10 research outputs found

    Analisis Kualitas Buku Teks Matematika SMA Kelas X Kurikulum 2013 Edisi Revisi 2017 Berdasarkan Pendekatan Saintifik

    Get PDF
    This study aims to determine the quality of the content of the mathematics textbook based on indicators in a scientific approach. This research is a descriptive study that describes or explains systematically the facts or characteristics of a particular population. The procedure in this study consisted of: (1) the preparation stage, by selecting the revised 2017 edition of the 2017 high school senior high school mathematics textbook, (2) conducting a literature study to find out how the quality of the mathematics textbook was based on a scientific approach, (3) drawing conclusions from the data obtained. has been obtained. Based on the results of the research that has been carried out, the quality of the mathematics textbooks is obtained in each chapter, namely in Chapter 1 as much as 60%, Chapter II as much as 70%, Chapter III as much as 50%, Chapter IV as much as 60%. As for the total number of chapters in textbooks based on a scientific approach as much as 60%. So it can be concluded that the quality of mathematics textbooks for class X 2013 curriculum based on the scientific approach is included in the sufficient category with the implementation of indicators in the scientific approach.Penelitian ini bertujuan untuk mengetahui kualitas isi buku teks matematika SMA kelas X Kurikulum 2013 Edisi Revisi 2017 berdasarkan indikator  dalam pendekatan saintifik. Penelitian ini merupakan penelitian deskriptif yang menggambarkan atau menjelaskan secara sistematis mengenai fakta atau peristiwa tertentu. Prosedur dalam penelitian ini terdiri dari : (1) tahap persiapan, dengan memilih buku teks matematika SMA kelas X edisi revisi 2017, (2) melakukan studi pustaka untuk mengetahui bagaimana kualitas buku teks matematika tersebut berdasarkan pendekatan saintifik, (3) penarikan kesimpulan data yang telah didapatkan. Berdasarkan hasil penelitian yang telah dilakukan, diperoleh kualitas buku teks matematika tersebut pada setiap bab yaitu pada Bab 1 sebanyak 60%, Bab II sebanyak 70 %, Bab III sebanyak 50 %, Bab IV sebanyak 60 %. Sedangkan untuk jumlah keseluruhan Bab pada buku teks berdasarkan pendekatan saintifik sebanyak 60%. Sehingga dapat disimpulkan bahwa kualitas buku teks matematika SMA kelas X kurikulum 2013 berdasarkan pendekatan saintifik termasuk dalam kategori cukup dengan diterapkannya indikator-indikator dalam pendekatan saintifik

    Tone Reproduction in Virtual Reality

    Get PDF
    High dynamic range imaging has become very popular over the years in the field of computer graphics and games. The process of tone reproduction compresses the dynamic range of brightness in a scene to the lower range of display devices, thus making it an essential process in the graphics rendering pipeline. Various tone mapping operators have been tested for static viewing conditions. However, perceptual and temporal adaptation may vary for immersive viewing in a Virtual Reality environment. This thesis implements Ward et al. model (1994), Ward et al. model, Histogram Adjustment (1997) and Irawan, Ferwerda and Marschner model (2005) for static and immersive inputs. Faculty and students from the college took part in a personal survey to rate the tone mapped results based on their level of resemblance to real-life outdoor environments as well as the level of visibility in the lighter and darker regions. The proposed hypothesis states that immersion produces a measurable effect on our preference for a suitable tone reproduction model. This hypothesis is tested with the help of null hypothesis testing methods and some regression analysis on the data gathered from the survey

    GPU-Based Local Tone Mapping in the Context of Virtual Night Driving

    Get PDF
    Virtual prototyping of automotive headlights requires a realistic illumination model, capable of rendering scenes of high contrast in fine detail. Due to the high dynamic range (HDR) nature of headlight beam-pattern data, which is projected onto the virtual road, high dynamic range illumination models are required. These are used as the basis for illumination in simulations for automotive headlight virtual prototyping. Since high dynamic range illumination models operate on brightness ranges commensurate with the real world, a postprocessing operation, known as tone mapping, is required to map each frame into the device-specific range of the display hardware. Algorithms for tone mapping, called tone-mapping operators, can be classified as global or local. Global operators are efficient to compute at the expense of scene quality. Local operators preserve scene detail, but, due to their additional computational complexity, are rarely used with interactive applications. Local tone-mapping methods produce more usable visualization results for engineering tasks. This paper proposes a local tone-mapping method suitable for use with interactive applications. To develop a suitable tone-mapping operator, a state of the art local tone-mapping method was accelerated using modern, work-efficient GPU (graphics processing unit) algorithms. Optimal performance, both in terms of memory and speed, was achieved by means of general-purpose GPU programming with CUDA (compute unified device architecture). A prototypic implementation has shown that the method works well with high dynamic range OpenGL applications. In the near future, the tone mapper will be integrated into the virtual night driving simulator at our institute

    Perceptually Based Tone Mapping of High Dynamic Range Image Streams

    No full text
    This paper presents a new perceptually based tone mapping operator that represents scene visibility under timevarying, high dynamic range conditions. The operator is based on a new generalized threshold model that extends the conventional threshold-versus-intensity (TVI) function to account for the viewer’s adaptation state, and a new temporal adaptation model that includes fast and slow neural mechanisms as well as photopigment bleaching. These new visual models allow the operator to produce tone-mapped image streams that represent the loss of visibility experienced under changing illumination conditions and in high dynamic range scenes. By varying the psychophysical data that the models use, we simulate the differences in scene visibility experienced by normal and visually impaired observers. Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation

