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System for automatic detection and 
classification of cars in traffic 

Objective: To develop a system for automatic detection and 
classification of cars in traffic in the form of a device for au-
tonomic, real-time car detection, license plate recognition, 
and car color, model, and make identification from video.

Methods: Cars were detected using the You Only Look Once 
(YOLO) v4 detector. The YOLO output was then used for clas-
sification in the next step. Colors were classified using the 
k-Nearest Neighbors (kNN) algorithm, whereas car models 
and makes were identified with a single-shot detector (SSD). 
Finally, license plates were detected using the OpenCV li-
brary and Tesseract-based optical character recognition. 
For the sake of simplicity and speed, the subsystems were 
run on an embedded Raspberry Pi computer.

Results: A camera was mounted on the inside of the wind-
shield to monitor cars in front of the camera. The system 
processed the camera’s video feed and provided informa-
tion on the color, license plate, make, and model of the ob-
served car. Knowing the license plate number provides ac-
cess to details about the car owner, roadworthiness, car or 
license place reports missing, as well as whether the license 
plate matches the car. Car details were saved to file and dis-
played on the screen. The system was tested on real-time 
images and videos. The accuracies of car detection and car 
model classification (using 8 classes) in images were 88.5% 
and 78.5%, respectively. The accuracies of color detection 
and full license plate recognition were 71.5% and 51.5%, 
respectively. The system operated at 1 frame per second (1 
fps). 

Conclusion: These results show that running standard 
machine learning algorithms on low-cost hardware may 
enable the automatic detection and classification of cars 
in traffic. However, there is significant room for improve-
ment, primarily in license plate recognition. Accordingly, 
potential improvements in the future development of the 
system are proposed.       
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Introduction

As a product of technological advancements and developments within the automotive in-
dustry, cars are now equipped with cutting-edge safety systems. Traffic accident reduction 
has been a driving force behind new safety systems as human error accounts for 94% of 
all auto accidents [1]. In 2016, within the European Union, traffic accidents accounted for 
25,600 deaths and 1.4 million injuries [2]. Worldwide, between 1 and 1.24 million people 
die on the roads every year and 20-50 million people are injured [3]. This has triggered 
initiatives such as VisionZero [4], which aim to eliminate all traffic fatalities and severe 
injuries using various modalities (including active and passive car safety features). 

Car safety systems are commonly referred to as Advanced Driver Assistance Systems 
(ADAS) and may feature different autonomy levels [5], from 0 (no automation) to 5 (full 
automation/autonomy). The parking assistant is one such advanced system projected for 
serial installation into all commercial vehicles by 2025, based on the National Highway 
Traffic Safety Administration (NHTS, USA) recommendations [6]. There are also plans to 
introduce systems such as traffic lane monitoring and pedestrian and traffic sign detec-
tion. ADAS has achieved significant reductions in car crash rates – as much as 78% for 
reversing collision [7]. Driving Monitoring and Assistance Systems (DMAS) are somewhat 
similar, but unlike ADAS, these focus on monitoring driver behavior [3]. Although this pa-
per primarily focuses on technical features, user acceptance needs to be considered side-
by-side when introducing any new technology [8, 9]. This is especially important when it 
comes to artificial intelligence (AI)-based systems [10].

The limitations of car’s own computation power need to be taken into consideration when 
implementing any real-time driving assistance systems. More specifically, these may be 
expanded, but this will take up more space. This is especially true of systems that source 
data from images and use machine learning for data processing [11]. Loce et al. [12] pre-
sented a good overview of widely available, computer vision-based ADAS/DMAS technolo-
gies, such as the lane departure warning system, pedestrian detection system, driver mon-
itoring systems, etc. The authors also note that the application of these systems in road 
safety and traffic monitoring is possible (which is the application of the system proposed 
in this paper). A more recent overview of computer vision-based ADAS technologies with 
slightly different categorization is presented in Horgan et al. [13].

Car safety features (regardless of type) are reliable only as far as they are regularly in-
spected and serviced. Consequently, unregistered cars (and unroadworthy cars) pres-
ent a particular traffic safety concern. According to an observational study conducted in 
Queensland, Australia, around 3% of cars on the roads were unregistered [14]. A signifi-
cant correlation between unregistered vehicles and a high risk of causing accidents has 
also been observed. This has been explained by such vehicles not being roadworthy and 
the risky behavior of drivers who usually did not hold a valid driver’s license. Comparable 
numbers of unregistered vehicles have also been observed on the roads in other parts of 
the world; for example, 3.38% in California, USA [15]. In Croatia, traffic police identified 
17,832 unregistered (not roadworthy) vehicles during regular patrols in 2020, which was 
a 13.8% increase compared to 2019 [16].

http://st-open.unist.hr
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Traditionally, unregistered cars have been detected using specialized Automatic Number 
Plate Recognition (ANPR) cameras installed along roads. Dark [17] used this method to 
collect data from 256 ANPR cameras installed across the UK, which were made publicly 
available for further analysis. The obvious disadvantage of these systems is that they are 
static and therefore easier to avoid for unconscientious drivers. Additional challenges for 
license plate recognition systems include 1) varying lighting conditions, including glare, 
shadows, and blur, 2) high-speed vehicles, and 3) various obstacles [18].

However, recent developments in electronics and optical systems have made these cam-
eras more mobile and they can now be mounted within police vehicles. For example, the 
Croatian police use the Nero-ANPR system [19], produced in Croatia [20]. The system, 
launched in 2016 as a pilot project, costs around ten thousand euros and consists of a cam-
era that is mounted on the roof of a police vehicle. The system can scan up to 10 vehicles 
per second (in day and night conditions) with 90% accuracy, even at speeds over 200 km/h 
[21]. Despite its impressive nominal features, the disadvantages of the system, including 
its high cost and rooftop installation (a more complicated installation setup) may preclude/
impede its wider application. The cost of these systems is considerable in other countries 
as well [22]: approximately 6 million AUD for about 450 units. Police in other countries 
uses similar systems, mostly to look for stolen cars [23]. Intriguing initiatives aiming to in-
volve citizens in the detection and analysis of car license plates through interactive games 
have also been proposed [24].

The above discussion clearly demonstrates the rise in the usage of cameras and related 
computer vision algorithms in cars and car safety [25, 26]. The groundbreaking develop-
ment of neural networks during the last decade has also contributed to their application in 
image processing [27], where one of their most important functions is the detection of spe-
cific objects in images [28]. Object detection in images is a key technology behind advanced 
driver assistance systems. For example, these systems allow cars to detect lanes and other 
road markings [29] and thus prevent illegal lane cutting while driving. Additionally, they 
detect and track pedestrians in traffic [30] to improve road safety. Object detection is also 
useful in video surveillance, autonomous driving [31], robotic vision [32], and similar ap-
plications. 

