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ABSTRACT

Ubiquitous usage of cameras and LEDs in modern road and aerial vehicles open up end-

less opportunities for novel applications in intelligent machine navigation, communication,

and networking. To this end, in this thesis work, we hypothesize the benefit of dual-mode

usage of vehicular built-in cameras through novel machine perception capabilities combined

with optical camera communication (OCC). Current key conception of understanding a line-

of-sight (LOS) scenery is from the aspect of object, event, and road situation detection.

However, the idea of blending the non-line-of-sight (NLOS) information with the LOS infor-

mation to achieve a see-through vision virtually is new. This improves the assistive driving

performance by enabling a machine to see beyond occlusion. Another aspect of OCC in

the vehicular setup is to understand the nature of mobility and its impact on the optical

communication channel quality. The research questions gathered from both the car-car mo-

bility modelling, and evaluating a working setup of OCC communication channel can also

be inherited to aerial vehicular situations like drone-drone OCC. The aim of this thesis is

to answer the research questions along these new application domains, particularly, (i) how

to enable a virtual see-through perception in the car assisting system that alerts the human

driver about the visible and invisible critical driving events to help drive more safely, (ii) how

transmitter-receiver cars behaves while in the mobility and the overall channel performance

of OCC in motion modality, (iii) how to help rescue lost Unmanned Aerial Vehicles (UAVs)

through coordinated localization with fusion of OCC and WiFi, (iv) how to model and sim-

ulate an in-field drone swarm operation experience to design and validate UAV coordinated

localization for group of positioning distressed drones. In this regard, in this thesis, we

present the end-to-end system design, proposed novel algorithms to solve the challenges in

applying such a system, and evaluation results through experimentation and/or simulation.



INDEX WORDS: NLOS Perception, See-through-a-vehicle, LED-Camera Communica-
tion, Vehicular Motion Modelling, Drone-Drone localization, Drone aided localization, Drone
positioning modelling and simulation, Vehicular VLC.
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CHAPTER 1

INTRODUCTION

Multiple lenses in a stereo camera allows the camera to simulate human binocular vision

and therefore gives it the ability to perceive depth along with the horizontal and vertical

dimensions. Moreover, in the Optical Camera Communication (OCC) using demodulation

techniques a camera image sensor is capable of receiving optical signal from optical transmit-

ting sources (i.e., Light Emitting Diode). The dual usage of stereo camera simultaneously

as a depth scene viewer and as a data receiver creates remarkable opportunities for research

in the vehicular optical stereo camera communication field. Many challenging areas like

vehicle localization, road environment perception, driving safety-critical event recommenda-

tion, etc., are being enriched by the community researcher leading to partial/full automated

driving.

For a vehicle understanding the surrounding and communicating the perceived informa-

tion to neighboring vehicles in the native V2V network is one of the key components in

partially/fully automated navigation system in the current time. However, a successful im-

plementation of scene perception, and information transmission is challenged by factors like,

smart machine vision, mobility, high data-rate, spectrum scarcity, transmission collision,

timely-responses (time critical), and so on. We implement an intelligent scene perception

component, and low data-rate communication using LEDs as transmitter and the duality of

stereo camera as optical signal receiver and scene perceiver. We also model the motion and

the movement behaviour of transmitting vehicle relative to the receiving vehicle in car-car
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OCC setup. We further argue that, aerial vehicular (drones) area has many overlapped

struggles with the road vehicles. The on-board cameras and light sources already available

in drones can be used to find solutions to critical problems like short-range, and long-range

lost drone rescue mission by leveraging OCC.

The NLOS perception enables a machine to see beyond occlusion. In our research we

present the design, implementation, and evaluation of non-line-of-sight (NLOS) perception

to achieve a virtual see-through functionality for road vehicles. In this system, a safety

event, such as pedestrian crossing or traffic light status or vehicle merge, that are occluded

to a driver due to another vehicle on the driving lane, are perceived and communicated by

the occluding vehicle’s LED transmitters. In our prototype implementation each vehicle is

equipped with a camera, placed on the dashboard, that perceives the scene in a drivers view.

This scene is analyzed and mapped into specific warning codes that are specific to a safety

event, and communicated as short packets using visible light communication. We extend

our base system implementation of NLOS further, to design and validate a multiple access

setup with single receiver vehicle and multiple transmitter vehicles. We position the design

and use-cases of a cognitive information processing model pipeline for driving assistance that

generates spontaneous safety alerts by understanding and prioritizing surrounding LOS and

NLOS information from multiple transmitting vehicles. We designed a gist recognition algo-

rithm comprising of prediction-attention concepts. We narrate our NLOS perception story

in the chapter 2. As our research focuses the OCC and its application in the vehicles, we put

an effort to characterize the motion modality of road vehicles in OCC. The amount of motion
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of vehicles in real world vehicular OCC use–case scenarios has not been explored prior. In

this work we present a mobility characterization study through extensive experiments in real

world driving scenarios. We characterize motion using a constantly illuminated transmitter

on a lead vehicle and a multi–camera setup on a following vehicle. The observations from our

experiments reveal key insights on the degree of relative motion of a vehicle along its spa-

tial axis and different vehicular motion behaviors. We take a further step ahead and build

a ground truth enabled depth estimating stereo camera. Our receiver camera’s hardware

setup is integrated with the RaspberryPi module and controlled remotely through secure

shell (SSH) and to operate (capture image and video) synchronously. A single channel 25

meters range radius, and 16000 samples per second enabled LIDAR is used for ground truth

distance measurements. The details of our motion characterization work in imprinted in the

chapter 3. Next, we invest our acquired knowledge of scene perception, intelligent driving

recommendation generation, and motion characterization from the road-vehicle OCC to the

aerial vehicles.

We propose an alternative solution to GPS redundancy for multi drone systems. We pro-

pose a design where drones with no GPS or non-functional GPS units are able to receive help

to localize themselves coordinated by a helper drone with a functional GPS/location sensing

unit. The key concept of our methods is a helper drone (HD) tracks nearby GPS distressed

drones (DD), and then estimates the relative position of the distress drone – by estimating

the distance and bearing angle. In our preliminary baseline, we implemented and prototyped

an ACK based P2P WiFi communication to conduct inter-drone data transfer between two
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drones. Next, in our P2PDroneLoc work, we evaluate two fundamental approaches for range

estimation for peer-to-peer relative positioning between drones: (a) camera and computer

vision projection theory, and (b) WiFi Fine Time Measurements (FTM). Next, through

design and implementation of the drone swarm localization model we complete our drone

localization endeavor. Moreover, we design model simulations using parameter sweeping

with control parameters like average localization error, swarm of DDs. We present an in-

depth validation of our previously innovated (i) camera localization, (ii) WiFi localization

methods. Through simulated experiment we manifested that our drone swarm localization

simulation results are in harmony with the in-field camera and WiFi experiment results.

Our Model allows to curate a real-life coordinated drone swarm localization environment

setup, provides flexibility to design several simulations with parameter sweeping for signifi-

cant control parameters like any real-world drone swarm setup would require and leverage.

We confirm through our result evaluation that our innovative drone coordinated camera

and WiFi localization protocols are not only universally usable, also establish a pioneering

research opportunity in the drone localization, to be discussed in chapter 4.

Thesis Statement: Stereo camera perception can be used to establish non-line-of-sight

perception and bandwidth-efficient data transmission in road and aerial vehicular communi-

cations through vehicular localization and motion modeling, intelligent scene understanding,

and relaying the inferred scene information to the neighboring vehicles in the network.
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1.1 Part A: Car-Car Stereo Camera Communication

1.1.1 Part A1: Non-Line-Of-Sight (NLOS) Perception

The ability to perceive safety-critical events by virtually seeing through vehicles and other

obstructions on the road can be a very useful driving assistance feature for vehicles. We

first hypothesise that such a feature can be achieved by vehicles driving ahead proactively

communicate information about the visual scenery they perceive using dashboard cameras.

Considering brake-light light emitting diode (LED) to camera communication as the enabler,

we present the design, implementation, and evaluation of a physical prototype of non-line-

of-sight (NLOS) perception to achieve a virtual see-through functionality for road vehicles

in the single access setting titled See-through a Vehicle (2).

In this See-through a Vehicle system, a safety event, such as pedestrian crossing or traffic

light status or vehicle merge, that are occluded to a driver due to another vehicle on the

driving lane, are perceived and communicated by the occluding vehicle. Each vehicle is

equipped with a camera, placed on the dashboard, that perceives the scene in a drivers

view. This scene is analyzed and mapped into specific warning codes that are specific to

a safety event, and communicated as short packets using visible light communication. The

camera in the following vehicle captures this information and generates a recommendation

for safety action to the driver by comparing the warning from the packet and from its own

scene perception. Through experimental evaluations of a proof-of-concept implementation,

we show that our system is able to achieve up to 90% accuracy in identifying nine occluded

safety events, which correspond to traffic light statuses (red, green, yellow), other vehicles’
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lane change behaviors (merge/leave lane left/right), and pedestrian detection. We also made

our dataset (3) publicly available with an intention of serving the community.

We further extend the virtual see through functionally implementation for multiple access

setting with single receiver and multiple transmitters. In this paper, we position an infor-

mation processing pipeline for predicting the non-line-of-sight safety event. In particular,

we present the algorithmic design of the cognitive information processing system that will

continuously warn the host driver about the line-of-sight and non-line-sight road situations.

This system hosts a (i) prediction-attention module that inherits the concept of gist recog-

nition by linking position and interactions between individual road objects from a sequence

of locally perceived camera scene data, and a (ii) decision-making module that makes an

informed decision to choose the ultimate safety event by prioritising among the chosen LOS

event and received non-line-of-sight (NLOS) events from neighbouring vehicles. We position

the use-case of our proposed information processing pipeline through a case-study analysis

for three real-world driving scenarios.

1.1.2 Part A2: Car motion analysis

The mobility of the vehicles presents a fundamental impediment for high throughput and

link sustenance in vehicular Optical Camera Communication(OCC). While prior work has

explored vehicular OCC system design, yet, there is no clear understanding on the amount of

motion of vehicles in real world vehicular OCC use–case scenarios. To address this knowledge

gap, we present a mobility characterization study (1) through extensive experiments in real

world driving scenarios. We characterize motion using a constantly illuminated transmitter
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on a lead vehicle and multi–camera setup on a following vehicle. The observations from our

experiments reveal key insights on the degree of (relative) motion of a vehicle in each of its

3D axis and the different vehicular motion behaviors. The motion characterization from this

work lays a stepping stone to addressing mobility in vehicular VLC through sophisticated

tracking and link sustenance protocols.

We further enrich our motion characterization (1) prototype in the next project where we

built a receiver stereo camera setup with two RaspberryPis and the corresponding analysis of

the depth (distance between vehicles) related information. This new stereo camera receiver

setup features two RaspberryPi cameras. The cameras, integrated with the RaspberryPi

module, were controlled remotely through secure shell (SSH) and to operate (capture image

and video) synchronously. A SLAMTEC Rplidar A3 is embedded in the custom built camera

for ground truth distance measurements, which is a single channel, 25 meters range radius,

16000 samples per second enabled LIDAR. Considering cameras as our measuring unit at

the receiver, we denote the horizontal (X dimension: δu) and vertical (Y dimension: δv)

motion parameters in pixel units (1). Additionally, the motion along the Z dimension, or

depth, is measured as the spatial separation of the transmitter and receiver cars at a given

time snapshot, which is equivalent to the estimating the distance between the two vehicles

at each time instance through stereo depth estimation. Overall, we collected measurements

worth of about 12000 image frames and over 10000 sensor data samples. The motion model

are derived from this measurement dataset by using tools from computer vision, probability

and statistical error analysis.
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1.2 Part B: Drone Coordinated Localization

In our above mentioned works in Part A 1.1 we have already implemented single and multiple

access vehicular optical stereo camera communication channel, intelligent packet communi-

cation mechanism for NLOS perception to help communicate vehicles with each other. While

setting up the OCC channel we addressed fundamental challenges affixed with such a line-

of-sight wireless communication modality when mobility comes into the scene. Now that,

we have the understanding of motion modality and communication intricacies we apply it

in the aerial communication, particularly in UAV communication. In this work we design,

implement, and evaluate a drone assisted coordinated localization system to help navigate

remotely operating Global Positioning System (GPS) denied drones. Without any require-

ments of a base station or a central entity, in this system, a GPS enabled helper drone offers

localization help to low functionality distress drones. We divide our entire project blueprint

into two phases, (i) Peer-to-Peer Localization for GPS-Denied Drones (ii) Modelling and

Simulation of Drone Swarm Localization.

1.2.1 Part B1: Peer-to-Peer Localization using camera and WiFi FTM

In the localization phase, we propose a solution to achieve coordinated localization between

two unmanned aerial vehicles (UAVs) using radio and camera based optical wireless commu-

nication. We propose to achieve the localization between the UAVs to address the problem

of UAV GPS failure or its unavailability. Our proposed approach allows one UAV with

a functional global positioning system (GPS) unit to coordinate the localization of another
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UAV with a compromised or missing GPS system. Our solution for localization uses a sensor

fusion and coordinated wireless communication approach. In this work, helper drone when

discovers a distressed drone flying in proximity, estimates the distress drone’s absolute GPS

location information respective to its own location. This is performed by computing the

relative position of the distress drone with the helper drone. The estimated location is then

communicated to the distress drone. In this paper, we evaluate two fundamental approaches

for range estimation for peer-to-peer relative positioning between drones: (a) camera and

computer vision projection theory, and (b) WiFi Fine Time Measurements (FTM). We en-

vision that a helper drone equips a camera and a WiFi FTM access point (AP), while a

distress drone equips only a WiFi FTM AP. We evaluate our proposed peer-to-peer localiza-

tion via accuracy across three estimated measures: (i) range or distance between the drones,

(ii) GPS bearing (angle), and (iii) GPS location (coordinates). Based on our analysis of our

dataset consisting of outdoor static and flying drones setup, our methods result in a median

localization accuracy within 1-4m.

1.2.2 Part B2: Modelling and Simulation of Drone Swarm Localization

We also model and simulate drone swarm localization with several distressed drones to

evaluate our camera and WiFi FTM localization methods. The drone swarm modelling

allows us to conserve the inherent nature of random motion and interactions of the real-

world in-field experimentation while measuring the average localization error, and average

execution time in the presence of an increased number of distressed drones. We conducted

up to 160 simulations for 8 different parameter combinations. The simulation results attest
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our in-field experimental localization error ranges, and give us a holistic idea of the end-end

operation-conduct timing for different number of drone participants.
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CHAPTER 2

NON-LINE OF SIGHT PERCEPTION: ACHIEVING VIRTUAL
SEE-THROUGH ABILITY IN VEHICLES USING INTELLIGENT

PERCEPTION AND OPTICAL CAMERA COMMUNICATION IN BOTH
SINGLE AND MULTIPLE ACCESS

It is well documented that distracted driving (4) and reckless driving (5) are the major

causes of road accidents and fatalities, and such situations are largely attributed to the

specific activities of a driver (e.g. looking at a phone or over-speeding). In addition to

the typical causes of accidents due to driver distraction, the possibility of accidents due to

obstructions on the driving path or roadway cannot be ignored. In fact, according to a

national motor vehicle crash causation survey (6) conducted by the US National Highway

Traffic Safety Administration (NHTSA), obstruction to the driver accounts for about 36%

of the vehicle crashes – among 5471 crashes recorded over 3 years from 2005-2008. One of

the key reasons for these obstructions are the other vehicles in vicinity. Obstructions and

occlusions due to other vehicles on the road result in the lack of information about any

activity on the driving path beyond the field of view (FOV) of the driver. Thus, when the

driver is confronted with an emergency scenario, due to the lack of information about what

is to come ahead and the extremely short time to react, the situation leads to an accident.

