303 research outputs found

    Robust real time moving people detection in surveillance scenarios

    Full text link
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. A. GarcĂ­a MartĂ­n, and J. M. MartĂ­nez, "Robust real time moving people detection in surveillance scenarios", in 2010 Seventh IEEE International Conference on Advanced Video and Signal Based Surveillance, AVSS 2010, p. 241 - 247In this paper an improved real time algorithm for detecting pedestrians in surveillance video is proposed. The algorithm is based on people appearance and defines a person model as the union of four models of body parts. Firstly, motion segmentation is performed to detect moving pixels. Then, moving regions are extracted and tracked. Finally, the detected moving objects are classified as human or nonhuman objects. In order to test and validate the algorithm, we have developed a dataset containing annotated surveillance sequences of different complexity levels focused on the pedestrians detection. Experimental results over this dataset show that our approach performs considerably well at real time and even better than other real and non-real time approaches from the state of art.This work has partially supported by the CĂĄtedra UAMInfoglobal ("Nuevas tecnologĂ­as de vĂ­deo aplicadas a sistemas de video-seguridad") and by the Spanish Government (TEC2007-65400 SemanticVideo)

    Real-time pedestrian recognition on low computational resources

    Full text link
    Pedestrian recognition has successfully been applied to security, autonomous cars, Aerial photographs. For most applications, pedestrian recognition on small mobile devices is important. However, the limitations of the computing hardware make this a challenging task. In this work, we investigate real-time pedestrian recognition on small physical-size computers with low computational resources for faster speed. This paper presents three methods that work on the small physical size CPUs system. First, we improved the Local Binary Pattern (LBP) features and Adaboost classifier. Second, we optimized the Histogram of Oriented Gradients (HOG) and Support Vector Machine. Third, We implemented fast Convolutional Neural Networks (CNNs). The results demonstrate that the three methods achieved real-time pedestrian recognition at an accuracy of more than 95% and a speed of more than 5 fps on a small physical size computational platform with a 1.8 GHz Intel i5 CPU. Our methods can be easily applied to small mobile devices with high compatibility and generality

    Perception Intelligence Integrated Vehicle-to-Vehicle Optical Camera Communication.

    Get PDF
    Ubiquitous usage of cameras and LEDs in modern road and aerial vehicles open up endless opportunities for novel applications in intelligent machine navigation, communication, and networking. To this end, in this thesis work, we hypothesize the benefit of dual-mode usage of vehicular built-in cameras through novel machine perception capabilities combined with optical camera communication (OCC). Current key conception of understanding a line-of-sight (LOS) scenery is from the aspect of object, event, and road situation detection. However, the idea of blending the non-line-of-sight (NLOS) information with the LOS information to achieve a see-through vision virtually is new. This improves the assistive driving performance by enabling a machine to see beyond occlusion. Another aspect of OCC in the vehicular setup is to understand the nature of mobility and its impact on the optical communication channel quality. The research questions gathered from both the car-car mobility modelling, and evaluating a working setup of OCC communication channel can also be inherited to aerial vehicular situations like drone-drone OCC. The aim of this thesis is to answer the research questions along these new application domains, particularly, (i) how to enable a virtual see-through perception in the car assisting system that alerts the human driver about the visible and invisible critical driving events to help drive more safely, (ii) how transmitter-receiver cars behaves while in the mobility and the overall channel performance of OCC in motion modality, (iii) how to help rescue lost Unmanned Aerial Vehicles (UAVs) through coordinated localization with fusion of OCC and WiFi, (iv) how to model and simulate an in-field drone swarm operation experience to design and validate UAV coordinated localization for group of positioning distressed drones. In this regard, in this thesis, we present the end-to-end system design, proposed novel algorithms to solve the challenges in applying such a system, and evaluation results through experimentation and/or simulation

    System for automatic detection and classification of cars in traffic

    Get PDF
    Objective: To develop a system for automatic detection and classification of cars in traffic in the form of a device for autonomic, real-time car detection, license plate recognition, and car color, model, and make identification from video. Methods: Cars were detected using the You Only Look Once (YOLO) v4 detector. The YOLO output was then used for classification in the next step. Colors were classified using the k-Nearest Neighbors (kNN) algorithm, whereas car models and makes were identified with a single-shot detector (SSD). Finally, license plates were detected using the OpenCV library and Tesseract-based optical character recognition. For the sake of simplicity and speed, the subsystems were run on an embedded Raspberry Pi computer. Results: A camera was mounted on the inside of the windshield to monitor cars in front of the camera. The system processed the camera’s video feed and provided information on the color, license plate, make, and model of the observed car. Knowing the license plate number provides access to details about the car owner, roadworthiness, car or license place reports missing, as well as whether the license plate matches the car. Car details were saved to file and displayed on the screen. The system was tested on real-time images and videos. The accuracies of car detection and car model classification (using 8 classes) in images were 88.5% and 78.5%, respectively. The accuracies of color detection and full license plate recognition were 71.5% and 51.5%, respectively. The system operated at 1 frame per second (1 fps). Conclusion: These results show that running standard machine learning algorithms on low-cost hardware may enable the automatic detection and classification of cars in traffic. However, there is significant room for improvement, primarily in license plate recognition. Accordingly, potential improvements in the future development of the system are proposed