Deep neural networks, recurrent neural networks, and convolutional neural networks are 
just some of the many types of neural networks with practical applications in various tech-
nological and scientific fields [27]. Convolutional neural networks (CNN) are the backbone 
of modern object detection methods [28]. The name comes from a linear mathematical 
operation between matrices called convolution. CNNs consist of convolutional layers, non-
linear layers, pooling layers, and fully connected layers. The convolutional layer is a CNN’s 
main layer and its task is to extract features from images, such as edges and colors. It 
can also detect more complex features when combined with other layers, such as various 
shapes, digits, or parts of the face. Like the convolutional layer, the pooling layer reduces 
the spatial dimension of a convoluted image. This, in turn, cuts down on the computing 
power required to process data because it downsizes the matrix dimension of an image 
[33]. Put together, the convolutional and pooling layer make up the i-th layer of a convo-
lutional neural network. Depending on the complexity of an image, the number of these 
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layers may be increased to reveal more details, but this will require more computing pow-
er. Fully connected layers form the last few layers in the network. The input to the fully 
connected layer is a flattened vector with features selected by the convolutional layer. The 
output is normally connected to the softmax function to normalize the output and produce 
a vector with the probabilities of every possible outcome of a classification problem.

This paper aimed to design a deep convolutional networks-based system that can identify 
license plates, colors, makes, and models of cars in traffic from available video feeds (in 
real or near-real time). The camera should be mounted on the inside of the windshield of a 
car in traffic to detect the cars in front of it. The system is intended to run on an embedded 
Raspberry Pi computer and car color, license plate, make, and model information should 
be displayed on the computer screen. Special attention was given to convolutional neural 
network-aided detection, which was the core element of the system. Seeing as the system 
comprises various subsystems, the paper also provides the rationale for selecting specific 
algorithms and describes the process of collecting required images and files as well as 
neural network learning. The resulting system achieved acceptable results for the target 
application and is more cost-effective and easier to set up/install than the systems that are 
currently in use. 

Materials and methods

The flowchart of the proposed solution for the automatic detection and classification of 
cars in traffic is shown in Figure 1. As shown in the figure, the system consists of three 
subsystems. The input for all subsystems is CNN output in the form of part(s) of images 
(called “patches”) where a car in traffic was detected. 

Figure 1. A flowchart of the proposed system.

http://st-open.unist.hr
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The first subsystem detects the license plate position in the input car image and then for-
wards that patch (containing only the license plate) to a character recognition algorithm, 
which then scans the license plate. Car detection in videos/images is done by the You 
Only Look Once (YOLO) v4 neural network architecture. The second subsystem detects 
car makes and models (for which it was trained) based on additional CNN architectures, 
whereas the third subsystem detects car color using computer vision techniques. The rest 
of this section briefly describes the algorithms used in this study as well as the data collec-
tion for network learning and system testing. In this paper, the term “car make” refers to 
a car manufacturer (e.g., Audi, Alfa Romeo, Renault), while “car model” refers to a product 
line designation used by the manufacturer (e.g., Q1, 159, Scienic). Both parameters (make 
and model) were used to avoid confusion in future system extensions in cases where two 
different manufacturers use the same car name (e.g., Oldsmobile Fiesta and Ford Fiesta 
or Opel Diplomat and Dodge Diplomat). Of course, car models may be further subdivided 
based on the year of production and variant, but as this paper does not delve into such 
detailed classifications, this remains a possible future expansion of the system.

Detecting cars

Cars were detected with a YOLOv4-tiny detector [34]. YOLOv4-tiny is based on a YOLOv4 
architecture but features a streamlined network structure with fewer parameters and fil-
ters. This makes it suitable for use on mobile and embedded devices [34]. Thus, it was 
an appropriate choice for the Raspberry Pi computer. In general, CNN-based detectors 
may be divided into two-shot (e.g. various versions of Region-based Convolutional Neural 
Networks – R-CNN [35], Region-based Fully Convolutional Networks – R-FCN [36]) and sin-
gle-shot (e.g. YOLO and SSD) detectors. All two-shot detection models work by proposing 
regions. The detection process has two stages. The model first proposes a set of specific ar-
eas based on the selected search network or regional proposal network and the classifier 
then processes only candidates for the selected region (which makes it computationally 
expensive). A different approach to detection is skipping the region proposal stage and di-
rectly initiating image detection. These (single-shot) detectors are much faster and simpler 
but at the cost of somewhat poorer performance.

Being a single-shot detector, YOLO skips the region proposal step and takes a single “look” 
at the image to detect objects, which speeds up the process compared to two-shot architec-
tures [34, 37, 38]. YOLO divides the input image into an SxS grid. If the center of an object 
falls into a single grid cell, that cell is then responsible for detecting the object. In other 
words, the object is assigned to a cell containing the center of the object.

The classification and localization network can only detect one object at a time, which 
means that the network can detect only one object per cell. This can cause several issues: 
1) as the total number of grid cells is S2, the maximum number of objects that the model 
can detect is also S2. 2) if the grid cell contains more than one object, the model will not 
be able to distinguish between them, 3) if an object spans more than one cell, it may be 
detected more than once [34].

The first-generation YOLO was trained to detect 20 different classes, such as a person, cat, 
dog, car, etc. [34]. YOLO uses a single convolutional network to predict multiple bounding 
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boxes at the same time, as well as the probability of these boxes. The network was inspired 
by the GoogleNet image classification model. It has 24 convolutional layers followed by 2 
fully connected layers [34].

The YOLOv2 architecture is mainly focused on improving the recall and localization of the 
YOLO network while maintaining classification accuracy. The following options enable 
better performance:

• Batch normalization – improves mean Average Precision (mAP) by more than 2%.

• High-resolution classification – network learning using 224×224 images, but the 
last 10 epochs use 448×448 images. This ensures better network performance for 
high-resolution image inputs and a 4% mAP increase.

• Anchor fields – predicts multiple objects per grid cell [34].

YOLOv2 identifies the best anchor field shapes to facilitate network learning and cal-
culates bounding box coordinates directly, using fully connected layers. The creators of 
YOLOv2 recommend using Darknet-19, a new classification model with 19 convolutional 
layers and 5 pooling layers. It has 91.2% accuracy on the ImageNet database – an improve-
ment over the previous version, which had 88% accuracy [39]. To make YOLOv2 robust 
for detection in different-sized images, the model was trained using various input image 
sizes. This allows the network to predict objects in different resolutions, providing an easy 
compromise between speed and accuracy.

During its heyday, YOLOv2 was the fastest detector. However, detectors developed in re-
cent years achieve superior accuracies, but YOLOv2 is still one of the fastest. Consequently, 
YOLOv3 traded in some of its speed for improved accuracy [40]. A major change with this 
version was the new architecture consisting of 53 convolutional layers, significantly more 
than YOLOv2. The salient feature of the new version is detections at three different sites. 
Detection at different layers helps address the issue of detecting small objects, which was a 
major drawback with YOLOv2. The first detection is responsible for detecting large objects, 
whereas the second and third layers detect medium and smaller objects, respectively.

