5 research outputs found

    A luminance-contrast-aware disparity model and applications

    Get PDF
    Binocular disparity is one of the most important depth cues used by the human visual system. Recently developed stereo-perception models allow us to successfully manipulate disparity in order to improve viewing comfort, depth discrimination as well as stereo content compression and display. Nonetheless, all existing models neglect the substantial influence of luminance on stereo perception. Our work is the first to account for the interplay of luminance contrast (magnitude/frequency) and disparity and our model predicts the human response to complex stereo-luminance images. Besides improving existing disparity-model applications (e.g., difference metrics or compression), our approach offers new possibilities, such as joint luminance contrast and disparity manipulation or the optimization of auto-stereoscopic content. We validate our results in a user study, which also reveals the advantage of considering luminance contrast and its significant impact on disparity manipulation techniques.National Science Foundation (U.S.) (CGV-1111415

    Depth, shading, and stylization in stereoscopic cinematography

    Get PDF
    Due to the constantly increasing focus of the entertainment industry on stereoscopic imaging, techniques and tools that enable precise control over the depth impression and help to overcome limitations of the current stereoscopic hardware are gaining in importance. In this dissertation, we address selected problems encountered during stereoscopic content production, with a particular focus on stereoscopic cinema. First, we consider abrupt changes of depth, such as those induced by cuts in films. We derive a model predicting the time the visual system needs to adapt to such changes and propose how to employ this model for film cut optimization. Second, we tackle the issue of discrepancies between the two views of a stereoscopic image due to view-dependent shading of glossy materials. The suggested solution eliminates discomfort caused by non-matching specular highlights while preserving the perception of gloss. Last, we deal with the problem of filmgrainmanagement in stereoscopic productions and propose a new method for film grain application that reconciles visual comfort with the idea of medium-scene separation.Aufgrund der ständig steigenden Beachtung der stereoskopische Abbildung durch die Unterhaltungsindustrie, gewinnen Techniken und Werkzeuge an Bedeutung, die eine präzise Steuerung der Tiefenwahrnehmung ermöglichen und Einschränkungen der gegenwärtigen stereoskopischen Geräte überwinden. In dieser Dissertation adressieren wir ausgewählte Probleme, die während der Erzeugung von stereoskopischen Inhalten auftreten, mit besonderem Schwerpunkt auf der stereoskopischen Kinematographie. Zuerst betrachten wir abrupte Tiefenänderungen, wie sie durch Filmschnitte hervergerufen werden. Wir leiten ein Modell her, das die Zeit vorhersagt, die für das menschliche Sehsystem notwendig ist, um sich an solche Änderungen der Tiefe zu adaptieren, und schlagen vor wie dieses Modell für Schnittoptimierung angewendet werden kann. Danach gehen wir das Problem der Unstimmigkeiten zwischen den zwei Ansichten eines stereoskopischen Bildes, infolge der sichtabhängigen Schattierung von glänzenden Materialien, an. Die vorgeschlagene Lösung eliminiert das visuelle Unbehagen, welches von nicht zusammenpassenden Glanzlichtern verursacht wird, indessen bewahrt sie die Glanzwahrnehmung. Zuletzt behandeln wir das Problem des Filmkornsmanagements in stereoskopischen Produktionen und schlagen eine neue Methode für das Hinzufügen vom Filmkorn vor, die die visuelle Behaglichkeit mit der Idee der Medium-Szenen-Trennung in Einklang bringt

    Computational See-Through Near-Eye Displays

    Get PDF
    See-through near-eye displays with the form factor and field of view of eyeglasses are a natural choice for augmented reality systems: the non-encumbering size enables casual and extended use and large field of view enables general-purpose spatially registered applications. However, designing displays with these attributes is currently an open problem. Support for enhanced realism through mutual occlusion and the focal depth cues is also not found in eyeglasses-like displays. This dissertation provides a new strategy for eyeglasses-like displays that follows the principles of computational displays, devices that rely on software as a fundamental part of image formation. Such devices allow more hardware simplicity and flexibility, showing greater promise of meeting form factor and field of view goals while enhancing realism. This computational approach is realized in two novel and complementary see-through near-eye display designs. The first subtractive approach filters omnidirectional light through a set of optimized patterns displayed on a stack of spatial light modulators, reproducing a light field corresponding to in-focus imagery. The design is thin and scales to wide fields of view; see-through is achieved with transparent components placed directly in front of the eye. Preliminary support for focal cues and environment occlusion is also demonstrated. The second additive approach uses structured point light illumination to form an image with a minimal set of rays. Each of an array of defocused point light sources is modulated by a region of a spatial light modulator, essentially encoding an image in the focal blur. See-through is also achieved with transparent components and thin form factors and wide fields of view (>= 100 degrees) are demonstrated. The designs are examined in theoretical terms, in simulation, and through prototype hardware with public demonstrations. This analysis shows that the proposed computational near-eye display designs offer a significantly different set of trade-offs than conventional optical designs. Several challenges remain to make the designs practical, most notably addressing diffraction limits.Doctor of Philosoph

    Remote Visual Observation of Real Places Through Virtual Reality Headsets

    Get PDF
    Virtual Reality has always represented a fascinating yet powerful opportunity that has attracted studies and technology developments, especially since the latest release on the market of powerful high-resolution and wide field-of-view VR headsets. While the great potential of such VR systems is common and accepted knowledge, issues remain related to how to design systems and setups capable of fully exploiting the latest hardware advances. The aim of the proposed research is to study and understand how to increase the perceived level of realism and sense of presence when remotely observing real places through VR headset displays. Hence, to produce a set of guidelines that give directions to system designers about how to optimize the display-camera setup to enhance performance, focusing on remote visual observation of real places. The outcome of this investigation represents unique knowledge that is believed to be very beneficial for better VR headset designs towards improved remote observation systems. To achieve the proposed goal, this thesis presents a thorough investigation of existing literature and previous researches, which is carried out systematically to identify the most important factors ruling realism, depth perception, comfort, and sense of presence in VR headset observation. Once identified, these factors are further discussed and assessed through a series of experiments and usability studies, based on a predefined set of research questions. More specifically, the role of familiarity with the observed place, the role of the environment characteristics shown to the viewer, and the role of the display used for the remote observation of the virtual environment are further investigated. To gain more insights, two usability studies are proposed with the aim of defining guidelines and best practices. The main outcomes from the two studies demonstrate that test users can experience an enhanced realistic observation when natural features, higher resolution displays, natural illumination, and high image contrast are used in Mobile VR. In terms of comfort, simple scene layouts and relaxing environments are considered ideal to reduce visual fatigue and eye strain. Furthermore, sense of presence increases when observed environments induce strong emotions, and depth perception improves in VR when several monocular cues such as lights and shadows are combined with binocular depth cues. Based on these results, this investigation then presents a focused evaluation on the outcomes and introduces an innovative eye-adapted High Dynamic Range (HDR) approach, which the author believes to be of great improvement in the context of remote observation when combined with eye-tracked VR headsets. Within this purpose, a third user study is proposed to compare static HDR and eye-adapted HDR observation in VR, to assess that the latter can improve realism, depth perception, sense of presence, and in certain cases even comfort. Results from this last study confirmed the author expectations, proving that eye-adapted HDR and eye tracking should be used to achieve best visual performances for remote observation in modern VR systems
    corecore