910 research outputs found

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Understanding Vehicular Traffic Behavior from Video: A Survey of Unsupervised Approaches

    Full text link
    Recent emerging trends for automatic behavior analysis and understanding from infrastructure video are reviewed. Research has shifted from high-resolution estimation of vehicle state and instead, pushed machine learning approaches to extract meaningful patterns in aggregates in an unsupervised fashion. These patterns represent priors on observable motion, which can be utilized to describe a scene, answer behavior questions such as where is a vehicle going, how many vehicles are performing the same action, and to detect an abnormal event. The review focuses on two main methods for scene description, trajectory clustering and topic modeling. Example applications that utilize the behavioral modeling techniques are also presented. In addition, the most popular public datasets for behavioral analysis are presented. Discussion and comment on future directions in the field are also provide

    Tracking Multiple Persons Based on a Variational Bayesian Model

    Get PDF
    International audienceObject tracking is an ubiquitous problem in computer vision with many applications in human-machine and human-robot interaction, augmented reality, driving assistance, surveillance, etc. Although thoroughly investigated, tracking multiple persons remains a challenging and an open problem. In this paper, an online variational Bayesian model for multiple-person tracking is proposed. This yields a variational expectation-maximization (VEM) algorithm. The computational efficiency of the proposed method is due to closed-form expressions for both the posterior distributions of the latent variables and for the estimation of the model parameters. A stochastic process that handles person birth and person death enables the tracker to handle a varying number of persons over long periods of time. The proposed method is benchmarked using the MOT 2016 dataset

    Dynamic Switching State Systems for Visual Tracking

    Get PDF
    This work addresses the problem of how to capture the dynamics of maneuvering objects for visual tracking. Towards this end, the perspective of recursive Bayesian filters and the perspective of deep learning approaches for state estimation are considered and their functional viewpoints are brought together

    Dynamic Switching State Systems for Visual Tracking

    Get PDF
    This work addresses the problem of how to capture the dynamics of maneuvering objects for visual tracking. Towards this end, the perspective of recursive Bayesian filters and the perspective of deep learning approaches for state estimation are considered and their functional viewpoints are brought together

    Video Event Recognition and Anomaly Detection by Combining Gaussian Process and Hierarchical Dirichlet Process Models

    Get PDF
    In this paper, we present an unsupervised learning framework for analyzing activities and interactions in surveillance videos. In our framework, three levels of video events are connected by Hierarchical Dirichlet Process (HDP) model: low-level visual features, simple atomic activities, and multi-agent interactions. Atomic activities are represented as distribution of low-level features, while complicated interactions are represented as distribution of atomic activities. This learning process is unsupervised. Given a training video sequence, low-level visual features are extracted based on optic flow and then clustered into different atomic activities and video clips are clustered into different interactions. The HDP model automatically decide the number of clusters, i.e. the categories of atomic activities and interactions. Based on the learned atomic activities and interactions, a training dataset is generated to train the Gaussian Process (GP) classifier. Then the trained GP models work in newly captured video to classify interactions and detect abnormal events in real time. Furthermore, the temporal dependencies between video events learned by HDP-Hidden Markov Models (HMM) are effectively integrated into GP classifier to enhance the accuracy of the classification in newly captured videos. Our framework couples the benefits of the generative model (HDP) with the discriminant model (GP). We provide detailed experiments showing that our framework enjoys favorable performance in video event classification in real-time in a crowded traffic scene
    corecore