are, but is much slower. Still, it is significantly faster than the general
O(n11) time algorithm by Björklund and Husfeldt [4].

Very recently, Datta et al. [7] presented a deterministic algorithm independently of ours
for Shortest k-disjoint paths in planar graphs conditioned on the terminals either all being
placed on the same face or all source terminals on one face and the target terminals on
another. In particular, restricted to the Shortest two disjoint path problem, their algorithm
does not work for arbitrary placement of the terminals as ours does. Interestingly, their
algorithm is also based on computing determinants just as ours and can count the solutions
just as our algorithms can, although they don’t use Pfaffian orientations as we do.

ISAAC 2018
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For the decision problem of detecting two disjoint paths joining given vertex pairs, no
matter their length, deterministic polynomial-time algorithms have been known since 1980 for
general graphs, by Ohtsuki [24], Seymour [25], Shiloah [26], and Thomassen [28]; all published
independently. Tholey [27] reduced the running time for that problem to near-linear. Khuller
et al. [17] showed that the problem can be solved in NC.

The k-disjoint paths problem is the natural generalisation of the two disjoint paths
problem: Given a list {(s1, t1), . . . , (sk, tk)} of terminal pairs, decide if there exist k disjoint
paths connecting si with ti for i ∈ {1, . . . , k}. Again neglecting the length of the solution, this
problem has a polynomial time algorithm in general graphs for fixed k, but the dependence
on k is horrible (exp exp exp expO(k), see [16]). For planar graphs, there exists a doubly
exponential (exp expO(k)) poly(n) time algorithm, by Adler et al. [1]. For comparison, our
running time dependence is singly exponential in the size of the terminal set, but of course
our criteria for allowed connections is much relaxed.

The special case B = ∅ in Disjoint A,B-paths is referred to as A-Paths in Lovász and
Plummer [22]. Its solution in general undirected graphs by a polynomial time algorithm
was given by Gallai [9] by a reduction to finding a perfect matching. Using Mulmuley,
Vazirani, and Vazirani’s algorithm for the problem they call Exact Matching [23] on Gallai’s
construction, one can in randomized polynomial time solve the Shortest disjoint A-paths.

The idea of using perfect matching counting in restricted graph classes to solve other
combinatorial optimisation problems is not new, a classic example is the polynomial time
algorithm for Max Cut in graphs of bounded genus by Galluccio, Loebl, and Vondrák [11].

2 Algorithmic Results: Theorems 1 and 2

2.1 Notation
We consider an undirected graph G with vertex set V = V (G) and edge set E = E(G). A
(u, v)-path is a path from vertex u to vertex v. A perfect matching in G is a subset E′ ⊆ E
of the edges of size |E′| = 1

2 |V |, such that every vertex in v ∈ V is the endpoint of exactly
one edge in E′. Let w : E → N be an edge weight function to positive integers. Let M(G) be
the family of perfect matchings in G. We denote by pm(G) the sum of the weighted perfect
matchings in a graph G, i.e.,

pm(G) =
∑

M∈M(G)

∏
e∈M

w(e).

If the weights are unity, this is the number of perfect matchings. In our algorithm’s analysis,
some edges are weighted by an indeterminate s and pm(G) is a polynomial in s. However,
the algorithm itself only works directly over the integers after replacing the indeterminate s
for a numerical value.

2.2 Pfaffian Orientations
A Pfaffian orientation of a graph G with edge weights w : E → N, is an orientation of the
edges q : E → {−1, 1} so that the skew-symmetric adjacency matrix AG, where

∀uv ∈ E, u < v : q(u, v)w(uv) = AG(u, v) = −AG(v, u) = −q(u, v)w(uv),

satisfies

pm(G) =
∣∣∣√det(AG)

∣∣∣ . (1)
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An orientation of a graph G is Pfaffian if and only if every even-length cycle C such that
G \ V (C) has a perfect matching, has an odd number of edges directed in either direction
along C. Kasteleyn [15], famously proved that all planar graphs have a Pfaffian orientation,
and moreover showed how you given a planar graph can find a Pfaffian orientation fast.
Nowadays it is even known how to find one in planar graphs in linear time, and Vazirani [30]
showed it can be computed in NC. In general it only holds that |pm(G)| =

∣∣∣√det(AG)
∣∣∣,

but we only consider positive edge weights in this paper and hence already know pm(G) to
be non-negative. Little [21] extended Kasteleyn’s method to also work constructively for
graphs that do not have a K3,3 subgraph as a minor. However, cubic K3,3 minor free graphs
coincide with the set of cubic planar graphs.

