
RESEARCH Open Access

Real-time tone mapping on GPU and FPGA
Raquel Ureña*, Pablo Martínez-Cañada, Juán Manuel Gómez-López, Christian Morillas and Francisco Pelayo

Abstract

Low-level computer vision algorithms have high computational requirements. In this study, we present two real-
time architectures using resource constrained FPGA and GPU devices for the computation of a new algorithm
which performs tone mapping, contrast enhancement, and glare mitigation. Our goal is to implement this operator
in a portable and battery-operated device, in order to obtain a low vision aid specially aimed at visually impaired
people who struggle to manage themselves in environments where illumination is not uniform or changes rapidly.
This aid device processes in real-time, with minimum latency, the input of a camera and shows the enhanced
image on a head mounted display (HMD). Therefore, the proposed operator has been implemented on battery-
operated platforms, one based on the GPU NVIDIA ION2 and another on the FPGA Spartan III, which perform at
rates of 30 and 60 frames per second, respectively, when working with VGA resolution images (640 × 480).

Keywords: reconfigurable hardware, graphics processor, real-time system, low-vision aid, tone mapping, resource-
constrained platforms

1. Introduction
Luminance levels can change dramatically over time and
depending on the place. The average luminance in an
outdoor scene can be 100 million times greater during
the day than at night, and in the same scene the range
of luminance can also vary with ratios on the order of
10,000:1 from highlights to shadows [1].
The human visual system is able to capture a wide

range of light levels, and it functions across the changes
in luminance employing diverse adaptation mechanisms.
Some of them include the pupil, the rod, and the cone
receptors. As a result, humans can recognize the details
clearly in both dark and bright regions in the same scene.
However, vision is not equally good under all conditions.
Particularly, the elderly and those who suffer from visual
disorders may be profoundly impaired by the low inten-
sity, high dynamic range (HDR), and rapidly changing
illumination conditions we often experience in our daily
live as it is stated by Irawan et al. [1].
The human visual system can properly recognize

details in both dark and bright regions in a scene, while
the image captured by conventional digital cameras may
be either too dark or too bright to present details [2].
This is due to the limited dynamic range of digital

devices. Hence, some image-processing techniques must
be applied to enhance these images and to map them on
displays with a limited dynamic range.
In this article, we explain two parallel implementations

of a new tone mapping operator (TMO) on portable and
resource-limited devices based on GPU and on FPGA
architectures. With these implementations we aim to
obtain a new low-vision aid which seeks to accurately
represent in a HMD images captured under non-uniform
illumination environments and with sudden changes in
the illumination conditions.
In the following sections, we review the properties of

some of the most relevant TMOs, and their real-time
implementations. Then, we briefly describe the new
operator explaining its main advantages. In Sections 4
and 5, we focus on its implementation taking advantage
of the parallelism provided by GPU- and FPGA-based
platforms to achieve real-time processing when working
with portable and resource-constrained devices.
Then, we show the obtained results explaining the main

advantages and drawbacks of each implementation to
understand the trade-off between the flexibility but rela-
tively low frequency of an FPGA and the high frequency
and fixed architecture of the GPU.
In the literature, we can find several GPU versus

FPGA comparative works, for instance, in [3] five rela-
tively simple image processing algorithms implemented
on a Xilinx Virtex 4 FPGA and a GeForce GTX 7900

* Correspondence: ruperez@atc.ugr.es
Department of Computer Architecture and Technology, CITIC-ETSIIT,
University of Granada, Granada, Spain

Ureña et al. EURASIP Journal on Image and Video Processing 2012, 2012:1
http://jivp.eurasipjournals.com/content/2012/1/1

© 2012 Ureña et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

mailto:ruperez@atc.ugr.es
http://creativecommons.org/licenses/by/2.0

GPU are examined. On the other hand, the work devel-
oped by Pauwels et al. [4] compare both platforms using
medium to highly complex vision algorithms that
stretch the FPGA to its limits.
In those works, they employ high-performance FPGA

and GPU devices, whereas, with our contribution, we aim
to extend the state-of-the-art by comparing two resource-
constrained GPU and FPGA implementations of a low
level pixel-wise image processing algorithm.

2. Background
The development of techniques for HDR image capture
and synthesis has made tone mapping an important issue
in computer graphics. The fundamental problem is how
to map the large range of intensities found in an HDR
image into the limited range supported by a conventional
display device.
Different TMOs have been introduced in the research

literature which can be classified into two broad cate-
gories: global and local operators.
Global operators apply a single mapping function to

all pixels of the image, whereas local operators modify
the mapping depending on the characteristics of differ-
ent areas of the image.
Some examples of well-known global operators are the

one proposed by Drago et al. [5] and by Ward-Larsen et
al. [6]. The former is based on logarithmic compression of
luminance values imitating the human visual system
response to light. The logarithmic bases employed are
modified using a bias power function which produces a
good preservation of the details and the contrast. The
TMO proposed by Ward-Larsen et al. also performs loga-
rithmic compression of the luminance as well as an itera-
tive histogram adjustment constrained in slope by the
human threshold versus intensity.
The main drawbacks that these algorithms present are

that they require the calculations of global statistic quan-
tities, the maximum, and the log average. These global
calculations are very time-consuming when working with
parallel architectures such as the GPU architecture.
Moreover, they require the calculation of the logarithm
of the luminance which demands a great deal of memory
resources in the FPGA implementation, since a look-up-
table (LUT) is required. Hence, these TMO are not suita-
ble for being implemented in resource-constrained
devices as we aim to do. As it is stated in [7], to achieve
real-time performance more powerful GPUs are required.
One of the most relevant local TMO that can be found

in the literature is the Mutiscale Retinex with Color
Restoration (MSRCR) [8] which performs dynamic range
compression, color constancy, and rendition. This opera-
tor brightens up dark areas of the image without saturat-
ing the areas of good contrast, preserving the chromatic
component. It performs logarithmic range compression

