222 research outputs found

    Boxicity and topological invariants

    Full text link
    The boxicity of a graph G=(V,E)G=(V,E) is the smallest integer kk for which there exist kk interval graphs Gi=(V,Ei)G_i=(V,E_i), 1ik1 \le i \le k, such that E=E1EkE=E_1 \cap \cdots \cap E_k. In the first part of this note, we prove that every graph on mm edges has boxicity O(mlogm)O(\sqrt{m \log m}), which is asymptotically best possible. We use this result to study the connection between the boxicity of graphs and their Colin de Verdi\`ere invariant, which share many similarities. Known results concerning the two parameters suggest that for any graph GG, the boxicity of GG is at most the Colin de Verdi\`ere invariant of GG, denoted by μ(G)\mu(G). We observe that every graph GG has boxicity O(μ(G)4(logμ(G))2)O(\mu(G)^4(\log \mu(G))^2), while there are graphs GG with boxicity Ω(μ(G)logμ(G))\Omega(\mu(G)\sqrt{\log \mu(G)}). In the second part of this note, we focus on graphs embeddable on a surface of Euler genus gg. We prove that these graphs have boxicity O(glogg)O(\sqrt{g}\log g), while some of these graphs have boxicity Ω(glogg)\Omega(\sqrt{g \log g}). This improves the previously best known upper and lower bounds. These results directly imply a nearly optimal bound on the dimension of the adjacency poset of graphs on surfaces.Comment: 6 page

    Polynomial expansion and sublinear separators

    Full text link
    Let C\mathcal{C} be a class of graphs that is closed under taking subgraphs. We prove that if for some fixed 0<δ10<\delta\le 1, every nn-vertex graph of C\mathcal{C} has a balanced separator of order O(n1δ)O(n^{1-\delta}), then any depth-kk minor (i.e. minor obtained by contracting disjoint subgraphs of radius at most kk) of a graph in C\mathcal{C} has average degree O((k polylog k)1/δ)O\big((k \text{ polylog }k)^{1/\delta}\big). This confirms a conjecture of Dvo\v{r}\'ak and Norin.Comment: 6 pages, no figur

    On cubic bridgeless graphs whose edge-set cannot be covered by four perfect matchings

    Get PDF
    The problem of establishing the number of perfect matchings necessary to cover the edge-set of a cubic bridgeless graph is strictly related to a famous conjecture of Berge and Fulkerson. In this paper we prove that deciding whether this number is at most 4 for a given cubic bridgeless graph is NP-complete. We also construct an infinite family F\cal F of snarks (cyclically 4-edge-connected cubic graphs of girth at least five and chromatic index four) whose edge-set cannot be covered by 4 perfect matchings. Only two such graphs were known. It turns out that the family F\cal F also has interesting properties with respect to the shortest cycle cover problem. The shortest cycle cover of any cubic bridgeless graph with mm edges has length at least 43m\tfrac43m, and we show that this inequality is strict for graphs of F\cal F. We also construct the first known snark with no cycle cover of length less than 43m+2\tfrac43m+2.Comment: 17 pages, 8 figure

    Distance-two coloring of sparse graphs

    Full text link
    Consider a graph G=(V,E)G = (V, E) and, for each vertex vVv \in V, a subset Σ(v)\Sigma(v) of neighbors of vv. A Σ\Sigma-coloring is a coloring of the elements of VV so that vertices appearing together in some Σ(v)\Sigma(v) receive pairwise distinct colors. An obvious lower bound for the minimum number of colors in such a coloring is the maximum size of a set Σ(v)\Sigma(v), denoted by ρ(Σ)\rho(\Sigma). In this paper we study graph classes FF for which there is a function ff, such that for any graph GFG \in F and any Σ\Sigma, there is a Σ\Sigma-coloring using at most f(ρ(Σ))f(\rho(\Sigma)) colors. It is proved that if such a function exists for a class FF, then ff can be taken to be a linear function. It is also shown that such classes are precisely the classes having bounded star chromatic number. We also investigate the list version and the clique version of this problem, and relate the existence of functions bounding those parameters to the recently introduced concepts of classes of bounded expansion and nowhere-dense classes.Comment: 13 pages - revised versio