    Inverse tone mapping

    Get PDF
    The introduction of High Dynamic Range Imaging in computer graphics has produced a novelty in Imaging that can be compared to the introduction of colour photography or even more. Light can now be captured, stored, processed, and finally visualised without losing information. Moreover, new applications that can exploit physical values of the light have been introduced such as re-lighting of synthetic/real objects, or enhanced visualisation of scenes. However, these new processing and visualisation techniques cannot be applied to movies and pictures that have been produced by photography and cinematography in more than one hundred years. This thesis introduces a general framework for expanding legacy content into High Dynamic Range content. The expansion is achieved avoiding artefacts, producing images suitable for visualisation and re-lighting of synthetic/real objects. Moreover, it is presented a methodology based on psychophysical experiments and computational metrics to measure performances of expansion algorithms. Finally, a compression scheme, inspired by the framework, for High Dynamic Range Textures, is proposed and evaluated

    High-fidelity imaging : the computational models of the human visual system in high dynamic range video compression, visible difference prediction and image processing

    Get PDF
    As new displays and cameras offer enhanced color capabilities, there is a need to extend the precision of digital content. High Dynamic Range (HDR) imaging encodes images and video with higher than normal bit-depth precision, enabling representation of the complete color gamut and the full visible range of luminance. This thesis addresses three problems of HDR imaging: the measurement of visible distortions in HDR images, lossy compression for HDR video, and artifact-free image processing. To measure distortions in HDR images, we develop a visual difference predictor for HDR images that is based on a computational model of the human visual system. To address the problem of HDR image encoding and compression, we derive a perceptually motivated color space for HDR pixels that can efficiently encode all perceivable colors and distinguishable shades of brightness. We use the derived color space to extend the MPEG-4 video compression standard for encoding HDR movie sequences. We also propose a backward-compatible HDR MPEG compression algorithm that encodes both a low-dynamic range and an HDR video sequence into a single MPEG stream. Finally, we propose a framework for image processing in the contrast domain. The framework transforms an image into multi-resolution physical contrast images (maps), which are then rescaled in just-noticeable-difference (JND) units. The application of the framework is demonstrated with a contrast-enhancing tone mapping and a color to gray conversion that preserves color saliency.Aktuelle Innovationen in der Farbverarbeitung bei Bildschirmen und Kameras erzwingen eine Präzisionserweiterung bei digitalen Medien. High Dynamic Range (HDR) kodieren Bilder und Video mit einer grösseren Bittiefe pro Pixel, und ermöglichen damit die Darstellung des kompletten Farbraums und aller sichtbaren Helligkeitswerte. Diese Arbeit konzentriert sich auf drei Probleme in der HDR-Verarbeitung: Messung von für den Menschen störenden Fehlern in HDR-Bildern, verlustbehaftete Kompression von HDR-Video, und visuell verlustfreie HDR-Bildverarbeitung. Die Messung von HDR-Bildfehlern geschieht mittels einer Vorhersage von sichtbaren Unterschieden zweier HDR-Bilder. Die Vorhersage basiert dabei auf einer Modellierung der menschlichen Sehens. Wir addressieren die Kompression und Kodierung von HDR-Bildern mit der Ableitung eines perzeptuellen Farbraums für HDR-Pixel, der alle wahrnehmbaren Farben und deren unterscheidbaren Helligkeitsnuancen effizient abbildet. Danach verwenden wir diesen Farbraum für die Erweiterung des MPEG-4 Videokompressionsstandards, welcher sich hinfort auch für die Kodierung von HDR-Videosequenzen eignet. Wir unterbreiten weiters eine rückwärts-kompatible MPEG-Kompression von HDR-Material, welche die übliche YUV-Bildsequenz zusammen mit dessen HDRVersion in einen gemeinsamen MPEG-Strom bettet. Abschliessend erklären wir unser Framework zur Bildverarbeitung in der Kontrastdomäne. Das Framework transformiert Bilder in mehrere physikalische Kontrastauflösungen, um sie danach in Einheiten von just-noticeable-difference (JND, noch erkennbarem Unterschied) zu reskalieren. Wir demonstrieren den Nutzen dieses Frameworks anhand von einem kontrastverstärkenden Tone Mapping-Verfahren und einer Graukonvertierung, die die urspr ünglichen Farbkontraste bestmöglich beibehält

    Inverse tone mapping

    Get PDF
    The introduction of High Dynamic Range Imaging in computer graphics has produced a novelty in Imaging that can be compared to the introduction of colour photography or even more. Light can now be captured, stored, processed, and finally visualised without losing information. Moreover, new applications that can exploit physical values of the light have been introduced such as re-lighting of synthetic/real objects, or enhanced visualisation of scenes. However, these new processing and visualisation techniques cannot be applied to movies and pictures that have been produced by photography and cinematography in more than one hundred years. This thesis introduces a general framework for expanding legacy content into High Dynamic Range content. The expansion is achieved avoiding artefacts, producing images suitable for visualisation and re-lighting of synthetic/real objects. Moreover, it is presented a methodology based on psychophysical experiments and computational metrics to measure performances of expansion algorithms. Finally, a compression scheme, inspired by the framework, for High Dynamic Range Textures, is proposed and evaluated.EThOS - Electronic Theses Online ServiceEngineering and Physical Sciences Research Council (EPSRC) (EP/D032148)GBUnited Kingdo
    corecore