2.3 Reduction from Disjoint A,B-Paths to Counting Perfect Matchings
Consider as input a cubic planar graph G and let ` : E → {1, . . . , L} be an edge length
function, along with two disjoint subsets A and B of the vertices, each having even size. Set
Λ =

∑
e∈E `(e). We will reduce Shortest disjoint A,B-paths to counting perfect matchings so

that planarity is preserved. In this section, we write Z for the set of terminals, Z = A ∪B.
We build a larger graph H from G as follows. Replace each nonterminal v ∈ V \ Z with

three vertices h1(v), h2(v), and h3(v) forming a triangle. Replace each terminal z ∈ Z by a
3-star on vertices h1(z), h2(z), h3(z), and terminal center h(z). The gadgets look like this:

h1(v)

h2(v) h3(v)

h1(z)

h2(z) h3(z)

h(z)

We call the edges within these two gadgets internal edges.
Moreover, if uv ∈ E(G), then hi(u)hj(v) is also an edge in H for some i, j ∈ {1, 2, 3} in

such a way that each vertex in H is used in exactly one of the additional edges. We call these
edges in H between gadgets external edges. We write f(uv) = hi(u) and g(uv) = hj(v) to
identify the two gadget vertices in H connected by the external edge representing uv. Confer
figure 2. The graph H has the property that every vertex except the terminal centers h(z)
for z ∈ Z is part of exactly one external edge. Our first insight is the following:

I Lemma 4. If G is planar, then so is H.

Proof. Both gadgets are easily seen to be planar. To see that H is planar, use an embedding
of G. For each vertex v in G, consider a small enough circle Cv around v containing no other
edge or vertex. Now replace v with a copy of its gadget small enough to fit Cv. J

Hence, if G is planar, we can find a Pfaffian orientation of H, as well as for any subgraph
of it, as any subgraph is also planar. (We note in passing that a Pfaffian orientation of a
graph is not necessarily a Pfaffian orientation of its subgraph.)

From H, we create several graphs depending on a subset of the terminal vertices. We
write H(X) for X ⊆ Z to mean the graph obtained from H by removing the terminal centers
h(z) and all incident edges for each terminal z /∈ X. We have H = H(Z).

We introduce an indeterminate s to control the length of the paths. We write D(X, s)
for a skew-symmetric adjacency matrix of a Pfaffian orientation of H(X), where we have
multiplied all entries representing an external edge e in H(X) with s`(e).

Our algorithm is a direct application of the following result:

ISAAC 2018
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z1

z2

h(z1)

h(z2)

Figure 2 Left: The instance graph G with two terminal nodes z1 and z2. Middle: The gadget
graph H. Right: The union of two matchings in H(X) and H(Z \ X) for some X containing both
z1 and z2. Together, they form a path between h(z1) and h(z2), along with three double edges.

I Lemma 5. For a graph G, consider

p(G, s) =
∑
X⊆Z

(−1)|X∩A|
∣∣∣√det(D(X, s)) det(D(Z \X, s))

∣∣∣ (2)

as a polynomial in the indeterminate s. Let csd be the largest degree monomial with a
positive coefficient in p(G, s). Then, `A,B = 2Λ− d is the shortest total length of any disjoint
A,B-paths in G, and c is 2|Z|/2 times the number of solutions having that minimum length.