YOLOv4, the most recent version of the detector (at the time of designing the proposed 
system), strikes a balance between detection speed and accuracy. As detectors are trained 
off-line, this advantage is harnessed to develop better training methods and produce de-
tectors with greater accuracy at the same cost. Training strategy-changing methods are 
known as the “bag of freebies” [41]. The purpose of data augmentation is to increase the 
variability of input images and make the object detector more robust to images obtained 
from various environments. Photometric and geometric distortions are the two most fre-
quently used data augmentation methods. Photometric distortion adjusts image bright-
ness, contrast, hue, saturation, and noise, whereas geometric distortion adds random im-
age scaling, cropping, and rotation. In terms of architecture, the objective is to strike the 
optimal balance between the input network resolution, number of convolutional layers, 
number of parameters, and number of output layers. A reference model optimized for 
classification may not be optimized for detection. Therefore, Soviany and Ionescu [38] 
conducted extensive research on this topic using three potential backbones of the YOLOv4 
architecture: CSPResNext50, CSPDarknet53, and EfficientNer-B3. The CSPDarknet53 neu-
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ral network used in this paper has been experimentally proven to be the optimal back-
bone model for the detector. An additional advantage of this basic architecture was its use 
in the OpenCV library, which shortened the system implementation time. CSPDarknet53 
was overlaid with a Spatial Pyramid Pooling Layer (SPP) [42] as this significantly increas-
es the receptive field, isolates the most salient contextual features, and causes almost no 
network speed reduction. Another key decision when designing the model was using Path 
Aggregation Network (PANet) to aggregate parameters from different backbone layers for 
different detection levels [43]. YOLOv4, therefore, consists of a CSPDarknet53 backbone, 
an additional SPP module, PANet-based information flow, and YOLOv3 as the detector. 
YOLOv4 is 12% faster and 10% more accurate than its predecessor [41]. 

YOLO has various implementations: OpenCV-dnn, TensorFlow, Pytorch, and TensorRT. 
Since this system is designed to run on a Raspberry Pi computer, the most appropriate 
YOLO implementation must be selected. The decision is all the more important because 
the finalized system is supposed to run in parallel the plate and car model detection, plate 
classification, and character recognition on the detected plate. The implementation used 
in this paper was OpenCV-dnn as this was the fastest YOLOv4 implementation for CPU. 
This has been proven by several tests [44, 45] on different CPU configurations as well as 
for various deep architectures (e.g., VGG-16 and DenseNet121).

The algorithm used to detect cars in an image, draw bounding boxes, and extract car im-
ages for a more in-depth car classification is shown in Appendix 1.

After successful detection, the detected car has to be cut out from the image and then sent 
for processing and detection. As the cropped image is smaller than the input image, there 
are less data to process, so this approach speeds up the process and makes it more compu-
tationally efficient.

Detecting car make and model

Single Shot Detector (SSD) [46] is another convolutional neural networks-based detector 
that was used in this study. Removing bounding box suggestions and pixel or feature sam-
pling phases results in a fundamental improvement in speed. Upgraded features include a 
small convolutional filter to predict objects and offsets in bounding boxes with the help of 
separate filters to detect different aspect ratios. These modifications provide for a high lev-
el of accuracy; selecting relatively low-resolution grants additional increases in detection 
speed. Although these may seem like minor contributions taken separately, SSD testing has 
yielded very favorable results [46].

SSD harnesses the principle of feedback convolutional networks. It generates fixed-size 
bounding boxes and gauges the probability of an object appearing in the boxes and then 
uses a non-maximum suppression for the final detection. Early network layers are based 
on standard image classification architecture. This is followed by an auxiliary detection 
structure with the following salient features: 

• Multi-scale feature maps – appends feature layers of decreasing size to the end of the 
base grid to allow multi-ratio detection.

• Convolutional predictors – every appended feature layer can produce a fixed set. 

http://st-open.unist.hr
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• Default boxes – a set of default bounding boxes associated with each cell feature, 
for more features at the top of the grid. The default box value can be used to assign 
convolutional annotations to the background, for a fixed position of each box in re-
lation to the corresponding cell. For each cell, feature maps predict offsets relative 
to default box shapes in the cell, as well as grades per class. These, in turn, indicate 
the presence of a class instance in each of these boxes [46].

During learning, default boxes that match detection should be established and the net-
work trained accordingly. Ground truth boxes are matched with default boxes using the 
best Jaccard coefficient. Default boxes match ground truth boxes if their Jaccard coefficient 
is greater than 0.5. This simplifies the network learning process and allows the network to 
overlap several default boxes instead of choosing the box with the greatest overlap [47].

An important learning parameter is selecting default box scales and ratios. To handle dif-
ferent scale objects, some methods suggest processing an image in different sizes and then 
combining the results. However, using a feature map from several different layers can 
mimic the same effect while sharing parameters. This also improves semantic segmenta-
tion as the deepest layers record more fine detail. 

The SSD was selected for the car model classification task precisely due to its speed. We 
used the implementation from TensorFlow, a Python library created by Google. It should 
be noted that SSD algorithms implicitly contain features for image classification, although 
their primary use is in object detection in images. In cases where this subsystem receives 
a reliable patch containing a car from the car detection step, a simple network, such as 
MobilNet v2, would be sufficient for classification. However, we believe our method helped 
avoid potentially problematic real traffic situations where the previous step may deliver 
a box containing more than one car (because cars overlap or there is another car in the 
target car’s rectangular box) and therefore laid a foundation for updated versions of the 
system with options to track and classify more than one car per image (video), making the 
system more modular.

TensorFlow can train and run deep neural networks for digit classification, object detec-
tion in images, text creation, sequence models for machine translation, natural language 
processing, and simulations based on partial differential equations [48]. 

The procedure is the same as for training the YOLOv4-tiny network. Detectable car models 
should be defined before the image collection stage. Given the vast number of different car 
makes and models on roads, the network was trained using only a small subset of (most 
popular) vehicles: VW Golf 7, Renault Clio, Suzuki Vitara, Peugeot 208, Renault Scenic, VW 
Polo, Citroen C4, BMW 3. The “Others” class was added to classify cars that did not make 
the list and address the challenge posed by a large number of car models on roads.

Networks can be trained from scratch but there are also pre-trained models available. 
Transfer learning usually refers to taking a model trained for solving one problem and 
applying it to a different problem. In deep learning, the transfer learning technique refers 
to using a problem that is similar to the problem we are trying to solve to train a neural 
network model. One or more layers from the trained model are then used in the new 
model. The advantages of this type of learning include reduced training time per neural 
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network model, smaller training sets, and a potentially smaller generalization error. This 
study used a 320×320 SSD MobileNet v2 model as a relatively good compromise between 
performance and speed. SSD was chosen because it is compatible with Raspberry Pi, but 
there are other models suitable for model classification. SSD training takes place wholly 
on Google Collaborative and a GPU is used to speed up training. Some of the hyper-param-
eters used to train this network were: batch_size = 24, initial_learning_rate = 0.004, decay = 
0.9, momentum_optimizer_value = 0.9, epsilon = 1, RMSProp optimizator.

TensorFlow Lite is a toolset that helps developers to run the TensorFlow model on mobile, 
embedded, and the Internet of Things (IoT) devices. TensorFlow Lite is designed to effi-
ciently execute network models on mobile and other embedded devices with limited com-
puting and memory resources. Part of its efficiency stems from the use of a special model 
storage format. TensorFlow models have to be converted to this format before they can be 
used by TensorFlow Lite. Model conversion reduces file size and provides optimizations 
without affecting model accuracy. The TensorFlow Lite converter provides options that 
allow for a further file size reduction and execution speed increase [49].