as well as combination of various Gaussian-based scales
to preserve the color.
Another local TMO is the proposed by Hu et al. [2],

which employs bilateral filters and divides the image in
different regions according to the global histogram and
then each region is enhanced according to its individual
properties.
The algorithm proposed by Horiuchi and Tominaga [9]

takes advantage of both global and local operators by per-
forming global enhancement employing a model of photo-
receptor adaptation based on the general level of
luminance and local adaption inspired in the MSRCR.
We have decided to develop a new TMO since most of

the TMOs that can be found in the literature require
time- or memory-consuming operations such as global
statistical calculations, iterative processing, or logarithmic
compression of the dynamic range. Therefore, they are not
appropriate to be implemented on resource-constrained
systems as we aim to do. Actually most of the TMOs
mentioned above have been implemented in high-end
GPUs by Zhao et al. [7] to achieve real-time image perfor-
mance. It is also true when working with FPGA-based
devices. As shown in [10] existing hardware implementa-
tions require high-end FPGAs in order to get real-time
operation. Moreover, the existing operators are not able to
properly mitigate glares as well as enhance dark areas in
the same scene while enhancing the details of the image
such as the edges. Our system is required to attenuate
glares in the images, since low-vision-affected persons pre-
sent difficulties in their adaptation mechanisms to illumi-
nation changing conditions.
In the next section, we explain the details of the new

contrast-enhancement technique which is aimed to ful-
fill the specific requirements of our target low-vision
application without carrying out complex and time-
consuming operations.

3. The new operator
The proposed system takes advantage of both global and
local approaches. On the one hand, it performs global
contrast enhancement to brighten up the areas of the
image of poor contrast/lightness as well as preserving the
regions of good contrast and without altering the color.
On the other hand, it carries out local image processing
to mitigate too bright regions and glares as well as to pre-
serve and enhance the details of the image. The glare
mitigation is one of the novelties of our approach, and it
is specially aimed to the low-vision-affected persons who
have difficulties to visualize properly and scene with too
bright regions.
The global enhancement is based on the histogram

adaptation of the brightness channel (V), when working
in the HSV color space to produce images that accu-
rately represent the threshold visibility of the scene

Ureña et al. EURASIP Journal on Image and Video Processing 2012, 2012:1
http://jivp.eurasipjournals.com/content/2012/1/1

Page 2 of 15

features. HSV color space is employed since it is the
most similar to the way the human brain tends to orga-
nize the colors employing three components: the Hue
(H) which is the chromatic component, the Saturation
(S) which indicates how pure a color is and the bright-
ness (V) which is a measure of the intensity of light.
The local enhancement is based on a more general

retina-like processing scheme previously used in Retiner
to extract the main regions of the scene and to produce
an array of spike events for neural stimulation [11,12]
and in Vis2Sound to detect the main objects of the
scene producing a spatialized sound to indicate their
location [13]. In this study, this procedure enhances the
details of the scene as well as mitigates glares, but we
do not perform any kind of sensorial transduction or
neural encoding employing its output.
Using as inputs the Red (R), Green (G), and Blue (B)

color channels and the intensity channel, obtained as an
average of the R, G, and B channels, we can design a set of
spatially opponent filters to model the function of retina
bipolar cells. This opposition between the center and the
periphery of the receptive field of these cells can be mod-
eled with a difference-of-Gaussians filter (DoG), according
to Equation (1):

DoG = Gσ1 − Gσ2 =
1√
2π

[
1
σ1

exp
[
−x2 + y2

2σ12

]
− 1

σ2
exp

[
−x2 + y2

2σ22

]]
(1)

where Gaussians Gs1 and Gs2 are applied to different
color channels or combinations, and s1 and s2 are the
standard deviation of the Gaussian Mask. Typical values
for s1 and s2 are 0.9 and 1.2, respectively, when the size of
the filtering mask is 7 × 7. Incrementing the value of s has
the effect of increasing the receptive field.
This vision model performs a linear combination of

three DoG filtering operations: two of them enhancing
color-opponent contrast (magenta versus green, and yel-
low versus blue), and an additional one enhancing the
edges of the scene. Equations (2) to (5) describe this
procedure:

magenta vs green = DoG
(
R + B
2

, σ1, G, σ2

)
(2)

yellow vs blue = DoG
(
R + G
2

, σ1, B, σ2

)
(3)

achromatic channel = DoG
(
R + B + G

3
, σ1,

R + B + G
3

, σ2

)
(4)

retina output = w1·magenta vs greem+w2·yellow vs blue+w3·achromatic channel (5)

where w1, w2, and w3 are the weightings factors used
to combine the output from the three channels which
are obtained according to Equations (6) to (8).

w3 = %darkpixels (6)

w1 = 0.6 · (1 − w3) (7)

w2 = 1 − w1 − w3 (8)

We have chosen this combination of the color input
channels according the way the human retina combines
the signals from the three cone types, two chromatic, and
one achromatic system [14]. The system sets up the
weighting factors according to the percentage of dark pix-
els in the image, so that if the scene is too dark the system
mainly enhances the edges of the image, as the human
visual system does taking into account that color sensitiv-
ity is reduced in dark environments. The percentage of
dark, medium, and bright pixels is calculated according to
Equations (9) to (14). These parameters make possible to
adjust the enhancement automatically according to the
lighting conditions.

%dark pixels =
Number of dark pixels
Total number of pixels

(9)

%mediumpixels =
Number ofmediumpixels
Total number of pixels

(10)

%bright pixels =
Number of bright pixels
Total number of pixels

(11)

dark pixel ∈
[
minValue,

1
3

· maxValue
]

(12)

mediumpixel ∈
(
1
3

· maxValue,
2
3

· maxValue
]
(13)

brightpixel ∈
(
2
3

· maxValue, maxValue
]

(14)

where minValue is the minimum possible value of
brightness and maxValue is the maximum possible
value. In our case, minValue = 0 and maxValue = 255.
Finally, the whole system performs a linear combination

between the processed brightness channel (V2), the origi-
nal brightness channel (V), and the retina output obtaining
the final brightness channel, according to Equation (15).