Proof. We begin by arguing that p(G, s) indeed is a polynomial in the indeterminate s. Fix
X ⊆ Z. Write M(X) for the set M(H(X)) of perfect matchings in H(X). By (1), we have∣∣∣√det(D(X, s))

∣∣∣ = pm(H(X)) =
∑

M∈M(X)

∏
e∈M

w(e) ,

where w(e) = s`(e) if e is external and w(e) = 1 if e is internal. Thus, for a pair of perfect
matchings M1 ∈M(X) and M2 ∈M(Z \X), their contributing term t(M1,M2) is

t(M1,M2) =
( ∏
e∈M1

w(e)
)
·
∏
e∈M2

w(e) ,

which is clearly a polynomial in s, and write

p(G, s) =
∑
X⊆Z

(−1)X∩A
∑

M1∈M(X)

∑
M2∈M(Z\X)

t(M1,M2) .

Now view M1∪M2 as a subgraph in H, by identifying each vertex in H(X) and H(Z \X)
with its copy in H. (It is helpful to view M1 ∪M2 as a multiset, so the corresponding
subgraph is in fact a multigraph using the edges M1 ∩M2 twice.) We can visualise this as
placing the two graphs on top of each other and looking at the subgraph formed by the
two matchings. It is clear that every vertex in H has degree at most 2 in this subgraph, so
M1 ∪M2 can be partitioned into three edge subsets P,C,D ⊆ E(H), such that P is a disjoint
union of simple paths, C is a disjoint union of simple cycles, and D, which is equal to the
intersection M1 ∩M2, is a disjoint union of isolated edges.

We claim that every path in P has its endpoints in terminal centers. To see this, first
note that each terminal centre h(z) for z ∈ Z is present in exactly one of the graphs H(X)
and H(Z \X). Therefore, h(z) is matched by exactly one edge in M1 ∪M2 and therefore is
the endpoint of a path. Every other vertex in H appears in both H(X) and H(Z \X) and
is therefore matched in both M1 and M2; in particular, no such vertex is the endpoint of a
simple path. Figure 2 shows a small example.
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We next argue that unions M1 ∪M2 whose paths connect terminal centers h(a) and
h(b) with a ∈ A and b ∈ B contribute nothing to p(G, s). To this end, consider such a
term t(M1,M2) with M1 ∈M(X) and M2 ∈M(Z \X) and let P = (u1, . . . , uk) with u1 =
h(a), uk = h(b) be the lexicographically first such path in P.

If k is odd, then the edges u1u2, u3u4, . . ., uk−2uk−1 belong to one matching, sayM1, and
the edges u2u3, . . ., uk−1uk belong to M2. In particular, the terminal center h(a) is matched
in M1, which implies h(a) ∈ V (H(X)) and therefore a ∈ X. Conversely, h(b) is matched in
M2, which implies h(b) ∈ V (H(Z \X)) and b /∈ X. Now form X ′ = (X ∪ {b}) \ {a} and
consider the two matchings M ′1 ∈ M(X ′) and M ′2 ∈ M(Z \X ′) created from M1 and M2
by swapping the edges on P . Note that the edge uk−1uk incident on h(b) now belongs to
M ′1, and since b belongs to X ′, the matching M ′1 is indeed a perfect matching in M(X ′).
Similarly, M ′2 ∈M(Z \X ′). Starting the exact same process from the matchings M ′1 and M ′2
and set X ′ would get us back to M1, M2, and X, since the same path P will be chosen by
the lexicographical order, so the process defines a fixed-point free involution on the set of
terms t(M1,M2) and subsets of Z. Crucially, the contribution to (2) of terms paired by this
involution cancel:

(−1)|X∩A|t(M1,M2) + (−1)|X
′∩A|t(M ′1,M ′2) = 0 ,

because the multisets M1 ∪M2 and M ′1 ∪M ′2 are the same, and X ′ and X differ in exactly
one terminal from A. Hence no such terms survive in the computation of p(G, s).

If k is even, then u1u2, u3u4, . . ., uk−1uk belong to the same matching, say M1. Thus,
both h(a) and h(b) belong to H(X), so a and b belong to X. Set X ′ = X \ {a, b}, and follow
the same argument as above.