The “Model” function detailed in Appendix 1 receives a car cut-out image, which is then 
sent to SSD to classify the car model and make. The functionality returns the name of the 
detected car model.

License plate detection and recognition

Automatic Number Plate Recognition (or ANPR) is a system designed to detect and recog-
nize vehicle license plates without human intervention. It includes the following steps: 1) 
license plate detection in input images and 2) application of the optical character recogni-
tion to detected plates [18].

ANPR is a challenging branch of computer vision due to the wide variety of license plates 
in different countries around the world. In this study, car license plates were detected us-
ing the OpenCV library. The first step in detection was changing image resolutions to avoid 
issues due to differently sized images. Images were then converted from RGB to black and 
white format. As the pixel color value does not have an effect on the location of the plate 
in the image, this change sped up the subsequent image processing operations. All other 
content in the image except the plate is useless information that may cause interference 
and therefore has to be eliminated. This is achieved by applying a two-sided filter to blur 
unwanted details in the image. By changing the parameter values for this filter, the image 
was blurred with different blur intensities to eliminate interference. The parameter value 
needed to be carefully adjusted as a too-large value may negatively affect the useful part 
of the image, i.e. the license plate. 

The plate’s edges could be detected after eliminating interference. This was done by de-
fining the minimum and maximum values of the intensity gradient to show only edges 
with intensity gradients within the two values. Only the top 30 detected contours were 
then sorted by size, in descending order. These 30 contours were assumed to contain the 
edge contours of a license plate. Since license plates are rectangular, the system detected 
4 contours that circumscribe a rectangle. After identifying the plate’s bounding contours, 
the remaining operations were performed only on that image patch and the rest of the 
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image was eliminated. Croatian license plates uniquely feature the national coat-of-arms 
of the Republic of Croatia, but this may cause recognition errors. To avoid this, a two-sided 
filter and a threshold filter were applied to plates to reduce the effect of the coat-of-arms. 

Optical Character Recognition (OCR) is a technology for extracting text from imag-
es, scanned documents, and photographs. It converts images that contain text into ma-
chine-readable textual data. Tesseract [50] is an OCR method that supports more than 
a hundred languages and can learn new languages. In this paper, we used Tesseract to 
recognize characters on studied license plates because it provides support for Croatian 
language. Tesseract can convert and segment images into lines of text or words. A license 
plate can then be viewed as a single line of text or as a single word. After testing Tesseract’s 
two segmentation options, it was concluded that observing the plate as a single word pro-
vided slightly better results. Detectable characters were limited to Croatian capital letters 
and numbers as these are the only types of characters that appear on license plates [50]. 

To recognize characters on a license plate, Tesseract first had to detect a license plate. 
This was a challenging task because license plates take up a minor portion of images. The 
remainder of the image further complicates matters because it interferes with detecting 
plate contours. Due to the small size, characters on detected plates are hard to recognize. 
Images are also often blurry because the cars were in motion. This method may therefore 
detect wrong contours or altogether fail to detect any contours. The structure of the func-
tionality for detecting and recognizing characters on a plate is shown in Appendix 1.

Finally, we note that no original or additional YOLO (or any other) neural networks were 
used in license plate detection or recognition to improve computational efficiency. More 
specifically, preliminary tests had shown that this tended to slow down the system, where-
as the utilized computer vision methods did not have such limitations. In addition, the size 
of the training dataset (images) would need to be significantly bigger, which would in turn 
make the extension to detecting and recognizing foreign license plates more challenging 
(additional dataset).

Identifying car color

Colors were classified using the K-Nearest Neighbors algorithm trained by Red-Green-Blue 
(RGB) color histogram [51]. It can classify white, black, red, green, blue, orange, yellow, 
and violet colors. To increase the number of classifiable colors or improve accuracy, the 
user needs to work on training data or consider other color characteristics, such as color 
moment or color correlogram. With color classification, the first step includes feature ex-
traction by RGB color histogram. RGB color histogram shows the color distribution in an 
image. For digital images, an RGB histogram is a representation of the number of pixels 
with the same color value, as shown in the example in Figure 2.

The k-Nearest Neighbors (kNN) classification method stores all RGB values from training 
images and classifies new cases based on the distance function. The kNN algorithm as-
sumes that similar colors are neighbors in the color space. Car color was classified based 
on the Euclidean distance between two points in the color space. The kNN algorithm was 
implemented in an optimized OpenCV library focusing on real-time recognition [51].
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The car color classification function is shown in Appendix 1. The function first drew an 
RGB color histogram for the image and then classified the color by comparing these values 
with the trained RGB histogram.

The k-Nearest Neighbors (kNN) classification method stores all RGB values from training 
images and classifies new cases based on the distance function. The kNN algorithm as-
sumes that similar colors are neighbors in the color space. Car color was classified based 
on the Euclidean distance between two points in the color space. The kNN algorithm was 
implemented in an optimized OpenCV library focusing on real-time recognition [51].

The car color classification function is shown in Appendix 1. The function first drew an 
RGB color histogram for the image and then classified the color by comparing these values 
with the trained RGB histogram.

Data collection

Creating a class detection system requires the following files: 1) an image set with coordi-
nates and specific class annotations, 2) a configuration file matching the number of class-
es, 3) files with class names and absolute paths to specific directories, and 4) learning and 
testing text files with image names.

One of the seminal tasks when training a neural network is collecting and labeling data 
(images) since CNN requires large amounts of data for training. Annotated car images 
were collected online, from the Open Images Dataset. Open Images Dataset comprises 9 
million annotated images with object bounding boxes, object segmentation masks, visual 
relationships, and localized narratives. Considering object detection alone, it contains 2 
million images with 16 million bounding boxes for more than 600 classes [52]. Examples 
of images from the database are shown in Figure 3.

Figure 2. RGB color histogram for two different images. Different color profiles (red, green, and blue channels) are visi-
ble for the two cars of different colors (white and red).

http://st-open.unist.hr
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Bounding boxes from the database were mostly hand-drawn by experts to ensure accura-
cy and consistency. The images were diverse, including different-sized images and images 
containing complex scenes and multiple objects. The downloaded database was expanded 
with images downloaded from various motor vehicle classifieds and a portion of images 
was collected independently, on roads. Since the diversity of images was essential, the 
image database was created using as many different sources as possible. The goal was to 
have the observed class in different environments, with a varying number of surrounding 
objects, in conditions of good and poor visibility. In the collected image database, the “Car” 
class is shown on the highway, downtown, in parking lots, during the day, and in the dark. 
The total number of collected images was 2,100.

In photographs and images sourced online, observed objects were annotated manually. 
Several programming tools enable loading images, annotating relevant classes for neural 
network training, and storing relevant data as notes in the appropriate format. LabelImg 
is a graphical image annotation tool. It is written in Python and uses Qt for its graphical 
interface. Annotations are saved in Pascal VOC and MS COCO format [53]. The user inter-
face is shown in Figure 4.

Figure 3. Examples of cars (Open Images Dataset).