Vfinal =
(
1 − retinaweight

) · (βV2 + (1 − β)V) + retinaweight · retina output (15)

where

retinaweight =

{
0.5, if%darkpixels ≥ 0.5 or%brightpixels ≥ 0.5

%brightpixels, otherwise

Ureña et al. EURASIP Journal on Image and Video Processing 2012, 2012:1
http://jivp.eurasipjournals.com/content/2012/1/1

Page 3 of 15

Typical values for b are between 0.2 and 0.6. The Hue
and the Saturation components remain unaltered.
Finally, a conversion to the RGB color space is carried
out to visualize the image on the HMD. A block dia-
gram of the new TMO is depicted in Figure 1.

To finalize this section the main novelties and advan-
tages of our proposed operator are outlined:

- Tone mapping and contrast enhancement using his-
togram adaptation of the brightness channel without

Retina
output

Retina-like
processing

HSV2RGB

Input RGB image

Histogram
equalization

V2 %bright

Retina output and V2
combination

Separate into three layers
H, S, V

H S V

Vout

%dark

Global
enhancement

Local
enhancement

Figure 1 Block diagram of the proposed tone mapping operator.

Ureña et al. EURASIP Journal on Image and Video Processing 2012, 2012:1
http://jivp.eurasipjournals.com/content/2012/1/1

Page 4 of 15

requiring logarithmic compression of the dynamic
range and other time-consuming computations.
- Effective mitigation of glares using a bio-inspired
processing which also preserves and enhances the
details of the image such as the edges.
- Automatically adjustment of the processing para-
meters according to the illumination conditions.

Such pixel-wise operator inherently takes advantage of
massively parallel architectures like GPU and FPGA. In
Sections 4 and 5, the parallel implementation of this
operator in different platforms is explained. Section 6
compares the output from the new operator with the
output provided by some of the most relevant TMOs, to
show that the proposed operator provides similar or even
better results than the others without requiring time-
consuming operations and providing new facilities such
as glare mitigation and edge enhancement, as required in
the scope of the target application.

4. GPU implementation
The requirements for this application as portability, lim-
ited power consumption, and real-time performance led
us to consider the GPU NVIDIA ION2 [15] as a good
option to design and develop the system. The NVIDIA
CUDA API [16] is used to parallelize the operator since
this GPU is supported. More information about the con-
figuration interface of this aid device and other available
image enhancements are explained in [17].
Some other aid systems use FPGA or DSP devices since

they provide a high computation capability in a small and
low power device. However, the selected GPU has 16 pro-
cessors and it is already available in a lightweight netbook
with sufficient battery autonomy (about 4 h).
Moreover, the system takes advantage of the Intel

ATOM N450 processor, integrated in the netbook ASUS
EEPC 1201 PN [18], which is faster than FPGA built-in
processors, such as PowerPC. Furthermore, the GPU tech-
nology provides more flexibility to develop and customize
dynamically the application.
Our target GPU consists of two streaming multiproces-

sors. Each streaming multiprocessor has one instruction
unit, eight stream processors (SPs), and one local memory
(16 KB), so it has 16 SPs in total. The eight SPs in the
same streaming multiprocessor are connected to the same
instruction unit, so they execute the same instruction
stream on different data (called thread). In order to extract
the maximum performance of SPs by hiding memory
access delays, we provide four threads for each SP, which
are interleaved on the SP. Therefore, at least 32 threads
for each streaming multiprocessor are required.
In our case, the GPU requires full utilization to take

advantage of the hardware’s latency hiding design.
Another way to achieve the maximum performance is

using fewer, but more work-intensive threads and relying
on instruction-level parallelism as it is stated in [19].
To optimize the use of the available multiprocessors, the

parameters to be determined are the number of threads
and the shared memory required per block. Figure 2 sum-
marizes the computation flow followed by the video
streaming from the image capture to the enhanced image
output. As we can observe, our GPU implementation of
the TMO is comprised of several CUDA kernels. The gen-
eral structure of the implemented CUDA modules is
depicted in Figure 3.
To accurately size the kernels we have used the CUDA

Occupancy Calculator tool that shows the occupation of
the multiprocessor’s cache and its percentage of utilization
[16]. The thread block size is chosen in all cases so that
multiprocessor occupancy is 100%. The size of the GRID
(number of processing blocks to be executed by the ker-
nel) is dynamically set according to the size of the image.
The streaming multiprocessors are connected to large glo-
bal memory (512 MB in ION2), which is the interface
between the CPU and the GPU. This DRAM memory is
slower than the shared memory; therefore, before starting
the computations, all the threads of a block load the
required image fragment in the shared memory.
Depending on how the data are encoded in the GPU

global memory, each thread can load one element if work-
ing with 4-byte datum or 4 data if working with 1-byte
datum. The global memory accesses of the GPU for both
reading and writing are done so that in one clock cycle all
the threads of a warp (L) access to 4·L bytes of RAM,
where L is equal to 32 in CUDA Compute Capability 1.2
GPUs.
Before turning to the processing stage all the threads of

the processing block have to wait in a barrier to ensure
that all of them have loaded its corresponding data. After
the calculation step may be a second stage of synchroni-
zation of the block threads before writing to the GPU
global memory.
Since we are unable to connect the camera directly to

the GPU, image transfers to and from the GPU via the
PCI-Express bus are required. The interface between the
host and the GPU global memory is the bottleneck of the
application so as it is depicted in Figure 2, the data that
transfer between the host and the device have been mini-
mized. Furthermore, each image data are encoded as 1-
byte unsigned integer. Therefore to encode a color pixel
3 bytes are required. When more precision is needed a
conversion to floating point is done once the image is
stored in the GPU global memory, exploiting the paralle-
lism provided by the GPU.