To address the safety-critical scenarios created due to roadway obstructions, in this work,

we position the idea of extending the driver’s perception of the scene beyond line-of-sight

(LOS), or non-line-of-sight (NLOS) perception. The key notion is to provide a virtual

see-through ability to perceive the scenarios beyond LOS within the driver’s FOV. In this

way, the driver is always informed of what event/scenario may be coming ahead, and provide
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Figure 2.1: A conceptual diagram of the proposed non-line-of-sight (NLOS) perception sys-
tem on vehicles using computer vision perception and LED-Camera communication.

sufficient time to plan a course of action to confront those events or scenarios.

2.1 See-through a Vehicle: Augmenting Road Safety Information

To realize NLOS perception in practice, in this paper, we propose a novel technique that

leverages the advancements in state-of-the-art deep neural networks (DNN), computer vision

and visible light camera communication. The proposed technique involves communicating

the information about the occluded scene to the driver’s vehicle by the occluding vehicle

itself. In this regard, we design, implement and evaluate a vehicular NLOS perception

system that uses off-the-shelf cameras to perceive the occluded scene and communicate that

information to the driver’s vehicle using camera (optical wireless) communication. The key

idea is to generate a highly compressed and abstracted information from (camera) scene

analysis, and communicate that information from one vehicle to another using a line-of-

sight link. By intelligently combining or fusing this information with the vehicle’s own

camera scene analysis, each vehicle will be able to intelligently infer and generate appropriate

driving/safety recommendations to the driver/vehicle.

As illustrated in Fig. 2.1, the proposed approach realizes NLOS perception using scene
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perception from a stereo-camera fit onto the front of every vehicle and doubling the brake-

light light emitting diodes (LED) of the vehicle as a visible light communication (VLC)

transmitter. The scene analysis generated from the stereo-camera perception is transmitted

by the brake-light light emitting diodes (LED) by modulating the information bits on to

its optical intensity (IM or intensity modulation). The camera on the (receiver) vehicle

driving behind captures the optically modulated information from the LEDs in its image

pixels, along with the other scenery in camera view. The information gathered from the

decoded VLC packets and the scene perception analysis from the receiver vehicle’s camera

are logically fused to generate relevant safety recommendations for the driver/vehicle.

The Augmented Vehicular Reality (AVR) work from Qiu et al. (7) takes an engineering

approach by augmenting the scene beyond the driver’s field-of-view to the driver’s vision.

This is achieved by communicating a compressed version of a camera image point-clouds (8)

from the occluding vehicle and merging with those from the driver’s vehicle camera. The key

limitation of this approach is the requirement of a high-bandwidth link, such as a 60GHz

(millimeter wave or mmWave) channel, between the transmitting and receiving vehicles

to communicate the point-clouds, which are computationally expensive to generate. The

system is highly error-prone as point-clouds are generated using a dense set of features from

the scene and thus the robustness of the method relies on high feature extraction fidelity

which is highly scene dependent. In addition, AVR provides only a visual augmentation

of the occluded scene with no further information (e.g. warning) about the information

perceived from the scene.
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2.1.1 Novel Contributions

The key novelties of the proposed approach are: (i) intelligent information abstraction from

scene analysis to communicate safety-critical data, (ii) dual usage of a camera for scene

registration as well as an optical communication reception device, and (iii) achieving vehicle-

to-vehicle (V2V) communication of safety information through a low data-rate link.

In summary, the contributions of this paper are:

1. Design of a novel architecture that uses DNN, computer vision and camera communication

for achieving non-line-of-sight (NLOS) perception.

2. Implementation of a robust DNN model using transfer learning for vehicle brake-light

detection and an annotated brake-light dataset (publicly available);

3. Design of a novel intelligent packet communication mechanism for NLOS perception that

fuses camera scene perception with camera communication information;

4. Implementation of an trace based real-time functioning prototype of safety event identi-

fication under NLOS perception using off-the-shelf components;

5. Experimental evaluation of the prototype system in controlled and real-world settings.

The rest of the sections in the paper are organized as follows: Section 3.1.2 discusses

related work, Section 2.1.3 presents an overview of the NLOS perception system architec-

ture, Section 2.1.4 discusses scene perception module, Section 2.1.5 discusses the intelligent

information mapping module, Section 2.1.6 discusses LED-Camera communication and the

recommendation generation modules, Section 2.1.7 discusses prototype implementation, Sec-

tion 4.1.6 discusses the evaluations and Section 4.1.7 concludes the paper.
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2.1.2 Related Work

Vehicular Camera Communication. The fundamental idea of camera communication (9)

is to use off-the-shelf camera devices as communication receivers for information that is en-

coded, as digital pulses, in light beams emitted from light emitting diodes (LED). The

concept of camera communication has caught significant attention in the intelligent vehic-

ular networking, transportation systems and autonomous driving communities (10; 11; 12).

Cameras as receivers for optical communication in vehicles (13; 14; 15; 16) are attractive,

as they can enable multiplexing information from multiple LED transmitters (or vehicles)

and use of computer vision object tracking mechanisms. In (17; 18), the authors design a

custom CMOS image sensor to detect LED transmitter efficiently by using a visual marker

and also for optimized for high data rate reception (upto 54Mbps). In (19), the authors use

the rolling-shutter phenomenon of CMOS image sensors to improve data rates and propose

a new modulation scheme to address ambient noise and interference. The fundamental limi-

tations of prior work in vehicular camera communications is that the design is either limited

to short ranges, low data rates and cannot work under mobile conditions or that they are

highly customized for better reception, which means the camera cannot be used for other

applications. In addition, no prior work in camera communication has used the concept for

realizing NLOS perception in vehicles.

Safety information communication using V2V and V2I. Recent works have proposed

designs and also demonstrated prototypes of using visible light communication (VLC) for

V2V and V2I, that use camera receivers (20; 21). While (20) uses the optical communication
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link as a replacement for rear-view mirrors, (21) enables traffic light to vehicle communi-

cation upto 70m range using camera communication. The V2V VLC system designed in

(22) uses OFDM techniques for noise mitigation in the photodiode receiver and has been

tested on a real roadway delivering a range of 45 meters. Recent works (23; 24; 25) have also

explored the use of traffic light LEDs to communicate traffic and vehicular positioning infor-

mation, as proxies of safety information, to optical receivers on vehicles. The challenge with

the use of these systems for NLOS perception is that they are dependent on specific infras-

tructure requirements (transmitter on traffic light only), do not address mobility (tracking

with photodiodes is challenging), and that the systems do not account for the contextual-

izing the scene/safety events (VLC is the communication mode, however, generation and

identification of dangerous events/safety warnings is key).

Vehicular scene perception and behavior detection. Over the past few years, com-

puter vision based analysis has been investigated in vehicular networks to estimate vehicle’s

position, pose, distance and also to detect lane, traffic signals or pedestrians on the road

(26; 27; 28; 29; 30). The insights and developments from these systems provide a basis for

the proposed scene perception in our work, however, these existing works do not address the

NLOS perception issue in its entirety.

2.1.3 System Architecture

We design a system for achieving NLOS perception in vehicles based on the fundamental idea

of identifying safety critical events from visual scene perception, converting it into digital

information and communicating it to other vehicles in vicinity. The system uses computer
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Figure 2.2: Illustration of the proposed NLOS perception system architecture. In this ex-
ample, car C1 communicates to C2 informing of an event in the NLOS region ahead of C1,
and car C2 communicates to C3 informing of an event in the NLOS region ahead of C2. In
this example, the most critical event ahead of C2 is the status or behavior of C1, which is
originally invisible to C3 due to occlusion by C2.

vision perception analysis to infer the safety critical event by analyzing the (camera) real-

time footage. An information mapping unit maps the inference into warnings and digitally

encodes into short data packets. The data packets which carry the safety warning along

with a temporary unique ID (pertaining to the vehicle) is communicated to the immediately

following vehicles on the road using LED-camera communication. The vehicle receiving these

packets fuses the safety warning information along with the scene report from the perception

analysis, to recommend an action to safety for the vehicle.

Our NLOS perception system design treats each vehicle as a transceiver; equipped with

both, an LED (optical) transmitter that is used to communicate the packets, and a camera
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Figure 2.3: An example execution of our NLOS perception system. In this example, the
TRAFFIC LIGHT IS RED event or warning is perceived by C2 with the help of C1, and
the FRONT CAR’S BRAKE LIGHT IS ON (vehicle is slowing down/stopping) event is
perceived by C3 with the help of C2.

receiver to decode packets and conduct scene analysis. This way, the information perceived

by a vehicle can be communicated to the vehicle following behind, which can further fuse

the collective information within its local context and communicate to its following vehicle,

and so on. This transceiver based system design approach enables to build a pipeline for

information transmission across a series of vehicles on the road, thus, creating opportunities

for multi-hop and relay communications across vehicles.

The proposed design assumes that each vehicle is, or can be, equipped with a stereo-

camera, LED emitter, and graphical processing unit (GPU) embedded controller. We posit
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that this assumption is well justified considering the latest advancements in vehicles. Cam-

eras, especially, stereo-cameras (also referred to as depth or 3D cameras as they can capture

distance between the object and camera, along with the pixel intensities in x-y on the 2D

image), are increasingly being integrated in vehicles to provide advanced driver assistance

(ADAS), lane change monitoring, parking assistance, and for autonomous driving capabil-

ities. Vehicles already equip three forms of LED emitters; headlight, tail lights and brake

lights. Vehicle brake lights function like any other off-the-shelf LED, and thus can be used

(in addition to illumination) as an intelligent visible light transmitter. Vehicles are also in-

creasingly being equipped with more sensing and computing capabilities, and use of GPUs

are becoming more common than ever in vehicular electronic control and computing units.

Our proposed NLOS perception system for vehicles includes four key components de-

signed as modules with specific goals. These modules are further divided into sub-modules

that have delineated functionalities:

Scene Perception. [Goals: Conduct visual scene perception to detect key markers on

the road, vehicles, pedestrians, and localize the LED transmitter.] This module involves

performing object detection and scene analysis. The object detector locates vehicles, pedes-

trians, and traffic lights. The scene analysis uses the object detection information to create

a scene report summarizing the traffic light status, vehicle lane change status and pedestrian

presence status.

Intelligent information mapping: [Goals: Convert the visual scene perception inferences

into information that captures vital information about the event that is being occluded to
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the driver.] This module hosts a warning mapper to compress the scene report by mapping

the information into specific pre-defined road safety warnings. The warning is encoded into

bits along with specific identity information bits padded into a packet using the packetization

sub-module. Each packet contains one high priority warning which is decided based on a

dynamic prioritization scheme by the warning prioritizer sub-module.

LED-Camera communication: [Goals: Transmit the information to the vehicle following

behind, and Receive the information from the front vehicle.] This module integrates two sub-

modules: transmission and reception. The transmission module converts or modulates the

bits from the data packets into the HIGH/LOW or ON/OFF status of the LED emitter(s).

The reception module hosts a LED emitter localization mechanism that performs brake

light LED detection and uses that as a reference to locate any other LED emitters on

the vehicle. The LED localization output gets updated into the scene report. Next, it

conducts demodulation of bits encoded as LED ON/OFF status by processing the LED

emitter localized regions on the camera image. The reception module also hosts functionality

to decode information from the stream of demodulated bits.

Recommendation generation: [Goals: Generate appropriate recommendations to the

driver/vehicle.] This module fuses the information decoded from the packet with the infor-

mation from the intelligent information mapper module to generate an appropriate recom-

mendation to the vehicle/driver.

We use the visual illustration and example in Fig 2.2 to describe how the bespoke modules

function together in our proposed NLOS perception system. The example scenario in Fig. 2.2
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considers cars C1, C2 and C3 driving on a single lane, one behind the other. The region

beyond C1 is being occluded to C2, and the events related to C1 are being occluded to C3

(by C2). The goal of our system is to ensure C2 is informed of the events happening in

the occluded region in front of C1, and C3 has to be informed about the events regarding

C1. We will consider that all the three cars are equipped with our NLOS perception system,

including the hardware components (stereo-camera, LED emitter and GPU computing unit).

Let us understand the NLOS perception system cycle from the perception of its execu-

tion in car C2: the scene perception module in C2 detects vehicles, road signs, traffic

lights and pedestrians, and generates a scene report. The scene report is converted into a

short packet by the intelligent information mapping module. This is done by mapping

the scene report information into predefined warnings related to the event in front of the

car; in this case, the event is the status/behavior of C1. The LED-Camera communi-

cation receiver module of C2 first detects the brake lights of the detected vehicles. In

the case where the brake light is not used as the transmitter, the module uses the brake

light location as a reference and performs a geometrical localization mechanism to locate the

custom LED transmitter. The receiver, then, processes the pixelated region of the localized

C1’s LED emitter to decode the information transmitted from C1. The packet transmission

using the LED is achieved by the LED-Camera communication transmitter module,

where, the bits are modulated as intensity variations of the LED emitter using HIGH/LOW

or ON/OFF keying (OOK), and transmitted at a specified transmission frequency (rate).

The recommendation generation module in C2 intelligently combines or fuses the infor-
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mation from its scene report with that from C1’s packet, to generate an appropriate safety

recommendation to C2. The scene report from C2 is further passed through its intelligent

information mapping and LED-camera communication transmitter modules to communicate

the information about C1’s status to C3, which further executes the NLOS perception cycle

to retrieve information and further relay the same. An example of the system’s functionality

for a RED traffic light warning use–case is illustrated in Fig. 2.3.

2.1.4 Scene Perception

The scene perception module creates a holistic understanding of the scene, viewed by the

stereo-camera, by detecting key markers and analyzing activity on the road. In particular,

this module focuses on detecting the traffic light, road lanes, and pedestrians. It uses the

detection outputs and the distance estimate from the stereo-camera, to analyze specific

states and activity, including, traffic light states (RED, YELLOW or GREEN), lane-change

behavior of front vehicle, and proximity of the pedestrian to the vehicle. We describe the

object detection and scene analysis functions of this module in detail in the rest of this

section.

2.1.4.1 Object Detection

We leverage the state-of-the-art open-source implementations in computer vision object de-

tection to detect vehicles, traffic lights and pedestrians. We choose the YOLOv3 (version

3) (31) for this task as it comes packaged with pre-trained DNN models (32; 33) that can

help detect our target ‘objects’ on the road with high accuracy and in real-time. YOLOv3
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DNN Model Processing speed [FPS] Accuracy
Mobile Net 3.57 95.7
Faster RCNN 1.2 96
YOLOv3 7.5 98
Tiny YOLO 15 96.2

Table 2.1: Test-bench comparison of existing DNN object detection models for mobile de-
vices, on a personal computer with a NVIDIA GeForce GTX1060 GPU. The accuracy and
processing speed (in frames per second) are based on our evaluation dataset size of 1000
images.

trained in COCO dataset (34) detects 80 classes. In this work we leverage the vehicular,

pedestrian detection, and traffic lights classes.