Figure 4. LabelImg tool interface during annotation of a car class (green box).

http://st-open.unist.hr
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Collecting images to train the car make and model classification system was somewhat 
more complicated than for car detector training because it required images of specific 
car models and makes. Most of the images were sourced online or from car classifieds. 
This approach assumed that the camera was installed on the windshield of a moving car 
and that the detected cars were moving in front of that car. This translated into looking 
for rearview car images. The number of images collected per car model was 200 (2,000 in 
total, as we used 10 classes), separated into 190 training images and 10 images for network 
testing (for a total of 1,900 training images and 100 testing images). The images were dis-
tributed in the 95:5% ratio as finding images of specific car models required a consider-
able amount of time and a greater focus was placed on training. We note that a validation 
dataset was not employed during distribution, given that its primary purpose is to tune 
neural network hyperparameters to increase accuracy [54]. The focus of this phase of sys-
tem development was on proving the concept, so the step was omitted. Assigning images 
to a validation set would unnecessarily reduce the (already limited) set of training images 
and thus potentially reduce the accuracy of the results. After distribution, the cars were 
annotated with LabelImg tool. This was followed by the creation of a feature map contain-
ing the names of all car models. 

To classify car colors, the first step involved collecting images of cars of different colors 
and sorting them by color into directories. Next, a file with the RGB value of each image 
was created. Car colors were identified based on these values by finding the nearest known 
neighbor in the color space using the kNN algorithm. To ensure better color classification 
results, the kNN algorithm was only applied to patches that contained a car. Seeing as the 
car was detected by the YOLOv4-tiny convolutional neural network, the kNN algorithm 
was applied only to the neural network output (Figure 1). For even better results, patches 
containing a car were split in half horizontally to eliminate the rear windshield. This was 
done because testing had shown that reflections from rear windshields and tinted rear 
windshields may have a significant effect on the algorithm output. 

Table 1 shows a summary of the number of images that were used to run and/or develop 
parts of the system. We note that images from one subsystem were not used in other sub-
systems (except for license plate detection and recognition systems). This means that the 
total image set for all subsystems contained 4,220 different images. The (image) dataset 
used did not contain any negative examples or images without a car.

Table 1. Biodiesel yield and comparison of its properties obtained with different catalyst concentration and particle sizes with 
ASTM D6571-02 standard

Subsystem Images total Source(s) Comments

Detecting cars 2100
Open Images Dataset (1,800), on-
line classifieds (200), our original 
webcam recordings of moving cars 
in traffic (100)

1,900 randomly selected training images and 
200 randomly selected testing images

Color classifica-
tion 120 Various online sources 20 images per color (white, black, green, blue, 

orange, and purple)
Car make and 
model classifica-
tion

2000 Online ads
190 random training images per class (1,900 
total) and 10 random testing images per image 
(100 total) 

License plate 
detection and 
recognition

200
Open Images Dataset, online 
classifieds, our original webcam 
recordings of moving cars in traffic

Images used only for algorithm testing (as no 
learning parameters were defined); images from 
the test set for the car detection subsystem

http://st-open.unist.hr
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Table 2. Colab configuration file parameters during YOLOv4-Tiny neural network training
Parameter Value
Batch size 64
Height [pixels] 416
Width [pixels] 416
Maximum batch number 6000
Batch step size (80% and 90% max. batch number) 4800, 5400
Number of classes 1
Number of filters 18
Momentum 0.9
Decay 0.0005
Saturation 1.5
Learning rate 0.00261
Activation functions Leaky ReLU
IoU loss cIoU
NMS (Non-Maximal Suppression) algorithm greedynms
cls_normalizer 1
iou_normalizer 0.07
beta_nms 0.6

Training neural networks 

Neural networks can be trained on a local computer or by using Google Colaboratory 
in the cloud. If using a local computer, the training time largely depends on its proces-
sor. Additionally, only some NVIDIA graphics cards provide Graphics Processing Unit 
(GPU) support. Using Google Colaboratory, therefore, makes learning easier and faster. 
Colaboratory, or “Colab” for short, is a product from Google Research that allows writing 
and running Python code through a web browser. Colab is especially well suited to ma-
chine learning, data analysis, and education. The product does not require any program-
ming environment setup and provides free access to computer resources, especially the 
Tesla K80 graphics card. The major advantages of Colab are thus its ease of use and free 
GPU access [55].

Before initiating neural network training, the configuration file needs to be customized to 
accommodate classes and various learning parameters. Table 2 shows parameter values 
set in the configuration file. The “Batch” parameter defines the number of images sent to 
the network in batch to enable network learning. In addition, Table 2 shows other hy-
perparameters introduced to ensure the repeatability of the experiment. Note that most 
of these were default parameters from the pre-trained network and no algorithms were 
used to optimize them. Consequently, better hyperparameters that would ensure greater 
system performance and accuracy may be available, but their effect on execution speed 
is unclear.

http://st-open.unist.hr
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Due to the simplicity of the YOLOv4-tiny architecture, the “Batch Size” parameter was set 
at 64. As the height and width of images had to be multiples of 32, both were set to 416 pix-
els. This size was a compromise between high-performing detection and training time. For 
better results, height and width parameters would need to be increased, but this would 
also increase training time. The maximum number of batches is calculated using formula 
(1):

This parameter cannot be set to less than 6,000, so all detectors with less than 4 classes set 
this parameter to 6,000. The value for a 5-class detector was 10,000. The next parameter 
was a step, which had two values set to 80% and 90% of the maximum batch value, respec-
tively. This parameter was set to 4,800 and 5,400, respectively, to train a single class. The 
number of classes had to be set to the desired value, in this case 1 because the network was 
trained to detect cars only. The number of filters was set based on formula (2):

(1)

Two files had to be created to train the YOLOv4-tiny detector. The first file contained the 
names of all classes so that there was one class name per line. For car detection purposes, 
this file had a single line because the system was trained to detect only one class. The sec-
ond file defined the number of classes and absolute paths to several files, most importantly 
a backup folder with all required files during neural network learning. The final two files 
required before the start of the training were training and test files with relative paths to 
all training and testing images, generated using a Python script. 

During cloud-based learning, there is a possibility of Colab reporting an error or remain-
ing idle during training. A partially learned model would not be lost even in this case 
because it is saved into the backup directory after every 100 iterations. Learning can then 
resume from the last saved weight file to avoid having to restart a new neural network 
learning process. YOLOv4 uses the Complete Intersection over Union (CIoU) loss function 
that introduces two new concepts. The first concept is the measure of distance between 
the actual center point and the projected center point of the bounding box. The second 
concept is the box ratio: it compares the actual box ratio and the projected box ratio. These 
two concepts measure the quality of the bounding box prediction. After training, a loss 
function diagram can be observed.

Implementing real-time hardware access

The system for automatic detection and classification of cars in traffic was implemented on 
an embedded Raspberry Pi 4 (4GB) computer. The Raspberry Pi is a low-cost, credit-card-
sized computer. It is capable of doing everything a desktop computer can do, from brows-
ing the internet and playing high-definition videos, to making spreadsheets, word-process-
ing, playing games, and programming. Several different models have been developed over 
the years, but the model chosen for the purposes of this study was the Raspberry Pi 4 with 
4GB of RAM. The basic features of the Raspberry Pi are shown in Table 3.