4.1. GPU implementation of the retina model
In order to optimize the spatial filtering process, the sys-
tem takes advantage of the linear property of the

Ureña et al. EURASIP Journal on Image and Video Processing 2012, 2012:1
http://jivp.eurasipjournals.com/content/2012/1/1

Page 5 of 15

convolution operator. Therefore, we can reduce the pro-
cessing only to the convolution of each color channel
with two different Gaussian masks. Then, these filtered
channels are linearly combined. Equations (16) to (18)
describe mathematically this simplification:

Magenta vs Green =
1
2

(
Gσ1 (R) + Gσ1 (B)

) − Gσ2 (G) (16)

Yellow vs Blue =
1
2

(
Gσ1 (R) + Gσ1 (G)

) − Gσ2 (B) (17)

Achromatic output =
1
3

(
Gσ1 (R) + Gσ1 (G) + Gσ1 (B)

)−1
3

(
Gσ2 (R) + Gσ2 (G) + Gσ2 (B)

) (18)

Moreover, the GPU implementation of the retina-like
processing relies extensively on 2D separable convolu-
tion operations that are highly data-parallel and thus
well matched to the GPU architecture. Therefore, the
computational complexity is reduced from O(n2) to O
(2n) being n × n the filter mask size.
In order to carry out these convolutions in real-time we

have developed two CUDA filtering kernels, one for the
rows and another one for the columns. Both modules are
very similar so we detail only the one for rows.

The convolution operation requires a neighborhood
with the same width that the filter mask to calculate the
result for each pixel. So, each thread transfers one datum
from the global memory to the shared memory. In order
to get the maximum precision and to avoid bank conflicts
in shared memory, these data are stored as floating point
data. Therefore, there are n-1 threads per block that only
load data, but do not calculate any filtered pixel. So, as to
not waste too many threads in the loading stage, the block
size must be large enough compared to the filter mask
width. In this case, the block size is set to 1 × 128, and the
filter width is 7, so only 6 threads are wasted per proces-
sing block. The block width is set to 128 to achieve the
required alignment when accessing to global memory, and
also to optimize the multiprocessor utilization.
When all the data are stored in the shared memory

each thread multiplies the filter coefficients, stored in
the constants memory, with the corresponding pixel and
its neighborhood. Then, the result is stored in the global
memory. Each thread repeats this procedure twice, once
for each mask. Therefore, we carry out the two rows fil-
tering with just one read access to the global memory.
The column filters are computed in a similar way, tak-

ing as input the previously filtered images.

- RGB2HSV conversion

- Sub-histograms combination

- Look-up-table substitution

- 1D convolutions

- Linear combinations

- Enhanced Brightness channel computations

- HSV 2 RGB conversion

- Coarse-to-fine control

- Histogram equalization

- Image capture
- Memory management

T
I
M
E

Contrast enhancement

Retina-like processing

RGB input image

Look-up table

V Global histogram

Weighting factors

Retina output

GPU memoryCPU processes CPU memory GPU memory

V sub-histograms

GPU processes

HSV image

- Weighting factors calculation

- Memory management

- Final Image visualization

Enhanced Brightness channel

Output image

Figure 2 System overview illustrating the sequence of processes running on the CPU and GPU. Solid and dashed arrows depict large and
small data transfers, respectively.

Ureña et al. EURASIP Journal on Image and Video Processing 2012, 2012:1
http://jivp.eurasipjournals.com/content/2012/1/1

Page 6 of 15

Once the filtering process is finished we just need to
linearly combine partial results as we have explained
earlier, exploiting the parallelism provided by the GPU
to obtain a gray level image. This image will be used to
modulate the degree of enhancement applied to the
brightness channel.

4.2. HSV conversion and brightness equalizer
This kernel uses thread blocks with size 256 (64 rows and
4 columns) and 4 KB of shared memory to store the
necessary pixels and the histogram of the block. Accord-
ing to the NVIDIA CUDA Occupancy calculator, the
occupancy of the multiprocessor is 100% and the maxi-
mum number of active blocks per multiprocessor is 4.
First of all, each block loads 1024 pixels in the GPU

shared memory, each thread loads four data. Once all
the data are stored in shared memory each thread com-
putes three converted pixels and stores them in shared

memory. During the process, each block calculates its
own histogram of the brightness channel. To avoid mis-
takes when calculating the histogram we use the atom-
icAdd operation available in GPUs with CUDA
Compute Capability 1.2. Finally, we transfer the HSV
pixels to the GPU global memory and we merge each
sub-histogram in a global histogram using atomic opera-
tion. This way the brightness histogram is computed at
the same time the RGB to HSV conversion is performed
requiring only an additional transfer of each block histo-
gram from shared to global memory. Then, the histo-
gram equalization is performed using a LUT
substitution obtaining a new brightness channel (V2 in
Figure 1), which is linearly combined with the output
from the retina-like processing.
Finally, de HSV to RGB conversion is performed in a

similar way, and the RGB resulting image is transferred to
the CPU.

SHARED MEM.

GLOBAL MEM. TO SHARED

SYNCHRONIZATION

PROCESSING

GLOBAL MEM.GLOB

SYNCHRONIZATION

4 data/hebra
4K data/warp

1-byte data 4-byte data

1 datum/thread
4K data/warp

4 data/hebra
4K data/warp

Figure 3 General structure of the developed GPU modules.