In other words, t(M1,M2) survives in p(G, s) only if the disjoint paths in P have their
endpoints either both in A or both in B. The contribution is

t(M1,M2) =
(∏
e∈D

w(e)2

)
·
∏

e∈C∪P

w(e) = sd ,

where

d =
(

2
∑
e∈D

`(e)
)

+
∑

e∈C∪P

`(e) = 2Λ−
∑

e∈C∪P

`(e) ,

with the convention that `(e) = 0 for internal edges. The last term is at least `A,B, and
attains that value exactly if C is empty and P contains the external edges of a solution E′ to
Shortest disjoint A,B-paths in G. Otherwise, d < 2Λ− `A,B .

We finally turn to the other direction, to show that if there exists disjoint A,B-paths in
G, we will detect them in p(G, s). Moreover, we argue that we can count the ones of shortest
total length. To see this, first consider a solution E′ ⊆ E(G) to Shortest disjoint A,B-paths,
i.e., a disjoint union of paths

E′ = P1 ∪ · · · ∪ P|Z|/2 ,

each of which has terminal endpoints either both in A, or both in B. Let T be a subgraph
of H obtained in the following way. For each such path P = (v1, . . . , vk), first add the
external edges f(v1v2)g(v1v2), . . ., f(vk−1vk)g(vk−1vk) to T . Second, add the internal
edges h(v1)f(v1v2) and g(vk−1vk)h(vk) in the two terminal gadgets, and the internal edges
g(vivi+1)f(vi+1vi+2) in the nonterminal gadgets for i ∈ {1, . . . , k − 2}. This adds precisely
one internal edge per gadget representing a vertex on P . Third, for every vertex u ∈ V (H)

ISAAC 2018
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not used in an edge so far, we add to T its unique external edge in H. This is where we
use the property of H that every non-terminal vertex has a unique external edge. Thus, T
consists of disjoint edge sets P,D ⊆ E(H) where P consists of disjoint paths and D consists
of disjoint (external) edges.

We continue to account for the contribution of T to (2). Let X ⊆ Z be a subset of
terminals such that the endpoints of the paths in P are either both in X or both in Z \X.
In particular, |X ∩A| is even, and there are 2|Z|/2 such subsets. There is exactly one perfect
matching M1 in H(X) that is a subgraph of T ; this matching contains all the internal edges
on the paths of P with endpoints both in X. There is also exactly one perfect matching M2
in H(Z \X) that is a subgraph of T ; this matching contains all the external edges on the
paths of P with endpoints both in Z \X. In particular, every external edge in D appears
exactly twice in the multiset M1 ∪M2, and every external edges in P appears exactly once.
(The internal edges have weight 1, so we need not count their contribution to a product.)
Thus, the total contribution of M1 and M2 is

t(M1,M2) =
(∏
e∈D

w(e)2

)
·
∏
e∈P

w(e) = sd , where d = 2Λ− `A,B ,

and the solution E′ accounts for the contribution∑
X⊆Z

(−1)|X∩A|t(M1,M2) = 2|Z|/2sd .

All other surviving terms have lower degree in p(G, s), and the lemma follows. J

2.4 Algorithm
Our algorithm computes the coefficients of p(G, s) in (2) viewed as a polynomial in s, using
polynomial interpolation. The algorithm works through direct evaluation in sufficiently
many points s ∈ {0, 1, . . . , 2Λ} of p(G, s) after replacing s for its numerical value. Hence all
computations are over the integers.

1. For s = 0 to 2Λ,
2. Set sums = 0.
3. For X ⊆ Z, |X| even,
4. Construct H(X) and H(Z \X) and their Pfaffian orientations.
5. Compute the integers det2(D(X)) and det2(D(Z \X)) for the current value of s.
6. Take the fourth root of the two determinants and multiply them.
7. Add the product with the sign (−1)|X∩A| to sums.
8. Use polynomial interpolation to compute the coefficients of p(G, s) from the array sum.
9. Locate the largest non-zero monomial csd.