(2)

http://st-open.unist.hr
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Table 3. Technical specifications of the Raspberry Pi 4 (4GB) used in the proposed system
Component Description/Features
Processor 4-core Cortex-A72 (ARM v8) 64-bit 1.5GHz
Random Access Memory (RAM) 4GB LPDDR4-3200 SDRAM
Connectivity 2.4 GHz and 5.0 GHz IEEE 802.11ac wireless, Bluetooth 5.0, BLE

Ports 2 × microHDMI, 2 × USB2.0, 2 × USB3.0, Ethernet, Camera Serial Interface 
(CSI), Display Serial Interface (DSI)

General Purpose Input/Output (GPIO) pins 40-pin header
Storage MicroSD
Power supply USB-C 5V, 3A
Operation system Raspbian OS

Figure 5. The system installed in a car.

http://st-open.unist.hr
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After merging individual subsystems into a single system, the programming portion of 
the work was over and the only thing left was to test the system on the Raspberry. After 
installing all required libraries, the automatic traffic detection and classification system 
was ready for in-car mounting and video testing. 

The automatic traffic detection and classification system was mounted within a car as 
shown in Figure 5. The camera was mounted on the rearview mirror. System speed is a 
key factor in video testing and this system ran at 1 frame per second (1 fps). The system 
speed was acceptable for areas where car speeds were low, such as downtown and near 
traffic lights. The car detection alone took about 0.3 s. Plate detection and recognition took 
about the same time. Car model classification took 0.3 s, whereas color classification was 
quicker and took less than 0.1 s (Figure 6).

Results

Figure 7 shows successful and partially successful examples of system-wide classifica-
tions. More specifically, Figure 7 e) shows a successful detection of a car, car color, and 
model, but not license plate detection, whereas Figure 7 f) shows incorrect car color and 
model classifications.

The selected YOLOv4 single-stage CNN architecture was trained for several hours within 
the Google Colab environment. The achieved training loss function output is shown in 
Figure 8 below. As shown in the figure, losses were reduced with training and converged 
at a given value. The loss function declined rapidly and the value of losses stabilized after 
2,000 iterations. The final loss value was 0.4, indicative of a well-trained detection system. 
This confirmed that the network training time had been sufficient. The code used to obtain 
this result is shown in Appendix 1. 

Figure 9 shows a bounding box around the car and the probability of a car appearing in 
the box (upper left corner of the box in the figure). The probability threshold is a limit 
value used to decide whether the required object was, in fact, detected: if the value is less 
than the default value, the detected object is assumed not to be the required object, so the 
bounding box is not drawn. The threshold value for car detection in this paper was set to 
0.8. This value was determined experimentally and was somewhat more rigorous than 
normal to minimize (eliminate) the number of false-positive detections and ensure the 
normal functioning of other subsystems that work with patches containing detected cars.

Figure 6. Graphical representation of the execution time for each phase of the proposed system as percentages of the 
total time (1 second).

http://st-open.unist.hr
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After successful detection, an image patch containing a detected car had to be cut out and 
sent for further processing and detection. As the cropped image was smaller than the 
input image, there were less data to process, so this approach sped up the entire system. 

Figure 10 shows examples of correct and incorrect car color classifications. Color detect-
ing largely depended on the car detection in the previous step. Precise (narrow) bounding 
boxes around a car necessarily include less surrounding environment and help ensure 
successful color classification. Figure 10, however, shows that even in narrow boxes, there 
was always some background due to the mismatch between the box and car shapes. The 

Figure 7. Examples of the final classification of the proposed system: a), b), c), d) – successful car classifications; e), f) – 
partially successful classifications; (e – no plate detected; f – wrong car model). Consider the detection results for each 
subsystem in the upper right corner of each image.

Figure 8. YOLOv4-tiny neural network learning losses showing its convergence.

http://st-open.unist.hr
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Figure 9. A car detection output using YOLOv4-tiny neural network.

Figure 10. Examples of car color detection: a), b), c), d) show examples of accurate color classifications; e), f) show ex-
amples of poor color classifications. Consider the color detected by the algorithm in the upper left corner of each image.

http://st-open.unist.hr
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figure also shows how the color of the rear windshield can affect the RGB color histogram 
of the whole car.

An example of the license plate detection and recognition subsystem operation is shown 
in Figure 11.

The SSD network was trained for 4 hours, or 8 thousand iterations. The loss function for 
classification was a weighted sigmoid function. The loss function showed a loss reduction 
and convergence with increasing iterations. The final loss value was 0.1 (Figure 12). After 
training, the model was ready to use, but the model first had to be converted to a format 
that can be understood by the Raspberry Pi.

The system for automatic detection and classification of cars in traffic was tested using 
three different datasets. Table 4 shows the test results for 1,000 images used for network 
training. The output percentage shows relatively good network behavior (detection effi-
ciency over 90%), which was the expected result since the output was based on the same 
images that were used for learning (development) in individual subsystems. 

Figure 11. Examples of license plate detection and recognition: a) conversion to black and white image, b) application of 
a two-sided filter, c) detection of edges, d) table.

Table 4. Testing results for different parts of the proposed system using a set of training images (also used for learning)

Total number of imag-
es in the dataset

Number (percentage) 
of successful car 

detections

Number (percentage) 
of successful color 

detections

Number (percentage) 
of successful car 
model detections

Number (percentage) 
of successful plate 

detections
1000 921 (92.1%) 704 (70.4%) 814 (81.4%) 539 (53.9%)

http://st-open.unist.hr
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Figure 12. Single Shot Detector (SSD) neural network losses during learning, showing its convergence.

System performance was then tested using images that the subsystems did not see during 
training (test set), so their significance in terms of the achieved results was somewhat high-
er. The results obtained for 200 such images are shown in Table 5. Readers should note 
that the tables use the accuracy parameter as a representation of system performance (the 
same method was used in similar papers, e.g. [56]), but there are other parameters (such 
as IoU) that may give different insights into the system’s functioning but were not used to 
report results in this paper.

The results shown in Table 5 match similar systems available in the literature, except for 
the percentage of successful license plate detections and recognitions, which was slightly 
lower [57, 58]. Consequently, the following section gives a detailed analysis of the latter. 
To ensure a correct interpretation of this percentage, the following list identifies several 
general parameters that are not related to the used algorithm but affected the presented 
result: the quality of images, license plates for which the system was developed, and re-
sult reporting/interpretation methods. Additionally, a computation simplicity criterion for 
real-time execution (which often involves sacrificing some accuracy) of the system (itself 
being just part of the complex overarching architecture) needs to be taken into account. 

Given that the proposed system analyzed Croatian license plates, it makes sense to com-
pare it directly with systems from literature that work with the same type of license plates. 