Given that the YOLOv3 platform yields best accuracy, comparable to other high accuracy

mobile DNN models (35; 36), we confirmed our choice for the object detection framework

based on a test-bench evaluation of the computation time for the models. We represent

the computation time as a function of the effective frames processed per second metric in

Table 2.1 for MobileNet (37), Faster RCNN (38), YOLOv3 and Tiny YOLO (31). Note

that Tiny YOLO is a lighter version of YOLOv3 aimed at computation resource constrained

devices such as internet-of-things (IoT), smartphones, Arduino and Raspberry Pi devices,

and trade-offs with the accuracy achievable by the full YOLOv3 model for specific type

of objects. Overall, we choose YOLOV3 as we clearly observe that YOLOv3 has the best

accuracy and with reasonable computation speed.

2.1.4.2 Scene Analysis

The scene analysis function aims to retrieve a perceptive understanding of the states and

activities related to the specific objects detected in the road scene. This function creates

a scene report of the holistic scene perception that is used by the intelligent information
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Figure 2.4: Depiction of the nine safety warning considered.

mapping module (section 2.1.5) to map with specific safety warnings that can be inferred

from the scene.

Our system focuses on mapping safety warnings based on the inferences generated from

nine road scene states and activities that are derived by the scene analyzer. As illustrated

in Fig. 2.4, the nine safety warnings relate to traffic light status (# 3,5,7), pedestrian cross-

ing/not crossing the road (# 9), front-vehicle brake light status (# 1), vehicle(s) in front

view merges from left/right lanes (# 15,17), front-vehicle changing to left/right lane (#

11,13). We now discuss how these warnings are perceived by the scene analyzer.

Traffic Light Status (warnings # 3,5,7) The traffic light detection output from YOLOv3

provides the segmented localization of the lights on the image region. We use the masking
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Figure 2.5: Traffic Light Analysis

process to detect the status of the traffic lights; if it is RED, YELLOW or GREEN. A

mask, in computer vision, is a color range specification that is applied as any regular filter

to the image. The mask flags and isolates all pixels in the selected region with color channel

intensities that fall within the stipulated range. We use the standard RGB image color

format in our system, and the masking process is provided a Lower mask ([rl, gl, bl]) and

an Upper mask ([ru, gu, bu]). For example, in the Fig. 2.5, the left-most image shows the

detected traffic light. The middle image shows the part of the image that falls in the range

(in RED). We use the mask range of Upper Mask:(180,255,255) and Lower Mask:(175,50,20)

for RED. The right-most image shows the final output where only the red part of the object

is flagged and colored in white (pixel intensity as 255) and all other regions blackened out

(pixel intensity as 0). Similarly, specific mask ranges are applied for YELLOW [Upper

Mask:(25, 255, 255) and Lower Mask:(10, 100, 20)] and GREEN [Upper Mask:(70, 255, 255)

and Lower Mask:(36, 25, 25)], respectively. The analyzer makes a decision for the region as

a RED/YELLOW/GREEN based on the relative number of pixels in the flagged-as-white

region.

To determine the mask thresholds, we conducted empirical trial and error experimenta-



26

tion for each of the colors. In our experimentation we collected images of a traffic light in

broad daylight at distances ranging from 2m to 50m. We selected a mask threshold for each

color based on the constraint that the color must be detectable up to 50m distance. We

tested the mask thresholds in a diverse set of real world camera images of vehicle driving

on roadways, collected from our experiments and from public vehicle driving datasets (39).

Based on our empirical analysis, we set the threshold for the number of pixels as 1 %; that

is, if there are more than 1% whitened pixels of the total number of pixels in the detected

region, the analyzer marks the status of the traffic light as the appropriate color (RED in

this example).

Pedestrian Crossing Status (warnings # 9) The basic object detector localizes the

pedestrians on the image. The scene analyzer refers to the position of the pedestrian in the

image and uses the distance (depth) to the pedestrian value from the stereo-camera API to

determine if the pedestrian is crossing the road in front of the vehicle and how far is the

pedestrian from the vehicle. The analyzer uses the lane analysis output (discussed next) to

determine the lane in which the pedestrian is detected.

Vehicle Behavior from Lane Analysis (warnings # 11,13,15,17) The analyzer esti-

mates the lane change behavior of the vehicles in front. It identifies if any vehicle is merging

from a left or right lane, and if the front-vehicle in the same lane is trying to change to the

left or right lane. To estimate such behavior, the analyzer first conducts a lane analysis, in

which it demarcates the boundaries that divide the current driving lane from the LEFT and

RIGHT lanes. The lane analysis is a geometrical calculation of the regions on the image that
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can approximately divide one lane from another. As illustrated in Fig. 2.6, the lane analyzer

uses an isosceles triangular region centered on the front-vehicle as the region of interest that

marks the current driving lane (Lane-0). If a vehicle is detected to the (reader’s view) out-

side left of the region, then it is marked as LEFT lane (Lane 1). The right lane (Lane -1)

follows an identical logic for the right side view. The scene analyzer, uses the lane analysis

information from each frame of the video stream over a stipulated time window (we use 1 sec

in our prototype system) to determine the series of lane positions in these frames to mark

whether the front-vehicle changed its lane and if any other vehicle merged or is trying to

merge with the driving lane. The behavior of the vehicle in each session is determined using

a set of 3 frames selected from 100 frames sampled in 1 sec (every 33rd frame), compared

with the history over the last 4 seconds. Here, the decisions are not based on analysing a

single frame using the triangle threshold. This way even if the vehicle is marked as “out of

the triangle” we do take into consideration the trajectory of the vehicle over that last few

seconds. Such a trajectory tracking and vehicle behavior detection was already implemented

in our prior work (40).

In the event that the front car is on a curved path, it is, geometrically, very challenging

to address this case. This is a practical challenge, even for the state-of-the-art (semi) au-

tonomous vehicles. We note that we do not claim any novelty in the lane change analysis

aspect of our design. We identify that it is possible to integrate the road map informa-

tion from third parties, e.g. Google Maps, and have the vehicle be informed that there are

curved roads in the scene sampled at that time instance. We reserve such considerations for
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Figure 2.6: Illustration of lane analysis. The vertices of the isosceles triangle is chosen
relative to the width (number of columns) of the image.

future work. The outputs from the scene perception module are collectively summarized in

a compact JSON (41) format, referred to as a scene report, as shown in Fig. 2.7.

2.1.5 Intelligent Information Mapping

The goal of the intelligent information mapping module is to create a concise representation

of the exhaustive set of information listed in the scene report. This process is analogous

to compressing the rich set of data in the scene report representing the detected objects

and inferred activity from the scene. The rationale for compressing the scene report is to

help create a compact representation of the scene report in a holistic form that can be

communicated or relayed to other vehicles in vicinity. The intelligent information mapping

module performs this compression in the form of a contextual mapping of the scene report
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{
"cars": [

{
"id": 1,

"is_any_car": false,

"relative_speed": 5,

"distance_closer_to": 5,

"depth_closer_to": 7,

"is_brake_light_on": true,

"is_hazard_light_on": false,

"lane_closer_to": 0,

"is_leaving_lane_left": false,

"is_leaving_lane_right": false,

"is_merging_lane_from_right": false,

"is_merging_lane_from_left": false

}
],

"traffic_sign": {
"is_any_sign": true,

"is_red": true,

"is_yellow": false,

"is_green": false,

"distance_closer_to": 19,

"depth_closer_to": 20,

"speed": 45

},
"pedestrians": [

{
"id": 1,

"distance_closer_to": 27.5,

"depth_closer_to": 20,

"lane_closer_to": 0

},
{

"id": 2,

"distance_closer_to": 27.5,

"depth_closer_to": 20,

"lane_closer_to": 0

}
],

"packets_from_cars": []

}

Figure 2.7: Scene report in JSON format

information to safety warnings.

The safety warnings as defined in our system are a set of contextual representations of

the actual scene perceived and reported in the scene report. The notion of these warnings
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Warning ID Safety Warning
1 (2) BRAKE LIGHT ON
3 (4) TRAFFIC LIGHT RED ON
5 (6) TRAFFIC LIGHT YELLOW ON
7 (8) TRAFFIC LIGHT GREEN ON
9 (10) PEDESTRIAN IS CROSSING
11 (12) VEHICLE MERGE FROM LEFT LANE
13 (14) VEHICLE MERGE FROM RIGHT LANE
15 (16) FRONT VEHICLE LANE CHANGE LEFT
17 (18) FRONT VEHICLE LANE CHANGE RIGHT

Table 2.2: List and encoded IDs of safety warnings.

is to help communicate the most important contextual meaning of the occluded scene to

the behind vehicles, so that those drivers (vehicles) can take appropriate safety action in

a proactive manner. In the below paragraphs we setup ground of selecting a single most

important warning combining line-of-sight and non-line-of-sight information.

For a driving agent (human/machine) the notion of safe driving is to understand a se-

quence of road scenes and respond successfully to the most critical event associated to those

scenes (42). For example, upon identifying as sudden brake of the front vehicle adjusting

speed in response, or changing lane in response to the irrationally merging vehicle, stopping

the vehicle in response to a sudden Yellow light changing to Red. Even if, multiple critical

event arises at the same time, for example, a typical highway multi-vehicle collision scenario,

speed truck crashing multiple vehicles causing swerving car from side lane and front car

sudden stop, because of the vehicular dynamics the ultimate single action could be either

escaping the collision by moving the vehicle to the safer part of the road (LANE CHANGE),

or bringing the vehicle to immobile state (STOP) immediately to lessen the crash impact.

This narration helps conclude that the leader vehicle must transmit a single and most critical

warning to the follower vehicles.
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In our system, we define 9 safety warnings, that are mapped to information in the scene

report. As listed in Table 2.2, we index each warning using positive integers starting from 1,

and use 2 successive integers as indices for each warning, which we refer to as warning ID.

We use gray-encoding (43) of each index as the binary representation of the warning. The

notion of using multiple indices and gray-encoding is to ensure that each warning code has a

consistent hamming distance (43) (number of differing bits) of 2. We represent each warning

using 5-bits, which allows for a total of 16 warnings. Based on the focal object detection

and scene activity in our system, our current system implementation encodes 9 warnings –

an expansion to 18 warnings is straight-forward with our prototype. The communication

strategy is to inform other vehicles in vicinity of the particular warning by encompassing the

ID in the communicated data packet. The warning ID code is communicated if the logical

status of the warning based on the scene report is TRUE. The default value of a warning ID

is set to all-zeros if the corresponding status is FALSE.

The key rationale for the mapping the scene activity to safety warnings is based on

the overall goal of the system – to ensure the safety of the driver (vehicle) when there is

occlusion (NLOS) on the drive path. It is definitely useful to translate the scene report into

an exact digital representation or data (bits) and communicate to the vehicles behind and

in vicinity. However, this approach is challenging to scale as the communication of the scene

report, as a data file, will require a highly reliable and high-bandwidth link between the

vehicles. In addition, the data rate requirement will change depending on the size of the

scene report as the density of data in the scene report varies with the richness of the scene.
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We posit that the communication of the scene report, as a file, is however, a middle-ground

solution between communicating the scene images/footage/visual features/point-cloud and

as a highly compressed format using our proposed mapping. In this paper we largely focus

on communicating using the mapping approach, however, our fundamental framework is

adaptable to communicating the entire scene report as a file using the proposed LED-camera

communication channel.

2.1.6 LED-Camera Communication and Recommendation Generation

The LED-Camera communication module is responsible for reliably communicating the in-

formation from one vehicle to another. The idea is to communicate the highly compressed

and contextualized scene report information in the form of warnings. We posit to use cam-

era communication (9) where information is communicated using the light beams emitted

by an LED transmitter (modulated and encoded) and received (demodulated and decoded)

by a camera. The rationale for using LED-Camera communication as a part of the NLOS

perception solution, is 3-fold:

1. Dual use of the camera: Our design enables to reuse the camera, originally serving as

a scene capture device for perceiving the scene, as a communication receiver for the

same scene perception information.

2. Use existing infrastructure: Our design enables reuse of existing infrastructure such

as LEDs on brake-lights and tail-lights in vehicles and cameras integrated in vehicles

– such as for advanced driving assistance (ADAS), parking assistance, lane change
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assistance, and perception for automated driving.

3. Works even with low data rates: Our design makes the system work even if the com-

munication data rates are low. Cameras are limited in sampling rates (frame rates)

compared to possibilities of radio receivers or even photodetectors. However, this

does not create a bottleneck in performance of our system as we consider the very

commonly available sampling rate. We leverage the fact that 100 FPS cameras are

becoming more common place (smartphones), and hence design the camera communi-

cation system considering 100 FPS as the minimum sampling rate requirement for the

performance and features demonstrated by our system.

The communication module functions are two-fold: (i) LED transmitter and (ii) Camera

receiver. The LED transmitter converts the mapped warnings into signals that can be

communicated using the optical channel. The camera receiver converts the optical signals

from the LED which it detects in the form of pixel intensities registered on the camera

sampled images. Upon successful reception, the receiver retrieves the communicated safety

warning. This warning message is then mapped into an appropriate recommendation for

action to the driver or the vehicle, by the recommendation generation module. We describe

these modules in detail in the rest of this section.

2.1.6.1 LED Transmitter

The safety warning generated and encoded as 5 bits by the intelligent information mapping

module is packed into a compact data packet. Based on the constraint (limit) in the camera
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Field Attribute Size
(bits)

Notes Sample values

1 Preamble 5 5-bit Barker code 11101
2 Packet ID 6 Sequentially increasing integer 101000
3 Distance 5 Distance to the nearest threat 01101
4 Warning ID 5 information mapping module output 00101
5 Parity 1 Error checking 1
6 Postamble 3 3-bit Barker code 110

Table 2.3: Data packet structure

sampling rate of 100 FPS, by following Nyquist criterion (43), we set the target transmission

rate at 50Hz. We therefore choose a packet size of 25 bits, with a notion to at least transmit

2 packets/second.

It is possible that each scene report can have multiple safety warnings being generated.

Our system decides which safety warning has to be transmitted based on a priority scheme,

where the warning with highest priority (among all applicable warnings) is communicated.

The warning prioritizing method has been discussed in section 2.1.5.

Packet structure. We structure a data packet in our NLOS perception system as shown

in Table 2.3. In addition to the warning ID of the safety warning to be communicated, each

packet also carries the distance information. The distance value, in meters, noted in each

packet (as a binary number) represents the distance to the most imminent ‘threat’ to the

vehicle, which translates to the distance of the nearest object on the drive path as noted in

the scene report. Each data packet also consists of a preamble and a postamble that are used

for synchronizing the packet starting and ending points. We choose barker sequences (44) in

this regard as they are known to have high auto-correlation property, and thus it is possible

to identify the start and end of each packet through a simple sequence correlation on the
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receiver. We choose a 1 bit marker as a parity bit (43) for error check. We index each

packet with a packet ID, which represents the packet sequence number transmitted in each

transmission session and which resets to 0 at the start of every new transmission session.

Packet transmission scheme. We use asynchronous packet communication in our system.

The packets are transmitted periodically at the stipulated rate (2 packets/sec) over each

transmission session of S seconds, thus creating a packet information redundancy of 2S.

We use this repetition (redundancy) of packets to ensure reliable reception at the camera

receiver. In our current system prototype we have achieved reliable system performance

for S = 1. This is based on our empirical evaluations based on which we inferred that

having at least 2 duplicates of a packet at the receiver helps achieve a performance that can

be practically accepted. As we will discuss in section 2.1.8.3, a 1 second session duration

entitles to the transmission and propagation times in our system. The total output response

time (transmission + propagation + processing) for our system is 1.3248 seconds (illustrated

in Fig. 2.12). Considering the asynchronous modality for reception and processing, this

processing time will not impact the sampling of the camera frames and caching of the packets

in subsequent intervals.