    Box representations of embedded graphs

    Full text link
    A dd-box is the cartesian product of dd intervals of R\mathbb{R} and a dd-box representation of a graph GG is a representation of GG as the intersection graph of a set of dd-boxes in Rd\mathbb{R}^d. It was proved by Thomassen in 1986 that every planar graph has a 3-box representation. In this paper we prove that every graph embedded in a fixed orientable surface, without short non-contractible cycles, has a 5-box representation. This directly implies that there is a function ff, such that in every graph of genus gg, a set of at most f(g)f(g) vertices can be removed so that the resulting graph has a 5-box representation. We show that such a function ff can be made linear in gg. Finally, we prove that for any proper minor-closed class F\mathcal{F}, there is a constant c(F)c(\mathcal{F}) such that every graph of F\mathcal{F} without cycles of length less than c(F)c(\mathcal{F}) has a 3-box representation, which is best possible.Comment: 16 pages, 6 figures - revised versio

    Equitable partition of graphs into induced forests

    Full text link
    An equitable partition of a graph GG is a partition of the vertex-set of GG such that the sizes of any two parts differ by at most one. We show that every graph with an acyclic coloring with at most kk colors can be equitably partitioned into k1k-1 induced forests. We also prove that for any integers d1d\ge 1 and k3d1k\ge 3^{d-1}, any dd-degenerate graph can be equitably partitioned into kk induced forests. Each of these results implies the existence of a constant cc such that for any kck \ge c, any planar graph has an equitable partition into kk induced forests. This was conjectured by Wu, Zhang, and Li in 2013.Comment: 4 pages, final versio

    A superlinear bound on the number of perfect matchings in cubic bridgeless graphs

    Get PDF
    Lovasz and Plummer conjectured in the 1970's that cubic bridgeless graphs have exponentially many perfect matchings. This conjecture has been verified for bipartite graphs by Voorhoeve in 1979, and for planar graphs by Chudnovsky and Seymour in 2008, but in general only linear bounds are known. In this paper, we provide the first superlinear bound in the general case.Comment: 54 pages v2: a short (missing) proof of Lemma 10 was adde

    Small feedback vertex sets in planar digraphs

    Full text link
    Let GG be a directed planar graph on nn vertices, with no directed cycle of length less than g4g\ge 4. We prove that GG contains a set XX of vertices such that GXG-X has no directed cycle, and X5n59|X|\le \tfrac{5n-5}9 if g=4g=4, X2n54|X|\le \tfrac{2n-5}4 if g=5g=5, and X2n6g|X|\le \tfrac{2n-6}{g} if g6g\ge 6. This improves recent results of Golowich and Rolnick.Comment: 5 pages, 1 figure - v3 final versio

    Long induced paths in graphs

    Full text link
    We prove that every 3-connected planar graph on nn vertices contains an induced path on Ω(logn)\Omega(\log n) vertices, which is best possible and improves the best known lower bound by a multiplicative factor of loglogn\log \log n. We deduce that any planar graph (or more generally, any graph embeddable on a fixed surface) with a path on nn vertices, also contains an induced path on Ω(logn)\Omega(\sqrt{\log n}) vertices. We conjecture that for any kk, there is a contant c(k)c(k) such that any kk-degenerate graph with a path on nn vertices also contains an induced path on Ω((logn)c(k))\Omega((\log n)^{c(k)}) vertices. We provide examples showing that this order of magnitude would be best possible (already for chordal graphs), and prove the conjecture in the case of interval graphs.Comment: 20 pages, 5 figures - revised versio
    corecore