Ureña et al. EURASIP Journal on Image and Video Processing 2012, 2012:1
http://jivp.eurasipjournals.com/content/2012/1/1

Page 7 of 15

5. FPGA implementation
Our target FPGA platform is the SB video-processing
mobile platform [20], which includes a Xilinx Spartan 3
XC3S2000 FPGA with 2 million gates, 36-Mbit SRAM
memory for data exchange, and all the interfaces
required for the video input channel and the video out-
put for HMD. We have chosen this platform because of
its reduced power consumption, and small size. It
includes a battery that provides up to 10 h of autonomy.
Figure 4 summarizes the processing carried out over

the video frames, from the image grabbing stage to the
enhanced image output.
The analog video input is passed to an analog-to-digital

converter, which encodes each pixel in YUV format. In
order to separate the two different clock domains (the
input working at 27 MHz and the VGA output at
40 MHz) we have used a double buffering technique.
So, as to maximize the performance of the system and

to exploit the inherent parallelism on the programmable
device selected for the implementation we chose a pipe-
lined architecture, able to process a pixel every clock
cycle.
As in the previous section, we have implemented two

main procedures, the retina-like filtering and the bright-
ness equalization. In the next sections, we explain each of
these modules in detail, as well as the HSV conversion
module, which requires a specific implementation adapted
to the FPGA.

5.1. Implementation of the retina-like filtering
The convolution process requires a set of pixels of its
neighborhood to calculate each pixel as we have explained
before. To resolve this problem we use the convolution
computation architecture proposed by Ridgeway [21],
depicted in Figure 5. In order to use 7 × 7 filtering masks
we need 7 FIFO buffers that store the first 7 image rows
and seven shift registers that are responsible for storing
the 49 neighboring pixels for the current convolution. The
serial connection of the FIFO memories emulates the ver-
tical displacement of the mask and the transfer of values
of the FIFO memories to the shift registers emulates the
horizontal scrolling. Then, the accumulators marked as

“ACCUM x” add those pixels that are multiplied by the
same coefficients of the mask. We have six products as a
result of breaking down the process of convolution taking
advantage of the linear property of the convolution as we
have mentioned before. Then, we have to take into
account the weighting to be applied according to the per-
centage of dark pixels present in the image.

5.2. HSV conversion
The calculation of the Hue component (H) requires com-
plex computation. To avoid that, it has been implemen-
ted using a LUT with 215 inputs of 8-bits each one
mapped into the FPGA BlockRAM modules. This LUT
employs a 36% of the available memory (262 Kbits).
Besides, to get the other two color components, satura-
tion (S) and brightness (V), two dividers have been imple-
mented. The design of the dividers is fully pipelined, and
they can achieve a throughput of one division per clock
cycle. The division of the S component needs a fractional
remainder because the minimum of R, G, and B always is
equal or less than the sum of them. This fact results in
an 18-cycle delay which has to be considered in the H
component computation in order to get synchronization.

5.3. Brightness equalizer
To implement the brightness equalizer the whole V color
plane, whose size is 640 × 480 pixels, the image is divided
in 35 blocks with 100 × 100 pixels and their cumulative
distributions are calculated. While the cumulative distri-
butions for the current frame are being computed in par-
allel, its brightness channel is being equalized using the
distributions computed for the previous frame. The dis-
tributions computation is performed in five steps, calcu-
lating seven distributions in parallel at each step, as
image is being scanned. This procedure finishes when the
35 cumulative distribution functions are stored in the
RAM memory. To develop the equalizer we rely exten-
sively in the implementations explained in [10].

6. Results
Regarding to the results provided by the proposed
operator, Figure 6 shows the output from the different

READ
MODULE

FIFO (DATA)

FIFO (ADRESS)

SRAM
CONTROL

SRAM

RGB TO HSV
CONVERTER

RETINA
FILTER

INTENSITY
EQUALIZER

LINEAR
COMBINATION

HSV TO RGB
CONVERTER

OUTPUT
RGB

SAA7113H
AD CONVERTER

INPUT
VIDEO

GRAY LEVEL
COMPUTER

Figure 4 Computation flow for the input images from the camera in the SB platform.

Ureña et al. EURASIP Journal on Image and Video Processing 2012, 2012:1
http://jivp.eurasipjournals.com/content/2012/1/1

Page 8 of 15

processing stages. Figure 6a shows a dark image [22] in
which main features of the scene cannot be appreciated,
only the window can be distinguished. Figure 6b shows
the output from the retina-like filtering, as the whole
image is too dark, the retina output mainly enhances
the edges of the main features. Figure 6c shows the out-
put brightness equalization without taking into account
the retina output. The final output image is depicted in
Figure 6d. As we can observe in this image, main fea-
tures of the scene can be distinguished clearly whereas
the glares and the too bright areas which appear in Fig-
ure 6c have been mitigated. Moreover, the colors of the
picture do not appear distorted.
Figures 7 and 8 show a comparative of the output of our

operator, without taking into account the retina-like pro-
cessing, and the output from well-known TMOs and con-
trast enhancement algorithms known as Drago et al. [5],
Mantiuk et al. [23], and Reinhard and Devlin [24] opera-
tors and Multiscale Retinex [8]. As we have explained pre-
viously, our operator has two main stages, one comprising
a dynamic range adaptation and contrast enhancement
and a second one for glare mitigation and edge enhance-
ment. The later is specially designed for low-vision-
affected people; therefore, the output obtained from the
combination of both parts is not directly comparable with
the output from other TMO operators. For this reason, we
have set aside the output from the retina-like processing
in this comparative.