Modulation. The communication of the bits in the packet is implemented by modulating

the light emitted from the LED. We base our modulation mechanism on ON-OFF-Keying

(OOK) (45), traditionally used in optical wireless communication systems, where bit 1 is

mapped as ON state of the LED and bit 0 mapped as OFF state of the LED. The fundamental

challenge with OOK is the flickering phenomenon, which is a visual artefact where the light
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emitter intensity seems to waver randomly or flicker to the human eye. The flicker effect is

inversely related to the LED modulation frequency. Psycho-visual studies (46) have noted

that light emitter frequencies above 100Hz are not easily noticeable by human eye and

become insignificant as the frequency increases. At 50Hz (our choice of LED modulation

rate) the flicker is highly prominent. This is due to the large intensity variations between

the LED’s ON (high) and OFF (low) states. To address the flicker issue, we map the ON

and OFF states of the LED to pseudo-high and pseudo-low states, respectively. Considering

the median value between the ON and OFF LED intensities as the baseline idle, we map

bit 1 as idle +∆
2
and bit 0 as idle −∆

2
. This way, the dynamic intensity range is ∆, and by

choosing a small value of ∆ the flicker may not be perceivable, even at the 50Hz frequency.

A ∆ = 40 is chosen in our current system prototype based on a set of empirical evaluations,

which we present in detail in section 4.1.6.

This ∆ modulation helps in maintaining an effective average intensity throughout the

modulation sessions. The modulation is on top of the baseline switch-ON signal of the

LED and thus not perceived through human eyes. The visible light camera communication

receiver detects the embedded HIGHs and LOWs and maps it correspondingly to 1s and 0s.

In the rest of this paper, we refer to this modified version of OOK as ∆-shift-keying (DSK)

modulation, and the baseline as LED idle state intensity – the idle state corresponds to the

default (switched ON) status of the LED when it is not communicating any packet.
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Figure 2.8: In series order from left, (i) Microsoft VoTT used to annotate the brakelights,
(ii) Sample output from customized YOLOv3 model for brakelight for Atlanta images (the
vehicle detection is from baseline YOLOv3), (iii) Sample output from customized YOLOv3
model for brakelight for Taiwan images.

2.1.6.2 Camera Receiver

The packets transmitted by the LED transmitter from the front-vehicle are received and

decoded by the camera receiver module embedded in the scene perceiving stereo-camera.

The data samples at the receiver are each image frame sampled by the camera. The reception

module functions entail localizing the LED emitter on the camera images (at which pixels is

the light from LED registered?), demodulating the registered LED intensities to bits (does

the LED registered intensity translate to a 1 or a 0), and decoding the packet and hence the

safety-warning (is this a data packet and what is the information encoded in the same?).

The LED emitter localization on the camera image frame requires detecting the LED.

Object detectors, including the state-of-the-art YOLOv3 framework we chose, are not tra-

ditionally trained for detecting LED as these can be regarded as custom defined objects.

Keeping the fundamental goal of our system to be applicable to any road vehicular setting,

we address this problem through new DNN based approach that is independent of the type of

LED emitter being chosen. The idea is to detect the brakelights of each vehicle in the camera
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view and use the relative position of any LED transmitter (with respect to the brakelight)

for localization. We choose the brakelight as it is a standard ‘object’ in each vehicle.

Brake Light DNN Model. We custom-trained YOLOv3 CNN deep learning model with

our brakelight annotated vehicle image dataset (3245 images). We choose the transfer learn-

ing approach, due to the non-availability of any reliable open-source brakelight object detec-

tor and dataset. We created the dataset by manually annotating every LEFT and RIGHT

brakelight of each vehicle visible in the camera sampled frame. The annotations were per-

formed using the Microsoft Visual Object Tagging Tool (47). The camera images were

sampled from a series of video footages captured from a stereo camera fit onto the dash-

board of a car and driving around Atlanta (Georgia, USA) roads. We also appended the

vehicle image dataset from the Taiwan research group (39) with the brakelight annotations.

The annotations and sample outputs from our model validation are shown in Fig. 2.8. In

practice, the LED emitter may be embedded into the brakelight or taillights of the vehicle or

be a custom LED emitter placed on the vehicle. In any case, we assume that the placement

of the LED transmitter, relative to the brakelights of a vehicle, is known to the receiver. The

rationale for this assumption is that the geometry of the transmitters and receivers can be set

as a default or standard in the NLOS system configuration settings which are agreed upon

by different vehicle manufacturers who integrate our proposed system. By reliably tracking

the left and right brakelights, the camera receiver localizes any LED emitter placement by

using the geometrical relationship between the brakelight positions and mapping the same

to camera perspective projection theory (48).
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Demodulation. Tracking the LED emitters helps identify the pixels that carry the modu-

lated bits (using DSK). The receiver considers a 10 x 10 pixel region centered on the centroid

of the tracked LED region for demodulation. The average pixel intensity of the localized

LED region is determined and the 1s and 0s are demodulated based on an adaptive thresh-

olding based strategy. In this approach, the receiver first records the HIGHEST (H) and

LOWEST (L) value of the received intensities over a 1 sec time-window. We choose 1 sec

as the receiver samples at least 100 image frames in this duration to allow for registering at

least 2 packet duplicates. If δr = 0.5(H − L), is the median of the dynamic range of the

received LED intensities in the pixel domain, then the demodulation uses δr + ϵ(δr) as the

threshold for demodulating the 1 (higher value) and 0 (lower value). In an ideal scenario,

the LED signals are clean and registered without any blur or other motion based artefacts,

and an ϵ = 0 will work. However, in reality, we observed through extensive trial and error

in various situations ( indoor dark, indoor ambient lights, outdoor overcast, outdoor sun-

light), an ϵ = 0.25 provides good demodulation accuracy (low bit error rates). We note

that any threshold based reception is susceptible to new artefacts, and the methodology can

be further improved using adaptive signal processing approaches. However, in this paper,

we posit to demonstrate the feasibility of the system even in real settings and reserve the

upgrade and finer optimizations for future work. The demodulated bits are packetized and

correspondingly mapped to the warning ID.
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2.1.6.3 Recommendation Generation

This module maps the warning ID decoded by the camera receiver with the appropriate

safety-warning registered in the standardized safety warning dictionary. In tandem, this

module also constantly registers every (updated) information about the scene perception

from the information mapping module. The module makes a decision on the recommendation

to safety for the driver (or driving vehicle) based on these two levels of information.

Warning ID Recommendations
1 (2) DECELERATE

3,5 (4,6) STOP
7 (8) GO
9 (10) STOP/PEDESTRIAN
11 (12) MERGE ATTENTION LEFT
13 (14) MERGE ATTENTION RIGHT
15 (16) DEPART LANE ATTENTION LEFT
17 (18) DEPART LANE ATTENTION RIGHT

Table 2.4: Recommended action for each safety warning.

In our prototype system, the decision making is based on which safety warning, between

the one decoded from the received packet and the one from the scene report, carries the

highest priority. Here, we use the same priority scheme used in the packet generation process

at the transmitter. The safety warning that has been selected is mapped to an appropriate

action to safety for the driver or the driving vehicle. Table 2.4 lists the mapping used in our

system prototype, however, this can be easily reconfigured based on different requirements of

users and situations. The recommendation action to safety could be an audio, audio-visual,

visual or even an automated feedback to the driver or the vehicle’s control.

The prioritization of warnings at each instance (session) is based on the urgency of the

situation. We qualify the urgency of the situation by comparing how probable each event is
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to happen in reality and quantify by comparing the distance of that event under question,

from the observer car. If the event is within a safe-distance threshold (predefined as 15m

in our prototype), it gets high priority. For example, a pedestrian crossing the road will

be given the highest priority compared to a traffic signal light that is farther away. On the

other hand, if the pedestrian is farther than the predefined safe distance threshold then the

immediate occurring, for example, the traffic light event gets higher priority. If both events

are within the safe distance threshold, then the recommendation to be taken to lead to safety

will be compared. In this case, the recommendation (as in our prototype) will be to STOP

the vehicle. Hence, regardless of the priority the vehicle is directed to a safe decision.

In our prototype, specifically, we incorporated the warnings for traffic lights, vehicles,

and humans on the road. However, adding other warnings (e.g. a random object or traffic

cone) into the warning vocabulary, including the decision making process, is straightforward

as it the scene perception module can be independently updated. If the detected class on the

roadway is non–vehicle and non–human then the vehicle must prioritize slowing or stopping

or diverting, considering that the car can potentially collide with this object. The system

keeps a track of the distance between the vehicle and the nearest detected object, and marks

to stay clear of this obstacle based on the safe-distance to clear parameter.

2.1.7 System Prototype Implementation

Hardware Implementation. The hardware configuration of the system includes three key

parts: (i) camera, (ii) processing unit, and (iii) Red LED transmitter unit. The LED (49) is

circular in shape and its dimension is 10.8 x 8.3 x 3.1 inches. The LED is powered using a
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Figure 2.9: From left, transmitter car that carries the LED Lamps, hardware setup of the
LED transmitter, the ZED camera receiver with NVIDIA Xavier, and one image snapshot
of the dashboard mounted ZED receiver camera.

11.1 Volt 6 cell Lithium Polymer (LiPo) battery. We use a ZED stereo camera (50) for the

camera unit. We operate the ZED camera at its maximum frame rate of 100 FPS, achievable

at VGA resolution (640 x 480 pixels). The ZED camera provides two images (left-camera

view and right-camera view) at this resolution, and also a depth image where the distance

(depth) from the camera to the scene in each pixel is recorded. We use a NVIDIA Jetson

Xavier AGX (51) development board as the processing unit in our system. The need for using

a GPU board is to realize the computer vision and DNN processing in real-time and also

enable the potential for online learning (training). We use a standard off-the-shelf vehicle

brakelight/taillight LED stop-lamps (52) for the LED emitter which is controlled using an

Arduino Uno microcontroller. We use 2 LEDs in our prototype system, just to provide

flexibility in potentially multiplexing data streams from multiple LEDs. To enable regulated

power supply from the LiPo to the stop-lamps we use MOSFET switches, and we wire the

two MOSFETS in parallel to maintain the same input voltage across the stop-lamps. We use

a buck converter to regulate the input voltage to the Arduino to 5 V (recommended voltage

for standard Arduino Uno operation). Communication to the Arduino Uno was established

through a serial-to-USB connection with the Xavier AGX. The transmitter setup is placed in
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a wooden box, that was hand cut by us, to house the wiring and components, for portability.

In addition, a XT30 connector is used to facilitate easy replacement of the LiPo battery

pack.

Software Implementation. We use Python (ver. 3) as the standard programming frame-

work in our system. We control/program the ZED camera using its available Python API.

We have implemented object detection on Keras and using Tiny YOLO (on YOLOV3 (31)

framework) framework for the DNN model. The Keras framework simplifies the integration

of Tensorflow (53) with python libraries and to run YOLOV3 effectively on the GPU. We

use OpenCV (54) and Pillow Python libraries for image processing and computer vision pro-

cesses. The LED transmitter is controlled using an Arduino Uno which is serially connected

to the Xavier AGX GPU processing unit. The control of the Arduino and the transmission

codes are executed using serial function calls to the Arduino directly from the system’s main

(Python script) function in the GPU. The calls essentially initiate different C scripts on

the Arduino based on the required functionality of the transmitter at each time instance.

Typically, the transmitter is triggered for execution as soon as the system switches ON and

the Arduino executes an appropriate script depending on whether the main function calls for

TRANSMIT or IDLE. The system initiates processing as soon as an image is captures and

conducts the relevant processing of each modules. The system uses a total of 3 images (sep-

arated by 30 image frames each) for the scene perception and associated mapping modules,

and uses 100 frames for camera communication receiver module.
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Figure 2.10: Sample image frames used in the system. Our collected data in the Atlanta
roads are used to evaluate the proposed system. The public data set was used to train the
brake light detection model for LED emitter localization.

Warnings Correct
Detec-
tion

Wrong
Detec-
tion

No De-
tection

Pedestrian 99 0 1
Brake-light 90 0 10
Merge Left 98 1 1
Merge Right 90 2 8
Leave Left 89 5 6
Leave Right 90 6 4
Traffic Green 80 10 10
Traffic Red 87 8 5
Traffic Yellow 84 10 6

Table 2.5: Scene Perception Accuracy [in %], for each of the nine warnings in our NLOS
scene perception system. The number of samples in the evaluation for each warning from
left to right, are: {78, 129, 121, 44, 13, 14, 78, 85}. The variable sample numbers are due
to the fact that a real-world road scene footage is highly scenario dependent and any of the
nine warning situations may arise with variable distributions.
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Figure 2.11: Brake light detection: Precision vs. Recall graphs for IoU = 0.50 (left), 0.75
(middle) and 0.95 (right).

2.1.8 Evaluation

We evaluate the performance of our NLOS perception system design through experiments.

We evaluate the system based on the performance of, (i) scene perception, (ii) LED-camera

communication and (iii) real world trace-based safety recommendation. The key evaluation

metrics include, accuracy, packet error rate (PER), mapping error, and computation time.

For the experiments, we setup the receiver on a car, which involved mounting the ZED

camera on the dashboard of the car and running it at 100 FPS and be controlled by a

Jetson Xavier board. We set up a LED transmitter system (see Figure 4.4) on another car

by mounting two LED stop-lamps (52) on to the roof of the car using magnetic mounts.

Since we did not have direct access to the brake light of the car used for experiments, we

purchased and used actual off-the-shelf vehicle brake-lights, to emulate the functionality of

real-life brake lights as we did not have permission to physically open the brake lights of

the cars we used for experiments. The evaluation considers these LED brake lights ONLY

for the performance analysis. We do note that the front-vehicle’s actual brake lights will

also be detected through our brake-light deep learning model. Once the actual brake lights

are tracked we then use geometry to track the LED lights we placed on the vehicle. We
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assume that we know the positioning of the LEDs on the vehicle. We drove the receiver car

around Atlanta’s city and sub-urban highway roads, and effectively collected about 4 hours

of footage. Figure 2.10 presents a sample set of image frames from the recorded footage and

from the public dataset. We had the controller process these videos and generate warnings in

real time and communicate that using our LED brakelights. The experiments were conducted

in a static setting and when the controller and the brake lights were placed under movements

– placing it on a car.

2.1.8.1 Scene Perception

We evaluate the efficacy of the scene perception module based on the accuracy of detecting

each of the nine warnings (refer Table 2.2). We computed the detection accuracy by analyzing

the image frames from the previously mentioned real world footage from Atlanta roads. The

images that contained the specific situation corresponding to the warning, were manually

annotated with the warning ID as the label. Each image frame may have one or more warning

ID, and hence each label was generated in a comma separated value (.csv) file format with

the columns denoting a YES (NO) for the presence (absence) of the warning.

Table 2.5 shows the detection accuracy for the nine warnings, denoting the percentage

of correct detection, wrong detection and detection failures (Not detected). Overall, we

observe that our approaches for detecting each warning in our scene perception module are

effective, with an average detection accuracy of 90%. We observe that there are certain cases

of detection failures for all warning cases except pedestrian. Based on studying these failures

we observed that the failures are primarily due to the failures in detecting the object by the
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IoU (%) 50 55 60 65 70
AP (%) 93.40 93.40 93.29 93.29 92.76
IoU (%) 75 80 85 90 95
AP (%) 92.22 91.68 90.62 89.49 72.40

Table 2.6: Brake light detection: Average Precision (AP)
baseline YOLOv3 model. This failure/error percolates into the overall warning situation

perception accuracy. We also observe that the traffic light cases suffer from detection errors,

which are mainly caused by false-positives. Based on our manual examination of each of

these erroneous cases, we observed that the errors were caused by confusion of the colors

when the image was blurry or from a long distance, and when the traffic lamp was not fully

detected.