10. Return `A,B = 2Λ− d and SA,B = c/2|Z|/2.

2.5 Sequential Running Time
We turn to the sequential running time of the algorithm from section 2.4. Recall that the
polynomial p(G, s) has degree at most 2Λ, and hence the number of evaluated points is
sufficient to uniquely recover its coefficients. We can bound the value of the two determinants
using the Leibniz formula for the determinant. There are at most 33n+|A∪B| terms since
there are at most 3 choices per vertex in H(X). For each choice, the largest value is obtained
when the external edges are picked twice, i.e., every term is at most (2Λ)2Λ. Hence the
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determinant can be a β = Õ(nL) bit number. We can compute the determinants in row
5 using O(nω/2) arithmetic operations, using Yuster’s algorithm [32] for the square of the
determinant, which in turn uses the dissection method developed by Lipton et al. [20]. Note
that since we know all our determinants to be positive (each is the square of the number
of perfect matchings), no information is lost by computing even powers of the determinant.
Every arithmetic operation can be computed in Õ(β) time [31]. Computing all determinants
requires at most Õ(Λ2|A∪B|nω/2β) = Õ(2|A∪B|nω/2+2L2) time. This part dominates the
computation time, since taking the square roots in row 7 using Newton’s method requires
only about lognL iterations for an integer square, and the polynomial interpolation in row 8
can be done in quadratic time. It requires Ω̃(Λ) operations over a finite field, cf. [31], and
we need a field, or several fields and the Chinese remainder theorem, of total size Ω(β) to
recover the integer values. This completes the proof of Theorem 1.

2.6 Parallel Circuit Depth
In this section we prove that our algorithm in section 2.4 can be efficiently implemented
as a circuit of polynomial size and polylogarithmic depth. First we note that all values
of s and all values of X in row 1 and 3 of the algorithm can be evaluated in parallel. All
computations are made on integers of β = Õ(nL) bits as claimed in the previous section.
Addition and multiplication on β bit integers can be done in polylog(β) depth. Constructing
the graphs H(X) in row 4 can be done even without a planar embedding of G, as it doesn’t
matter how the external edges are mapped to the gadget’s connectors, planarity is always
preserved. Vazirani shows that the number of perfect matchings can be computed by an
NC algorithm [30], see also the textbook [14]. He describes how a Pfaffian orientation for a
planar graph can be obtained via Klein and Reif’s parallel planar embedding algorithm [18].
He next uses the fact that the determinant can be computed in NC, a consequence of
Csansky’s algorithm for the determinant [6]. Berkowitz algorithm [3] via iterated matrix
product can also be used (see Cook [5]). Computing the integer square root at row 6 is a
logarithmic depth task with Newton’s method since the convergence is quadratic. Once all
evaluations are done, the inner loop summation at row 7 can be computed for all s, again in
polylogarithmic depth by a balanced binary tree of adders of β-sized integers. Finally, Cook
describes how polynomial interpolation is in NC [5] by reducing to Berkowitz algorithm for
the determinant [3]. This completes the proof of Theorem 2.

3 Hardness Result: Theorem 3

Our hardness reduction is from counting maximum independent sets in cubic planar graphs,
proven #P-hard in Vadhan [29] (Corollary 4.2.1). The NP-hardness result for Disjoint
A,B-paths in general graphs by Hirai and Namba [12], follows Hirai and Pap [13]. It is a
reduction directly from 3-Satisfiability but it is not (weakly) parsimonious. We give here
such a strengthened reduction.

Consider a cubic planar graph G in which we want to count the maximum independent
sets. From G, we construct a maximum degree 3 planar instance I to Shortest disjoint
A,B-paths. As described in the previous section, we can by adding a few vertices per vertex
of degree less than three make sure the graph is cubic while preserving planarity. Here we
will stick with a few vertices of degree two in our description of I for simplicity. First, for
every vertex v ∈ V , we add a clockwise ordered cycle v′1, . . . , v′8. The edge v′8v′1 has length
12 whereas all other edges v′iv′i+1 for i ∈ {1, . . . , 7} have length 2 if i is odd and length 1 if i
is even. Furthermore, vertices v′1 and v′8 belong to A for every vertex v. Second, for every
edge uv ∈ E, we add two vertices w′1 and w′2 to I. We add edges w′1u′i,w′2ui+1,w′1v′j , and
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Figure 3 Two vertex gadgets and one edge gadget in the constructed instance I in the #P-
hardness proof. The edge terminals in B must connect through some vertex gadget, forcing the A

terminals on it to connect through the longer length 12 edge alternative.

w′2vj−1 of length 1 for some indices i and j so that no vertex is used more than once, and
the resulting graph I is planar. This is easy to accomplish by using a planar embedding of G
and order edges incident on a vertex in clockwise order. See Figure 3. Furthermore, we add
w′1 and w′2 to B.

