56,865 research outputs found

    Microgenesis, immediate experience and visual processes in reading

    Get PDF
    The concept of microgenesis refers to the development on a brief present-time scale of a percept, a thought, an object of imagination, or an expression. It defines the occurrence of immediate experience as dynamic unfolding and differentiation in which the ‘germ’ of the final experience is already embodied in the early stages of its development. Immediate experience typically concerns the focal experience of an object that is thematized as a ‘figure’ in the global field of consciousness; this can involve a percept, thought, object of imagination, or expression (verbal and/or gestural). Yet, whatever its modality or content, focal experience is postulated to develop and stabilize through dynamic differentiation and unfolding. Such a microgenetic description of immediate experience substantiates a phenomenological and genetic theory of cognition where any process of perception, thought, expression or imagination is primarily a process of genetic differentiation and development, rather than one of detection (of a stimulus array or information), transformation, and integration (of multiple primitive components) as theories of cognitivist kind have contended. My purpose in this essay is to provide an overview of the main constructs of microgenetic theory, to outline its potential avenues of future development in the field of cognitive science, and to illustrate an application of the theory to research, using visual processes in reading as an example

    A dynamic neural field model of temporal order judgments

    Get PDF
    Temporal ordering of events is biased, or influenced, by perceptual organization—figure–ground organization—and by spatial attention. For example, within a region assigned figural status or at an attended location, onset events are processed earlier (Lester, Hecht, & Vecera, 2009; Shore, Spence, & Klein, 2001), and offset events are processed for longer durations (Hecht & Vecera, 2011; Rolke, Ulrich, & Bausenhart, 2006). Here, we present an extension of a dynamic field model of change detection (Johnson, Spencer, Luck, & Schöner, 2009; Johnson, Spencer, & Schöner, 2009) that accounts for both the onset and offset performance for figural and attended regions. The model posits that neural populations processing the figure are more active, resulting in a peak of activation that quickly builds toward a detection threshold when the onset of a target is presented. This same enhanced activation for some neural populations is maintained when a present target is removed, creating delays in the perception of the target’s offset. We discuss the broader implications of this model, including insights regarding how neural activation can be generated in response to the disappearance of information. (PsycINFO Database Record (c) 2015 APA, all rights reserved

    Traditional and new principles of perceptual grouping

    Get PDF
    Perceptual grouping refers to the process of determining which regions and parts of the visual scene belong together as parts of higher order perceptual units such as objects or patterns. In the early 20th century, Gestalt psychologists identified a set of classic grouping principles which specified how some image features lead to grouping between elements given that all other factors were held constant. Modern vision scientists have expanded this list to cover a wide range of image features but have also expanded the importance of learning and other non-image factors. Unlike early Gestalt accounts which were based largely on visual demonstrations, modern theories are often explicitly quantitative and involve detailed models of how various image features modulate grouping. Work has also been done to understand the rules by which different grouping principles integrate to form a final percept. This chapter gives an overview of the classic principles, modern developments in understanding them, and new principles and the evidence for them. There is also discussion of some of the larger theoretical issues about grouping such as at what stage of visual processing it occurs and what types of neural mechanisms may implement grouping principles

    Occlusion-related lateral connections stabilize kinetic depth stimuli through perceptual coupling

    Get PDF
    Local sensory information is often ambiguous forcing the brain to integrate spatiotemporally separated information for stable conscious perception. Lateral connections between clusters of similarly tuned neurons in the visual cortex are a potential neural substrate for the coupling of spatially separated visual information. Ecological optics suggests that perceptual coupling of visual information is particularly beneficial in occlusion situations. Here we present a novel neural network model and a series of human psychophysical experiments that can together explain the perceptual coupling of kinetic depth stimuli with activity-driven lateral information sharing in the far depth plane. Our most striking finding is the perceptual coupling of an ambiguous kinetic depth cylinder with a coaxially presented and disparity defined cylinder backside, while a similar frontside fails to evoke coupling. Altogether, our findings are consistent with the idea that clusters of similarly tuned far depth neurons share spatially separated motion information in order to resolve local perceptual ambiguities. The classification of far depth in the facilitation mechanism results from a combination of absolute and relative depth that suggests a functional role of these lateral connections in the perception of partially occluded objects

    Cortical spatio-temporal dimensionality reduction for visual grouping

    Full text link
    The visual systems of many mammals, including humans, is able to integrate the geometric information of visual stimuli and to perform cognitive tasks already at the first stages of the cortical processing. This is thought to be the result of a combination of mechanisms, which include feature extraction at single cell level and geometric processing by means of cells connectivity. We present a geometric model of such connectivities in the space of detected features associated to spatio-temporal visual stimuli, and show how they can be used to obtain low-level object segmentation. The main idea is that of defining a spectral clustering procedure with anisotropic affinities over datasets consisting of embeddings of the visual stimuli into higher dimensional spaces. Neural plausibility of the proposed arguments will be discussed