2.1.8.2 LED-Camera Communication

We evaluate the efficacy of the receiver module based on the accuracy of localizing the

LED emitter and the error rates of the data packet reception (PER) using the camera

communication link. Our LED localization method depends on the geometrical mapping of

the emitter location on the image using the detected vehicle brake lights’ positions. In this

regard, we first determine the detection accuracy for the actual brake lights of the vehicle.

We then evaluate the data reception fidelity by measuring the PER in the LED-camera

communication link. The LED localization errors are captured in the PER, as errors in

finding the actual LED emitter locations in the image will lead to erroneous demodulation,

and thus bit errors, leading to erroneous packets.

LED Emitter (Brake light) Detection: We evaluate the efficacy of our DNN brake light

detection model through the Mean Average Precision (mAP) metric. Of the dataset of 3245
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Figure 2.12: Timing Analysis: System execution pipeline and associated execution time of
each block.

images, we considered a validation set of size 20% (with 80% used for training), corresponding

to 170 images. This image set accounted for a total of 415 brake light objects, as each vehicle

has 2 brake lights and each image may have multiple vehicles. The mAP is computed as the

mean of the average precision (AP) values for different Intersection-over-Union (IoU). The

IoU specifies the fraction of the total object ground truth area being covered by the output

of the detector. Considering True Positives (TP), False Positives (FP), and False Negatives

(FN), the AP value is calculated by computing the area under the curve in the precision vs

recall graph, where,

Precision =
TP

TP + FP
Recall =

TP

TP + FN
(2.1)

We report the AP for IoUs ranging from 0.5 (50%) to 0.95 (95%) in steps of 0.5, and the

mAP as the mean of these APs, in Table 2.6. We report the precision vs. recall graphs, for

IoUs 0.5, 0.75 and 0.95, in Figure 2.11. We determine that the mAP value for our brake light

detection model is 90.253%. We observe from these results that the brake light detection

model is effective with an average 90% accuracy, and maintains this accuracy consistently
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for IoUs up to 90%. We posit that such a high mAP for such high IoU values validates the

efficacy of the model and attests its usage for brake light detection in the wild. Through

our analysis of the model’s performance at IoU of 0.95, We observed that the sharp trade-off

between precision and recall for IoU=0.95 was due to the large number of FP and FN. We

observed that the high FP were due to the model confusing with other red color and circular

objects in the scene, and the high FN were due to the model missing the brake light due to

small size or partial occlusion or blur in the brake light pixel areas. We observe monotony in

these ROC curves because of the size of our data set being in the order of a few thousands

(around 3500), which we are currently scaling. The red lines are the interpolation curves.

We posit that such issues can be addressed by expanding the dataset and including diversity

in brake light types, for example, by imaging brake lights of vehicles in other Asian and

European countries.

Camera Receiver Packet Reception: We evaluate the efficacy of camera communication

receiver through the PER metric, which is the ratio of the number of erroneous packets to the

total number of transmitted packets. We compute the PER over a complete experimentation

trial session. We regard a packet error when none of the two packets in a transmission session

of two seconds, are received with 0 bit errors, and regard a success when at least one out

of two packets are received with zero bit errors. In addition to the PER, we also consider

the average hamming distance (AHD) and the average decimal difference (ADD). We define

AHD as the average number of bit errors in the erroneous packets, and ADD as the average

of the decimal value error in the warning ID decoded from the erroneous packet’s payload.
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We evaluate the packet reception performance for two setups: (i) stationary, where the two

LED stop lamp transmitters and camera receiver were stationed on tripods and separated

by a constant distance of 10m, and (ii) mobile, which represents the real-world scenario

captured in our experiments with the LED placed on a car top and a camera placed on a

follower car.

Setup Dist. # Packets PER AHD ADD
1. Stationary 10m 1053 2.5% 0.93 2.55
2a. Mobile <10m 55 5.54% 0.72 2.18
2b. Mobile <20m 103 6.5% 1.28 3.85
2c. Mobile all 123 7.1% 1.39 4.07

Table 2.7: Camera receiver packet reception performance. For the mobile cases, the vehicle
speed was within 15–40mph, and involved 10% of the overall cases for the transmitter vehicle
to be positioned in the neighbouring lane.

We report the packet reception performance for these two setups in Table 2.7. We observe

from this table that, the packet error rate (PER) is within 7% for distances up to 10m in

static and mobile conditions. A PER of 7% is an acceptable number for practical real world

usage, and comparable to radio based (e.g. DSRC (55)) packet reception performance. We

also can observe that the PER is within 7% for real world mobile conditions when one vehicle

is following another vehicle within a lane at safe distances. We posit that the PER can be

reduced by improving signal demodulation by learning the channel conditions and adapting

thresholds based on the machine learning model for the vehicular channel. The efficacy of

the packet reception is further highlighted in the AHD and ADD values. We can observe

from these values that system overall suffers from 1-2 bit errors on an average, and is within

4 decimal values. We hereby infer that the packet reception can be made (close to) error

free by mapping the warning IDs with at least 4 decimal value differences. This means that
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Figure 2.13: Sample signal snapshots for ∆ selection microbenchmarking. Transmit signal
(left), Transmit and Receive packets (middle), and Received signal on camera image pixel
for 100 frames (right).

Distance # Packets Accuracy Scene Percep-
tion error

Communication
error

<10m 55 93.4% 2.23% 4.45%
<20m 103 90.9% 3.94% 6.5%
all 123 90% 3.02% 7.1%

Table 2.8: Real World Trace Based System Evaluation

the number of IDs that can be encoded with the current 5-bit payload will be limited to 16.

This is not a problem for our current system implementation which targets nine warning

IDs.

2.1.8.3 Real World Trace-Based System Evaluation

We evaluate the performance of our NLOS perception system based on the error in the final

recommendation at the receiver and the total response time of the system. Our trace-based

experiment involves the scene perception and transmission from one car, and reception on

another (follower) car, in real time.

Accuracy: We note the received recommendation is correct or in error based on manual

annotation of the appropriate safety recommendation for each visual in the recorded real-

time footage. We report the error percentage in Table 2.8 for different range of distances,
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and also dissect the errors from scene perception and communication. Overall, our system

is able to perform with accuracy at about 90%, and up to 93% when the distances are

within 10m range. To the best of our knowledge, we are not aware of any system that can

successfully communicate safety signals in visual occlusion scenarios with 90% accuracy at

4 car distances (a car is about 4-5m long). We also observe that the errors are largely due

to the camera communication, which can be improved, as mentioned earlier, using machine

learning approaches.

Timing Analysis: We report the timing analysis evaluation for the trace-based system

pipeline in Figure 2.12. This timing analysis is a result of the average value of execution

times of each block in the system pipeline from 2500 trials. We can observe that the total

response time starting from scene perception up to recommendation generation of the system

is 1.3248 seconds. This is the maximum response time on our implemented prototype.

In the proposed work, we use 100 frames for camera communication receiver module to

receive 1 second worth of LED signal. Therefore, generating a recommendation leveraging

the fused line-of-sight and non-line-of-sight information takes (1 + 0.3248) seconds for the

system. Please note, none of the modules (1) or (2) are bottlenecked by the LED-Camera

communication delay (1 second). Clearly, the line-of-sight recommendation is sufficient to

alert the driver about any eminent threat in the vicinity. Though, a recommendation about

the non-line-of-sight critical event takes 1.3248 seconds, however, the delay does not limit

the performance of our system. We describe the phenomena further below.

As discussed in the section 2.1.5, our system propagates a single warning that encapsu-
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lates the emergency/safety critical driving situation at any given point of time. A generated

warning associated to a time period, refers to the observation duration at which an agent

(human/intelligent system) observes the interactions among road users/signs and gather in-

ferences. To collect the list of inferences an agent (human/machine) needs to observe scenes

for a period of time. On that account, our warning/recommendation generator system is

fundamentally not limited by the LED-Camera communication delay, rather is limited by

the observation-inference collection duration. Lane change behavior detection takes around

6 seconds on average, according to NHTSA (56) standards and Tomer et. al. (57), traf-

fic light detection - nationwide(USA) travel time to stop line at start of yellow is between

three to six seconds, and red interval is one to two seconds, total change interval is between

four to eight seconds (58). In our system, both the lane change category’s observation time

falls between one and eight seconds, which gives our system some buffer time for LED data

transmission-reception.

We note that it is possible to reduce the response time by performing the reception and

processing in parallel. This is possible by enabling random access memory (RAM) share

between the ZED camera interface and the processing application in the Jetson Xavier GPU

board. There is no support available currently for the Jetson board to perform such memory

share. We envision that this may become possible with future versions of mobile/robotic

GPU boards.
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Distance Avg. Intensity Dynamic Range
1 m 233.5 27
2 m 223 24
5 m 215 18
10 m 50.5 3

Table 2.9: Received signal digital intensity value from camera receiver image pixels.

2.1.8.4 Microbenchmarking: ∆ selection

We briefly discuss our empirical evaluation to select the ∆ value in our prototype implemen-

tation. We recall that ∆ is the effective change in intensity between the transmit HIGH and

LOW. We conducted experiments where the LED stop lamp was set to transmit a stream of

25 bits corresponding to one packet, in a repeated cycle, at 50Hz. We captured the footage

of the LED stop lamp using the ZED camera, at 100 FPS, at different distances. We first

filtered the ∆ based on the flicker effect perceivable by human eyes. We observed from our

experiments with 4 graduate students (age < 30 years) and 1 faculty member (age ≥ 30

years), that the maximum value of ∆ was 40. ∆ values below 20 were flicker-free, however,

resulted in intensity differences between HIGH and LOW at 10m within 1 in pixel value. We

then used ∆ of 20 and 40 in the transmissions, across different idle values for transmission.

Based on packet demodulation errors, we observed that ∆ =40 is the best choice for our

system. Considering ∆ =40, we report the received signal intensities and the dynamic range

between HIGH and LOW on the receiver, in Table 2.9.

In Figure 2.13 (left), we report sample signal snapshots of the ∆ modulated transmitted

signal (left) intensities at different values of ∆. We can observe that a smaller ∆ reduces

the dynamic range between highs and lows, which eventually makes receiver demodulating

more challenging. In Figure 2.13 (middle), we report a sample transmit and received packet.
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The graph shows the intensity of the transmitted packets and camera pixel intensity of the

same packets at the receiver. We can clearly observe the differences between the highs (1s)

and lows (0s) in these signal snapshots. In Figure 2.13 (right) we report the camera pixel

intensity values of the received packet over 100 frames recorded at 10m. In our system, we

take the average over a 10x10 block of pixels on the camera image for processing to reduce

noise in the demodulation and estimation processes. We can observe that the highs and lows

are reasonably separated in the pixel domain thus facilitating robustness in the threshold

based demodulation process.

2.1.9 Conclusion

In this paper, we introduced a novel architecture for NLOS perception for road vehicles, that

enables a virtual see through an occluded vehicle functionality. Our system uses a dashboard

stereo-camera to perceive the scene in front and communicate that through visible light

communication to a follower vehicle. We have designed and implemented a proof-of-concept

prototype of a NLOS perception system, that can enable identification of nine safety events,

corresponding to traffic light statuses (red, yellow or green), other vehicle merge behaviors,

and pedestrian presence. As a part of the scene perception design, we have trained YOLOv3

for vehicle brake lights detection using transfer learning. Through experimental evaluations

on real-world driving camera footage and real-time trace-based testing, we demonstrated that

our system is able to identify occluded events up to 90% accuracy and sustain communication

packet error rates in less than 7%. The key use-case of our system is for driving assists,

by notifying about safety and time critical events which falls under the level-2 autonomy
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definition for autonomous vehicles. Such a feature can be very helpful when integrated

into a fully-autonomous driving vehicle, which plants seeds for the future work emanating

from this research. The models and experiment data from this paper have been set for

open-sourcing.

2.2 A Cognitive Information Processing Pipeline for Multiple–Access

Proactive identification and prediction of safety critical events on road can be very beneficial

to both, human driver assistance as well as autonomous driving. It is intuitive that most of

the accidents that occur on roadways are primarily due to the fact that the events in front

of the vehicle were unexpected or that they are realized very late leaving too short time for

a plausible safe response (or reaction). This largely happens because the critical event is

not in line of sight (view) of the driver/vehicle, as the vehicle is far from it and/or that it is

being obstructed by other vehicles on the road.

Our recent work aimed at addressing this problem through our proposed concept of

non-line-of-sight perception (2); of being able to see-through the traffic on roadways by

integrating camera scene perception with LED-camera communication. We will refer to this

prior work as see-through-vehicle for the rest of this paper. In the see-through-vehicle system,

each vehicle acts as a transceiver which perceives the scene (using a camera) and relays

information about any eminent emergency/urgent situations to its surrounding vehicles using

LEDs. Vehicles receiving this information blend it with their local perception and generate

a recommendation for a cognitive action to the driver/vehicle. The see-through-vehicle
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system basically augments the local information perceived by the smart sensing units of a

vehicle. The additional benefit is the accrue of information through the relaying process

from neighboring vehicles.

Let us consider an example driving scenario to understand the importance of NLOS

perception. Consider the road vehicular scenario in left sub figure in Fig. 2.14. Here vehicle

C1 sees C4, C5 in its field-of-view (FOV), however, the pedestrian in lane L1 is occluded to

C1, but C1 has the green light in view. On the contrary C4, C5 sees both the traffic light

and the pedestrian crossing the road. In real life driving situations, ideally C2, C3, C4, C5

lowers the speed to let the person cross the road even if the traffic light is green. However, C1

which is unaware about the situation may not decelerate and collide with the person crossing

the road. This unexpected surprise may lead to a critical accident both for the pedestrian

and the driver/vehicle. Using the see-through-vehicle system concept, this situation can be

avoided, if C1 could hypothetically visualize/perceive the occluded part of the road. This

can happen with the help of independent/combined information received from C3, C4 or C5

that describes the safety-critical event ’hiding’ in the occluded road area.

In our prior work (2) we addressed the non-line-of-sight perception over a single-access

scenario where the information is communicated only from the front leading vehicle. In

this paper, we extend the idea of see-through-vehicle functionality across a multiple access

scenario where, potentially, all neighboring vehicles communicate information to a follower

vehicle independently. We posit that all the independently conveyed information will be

combined along with the vehicle’s own local camera perception data. In this regard, in
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(a) Local road driving
scenario.

(b) Listening to neigh-
bors

Figure 2.14: Demonstration of how a potential accident can be avoided through non-line-of-
sight (NLOS) communication among neighboring vehicles.

the rest of this paper, we present the logical design of the cognitive information processing

system that addresses the NLOS perception for multiple access cases using vehicular camera

communication. The right sub figure in the Fig. 2.14 shows an illustration of how multiple

access NLOS perception can be useful for the scenario presented in the left sub figure in

Fig. 2.14.

2.2.1 Novel Contributions

In summary, we make the following key contributions in this paper:

1. We design a prediction-attention module that extracts key gists from the road scene.

The module performs prediction on the receiver vehicle’s local camera perceptions and then

applies an attention selection approach to identify the most critical event. We refer to this

selected event as the gist of processed scenes.