I Lemma 6. Let `A,B and SA,B be the solution to Shortest disjoint A,B-paths on I, then
the maximum independent set in G has size α(G) = 12|V |+ 3|E(G)| − `A,B and the number
of such sets are SA,B/2|E(G)|−3α(G).

Proof. Any vertex pair in A on the same vertex gadget cycle must be connected with each
other through a path, since there are no paths between different vertex gadget cycles that
do not also pass through a terminal in B. Hence there are only two possibilities for every
such pair: either it is connected through the 12-long edge between them, or it uses the path
around the cycle of length 11. Let I ⊆ V be the set of vertices whose vertex gadgets uses
paths of length 11 to connect its two A terminals. The set I must be an independent set
in G, since the terminals on every edge gadget must use some edge on either of the two
vertex gadgets it is connected to. Moreover, any pair of terminals in B cannot be connected
with a path shorter than 3 as there exist no such short paths between any pair of them.
A lower bound on the attainable length of a Shortest disjoint A,B-paths solution is hence
12|V | − α(G) + 3|E|, where α(G) is the size of a maximum independent set in G. Any such
solution can naturally be interpreted as a maximum independent set in G by identifying the
A-paths of length 11.

Moreover, from any maximum independent set I in G, we can construct disjoint paths of
this length, simply by taking the 12-long edge for every vertex not in I for a vertex gadget’s
A terminals, and the shorter 11-long path for the other vertex gadgets. The edge gadgets’ B
terminals can be connected pairwise with each other through a 3-long path using an edge
on either of its two adjacent vertex gadgets, whenever it represents a vertex not in I. It
might be possible to connect the B terminals in other ways, but those paths will be of length
strictly longer than 3 as they need to use a 2-long edge on some vertex gadget. There are
precisely |E| − 3α(G) edges with neither endpoint in I, and hence the maximum independent
sets will be counted 2|E|−3α(G) times in the Shortest disjoint A,B-paths. J

Theorem 3 now directly follows from Lemma 6, since if we can find `A,B in I, we can
also compute the number of maximum independent sets in G from SA,B .
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A Appendix

We extend the algorithm to planar graphs of maximum degree 3. First consider an edge ua
where u is a nonterminal vertex of degree 3 and a is a terminal of degree 1. Then ua can
be removed and u inserted into the terminal set of a; the resulting instance has a shortest
solution of size `A,B − `(ua). When u is also a terminal vertex, there are two cases: If u
belongs to the same terminal set as a then ua must be a path in the shortest solution, so we
can remove both u and a and discount the resulting value by `(ua). If u belongs to the other
terminal set than a then there is no solution and we can output SA,B = 0.

Consider a u, v-path P whose internal vertices all have degree 2. If none of P ’s internal
vertices are terminals then P can be contracted into a single edge with the sum of the original
edge lengths. If P contains alternating terminals, say a ∈ A, b ∈ B, a′ ∈ A in that order, no
solution can exist. If P contains exactly two terminals a ∈ A and b ∈ B then its prefix from
u to a can be contracted into a single edge, and so can its suffix from b to v; the infix from a

to b can be removed. The resulting dangling edges ua and vb are handled as above.
In general, we can replace a degree-2 terminal a incident on the edges ua and av with

the 4-vertex ‘diamond’ graph, introducing 3 new nonterminal vertices. The original edges
retain their lengths, and the new edges receive length 1, so that

u a v

`1 `2 becomes
u u′

a

w
v′ v

`1
1

1

1
1
1

`2 .
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No path with endpoint a in an optimal solution uses w, because uu′a is shorter than uu′wa.
No other solution uses the nonterminal w either, because this would isolate a. Thus, an
optimal solution uses either au′u or av′v and no other edges in the gadget. We conclude that
every optimal solution in the transformed graph corresponds to exactly one optimal solution
in the original, and `A,B increments by one for each of these modifications.
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