Table 5. Test results for different parts of the proposed system outside the training image set

Total number of imag-
es in the dataset

Number (percentage) 
of successful car 

detections

Number (percentage) 
of successful color 

detections

Number (percentage) 
of successful car 
model detections

Number (percentage) 
of successful plate 

detections
200 177 (88.5%) 143 (71.5%) 157 (78.5%) 103 (51.5%)
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Unfortunately, the number of available papers on this subject in the literature is limited 
(e.g. [59-61]), as are the possibilities for comparison. For example, Romić et al. [59] re-
ported the accuracy of “about 80%”, Henry et al. [60] reported the accuracy of 97%, and 
Novosel [61] reported the accuracy of 81.05%. However, for the sake of a correct inter-
pretation of these results and their comparison with the results of our study, it should be 
noted that Romić et al. [59] and Henry et al. [60] used higher-quality images of stationary 
cars, with a constant distance between car and camera. Due to the uniqueness of Croatian 
tables, Henry et al. [60] interpreted the “O” and “0” characters as a single character (i.e., 
wrong character classifications for the pair were not reported). In Novosel [61] a similar 
approach was used which treated not only “O” and “0” but also the “1” and “I” characters 
as equivalent values, as these were impossible to distinguish even by humans at lower 
resolutions. The reported accuracy of 81.05% was obtained by calculating the total num-
ber of characters on all license plates in the images and comparing them with the number 
of incorrectly detected characters. In contrast, this paper reports the results for accurate 
detections of the full license plate (without introducing any character equivalence, such 
as between “O” and “0” or “I” and “1”, respectively). Therefore, even in cases where the 
system accurately detected 7 out of 8 characters on a plate, this was labeled as an incor-
rect classification (in other words, 0% as opposed to the 87.5% accuracy when using the 
result interpretation method as in Novosel [61]). The proposed system did not use the 
more complex approaches seen in Henry et al. [60] and was tested on static and dynamic 
lower-resolution images shot from various angles. Due to all the above, we believe that the 
achieved result of 51.3% was relatively good, but also that there is room for improvement, 
primarily by adding a classification neural network (which would, consequently, require 
more robust hardware).

Finally, the system was tested on a limited set of images that did not contain cars to test 
system behavior in such situations that may arise in real-world applications. The results 
of this testing are shown in Table 6. 

According to the results shown in Table 6, the system behaved appropriately in these sce-
narios and there were no false-positive car detections. Taking into account that the results 
shown in the table were obtained without any negative examples in the training set, their 
inclusion should not be essential in this regard. However, this may affect car detection rate 
(by reducing false-negative examples by lowering the threshold of the YOLO algorithm).

Based on the results presented in Tables 3, 4, and 5, we may conclude the following: A 
YOLO detector was used to detect cars. In tests, the system correctly detected cars in 92.1% 
of cases (on the training set) and 88.5% on the test set. Diminished accuracy on the testing 
set compared to the test set was expected. Since the decline in accuracy was not significant 

Table 6. Testing results for different parts of the proposed system using a set of training images (also used for learning)

Total number of imag-
es in the dataset

Number (percentage) 
of successful car 

detections

Number (percentage) 
of successful color 

detections

Number (percentage) 
of successful car 
model detections

Number (percentage) 
of successful plate 

detections
10 0 (100%)* 0 (100%)* 0 (100%)* 0 (100%)*

* – in this experiment, non-detection of a car/plate/color (since there are no cars in the images) was a successful outcome.
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(and the accuracy was comparable), it may be concluded that there was no overfitting of 
the neural network. Accuracy comparison between parts of the proposed car detection 
system and similar systems from the literature is given in Table 7. The table also provides 
additional data on the images and platforms used in the studies to provide more context 
for the obtained results and their comparison with the proposed system.

Table 7. A comparison between car detection accuracy results and similar systems from the literature
Paper Image database Database size Platform Metrics Metrics value

Novosel [61]
custom; two sites 
on Croatian roads; 
1440x1080; static 

camera
421 images not specified (off-

line) accuracy 94.77%

Ni et al. [62]
custom and avail-

able on search 
engines

5,000 (3,500 
training and 1,500 

testing)

i9-9920X@3.5GHz, 
16GB, GeForce 

RTX2080Ti
average accuracy 92%

Sindhu [63] CCTV camera 
images

1,000 (800 training 
and 200 testing)

Google 
Colaboratory accuracy 53%

Wang et al. [56] KITTI and 
BDD100k

114,999 (100,000 
BDD and 14,999 

KITTI)

Personal comput-
er (unspecified) 
with NVIDIA RTX 

2080Ti

AP70 (KITTI) / 
Accuracy (BDD)

90.5-92.38% / 
69.2-77.6%

Alsanabani et al. 
[64]

from the literature 
(surveillance 

camera footage); 
1920x1080

8,640 (7,200 
training and 1,440 

testing)

Personal comput-
er (unspecified) 
with NVIDIA GTX 

1080Ti
mAP@0.5 38.1%

Tran et al. [65]
AI City 2021 

Track-1 image 
database

2860
Xenon Silver 

4216@2,1GHz, 
16GB, Tesla T4

mAP@0.5 87.7%

proposed system

Open Image with 
Dataset, internet, 
custom recording 
(various resolu-

tions)

2,100 (1,900 
training and 200 

learning)

learning 
with Google 

Colaboratory; run-
ning on Raspberry 

Pi 4B

accuracy 88.5%

For color identification, accuracy was 70.4% because color classification depended on car 
detection. In other words, if a bounding box was outsized relative to the car, it tended to 
include more surroundings, which in turn may affect the color of the image (using RGB 
color histogram). These results are comparable to results for computer vision and ma-
chine learning-based systems available in the literature (excluding neural networks). For 
example, the Support Vector Machine (SVM) approaches used in Lin et al. [66] yielded an 
average accuracy of 68% or 85.75% (for four colors), depending on the approach. The re-
sults were obtained using a dataset containing 832 images, but these were pre-processed 
to contain only specific cars. In Brown [67] a more realistic images were used (a total 
of 168 images split into two datasets) that included some background (due to the shoot-
ing angle, this was always the road). Six colors were classified using several approaches. 
The obtained accuracy results ranged from 71% to 89% for set 1 and 68% to 73% for set 
2, respectively. Finally, Wang et al. [68] used stationary surveillance cameras to collect 
traffic images with more than 42,000 isolated individual vehicles. Images were processed 
using a desktop computer (i7@2.67GHz) and classified according to the 7 most commonly 
used colors. The average accuracy was 88.18%. It is interesting to note that the authors 
also compared their results with six methods from the literature (including a neural net-
work-based system) with the average accuracy ranging from 64.03% to 84.77%.
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Car models and make classification using SSD neural networks yielded the accuracy of 
81.4% and 78.5% on the training and test set, respectively. As was the case for car detec-
tion, a small decrease in accuracy was also observed here, suggesting (in combination with 
the losses in Figure 12) that the neural network learned correctly and that there was no 
overfitting. Visual examples of car make and model detection are shown in Figure 13. To 
provide some context for the results for this subsystem, we will provide a short compari-
son with similar systems from the literature (focusing exclusively on detecting car makes 
and models, not the whole system, as was the case here). In Lee et al. [69], the convolu-
tional neural network used to detect car makes and models had an accuracy of 96.3%. To 
develop the system, a database with 291,602 images (80% training and 20% testing) and 
766 car models (collected during one calendar year) was created using a stationary cam-
era. The system ran on a platform with an i7@2.6GHz processor and GeForce GTX 1080 
graphics card. Interestingly, the results shown in this paper were compared with 7 other 
systems from state-of-the-art literature where the accuracy ranged from 85% to 98.63%.  
Ni and Huttunen [70] also provide a brief literature review but make a distinction between 
make recognition systems (4) and model recognition systems (19). Consequently, the ac-
curacy of car make recognition ranged from 81.3% to 99.6% (for image databases ranging 
from 1,482 to 30,955 images), whereas car model recognition accuracy ranged from 64.3% 
to 98.5% (for image databases containing between 300 and 90,940). Novosel [61] classified 
car makes on Croatian roads by extracting and identifying vehicle logos (based on car 
front view images). The database contained 142 vehicles (with an average logo size of 
20×20 pixels) and achieved an accuracy of 77.46%. Interestingly, the accuracy of commer-
cially available neural network-based solutions [71] ranged from 75% to 95%, depending 
on the database used. The authors included 400 available car makes and 7,000 models, but 
did not specify the images and hardware (video cameras) used for detection. 