2. We design a decision-making module that fuses several received event information from

transmitter vehicles and the extracted gist from its own prediction-attention module, to
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declare the alert event. Using this alert event as the reference, the decision-making module

further makes the appropriate recommendation for action to the driver/vehicle.

3. We present an analysis of information flow through a cluster of vehicles. We focus on,

(a) how scene perception information of a road area is prioritized and propagated, (b) how

received event information from multiple sources depicts different obstructed road sections

including precise relative positions of other vehicles and event objects, and (c) how to prior-

itize which road section poses higher critical events.

4. We discuss the applicability for our proposed cognitive information processing pipeline

by case studying three unique scenarios.

2.2.2 Related Work

Background. In our previous work (2) we designed and implemented a NLOS perception

system considering a single access channel setup that enables a receiver vehicle to learn about

the safety-critical situation from a single leading transmitter vehicle. A participant vehicle

hosting the proposed prototype contains a controller, a LED-Camera communication module,

a deep learning based scene perception module, and an intelligent information mapper. A

controller, hosted in every equipped vehicle, compiles and transmits a concise packet (bits)

describing a single safety-event that it generates by the information fusion of host vehicle’s

scene analysis and received wireless optical signal (safety-event packet) from the leading

transmitter vehicle. The intelligent information mapper does the information fusion. In this

work, we extend the single transmitter-receiver channel to a multiple-access channel that
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ensures simultaneous reception of LED signals in a single camera receiver. Our new system

contains an enhanced road scene gist extraction module that relates to the human perception

and gist recognition process, a decision-making module that fuses several received event

information from transmitter vehicles and the extracted gist event from receiver vehicle’s

perception and finally declares the alert event. We also render a scene information flow

analysis through a cluster of mobile vehicles. The information flow analysis shows interesting

aspects of understanding the information propagation in the obstructed road areas.

Multiple Access Vehicular VLC. Prior work (59) performed a simulation study to reduce

multi-user interference through SDMA for vehicular VLC using adaptive frontlight system

(AFS) based lead headlights. This is a selective approach to choose the best performance

LED among a matrix, to achieve least interfered communication. In (60) authors designed

a VLC system using color-shift-keying (CSK) modulation and code-division multiple-access

(CDMA) technology simultaneously. In (61) a synchronization algorithm for the CMOS

camera was developed to improve the symbol rate of multiple-access two-way visible light

communication. In (62) the design enables multiple LEDs with a static camera to commu-

nicate via the non-line-of-sight links. Prior work in this space as represented above, largely

focus on the static transmitter-receiver setup and invest solution development for increasing

bandwidth through multiple-input multiple-output (MIMO) techniques. On the contrary,

our proposed system does not mandate the MIMO requirement and provides a complete solu-

tion that captures the process of information flow from multiple moving transmitter vehicles

to receiver vehicles by leveraging single-access peer-to-peer (P2P) links intelligently. Our
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system enables the scheme of understanding the entire road scene ahead including visible

and invisible areas, by logically stitching all the relevant received information from multiple

(accessed) transmitters (vehicles).

Scene Information Propagation. The work in (63) follows an epidemiological propaga-

tion model and explores message spreading nature among a large number of vehicles during

certain traffic congestion (accident, rush hours). However, this does not include propagating

actual scene data comprising of object positioning details in a concise format, such as in

our proposed system. The work in (64) conducts scene segmentation and object detection

for traffic scene understanding with deep learning, (65) uses multi-view geometry and deep

learning to enable to localize and perceive the environment. Authors in (66) implement si-

multaneous object detection, depth estimation, semantic segmentation to understand a road

scene. These representative works that use deep learning machinery focus entirely on the

driving and road scene perception limited at the object-detection level only. Other works

conduct the so-called gist recognition (67; 68; 69) concept for extracting the scene under-

standing. In our work, we have extended the concept of gist recognition by linking position

and interactions between individual road objects. This enables our proposed system to un-

derstand a road situation from a collected sequence of snapshots over a period of time and

predicting eminent future. Then it propagates the information to following vehicles in a

compact packet structure through LED-Camera channel.

In the area of connected vehicles using 802.11p standard wireless communication, (70)

proposes a safety ensuring system to help decide driver to start a safe overtaking based on
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(a) Single Access (b) Multiple Access

Figure 2.15: Single access scenario (left) and multiple access scenario (right).

the traffic conditions. The drawback of the system is it requires high bandwidth for real-time

video streaming of the obstructed scene to the following cars. Our proposed system, however,

notifies about several emergency events to the following vehicles through a compact small

data packet in the VLC channel.

2.2.3 Overview

For a vehicle entity, augmenting the information from an otherwise occluded or NLOS scene

primarily demands investigation on how to acquire knowledge about the unseen area. A

single (P2P) or group of witnesses (multiple-access) may tell about what they see. From the

information what a host vehicle gathers by viewing and listening, it needs to prioritize and

find the next forthcoming recommended action for the driver as well what to tell following

vehicles. This forms the baseline requirement for the proposed cognitive information process-

ing system. The cognition also requires (a) integrating mechanisms to listen and announce

(tracking and identification, communication channel and protocol modeling), and (b) under-

standing the received messages from witness and preparing comprehend announcements to
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Figure 2.16: Overview of proposed Cognitive Information Processing Pipeline

the following listeners (message decoding and encoding respectively). In our previous works

(2) and (1) we have primarily addressed the tracking and identification, communication chan-

nel and protocol modeling, message decoding and encoding building blocks of the system. In

this work, we present the theoretical validation of cognitive information processing module

for multiple-access vehicular camera communication. We keep the prototype implementation

as a future work. Fig. 2.16 depicts an overview of proposed cognitive information processing

pipeline.

Acquire Knowledge of the NLOS/unseen Area. A vehicle which does not see a specific

section of the road receives information about the real-time events from the neighbor vehicles,

to those the obstructed area is visibly accessible. There can be immediate neighbors who

directly witness the occluded area and inform about that to the following neighbor(s). On

the other hand, the immediate neighbor can notify about an event that it may not able to

perceive directly but has been informed about from its preceding neighbors. The notion of

transmitting contextual information involves both single-node and multi-node broadcasting

to meet above mentioned transmission requirements. A single access scenario shown in the
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left sub figure in Fig. 2.15 is composite of a single witness and a single listener vehicle. In

the communication context, the witness vehicle is the transmitter, and the listener vehicle is

the receiver. Conversely, a multiple access scenario shown in the right sub figure in Fig. 2.15

consists of a single receiver, that receives data from multiple transmitters simultaneously.

The data distribution method is broadcasting. Since the audience is dispersed and the goal

is to propagate the scene information like an announcement so that the message reaches to

as many as possible receiver entity at the same time. The data transmitting method is serial,

a single bit one after another, at a time.

Multiple-Access in Vehicular Camera Communication. Simultaneous reception in

camera communication is possible without any collision as the transmitter (LEDs) are spa-

tially separated in the camera view. In the scenario shown in the right sub figure in Fig.

2.15, multiple LED transmitters are transmitting to the single receiver. Each transmitter

zone in the image can be divided into separate region of interest (ROI), shown in different

colored shaded regions in this figure. As the channel is multiplexed spatially, multiple simul-

taneous communication can happen if we can identify each transmitter separately. To ensure

a seamless complete transmission cycle a transmitter need to be tracked over the active du-

ration of the transmission session. The identification and tracking can be done through a

DNN. Since the communication is one-way, there is no acknowledgement/feedback from the

receiver. However, this is not an issue as processing and assimilation of information at the

receiver is performed asynchronously.
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Figure 2.17: Functions in the cognitive information processing pipeline.

2.2.4 Cognitive Information Processing

Human drivers gather as much as possible sight from their vision for a very short period and

then apply cognitive processes like prediction, and attention (71) on that accumulated sight.

This way one can discard few event’s occurrence possibilities (prediction) as well as adopt

few events as urgent (decision-making), and eventually take an appropriate action based on

the inference. Our work essentially translates this sequence of human cognitive processes

into machine intelligence as per the key functions in the cognitive information processing

pipeline depicted in Fig. 2.17: (a) perception, (b) prediction-attention, (c) received data

and announcement, and (d) decision- making. We note that the perception function has

been already handled in our prior work (2), and we will address the other three functions in

this work.
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{
any_self_lane_front_vehicle : FALSE,

speed_limit : 65,

current_speed : 50,

traffic_light_red : FALSE,

traffic_light_green : TRUE,

merging_traffic_right : TRUE

}

Figure 2.18: An example of key-value mapping generated from scene perception.

2.2.4.1 Prediction-Attention

The perception module yields a list of detected objects with their corresponding position

and state values (i.e., 3 dimensions, relative speed for a mobile object like a car). That list

is ideally a mapper in the key-value format. That does not make a sense of scenario or a

real-time situation. The Prediction-Attention aims to generate all tentative situations from

that mapping. ’Prediction’ uses stored information to guide the interpretation of forthcoming

sensory events, and ’attention’ prioritizes these events according to their behavioral relevance

(72). A sample example of perception key-value mapping is shown in Fig. 2.18.

Intuitively we see that, any self lane front vehicle stating the current riding lane of the

host vehicle is clear. speed limit and current speed is denoting that the host vehicle is riding

below the allowed speed limit. traffic light red and traffic light green is denoting that the

traffic signal is also clear to pass through. All the attributes separately indicate different

driving conditions. Intuitively, in this case, a driver would deduce that the road is clear.

However, the last attribute in the key-value map merging traffic right is indicating that a

vehicle coming from right is attempting to merge. Though there are multiple indications of

safe acceleration however, if the last attribute value is ignored there is a high possibility of
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announcements: [

{ neighbor_id : 1, pedestrian_crossing : TRUE, threat_dist :

18, relative_lane : -1 , hop_cnt : 1}
{ neighbor_id : 2, pedestrian_crossing : TRUE, threat_dist :

20, relative_lane : -2 , hop_cnt : 1}
{ neighbor_id : 3, traffic_light_green : TRUE, threat_dist :

15, relative_lane : 0", hop_cnt : 0}
]

Figure 2.19: List of announcements received from 3 different transmitting nodes.

collision. In summary, every single attribute in the mapping list is a guidance to a unique

prediction of a tentative event. In the next step, the attention function prioritizes among all

the predictions.

2.2.4.2 Received Data (Announcement)

Now, assume a list of announcements shown in Fig. 2.19 are received from neighbors. A

single row contains neighbor id, identity of a neighbor for a period based on the physical

location relative (distance, packet arrival time) to the host vehicle. Here, pedestrian crossing,

is the critical unseen event from the host vehicle. threat dist, is the distance between the

announcer and the detected event object. For the first record in the announcement list the

neighbor vehicle is 18 meters apart from the detected pedestrian jaywalking.

The relative lane denotes the tentative position of the detected object. This attribute

provides direction of road areas where the event may occur. relative lane : 0 indicates same

lane, negative and positive values indicate left and right lanes respectively starting from the

transmitter vehicle. Also, the lane position can be traced down by updating the value based

on the transmitter’s riding lane. An instance shown in Fig. 2.20; a vehicle detects an event

object in the 1st lane to the left from its own riding lane has relative lane : (−1). Similarly,
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Figure 2.20: Tracing down the actual relative lane number.

an event object detected in the 3rd right lane from its own riding lane has relative lane : 3.

The vehicle transmits the values as it is to the following vehicles. Now, the receiver vehicle

receives the announcements from the transmitter and also localizes the transmitter relative

to its own riding lane. Then the receiver retrieves the actual relative lane position of the

object by adding the offset lane count. As an example, the transmitter C1 localizes the

object in the 3rd lane to the right from its own riding lane. C1 transmits relative lane : +3.

Then C2 receives relative lane : +3 and localizes the transmitter that, C1 is riding 1st lane

to the left of C2’s own riding lane. Hence the offset lane count is (-1). Therefore, the final

relative lane for C2 to the object X is [(+3)+(−1)] = +2, that is 2nd lane to the right that

is the correct position of the object X.

2.2.4.3 Decision Making

The actions to be taken by a vehicle significantly depends on the actions of other vehicles

in vicinity. The situation gets more complicated when the traffic is denser, or when some
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of the road area is occluded by neighboring vehicles. Prediction-Attention functioning alone

cannot produce a final recommendation for action. Decision making balances among po-

tential recommendations to secure safety and efficiency. Though the host vehicle possesses

some understanding about the surroundings from its local perception, however, we posit

that following vehicle’s actions are impacted by the leading vehicles. Therefore, the contex-

tual information about unseen area from preceding vehicles may have dominance over the

primarily adopted local recommendation.

For example, mapping values from local perception {any self lane front vehicle: FALSE,

speed limit: 65, current speed: 50, merging traffic right: FALSE, merging traffic left: FALSE}

allows the host vehicle proceeding forward by accelerating under a valid speed limit. However,

from the announcements (Fig. 2.19) the host vehicle would override its previous decision of

acceleration, instead it would start decelerating and be mindful of the jaywalking pedestrian.

2.2.5 Algorithm Design

2.2.5.1 Iterative Prediction-Attention

Prediction. The perception outputs form the baseline input for the prediction module.

This module predicts the future state of the vehicle using the detected object’s (from cam-

era images) current status or pose, depth from the observer camera, observation time and

velocity of the observing vehicle. For instance, a future location of a detected pedestrian in

a consecutive sequence of scenes can be predicted from that person’s walking velocity and

moving direction. Similarly, with a known velocity the observer vehicle’s future location



70

after a certain time span can also be estimated. Now to deduce if the pedestrian and ob-

server vehicle will collide or not, the module evaluates possible hypothetical trajectories of

both the pedestrian and the vehicle and try finding a potential intersection. Similarly, for

an approaching traffic light, its status can be predicting from the observer vehicle’s velocity,

the observation duration, and usual lighting time of the light. A driving action against road

signs can be predicted as well depending on the road sign information, observer vehicle’s

velocity. For example, Road Work Ahead sign comes with a tentative distance measurement

from the location of the board. A moving over or slow down action requirement should be

initiated withing the reaching time to that work zone. Given the velocity of the observing

vehicle we can calculate the reaching time thus can make prediction on the necessary action.

For all detected objects with different types like road users (i.e., vehicles, pedestrians) and

road signs the prediction and attention module run iteratively. In the prediction algorithm

for each detection we derive the future state (i.e., traffic lights, road signs) or pose (moving

objects like vehicles and humans) of the object and then predict the occurrence possibility of

the event associated to that object. We chose the occurrence possibility in the scale of (very

high, high, medium, low, very low). We use stored (history) information to find out the

possibilities of an event occurrence. This process is similar like how a human driver predicts

based on some previous experience (stored information in the form of human memory). Like,

the traffic light turning from YELLOW to RED is 3 seconds and the standard deviation

is +/-1 (73). Therefore, it requires roughly between mean 2 to 4 seconds. So, when a

yellow light is detected by the observer for 2 seconds then we can predict approximately
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after 1 to 2 (min to max) seconds the light will turn to red. For a Road Work Ahead

sign, we find the occurrence probability by comparing the reaching time to the work zone.

reaching time = depth × 1
speed of car

. If the time intersects with the future timespan (T)

that means the vehicle will enter the work zone in next T seconds. We estimate the reaching

time with the observer vehicle’s velocity and distance mentioned in the work zone alert sign.

We collected the stored information from different driving analysis studies and road surveys

(56; 57; 58).