    Different roles of similarity and predictability in auditory stream segregation

    Get PDF
    Sound sources often emit trains of discrete sounds, such as a series of footsteps. Previously, two dif¬ferent principles have been suggested for how the human auditory system binds discrete sounds to¬gether into perceptual units. The feature similarity principle is based on linking sounds with similar characteristics over time. The predictability principle is based on linking sounds that follow each other in a predictable manner. The present study compared the effects of these two principles. Participants were presented with tone sequences and instructed to continuously indicate whether they perceived a single coherent sequence or two concurrent streams of sound. We investigated the influence of separate manipulations of similarity and predictability on these perceptual reports. Both grouping principles affected perception of the tone sequences, albeit with different characteristics. In particular, results suggest that whereas predictability is only analyzed for the currently perceived sound organization, feature similarity is also analyzed for alternative groupings of sound. Moreover, changing similarity or predictability within an ongoing sound sequence led to markedly different dynamic effects. Taken together, these results provide evidence for different roles of similarity and predictability in auditory scene analysis, suggesting that forming auditory stream representations and competition between alter¬natives rely on partly different processes

    Towards a Unified Theory of Neocortex: Laminar Cortical Circuits for Vision and Cognition

    Full text link
    A key goal of computational neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress towards explaining how laminar neocortical circuits give rise to biological intelligence. These circuits embody two new and revolutionary computational paradigms: Complementary Computing and Laminar Computing. Circuit properties include a novel synthesis of feedforward and feedback processing, of digital and analog processing, and of pre-attentive and attentive processing. This synthesis clarifies the appeal of Bayesian approaches but has a far greater predictive range that naturally extends to self-organizing processes. Examples from vision and cognition are summarized. A LAMINART architecture unifies properties of visual development, learning, perceptual grouping, attention, and 3D vision. A key modeling theme is that the mechanisms which enable development and learning to occur in a stable way imply properties of adult behavior. It is noted how higher-order attentional constraints can influence multiple cortical regions, and how spatial and object attention work together to learn view-invariant object categories. In particular, a form-fitting spatial attentional shroud can allow an emerging view-invariant object category to remain active while multiple view categories are associated with it during sequences of saccadic eye movements. Finally, the chapter summarizes recent work on the LIST PARSE model of cognitive information processing by the laminar circuits of prefrontal cortex. LIST PARSE models the short-term storage of event sequences in working memory, their unitization through learning into sequence, or list, chunks, and their read-out in planned sequential performance that is under volitional control. LIST PARSE provides a laminar embodiment of Item and Order working memories, also called Competitive Queuing models, that have been supported by both psychophysical and neurobiological data. These examples show how variations of a common laminar cortical design can embody properties of visual and cognitive intelligence that seem, at least on the surface, to be mechanistically unrelated.National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624

    The Complementary Brain: From Brain Dynamics To Conscious Experiences

    Full text link
    How do our brains so effectively achieve adaptive behavior in a changing world? Evidence is reviewed that brains are organized into parallel processing streams with complementary properties. Hierarchical interactions within each stream and parallel interactions between streams create coherent behavioral representations that overcome the complementary deficiencies of each stream and support unitary conscious experiences. This perspective suggests how brain design reflects the organization of the physical world with which brains interact, and suggests an alternative to the computer metaphor suggesting that brains are organized into independent modules. Examples from perception, learning, cognition, and action are described, and theoretical concepts and mechanisms by which complementarity is accomplished are summarized.Defense Advanced Research Projects and the Office of Naval Research (N00014-95-1-0409); National Science Foundation (ITI-97-20333); Office of Naval Research (N00014-95-1-0657

    Neural synchrony in cortical networks : history, concept and current status

    Get PDF
    Following the discovery of context-dependent synchronization of oscillatory neuronal responses in the visual system, the role of neural synchrony in cortical networks has been expanded to provide a general mechanism for the coordination of distributed neural activity patterns. In the current paper, we present an update of the status of this hypothesis through summarizing recent results from our laboratory that suggest important new insights regarding the mechanisms, function and relevance of this phenomenon. In the first part, we present recent results derived from animal experiments and mathematical simulations that provide novel explanations and mechanisms for zero and nero-zero phase lag synchronization. In the second part, we shall discuss the role of neural synchrony for expectancy during perceptual organization and its role in conscious experience. This will be followed by evidence that indicates that in addition to supporting conscious cognition, neural synchrony is abnormal in major brain disorders, such as schizophrenia and autism spectrum disorders. We conclude this paper with suggestions for further research as well as with critical issues that need to be addressed in future studies

    Neural synchrony in cortical networks : history, concept and current status

    Get PDF
    Following the discovery of context-dependent synchronization of oscillatory neuronal responses in the visual system, the role of neural synchrony in cortical networks has been expanded to provide a general mechanism for the coordination of distributed neural activity patterns. In the current paper, we present an update of the status of this hypothesis through summarizing recent results from our laboratory that suggest important new insights regarding the mechanisms, function and relevance of this phenomenon. In the first part, we present recent results derived from animal experiments and mathematical simulations that provide novel explanations and mechanisms for zero and nero-zero phase lag synchronization. In the second part, we shall discuss the role of neural synchrony for expectancy during perceptual organization and its role in conscious experience. This will be followed by evidence that indicates that in addition to supporting conscious cognition, neural synchrony is abnormal in major brain disorders, such as schizophrenia and autism spectrum disorders. We conclude this paper with suggestions for further research as well as with critical issues that need to be addressed in future studies
    corecore