Table 8 shows the confusion matrix using 200 test images for car model classification. 
The biggest challenge for this subsystem was posed by the “Others” class as it comprised 
a large number of different car models. Not surprisingly, the results for this class (68.8%) 
had the most significant negative impact on the overall accuracy of the subsystem. To de-
tect license plates, the authors used a method from the OpenCV library (findContours()) to 
find plates in a binary image using contours. The binary image was generated using the 
Canny edge detector. A shortcoming of this approach was that it sometimes detected the 
rear windshield instead of the plate. When recognizing characters on a plate, the charac-
ters may be too small to recognize. The most common errors involved similar characters, 
such as the capital letters “I” and number “1” or conflating the letter “Z” with numbers “2” 
or “7”. Croatian license plates can also contain diacritics, such as the letters “č”, “ć”, “đ”, 
“š”, and “ž”. Detecting diacritical characters on plates was problematic because the glyphs 
are generally poorly done, which makes them hard to recognize even with the naked eye. 
Tesseract was not able to recognize the diacritics because they were connected with the 
letter. In this paper, the total full plate recognition accuracy was 51.5% for tested cases.
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Figure 13. Examples of car model and brand detection:  a), b), c), d) – correct classifications of car models using SSD, e), 
f) – incorrect model classifications. The text in the upper left corner of the detection box shows the detected car make 
and model as well as certainty.

Table 8. A confusion matrix of car model classifications. The numbers in the table are a representation of detections of each 
car model in the test set disaggregated by class
Real class

Clio Scenic Golf Polo 208 BMW 3 Vitara C4 OtherPredicted 
class
Clio 20 - - - - - - - 2

Scenic - 19 - - 1 - 1 1 1
Golf - 1 15 1 - - - - 2
Polo - 1 - 15 1 - - - -
208 - - - - 21 - - 1 -

BMW 3 - - - - 1 19 - - -
Vitara - 3 - - - - 20 - -

C4 - - - - 1 - 1 17 -
Other - 2 - - 1 1 - 1 11
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Discussion

In this paper, we developed an automatic convolutional neural network-based computer 
vision system for the detection and classification of cars in traffic [33]. The system is au-
tonomous and automatically detects cars on the road as well as their makes and models, 
classifies colors of observed objects, and recognizes license plates. 

Preconditions for the proper functioning of the system include having a rear-view image 
of a car and a manageable distance between the camera and the observed car (otherwise, 
the license plate may be too small for reliable detection and character recognition). The 
system was implemented on a Raspberry Pi 4 laptop and mounted on a car’s windshield 
(on the inside) to observe cars in front of the camera. The system provides quick, straight-
forward solutions to enable real-time implementation on a Raspberry Pi. 

Car detection using the YOLO architecture had a total accuracy of 88.5%. This accuracy is 
comparable to the Nero-APNR system, which has an accuracy of 90% [20, 21]. However, the 
Nero-APNR system can operate at higher shooting speeds and higher car speeds with up to 
10 simultaneous detections. It is unknown whether it can classify car models and makes 
as well as colors, which we believe is a strength of our system, as it facilitates the detection 
of irregular (e.g., stolen) license plates mounted on cars which can potentially deceive 
standard license plate recognition systems (such as Nero-APNR). The proposed system can 
achieve all of the above with a much simpler setup and at a fraction of the cost [20, 21]. The 
proposed system classifies color and model and detects license plates only in a patch con-
taining a detected car, as opposed to the whole image. Consequently, these steps depend 
in part on the car detection phase. Car detection accuracy has the greatest repercussions 
for color classification. More precisely, the potential for incorrect car color classification 
increases when the bounding box contains a lot of surrounding environments. The SSD 
detector used for car model and make classification achieved a 78.5% accuracy. The final 
task was detecting and recognizing characters on license plates. A plate was detected using 
various filters to find contours. This was a complex task due to blur in images of moving 
cars as well as Tesseract’s struggle with recognizing characters at greater distances. Rainy, 
foggy, and night conditions on the road significantly affect the performance of the system 
because they degrade the quality of images recorded by the camera [11-13]. Additionally, 
cars or their parts (e.g. license plates) can be dirty even in favorable weather conditions, 
which may pose a challenge for some of the proposed subsystems. The system has not 
been tested in these and similar situations, which is a limitation of the present study. 

The system was set up on a Raspberry Pi 4 which can process one frame per second (1 fps) 
from the available real-time video feed. This system speed was sufficient as there were no 
quick vehicle changes in front of the camera. Higher system speeds may be achieved by 
replacing the Raspberry Pi computer with a Jetson Nano, as its GPU would significantly 
speed up the overall system [72]. Although conducted in similar, but not identical settings 
(hardware + algorithms), a benchmark comparison between the speed of the Tiny YOLO 
v3 algorithm running on a Raspberry Pi 3 and a Jetson Nano computer confirmed this 
assumption [73]. More specifically, on a Raspberry Pi computer, this algorithm ran at 0.5 
fps, while the Jetson Nano ran at 25 fps [73], which is a 50-fold acceleration. Car detection 
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using the YOLO architecture yielded good results in the proposed system, but other neu-
ral network-based architectures may also be used to achieve higher accuracy, albeit this 
would slow down the system. The replacement would also improve color classification 
results. Lastly, another potential area for improvement is replacing the OpenCV-based li-
cense plate detection method with a detector (e.g. a neural network-based system [74]) to 
ensure greater accuracy and better handle more realistic operating conditions, such as a 
partially dirty license plate. Naturally, the existing plate detection and recognition meth-
ods may also be improved and extended by adding image processing algorithms, such as 
morphological operations to extract plate contours.

Based on the above, it may be concluded that the proposed system works very well in 
realistic, although idealized conditions, but it has not been tested in more challenging sce-
narios that may occur in routine use in traffic (e.g., rain, direct light, etc.). Therefore, such 
scenarios need to be included in the testing image set to further develop and improve the 
system in accordance with the obtained results and observed shortcomings. Currently, the 
system’s major shortcomings have to do with plate detection and recognition, especially at 
higher speeds, which additionally highlights the need to increase the low processing speed 
of 1 frame per second. However, the promising accuracy and low cost of this automatic 
system for the detection and classification of cars in traffic laid the foundations for its 
continuing development, including the development of a neural network for license plate 
recognition. With some minor modifications, the system could also be used in car parks 
for automatic ticket payment, mounted on traffic light control systems, as well as in other 
similar applications. 
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