Attention. While driving in a clutter scene representation in the city roads drivers interact

with frequent intersections, traffic signs, human walking and cycling, and moderate to high

traffic. In this situation a human driver performs scene parsing rapidly. S/he recognizes the

scene gist only from couple of consecutive static visuals by performing attentional selection

on temporal and spatial changes of detected objects. The attention module function is

executed as follows:

1. Sort the potential events in descending order by their estimated occurrence probability.

2. Select events by a probability threshold. For example, an event of probability of 80 and

above is more likely to happen in next few seconds. So, any probability of 80 and above will

be treated as next occurring events.

3. Perform gist recognition on the selected events. That is, find out 1/2 significant events

those must be attended to avoid any unsafe situation.

4. Now the gist recognition is performed based on some pre-stored information. Every event

is associated with an action. The action list is (Acceleration, Deceleration, Left, Right). All
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the selected events will be labeled with an action in this step.

6. Deceleration has higher priority over acceleration. Now we calculate the weightage of

acceleration and deceleration events.

7. If there is any deceleration event then we find the reaching time to the threat (both

way when both the threat and host are approaching each other and there is a possibility of

collision).

8. If any of the deceleration events has lower reaching time than any of the acceleration

events, then the deceleration event is the safety critical event for that session and it must

seek the highest attention.

2.2.5.2 Decision Making

The decision-making module is responsible of choosing the highest time critical event among

multiple critical events. The host vehicle has some primarily prioritized events from its

own perception-attention. Note that every transmitter communicates only a single highest

priority event during a transmission session. However, a vehicle also receives multiple safety

events from leading vehicles. Among all these events the vehicle chooses which one is the

most attention seeking event. Then it recommends the host driver itself and relays the event

to its following vehicles through the transmitting unit.

Mobile nodes travelling to the same direction in near proximity form a semi static network

among them. To accomplish the data transmission, transmitter nodes need to be in the FOV

of the receiver nodes for a certain amount of time. This notion helps to imagine a cluster
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Figure 2.21: Real-time vehicular topology. End-to-end delay for a single session is E. An
event information reaches to a receiver node by E time. Therefore, a received announcement
is older by E time.

of interacting nodes for that span. The nodes are vehicles, and edges are data transmission

links. In the Fig. 2.21 we depict a cluster of moving vehicles in a multi-lane road section.

The topology follows Directed Acyclic Graph (DAG) properties. Boxes in different colors

represent data packets carrying an event information.

Prioritizing among the received events help provide better safety alerts. Each received

events from different directions indicates unseen situations of different sections of the road

and surroundings. For instance, for C7, data coming form C5 is describing the critical

situation happening straight-ahead in the road, on the other hand data coming from C1

is providing contextual information about the left-ahead corner of the road section. A

cognitive combination of the events from different directions may help achieve a bird eye

view to system. That eventually helps to pick up the safest and time critical event. Fig.

2.21 also depicts how information reaching down to the cluster hierarchy becomes older by

the end-to-end delay from parent to child node.
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Figure 2.22: Illustration showing future state of group of cluster nodes.

The red star marked as X in the Fig. 2.22 is assumed to be a critical object (user/sign)

that potentially creates a time critical event. C1, C2, and C6 localize X by their individual

perception modules. However, the rest of the nodes are unaware about X. C1 and C2 create

a packet and transmit to the following nodes, C3, C4, C6 and C3, C4, C5 respectively.

The end-end delay for the packet to reach to the receiver node is assumed to be E. In the

LED-CAMERA setup we assume end-end delay refers to the summation of (transmission+

propagation) delay.

Any received event information is older by an order of E units of time. We represent the

delay as, n×E. Here, n is the edge count of the path followed by an event notification that

is originated at the witness node. For instance, C3 learns about the object X by a delay of

1 × E. Here, the notification is originated by C1 and the path followed by the transmitted

event is C1 → C3. Similarly, C7 learns after delay 2 × E, where path is C1 → C3 → C7.

Now the cluster is assumed to be moving entirely by δd distance during δt time.
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As in Fig. 2.22, at time T, C1 initially calculates the reaching time to X that is ti. At time

(T +δt) C1 moves δd distance closer towards object X. At that point, the reaching time from

C1 to X is tj = ti–δt. Now, assume the topology remain static of the cluster and a critical

event notification travels from C1 to C7 through the path C1 → C3 → C7. Therefore, C7

is now aware of object X. From C7 to X the reaching time = ((reaching time C7 to C3 +

reaching time C3 to X) - Event travel time [n× E]). The δt refers to the Event travel time

[n×E]. The packet received by C7 contains accumulated distance from C3 → C1 → X. In

this case, from the velocity of the receiver vehicle C7, and the accumulated distance in the

received packet we can derive the total reaching time.

The receiver node prioritizes among the announcements based on calculated reaching

time, event occurrence location, and safety notions. For example, for C7 among 3 received

announcements in the Fig. 2.19. The traffic light green is near proximity event as it has

the least reaching time among the other two announcements. The relative lane for traf-

fic lights is always 0 as the lights applies to all the lanes in the same direction of travel.

And relative lane : 0 denotes the event impacts the same lane where the receiver node is

travelling. However, in spite of having longer reaching time the first two records in the list

must seek higher attention considering the safety notion. Two relay nodes are announcing

pedestrian crossing that they listened from witness vehicles. Relative lane values denote,

single/more pedestrian/s object is tentatively detected in the left side area of the road and

the object’s location falls in the danger zone (that is (+/-)4 lanes). So, the highest atten-

tion seeking announcement among the list is that, one/more pedestrian located in the right



76

side around reaching time of (18m + distance from receiver to the immediate transmitter –

2× E)/speed of receiver.

The critical event chosen by the decision-making module is also relayed to the follower

nodes as the highest priority event. A following node, however, picks the critical event based

on its local perceptions a received announcements following the same process.

2.2.6 Case Study

We present the applicability of the cognitive information mapping for different use-case

scenarios. We consider these case-studies as the subjective evaluation of the applicability of

our positioned design. We describe the examples with respect to the host (receiver) vehicle.

(Case 1) A local road cluttered intersection consisting pedestrian, cars, traffic

lights. Our three-step cognitive information processing system first performs prediction

based on local perception output. We suppose, the local perception module detects traffic

signal lights, neighboring vehicles. On the collection of detected objects, we run prediction

algorithm that assigns the occurrence probability to each potential event, which is the likeli-

hood of occurring an event within next T span of time. Suppose potential events are traffic

light remains green/yellow (probability: very high), merging vehicle to the lane (medium), a

road work after the intersection (very low), given the probability stamps are, very high, high,

medium, low, very low. Now we run the attention algorithm to select the high priority event

form the locally perceived likely-occurring event among all the potential events. The merging

traffic and road work gets ruled out considering their higher reachability distance thus traffic

light gets selected that indicates a clear road to pass through the intersection. Now, we dive
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into the decision making with the received announcements from the neighboring announcer

vehicles. We assume, the received safety alerts are, a: clear road (means, no blocking traffic),

b: merging traffic to right adjacent lane, c: pedestrian in the second lane from the left. Now,

the reaching time to the received event objects (traffic light, pedestrian, merging traffic) and

the relative position from the host vehicle to the pedestrian is derived with the available

information in the announcements. Suppose the alert a with relative lane : 0 indicates rid-

ing lane is clear to accelerate. b passively indicates a safe acceleration too as the merging

is happening one lane to the right (+1), but not in the same lane. However, the alert c

coveys a deceleration with relative lane : (−3) as a pedestrian fall in the danger zone that

is detected inside (+/-) 4 lanes. We assume, c gets picked up as the highest priority event.

Lastly, comparing the locally selected event, clear road and the received information from

neighbors, that is, pedestrian crossing road, our system chooses the pedestrian alert to act

upon for the host vehicle driver as well announce to its neighbors.

(Case 2) A traffic signal light obstructed by a large truck in the local road.

Perception module detects objects like neighboring vehicles, road signs. The prediction

derives potential events like clear road based on perception output like no detected merging

traffic, or front vehicle riding in safe distance. Now, applying the attentional selection, the

locally adopted event is clear road. However, from the leading vehicles, the host gets a

traffic light red event. The host vehicle deduces the traffic signal position from the received

information. Thus, the host vehicle adopts the traffic light red event over clear road as the

recommended action. Therefore, the vehicle gets notified about the obstructed red signal
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and take proper action to avoid any threatening consequences

(Case 3) A sudden crash/brake/slowing vehicle in the adjacent lanes in the

highway. In the highway, the perception module detects mostly neighboring vehicles and

their interactions. Assume, from the local prediction-attention the host vehicle deduces

merging traffic from the adjacent lanes on one side of the road. It also receives announcements

from the leading neighbors about a sudden crash/brake/slowing vehicle in certain section of

the road. From the locally selected merging traffic alert the vehicles either can decelerate or

may move to an adjacent lane. However, with the help of continuous received announcements

the host vehicle eventually gets an alert message to move to much safer lane from the

imminent crash or blockade.

2.2.7 Conclusion

We positioned the design and use-cases of a cognitive information processing model pipeline

for driving assistance that generates spontaneous safety alerts by understanding and prior-

itizing surrounding LOS and NLOS information. We designed a gist recognition algorithm

comprising of prediction-attention concepts. In the prediction module we estimate all event

occurrence possibilities based on the locally perceived scene data (LOS information). The

attention module prioritizes among the probable events and select the most critical one.

In addition, we designed a decision-making module that prioritized and chooses the most

critical safety event based on the information from neighboring vehicles. We validated the

applicability of our design through subjective case-study analysis of three real-world life

safety threatening driving situations.
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CHAPTER 3

CAR MOTION ANALYSIS: MEASUREMENT STUDY ABOUT
VEHICULAR RELATIVE SPACIAL MOTION USING STEREO CAMERAS

The extremely high bandwidth and directionality of Optical Camera Communication(OCC)

presents numerous opportunities for high throughput communication with high spatial reuse.

These features make OCC an interesting case for vehicular networking using brake lights and

head lights as transmitters, and optical/image sensing devices as receivers. In particular,

vehicular OCC can benefit from high throughput directional links between vehicles and

infrastructure (e.g. downlinks and uplinks between vehicles and road side edge/cloud com-

puting units). The high spatial reuse factor can enable multicasting and multiple–input

multiple–output (MIMO) communication (e.g. a OCC network of platooning cars, visual

MIMO (9) for vehicles). However, OCC lags behind radio frequency (RF) communication

in terms of adoption as a key vehicular networking technology. This is attributed to the

fact that OCC links are highly directional, making them highly susceptible to throughput

reduction and link failures during mobility. Therefore, realizing vehicular OCC in practice

fundamentally requires addressing mobility.

OCC links require strict spatial alignment between the transmitting and receiving optical

elements. Such an alignment becomes extremely challenging with traditional optical receivers

that use photodiodes, due to the very small cone of reception or field–of–view (FOV). The

FOV in a OCC system can be increased by using a lens in front of the receiving elements,

however, this makes the system noisy due to the additional collection of ambient light noise

at the receiver. The noise can be spatially filtered, while maintaining a large FOV, using
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camera inspired receivers due to the image sensor’s pixelated spatial structure. Selective

filtering of ambient noise can help increase the receiver signal–to–noise ratio (SNR). The

pixelated structure enables spatial resolvability (filtering) of ambient noise and the large

FOV provides a larger angle of freedom for mobility for the transmitter–receiver pair. This

way, camera inspired receivers present unique advantages to address the mobility issue.

However, addressing the mobility problem requires a clear understanding of the amount and

types of motion that the vehicular OCC system may encounter.

Prior works in vehicular OCC have largely been limited to theoretical concepts or con-

trolled experiments in primarily static or controlled mobility settings. Only a few works

in recent times that have explored OCC for vehicular communication in realistic mobile

settings. Shen et al (74) present their pilot studies on using a photodiode receiver and a

brakelight LED transmitter for low data rate communication on real highway driving set-

tings. The study reveals the need for a better understanding of the instantaneous motion of

vehicles on the road to help locate the transmit beam and retain link alignment. Yamazato et

al (75), conduct a motion characterization study under V2I and V2V scenarios using a LED

array and a high–resolution camera. However, the experiments were conducted in a very

controlled setting and did not capture the broad range of realistic vehicular movement on

roadways. Additionally, the speed of the vehicle was limited to about 18-20 miles–per–hour

(mph), which limits the scope of mobility characterization knowledge in context of vehicular

networking.
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3.1 Motion Characterization for Vehicular Visible Light Communications

To gain a better understanding of mobility in vehicular OCC, in this work, we present a

holistic study of the motion of the vehicles in real world driving settings. We take an approach

where we make extensive measurements, using a OCC setup on real roadway driving, and

derive our insights based on the observations from analyzing the measurement datasets. Our

experiments involve a colored chesssboard pattern marker fixed on a lead vehicle and two

(identical) cameras fixed on a following vehicle. We analyze the camera images and estimate

the amount of movement of the vehicles in each of the three spatial dimensions X, Y and Z

(see Fig. 3.9 (a)) in typical driving conditions. In essence, this paper presents an empirical

study of motion in vehicular OCC by measuring the geometric effects on camera images, due

to the relative motion between transmitter and receiver. We note that motion also leads to

photometric effects such as signal quality reduction, pixel intensity reduction, motion blur

etc., which we reserve for future work.

While prior work has explored mobility in vehicular OCC, to the best of our knowledge,

our work presents the first extensive study of motion of vehicles in uncontrolled real–world

driving scenarios. The dataset in our study is comprehensive of about 15 hours of video

footage at 30fps, which translates to analysis of over 1.5 million images (sample points).

The dataset associated with this work will be made available to the community to further

the development of research in mobile vehicular OCC.
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(a) Vehicle coordinate axis (b) Transmitter setup (c) Receiver setup

Figure 3.1: Vehicle coordinate axis convention and experiment setup involving the lead
(transmitter) and follower (receiver) vehicle

3.1.1 Novel Contributions

In summary, the key contributions of this paper are as follows:

1. Definition of a motion model describing vehicle motion in 3D, measurement of vehicle

motion in 3D, and a study of the relation between vehicular motion behavior (type of

motion) and degree of motion through the model.

2. An extensive real–world experimentation involving multiple hours of data collection in

realistic vehicular driving conditions.

3. A verification analysis of the inferences by applying the derived motion on a random

dataset. Fairness is maintained in the evaluation by ensuring the dataset is mutually

exclusive to the one used to derive the model.

3.1.2 Related Work

Vehicular VLC has been gaining increasing interest in the research community in recent

times. Several works (10; 18; 76; 77; 78) have proposed techniques for improving reliability

in vehicular VLC through using redundancy from LED arrays and/or using image sensors for
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receiver diversity. (79) proposes the use of a imaging based control channel for tracking the

LED transmitter and assisting communication on a narrow FOV photodiode receiver. Such

works attest to the fact that image sensors play a key role for tracking assistance and signal

quality enhancement in vehicular VLC systems. Prior works on tracking LED transmitters

in vehicular VLC systems have largely focused on addressing the mobility problem for niche

use–cases. Such techniques have largely used a reactive approach, where the motion has

affected the quality of the signal and the research aims to address the after–effects in signal

quality.

Our work aims to address motion proactively, by first gaining a comprehensive under-

standing of the degree and type of motion in vehicular VLC systems. We will use this

fundamental understanding to further develop efficient transmission and reception proto-

cols for vehicular VLC. To this end, (80; 75) are the only works in recent times that have

approached to modeling motion in vehicular VLC. However, the works have been largely

limited to specific driving settings which impedes the generalization of such studies/models.