In Figure 7a, we can observe the same underexposed
image than in Figure 6[22]. Figure 7b-g shows the origi-
nal image enhanced with different TMO algorithms. In
Figure 7b, we can observe perfectly all the elements of
the image, actually the proposed operator not only
brighten dark region, but also keep details of the land-
scape out of the window, whereas the output from the
other TMOs presents the window overexposed (see Fig-
ure 7d-g), and, in some cases, the whole image appears
too bright (see Figure 7e, g). Figure 8 shows another
comparative example. In this case, the original image pre-
sents better signal-to-noise ratio (SNR) than in the pre-
vious case, according to Table 1. As we can observe, the
proposed algorithm enhances the whole image without
saturating the bright regions and preserves the overall
level of illumination in medium values, that way all the
details can be appreciated without presenting disturbing
glares.
Table 1 summarizes the SNR of each of the images

presented in Figures 7 and 8.
The value of the SNR has been calculated according to

Equation (19):

SNR = 20log
(μ

σ

)
(19)

Where μ is the average value of the image and s is
the standard deviation. We are working with color

FIFO

FIFO

FIFO

FIFO

SHIFT REGISTER

SHIFT REGISTER

SHIFT REGISTER

SHIFT REGISTER

…

ACCUM
X 2

ACCUM
X 16

ACCUM
X 50

…

…

…

RED_09
ACCUM

RED _1.2
ACCUM

COMBINATION

2

16

50

24 bits
(RGB)

GRAY
LEVEL

ACCUM
X 1

ACCUM
X 7

ACCUM
X 28

…

1

7

28

MASK 1

MASK 2

GREEN_09
ACCUM

BLUE_09
ACCUM

GREEN _1.2
ACCUM

BLUE _1.2
ACCUM

WEIGHT
DECISION

Figure 5 Convolution diagram for the FPGA.

Ureña et al. EURASIP Journal on Image and Video Processing 2012, 2012:1
http://jivp.eurasipjournals.com/content/2012/1/1

Page 9 of 15

images so we show in Table 1 the average value of the
SNR calculated for each channel.
From these comparisons of the results with different

methods we can observe that the proposed algorithm
provides an effective improvement of dark images and
high-contrast images, without altering color information,
preserving the details, and it does not brighten exces-
sively the image. Moreover, it can enhance the image
automatically according to the lighting conditions, with-
out requiring the user to set complicated parameters.
According to the measures of the SNR presented in

Table 1, our operator is able to increase the SNR with
respect to the original image. Moreover, the values of
the SNR provided by our algorithm are pretty similar to
the values provided by the others TMOs, especially to
the Drago operator. This operator is the one which pro-
vides more natural scenes and better detail reproduction
in dark regions, according to a study performed by
Yoshida et al. [25]. In this study, the authors conduct a
psychophysical experiment based on a direct compari-
son between the appearances of real-world HDR images
of these scenes displayed on a low dynamic range moni-
tor employing seven well-known TMOs. The human

subjects were asked to rate image naturalness, overall
contrast, overall brightness, and detail reproduction in
dark and bright image regions with respect to the corre-
sponding real-world scene.
Moreover, as it can be observed from Figures 7 and 8,

the proposed operator provides better detail reproduc-
tion in bright image regions (observe the window in
Figure 7a, b).
At this point, we discuss the results obtained from

tests regarding the performance of the system using the
GPU and the FPGA-based platforms, and also related to
the use of resources for the FPGA implementation, and
the speed up obtained with respect to a non-parallel
CPU implementation.
As we have mentioned before, the complete system

have been implemented on a GPU NVIDIA ION2 and
on an FPGA Xilinx Spartan 3. The results regarding
area occupation and clock frequency for the FPGA
implementation are summarized in Table 2.
Table 3 summarizes the performance in frames per

second (fps) of the CPU (Matlab code running on a sin-
gle core), GPU, and FPGA implementations of the new
operator and the speed up obtained with respect to the

a b

c d
Figure 6 Outputs from the different stages of the proposed operator: (a) original image [22], (b) output from the retina-like filtering,
(c) output from the contrast-enhancement processing, and (d) final image.

Ureña et al. EURASIP Journal on Image and Video Processing 2012, 2012:1
http://jivp.eurasipjournals.com/content/2012/1/1

Page 10 of 15

a

b c

d e

f g
Figure 7 Comparison of the proposed algorithm with different image enhancement methods. (a) Original image from [22], (b) result of
the proposed algorithm without the retina-like filtering, (c) result of the proposed algorithm with the retina-like filtering, (d) result of the Drago
operator, (e) result of the Reinhard operator, (f) result of the Mantiuk operator, (g) result of the Retinex operator.

Ureña et al. EURASIP Journal on Image and Video Processing 2012, 2012:1
http://jivp.eurasipjournals.com/content/2012/1/1

Page 11 of 15

(f) (g)

a

b c

d e

f g

Figure 8 Comparison of the proposed algorithm with different image enhancement methods. (a) Original image from [22], (b) result of
the proposed algorithm without the retina-like filtering, (c) result of the proposed algorithm with the retina-like filtering, (d) result of the Drago
operator, (e) result of the Reinhard operator, (f) result of the Mantiuk operator, (g) result of the Retinex operator.

Ureña et al. EURASIP Journal on Image and Video Processing 2012, 2012:1
http://jivp.eurasipjournals.com/content/2012/1/1

Page 12 of 15

CPU when working with RGB images with VGA resolu-
tion (640 × 480). The CPU used to carry out this tests
is the CPU Intel core i7 920 at 2.67 GHz. Both GPU
and FPGA implementations reach real-time perfor-
mance, over 25 fps, obtaining a minimum speed up of
7.5 with respect to the CPU even when using a high-
end CPU.
The FPGA performs at a major frame rate than the

GPU. This is mainly due to the large delay required to
transfer the frame from the CPU memory to the GPU
global memory and vice versa (10 ms). Nevertheless
further improvement can be achieved by performing the
transferences between the CPU and the GPU asynchro-
nously, concurrently with computation.
However, the GPU works in floating point precision,

whereas the FPGA uses fixed point since it has no
native support for floating point arithmetic. Also the
GPU computes the histogram with 256 intensity levels
instead of the 64 levels employed by the FPGA, which is
limited by routing constrains.
To measure the accuracy of both approaches we have

calculated the peak-signal-to-noise ratio (PSNR), of the
output image obtained with both, GPU and FPGA, sys-
tems with respect to the one obtained with the CPU,
according to Equation (20). The resulting image com-
puted with the FPGA obtains a PSNR of 30 dB, whereas
with the GPU the value of the PSNR is infinite since the
output image is identical to the one obtained with the
CPU. The FPGA obtains a lower value for the PSNR as
a result of the different algorithmic simplifications that
had to be adopted, and the use of fixed point arithmetic.