    Video foreground extraction for mobile camera platforms

    Get PDF
    Foreground object detection is a fundamental task in computer vision with many applications in areas such as object tracking, event identification, and behavior analysis. Most conventional foreground object detection methods work only in a stable illumination environments using fixed cameras. In real-world applications, however, it is often the case that the algorithm needs to operate under the following challenging conditions: drastic lighting changes, object shape complexity, moving cameras, low frame capture rates, and low resolution images. This thesis presents four novel approaches for foreground object detection on real-world datasets using cameras deployed on moving vehicles.The first problem addresses passenger detection and tracking tasks for public transport buses investigating the problem of changing illumination conditions and low frame capture rates. Our approach integrates a stable SIFT (Scale Invariant Feature Transform) background seat modelling method with a human shape model into a weighted Bayesian framework to detect passengers. To deal with the problem of tracking multiple targets, we employ the Reversible Jump Monte Carlo Markov Chain tracking algorithm. Using the SVM classifier, the appearance transformation models capture changes in the appearance of the foreground objects across two consecutives frames under low frame rate conditions. In the second problem, we present a system for pedestrian detection involving scenes captured by a mobile bus surveillance system. It integrates scene localization, foreground-background separation, and pedestrian detection modules into a unified detection framework. The scene localization module performs a two stage clustering of the video data.In the first stage, SIFT Homography is applied to cluster frames in terms of their structural similarity, and the second stage further clusters these aligned frames according to consistency in illumination. This produces clusters of images that are differential in viewpoint and lighting. A kernel density estimation (KDE) technique for colour and gradient is then used to construct background models for each image cluster, which is further used to detect candidate foreground pixels. Finally, using a hierarchical template matching approach, pedestrians can be detected.In addition to the second problem, we present three direct pedestrian detection methods that extend the HOG (Histogram of Oriented Gradient) techniques (Dalal and Triggs, 2005) and provide a comparative evaluation of these approaches. The three approaches include: a) a new histogram feature, that is formed by the weighted sum of both the gradient magnitude and the filter responses from a set of elongated Gaussian filters (Leung and Malik, 2001) corresponding to the quantised orientation, which we refer to as the Histogram of Oriented Gradient Banks (HOGB) approach; b) the codebook based HOG feature with branch-and-bound (efficient subwindow search) algorithm (Lampert et al., 2008) and; c) the codebook based HOGB approach.In the third problem, a unified framework that combines 3D and 2D background modelling is proposed to detect scene changes using a camera mounted on a moving vehicle. The 3D scene is first reconstructed from a set of videos taken at different times. The 3D background modelling identifies inconsistent scene structures as foreground objects. For the 2D approach, foreground objects are detected using the spatio-temporal MRF algorithm. Finally, the 3D and 2D results are combined using morphological operations.The significance of these research is that it provides basic frameworks for automatic large-scale mobile surveillance applications and facilitates many higher-level applications such as object tracking and behaviour analysis

    ADD: An Automatic Desensitization Fisheye Dataset for Autonomous Driving

    Full text link
    Autonomous driving systems require many images for analyzing the surrounding environment. However, there is fewer data protection for private information among these captured images, such as pedestrian faces or vehicle license plates, which has become a significant issue. In this paper, in response to the call for data security laws and regulations and based on the advantages of large Field of View(FoV) of the fisheye camera, we build the first Autopilot Desensitization Dataset, called ADD, and formulate the first deep-learning-based image desensitization framework, to promote the study of image desensitization in autonomous driving scenarios. The compiled dataset consists of 650K images, including different face and vehicle license plate information captured by the surround-view fisheye camera. It covers various autonomous driving scenarios, including diverse facial characteristics and license plate colors. Then, we propose an efficient multitask desensitization network called DesCenterNet as a benchmark on the ADD dataset, which can perform face and vehicle license plate detection and desensitization tasks. Based on ADD, we further provide an evaluation criterion for desensitization performance, and extensive comparison experiments have verified the effectiveness and superiority of our method on image desensitization
    • 

    corecore