PSNR = 10log10

⎛
⎜⎝ MAX2

I
1
mn

∑m−1
i=0

∑n−1
j=0 [I(i, j) − K(i, j)]2

⎞
⎟⎠ (20)

where I stands for the resulting image obtained with
the CPU, K is the resulting image obtained with the
GPU or the FPGA, m and n are de dimensions of the
image and MAXI is the maximum value that a pixel can
reach (255 in our case).
Table 4 details the percentage of the total processing

time employed in each of the tasks by the GPU and by
the FPGA. In the case of the FPGA, the percentage of
time is obtained for each module separately, when the
whole system is working, all the tasks are being executed
in a pipeline. On the other hand, the GPU employs only
a 6% of the processing time in the histogram adjustment,
since the histogram calculation is performed in parallel
with the RGB to HSV conversion. Moreover, more than
30% of the time is employed in performing image trans-
fers from CPU memory to GPU memory, so further
improvement can be achieved performing the memory
storage in parallel with the computation. Table 5 sum-
marizes the power consumption, clock frequency, and
weight for both systems.
According to the tables presented, we can observe that

real-time performance (over 25 fps) is reached with both
embedded solutions. Nevertheless the FPGA implemen-
tation is an order of magnitude more power efficient
than the GPU, although it provides less accuracy in the
computations and therefore output images with less
PSNR.
On the other hand, the FPGA solution is less weight,

whereas the GPU solution is more affordable since its
use is widely extended. In the case of the GPU, a fixed
architecture is provided and the goal is to obtain its max-
imum performance, whereas an FPGA design leaves
more choices to the engineer. This flexibility of the
FPGA comes at the cost of a much larger design time
than the GPU and makes tuning the system more diffi-
cult than in the case of the GPU.

7. Conclusions
High-end GPUs and FPGAs are suitable for highly par-
allel complex algorithms such as pixel-wise processing.

Table 1 SNR obtained with different TMOs

Original
(dB)

Proposed operator without the
retina-like output (dB)

Proposed operator with the retina-
like output (dB)

Drago
(dB)

Reinhard
(dB)

Mantiuk
(dB)

Retinex
(dB)

Kitchen
scene

-3.28 18.48 16.18 18.18 20.70 12.36 18.52

Car scene 9.53 20.77 18.52 21.01 18.3 13.96 23.2

Table 2 Area and speed for the whole system on a
Spartan 3 XC3S2000

Parameter Value

Slices 16545 (80%)

LUTs 30086 (73%)

RAMB 39 (97%)

Fmax 40.25 MHz

MULTs 26 (65%)

BUFGMUXs 7 (87%)

DCMs 2 (50%)

Table 3 Performance of GPU and FPGA implementations,
frame size 640 × 480

CPU GPU FPGA

Performance (fps) 4 30 60

Speed up - 7.5 15

Ureña et al. EURASIP Journal on Image and Video Processing 2012, 2012:1
http://jivp.eurasipjournals.com/content/2012/1/1

Page 13 of 15

On the other hand, limited resources GPUs and FPGAs,
with less computing capability and reduced power con-
sumption, can compete with other embedded solutions
in portable applications which also require image pro-
cessing parallel computation to achieve real-time
performance.
We have presented two implementations of a new

TMO on a GPU NVIDIA ION2 integrated in a small
size netbook and on a Spartan 3 FPGA-based platform
reaching in both cases real-time performance when
working with 640 × 480 RGB images. The FPGA imple-
mentation provides higher frame rates and less power
consumption, whereas the GPU implementation pro-
vides more precision in the computation and therefore
higher quality output images.
Since both implementations use portable and battery-

operated platforms they can be used as low-vision aids spe-
cially aimed at visually impaired people, such as those
affected by Retinitis Pigmentosa, who present several diffi-
culties to manage themselves in environments where illumi-
nation is not uniform or in low illumination environments.

Acknowledgements
This study was supported by the Junta de Andalucía Project P06-TIC-02007,
the Spanish National Grants AP2010-4133, RECVIS (TIN2008-06893-C03-02)
and DINAM-VISION (DPI2007-61683), the project GENIL-PYR-2010-19 funded
by CEI BioTIC GENIL CEB09-0010, and the Special Research Programme of
the University of Granada.

Competing interests
The authors declare that they have no competing interests.

Received: 7 April 2011 Accepted: 15 February 2012
Published: 15 February 2012

References
1. Irawan P, Ferwerda JA, Marschner SR: Perceptually based tone mapping of

high dynamic range image streams. Paper presented at the Eurographics
Symposium on Rendering Konstanz, Germany; 2005, 231-242.

2. Hu K-J, Lu M-Y, Wang J-C, Hsu T-I, Chang T-T: Using adaptive tone
mapping to enhance edge-preserving color image automatically.
EURASIP J Image Video Process 2010, Article ID 137134, 11 (2010).
doi:10.1155/2010/137134.

3. Cope B, Cheung P, Luk W, Howes L: Performance comparison of graphics
processors to reconfigurable logic: a case study. IEEE Trans Comput 2010,
59:433-448.

4. Pauwels K, Tomasi M, Alonso Diaz J, Ros E, Van Hulle MM: A comparison of
FPGA and GPU for real-time phase-based optical flow, stereo, and local
image features. IEEE Trans Comput .

5. Drago F, Myszkowsky K, Annen T, Chiba N: Adaptative logarithmic
mapping for displaying high contrast scene. Paper presented at the
Computer Graphics Forum 2003, 22:419-426.

6. Ward-Larsen GW, Rushmeier H, Piatko C: A visibility matching tone
reproduction operator for high dynamic range scenes. IEEE Trans Vis
Comput Graph 1997, 3(4):291-306.

7. Zhao H, Jin X, Shen J: Real-time tone mapping for high-resolution HDR
images. Paper presented at the 2008 International Conference on Cyberworlds
Hangzhou, China; 2008, 256-262.

8. Rahman Z, Jobson DJ, Woodell GA, Hines GD: Image enhancement, image
quality, and noise. Proc SPIE 2005, 59070N, doi:10.1117/12.619460.

9. Horiuchi T, Tominaga S: HDR image quality enhancement based on
spatially variant retinal response. EURASIP J Image Video Process 2010,
Article ID 438958, 11 (2010). doi:10.1155/2010/438958.

10. Reza AM: Realization of the contrast limited adaptive histogram
equalization (CLAHE) for real-time image enhancement. J VLSI Signal
Process 2004, 38:35-44.

11. Pelayo FJ, Romero S, Morillas C, Martínez A, Ros E, Fernández E: Translating
image sequences into spike patterns for cortical neuro-stimulation.
Neurocomputing 2004, 58-60:885-892.

12. Morillas C, Romero S, Martínez A, Pelayo F, Reyneri L, Bongard M,
Fernández E: A neuroengineering suite of computational tools for visual
prostheses. Neurocomputing 2007, 70(16-18):2817-2827.

13. Morillas C, Cobos JP, Pelayo FJ, Prieto A, Romero S: VIS2SOUND on
reconfigurable hardware. 2008 International Conference on Reconfigurable
Computing and FPGAs Cancún, México; 2008, 205-210.

14. Sekuler R, Blake R: Perception. McGraw-Hill international editions; 1994.
15. 2011, GPU NVDIA ION 2. http://www.nvidia.com/object/

picoatom_specifications.html.
16. NVIDIA Corporation: NVIDIA CUDA C Programming Best Practices Guide

2.3. 2009.
17. Ureña R, Martínez-Cañada P, Gómez-López JM, Morillas C, Pelayo F: A

portable low vision aid based on GPU. Paper presented at First
International Conference on Pervasive and Embedded Computing and
Communication Systems. PECCS 2011 Vilamoura, Portugal; 2011, 201-206.

18. 2011, Asus EEPC 1201 PN. http://www.asus.com/product.aspx?
P_ID=N0JLbhfgdnpw5FaY.

Table 4 Percentage of time per frame spent on each processing stage

Processing stage % time/frame

GPU FPGA

Store image in device memory 15.6 32.54

RGB to HSV conversion 30.2 10.53

Histogram adjustment 6.64 18.37

Retina-like processing 14.22 9.13

Lineal combination 6.01 2.09

HSV to RGB conversion 12.31 27.34

Store image in main memory 15.02 -

Table 5 Comparison of the employed platforms in terms of power consumption, clock frequency, and weight

Platform Power (W) Proc. clock (MHz) Mem. clock (MHz) Weight (kg)

ASUS EEPC 1201PN [18] 12 450 750 1.45

SB video-processing mobile platform [20] 0.9 40 27 0.5

Ureña et al. EURASIP Journal on Image and Video Processing 2012, 2012:1
http://jivp.eurasipjournals.com/content/2012/1/1

Page 14 of 15

19. Volkov V: Prologue Quarterly Of The National Archives. 2010, available at
http://people.sc.fsu.edu/~gerlebacher/gpus/
better_performance_at_lower_occupancy_gtc2010_volkov.pdf.

20. SB platform: 2011 [http://www.sevensols.com/index.php?
seccion=262&subseccion=270].

21. Ridgeway D: Designing Complex 2-Dimensional Convolution Filters. The
programmable Logic DataBook, Xilinx; 1994.

22. 2011, The HDR Photografic Survey, http://www.cis.rit.edu/fairchild/HDR.
html.

23. Mantiuk R, Tomaszewska A, Heidrich W: Color correction for tone
mapping. Computer Graphics Forum 2009, 28(2):193-202.

24. Reinhard E, Devlin K: Dynamic range reduction inspired by photoreceptor
physiology. IEEE Trans Visual Comput Graph 2005, 11(1):13-24.

25. Yoshida A, Blanz V, Myszkowski K, Seidel HP: Perceptual evaluation of tone
mapping operators with real-world scenes. Paper presented at IS&T/SPIE’s
17th Annual Symposium Electronic Imaging San Jose, CA, USA; 2005,
192-203.

doi:10.1186/1687-5281-2012-1
Cite this article as: Ureña et al.: Real-time tone mapping on GPU and
FPGA. EURASIP Journal on Image and Video Processing 2012 2012:1.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

Ureña et al. EURASIP Journal on Image and Video Processing 2012, 2012:1
http://jivp.eurasipjournals.com/content/2012/1/1

Page 15 of 15

http://www.sevensols.com/index.php?seccion=262&subseccion=270
http://www.sevensols.com/index.php?seccion=262&subseccion=270
http://www.ncbi.nlm.nih.gov/pubmed/22338658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22338658?dopt=Abstract
http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	1. Introduction
	2. Background
	3. The new operator
	4. GPU implementation
	4.1. GPU implementation of the retina model
	4.2. HSV conversion and brightness equalizer

	5. FPGA implementation
	5.1. Implementation of the retina-like filtering
	5.2. HSV conversion
	5.3. Brightness equalizer

	6. Results
	7. Conclusions
	Acknowledgements
	Competing interests
	References