There is significant prior literature on the use of multiple cameras for depth estimation

using stereo vision in vehicular systems (81; 82; 83). The techniques range from using

disparity images to sophisticated 3D euclidean point reconstruction. We note that our work

does not claim to innovate on stereo vision algorithms. Our work presents a motivational

use–case for multi–camera setups in vehicular VLC systems, and can piggyback on the

advancements in stero vision depth estimation techniques.
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3.1.3 Motion Model and Experiment Setup

We map the mobility characterization problem to the estimation of amount of motion of

the vehicle in 3D space. In a wireless communication context, it is the relative motion

between the transmitter and receiver that impacts the signal quality. Hence, we focus on

the problem of estimating the relative motion between a transmitter vehicle and a receiver

vehicle. Estimating the relative motion translates to the problem of determining the relative

positioning between the two vehicles at any instance of time.

To this end, we characterize the motion of vehicles through a motion model that describes

the relative positioning between two vehicles (transmitter and receiver) along three spatial

dimensions. We define motion model as a vector,

M = [δu δv δw n] (3.1)

where, δu captures the relative movement along horizontal (X), δv captures the relative

movement along vertical (Y), δw captures the relative movement along the driving path (Z),

and n is a flag value representing the vehicle behavior class type. Here, the motion model

is described for a single time snapshot. The relative movement values represent the motion

over a specific time window and the vehicular behavior class is the type of motion the vehicle

undergoes in that specific time window. We will define and discuss the vehicle class types in

detail in Section 3.1.4.3.
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3.1.3.1 Challenges in vehicular positioning

Positioning requires precise location information in 3D. Using global positioning system

(GPS) coordinates of each vehicle we can determine the distance between the vehicles or the

relative position of the vehicles along Z dimension. However, there is no information on the

other two (X and Y) dimensions. Also, GPS is prone to errors in the typical range of 3–10

meters and upto 100 meters under poor signal reception regions. Such a degree of error, can

significantly detriment the quality of a VLC link as the errors can lead to losing track of the

transmitter and/or communicating with the wrong vehicle; for example, a typical lane on a

highway is 2m in width and a 3m error will imply a different vehicle in the next lane.

Relative positioning between two vehicles on road is also extremely challenging due to the

random driving behavior of the vehicles. This implies the receiver must be able to predict

and/or estimate the type of transmitter vehicle motion behavior. One approach is to fit both

vehicles with inertial measurement unit (IMU) sensors that can record the amount of local

motion in each of 3D axis. Since the sensors are positioned on each vehicle, the transmitter

will require to inform the receiver of the sensor value. Such a necessity creates a chicken–egg

type problem, as the prime reason for exploring vehicular VLC is to establish communication

between the two vehicles. While using a control radio channel to share the sensor data is a

possibility, this does not scale well in realistic driving conditions. Also, IMU sensors drift

with time, making them not a suitable choice for precise motion measurement.

Due to the challenges in using GPS and motion sensors, we choose to study motion in a

vehicular VLC link using an optical wireless setup. In particular, we indirectly measure the
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Figure 3.2: Driving roadmap of experiments conducted. The picture shows the local road
pathway (speeds 25–45mph). The parking lot data (speeds 5-25mph) was collected on a 30m
x 100m parking lot in the location marked by the red pin on the map.

amount of vehicle motion by studying the movements in the image sensor pixelated domain.

3.1.3.2 General Experiment Setup

The measurement study involved conducting experiments by driving two cars along different

types of roads in the city of Atlanta in Georgia, USA. During the experiments it was made

sure one car followed another car. Fig. 3.9 shows the experiment setup along with the devices

placements and axis conventions used in our experimentation.

A color chessboard presenting a Bayer BGR pattern was pasted on the back of the lead

car. The chessboard is treated equivalent to a static–valued light transmitter. The car was

followed by the receiver car that stationed two GoPro 5 HERO cameras. The two cameras

were placed at a distance of 40cm along the horizontal (X) and zero relative height difference.

The image view planes of the cameras were aligned parallel to one another. The camera was

set to operate at 1920 x 1080 pixel resolution and at 30 fps. Unless otherwise specified, these
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are the default camera settings in our experiments.

The two vehicles were fit with an OBD–II diagnostic monitoring device and an Android

smartphone. The OBD–II recorded the GPS coordinates (latitude and longitude) and car

speed. We paired the device with an Android tablet through Bluetooth and used Torque

Pro data logging application, available for download from Google Playstore. We stationed

the smartphone on the car’s dashboard and recorded the angular rotation along 3 axis using

an inertial measurement unit (IMU) sensor logging application. We consider the rotation

angles along X, Y, Z axis as pitch, azimuth and roll, respectively. The frequency of the

measurements were set to 1 Hz (once per second) on both devices.

The experiments involved driving the vehicles under different road conditions and driving

speeds (parking lot, local road and highway). The roadmap of the experiment driving paths

is shown in Fig. 3.2. During the experiments the follower car drove behind the lead car,

maintaining a safe driving distance. The follower car repeated the same action as the lead

car. For example, if the lead car changed the lane, the follower car also changed the lane in

the same direction. During this process the cameras were set to record video footage while

the OBD and smartphones logged the corresponding sensor values. Overall, we collected

measurements worth of about 15 hours of video and over 50000 sensor data samples. We

analyze this measurement dataset to derive the motion model by using tools from computer

vision, probability and statistics and error analysis.

We follow a convention that, unless specified otherwise, all relative motion parameters

are defined using the receiver (follower/camera) car as a reference. Therefore, every relative
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(a) Chessboard vertices (b) Sample motion computation

Figure 3.3: Illustration of motion value computation using chessboard vertices. We show an
example computation of δu and δv for one of the chessboard vertices.

computation between the two cars will use follower car value minus lead car value. We assign

positive (negative) polarity to motion when the lead car is to the left (right) of the camera

center.

3.1.4 Horizontal and Vertical Motion

Considering the use of a camera as our measuring unit at the receiver, we denote the hori-

zontal (X dimension: δu) and vertical (Y dimension: δv) motion parameters in pixel units.

We consider, one pixel unit as the length corresponding to the side of one square pixel in

the camera image sensor, set at the default resolution of 1920 x 1080. Given the camera

intrinsic parameters (focal length and side length of a pixel and image sensor center), com-

puted through camera calibration procedures (84), the equivalent amount of motion in world
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Figure 3.4: Statistical representation of δu and δv in pixels at 1920 x 1080 camera resolution

distance units (δworld
u , δworld

v ) can be computed using perspective projection theory (85) as,

∆world = ∆pixels depth

( focal−length
pixel−side−length

)
(3.2)
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(a) SW-R (b) SR (c) SW-L (d) ST

(e) LC (f) BM (g) LT (h) RT

Figure 3.5: Image snapshots from our dataset that record each of the eight vehicle behavior
types.
From top-left to bottom-right: sway right, straight, sway left, stop, lane change, bump,left
turn, right turn.

Here, depth is the distance between the object and camera center. In our experiments,

this translates to the distance between the transmitter and receiver, equivalently the distance

between the two vehicles – denoted as δw. This means that computation of the relative

physical movement of the vehicles in X and Y dimensions requires quantifying the move-

ment along Z dimension (estimating δw). From computer vision theory, a minimum of two

cameras (stereo vision) setup is required to estimate depth – using stereo correspondence al-

gorithm (86). Depth can also be estimated from a single camera using structure from motion

algorithms (86), however, that requires knowing the exact type of movement of the camera,

which is technically an unknown parameter in our vehicular setup experiments. The need

for depth estimation motivates the use of the two camera setup in our experimentation for

vehicle motion measurements. We will discuss depth estimation experiments in Section 3.1.5.
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3.1.4.1 Measurements

We measure the horizontal and vertical motion using the pixel coordinates of the corner

vertices of the imaged chessboard. Fig. 3.3 provides an illustration of this process. We run

an open–source chessboard detection routine (87) on each image frame and record the pixel

locations, (r, c), of 25 vertices (corners). We collect 25 points to provide diversity and scale

the number of samples to improve the statistical estimation accuracy. If (ri(k), ci(k)) and

(ri(k + τ), ci(k + τ)) correspond to the pixel coordinates of a vertex i (i =1,2,3..25) at time

instance k and k + τ , we compute the motion values as,

δu(i, τ) = ci(k + τ)− ci(k) δv(i, τ) = ri(k + τ)− ri(k) (3.3)

Here τ is the time period between each data (image) sample. Since we process every

frame of the video, τ = 1
fps

, where fps is the frame rate of the video.

3.1.4.2 Observations and Insights

We compute δu and δv for the entire dataset using the procedure described above, setting

fps = 30. We also create sub–datasets by downsampling the parent dataset at lower frame

rates of 1, 2 and 10fps. For 10fps we take the difference in pixel coordinates for every 3rd

value in the parent dataset, and correspondingly every 15th for 2fps, and 30th for 1fps.

In Fig. 3.4 we plot the overall probability distribution of δu and δv at frame rates of

30,10,2 and 1 fps. We also provide the statistical mean (µ), median, standard deviation (σ)

and the maximums in each polarity.
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From the histograms in Fig. 3.4 we can observe that δu is bounded within an absolute

value of 40 pixels and δv within 12 pixels. Also, we can observe that the effect of frame rate

on motion values does not follow any pattern. These observations lead us to the following

key insights:

(1) δu and δv are bounded: Considering the large size of our dataset, and that our mea-

surements are across typical road driving conditions and natural driving patterns, we infer

that the absolute values of δu and δv are bounded within 40 and 12 pixels, respectively.

We note that these values are relative to the camera resolution of 1920 x 1080. However,

translating this number to a different resolution is simple as the it is a direct linear mapping

(twice resolution implies 2x the value of δu and δv ) We also note that the amount of vertical

movement is significantly less than the horizontal. This agrees with our general intuition that

the amount of lateral movement of a vehicle would be significantly more than the vertical.

However, we do also note that the vertical movement is non–zero as it must account for the

vibrations of the vehicle and also jerk movements of the vehicle due to road conditions (e.g.

pothole).

(2) Vehicle movement behavior impacts δu and δv: Analyzing the motion by sampling

the movements at different time windows reveals that the type of motion happening in that

window matters significantly. Based on the definition of the motion parameters, the value we

measure corresponds to the aggregate of the motion within the sampled time window. From
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our measurements, we observe that the maximum movement is within 40 pixels, whether it is

sampled at 30fps or 1fps. It would be wrong to generalize a theory that a longer time window

sampling is a mere addition of the δ values in each sub–window. The cumulative effect over a

window would be the case only when the movement of the car is continual across the accruing

time windows. However, since that is not the only case in typical driving scenarios, we infer

that that within any sampling time window the vehicle could be continually moving across a

dimension or go back and forth (vehicle sways to left and adjusts back by swaying to the right

in next window) or have a combination of multiple movements across dimensions (vehicle

sways to left and turns right or stops). Depending on the length of the sampling window,

the fine (intricate) movements may or may not be captured, and that only the position of

the vehicle at the start and end of the window will only be registered. For example, if the

vehicle moved to left in X by 10 pixels in 500ms and moved to right in X by 10pixels in next

500ms, and if the sampling rate is 1fps, the δu would be 0. However, this does not necessarily

mean that the vehicle was relatively static. In this case, a frame rate of atleast 2fps can

register the two events which will reflect as δu(k) = −10 and δu(k + τ) = +10, respectively.

3.1.4.3 Vehicle Movement Behavior Analysis

We define 8 vehicle movement behavior actions and bin our dataset based on the movement

type through manual inspection of the videos. Each action is defined as the relative move-

ment of the lead car with respect to the follower car. We recall that the follower car follows

the same action as the lead car. As mentioned earlier, the left and right conventions are

in reference to the viewing direction of the camera on the follower car. The actions (see
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(b) δv, frame-rate = 30fps

Figure 3.6: Horizontal and vertical motion values for different vehicle behaviors: Swaying
to right inside the lane (SW-R), Straight (SR), Swaying to left inside the lane (SW-L),
Stop(ST), Lane change (LC), Bumping/brake to stop (BM), Left turn (LT), Right turn
(RT).

Fig. 3.5) are defined as follows:

1. SW-R : vehicle sways to the right within the same lane.

2. SR : vehicle driving straight within the same lane.

3. SW-L : vehicle sways to the left within the same lane.

4. ST : vehicle is stopped within the same lane.

5. LC : vehicle is changing a lane (left or right).

6. BM : vehicle experiencing a bump and/or braking to stop.

7. LT : vehicle actively turning left.

8. RT : vehicle actively turning right.
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In Fig. 3.6 we draw the boxplots for the measured δu and δv at each of the 8 vehicle

behavior types.

On δu we can observe that the variance of the motion values within a particular class/type

is different across the 8 classes. We observe that behaviors involving turn type movements

(lane changes, active turning) have a higher variance than driving along the lane. We verify

our conventions of left and right by observing that RT has a median positive value and LT

has a negative median value.

On δv, we observe that the medians and variances are fairly uniform across the types. In

general, vertical movements are more of a function of the driving path topology (driving on

a hill versus flat land) than vehicle behavior.

Measuring the vertical movements across different road elevations requires further experi-

mental investigation. However, these measurements provide a significant baseline knowledge

of the range of motion along these dimensions. In addition, the variability in δu for differ-

ent behavior types motivates deeper analysis of the temporal variance of the motion within

specific time windows. We believe in further analysis of the dataset can help define relevant

temporal features which can be used for executing a machine learning classifier to identify

and/or predict vehicle motion behaviors. We reserve such an analysis for automatic vehicle

behavior learning through motion for future work.

3.1.5 Distance between the Vehicles

We measure the motion along the Z dimension, δw, as a function of space instead of time.

In essence we measure δw as the spatial separation of the transmitter and receiver cars at



96

0 100 200 300 400 500 600 700
Index Number

0

10

20

30

40

50

60

G
P

S
 D

is
ta

n
c
e

 [
m

]

0

10

20

30

40

50

60

S
te

re
o

 D
is

ta
n

c
e

 [
m

]

Figure 3.7: Comparison between distance (δw) estimated using GPS and stereo vision.

(a) Image frame (b) Roadmap

10 20 30 40 50 60 70 80 90 100110120130140150160170180190200
0

1

2

3

A
v
g

 E
rr

o
r 

R
a

te
 [

%
]

(c) Error rate

Figure 3.8: (a) Image snapshot from verification dataset. The vehicles are driven on a
highway (speeds 50–65mph). (b) Roadmap of the data collection. (c) Average error rate for
different horizontal and vertical movement ranges.

a given time snapshot, which is equivalent to the estimating the distance between the two

vehicles at each instance of time.

As described earlier, the value of δw is necessary to translate horizontal and vertical

motion from pixels to world distance values. The translation to world distance values is

important as it refers to the actual physical motion, while the pixel units refer to the motion

interpreted by a camera. This means that a single value of δu or δv pixel movement will yield
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a different world motion value depending on distance. However, this mapping is deterministic

and linear; for the same value of pixel movement, the world movement at short distance is

smaller than at long range.

We conduct a baseline measure of distance between the two cars using the corresponding

GPS coordinates by applying the haversine formula (88) using GPS latitudes and longitudes.

As an alternate method for distance measurement, we use stereo vision theory for camera

depth estimation (86). Given the stereo camera setup, we analyzed image frames at matching

(using timestamps) timeslots from the two GoPro cameras. We used stereo correspondence

mapping to match the chessboard vertices on the stereo image pair. We used 5 points in

the image pairs; the points corresponded to the top left, top right, bottom left, bottom right

and centroid of a virtual box bounding the rectangular chessboard.

We compute distance using stereo vision for each of these 5 points and record the mode

(maximally occurring) of the 5 distance estimates. Distance is computed as,

δw =
f ∗ b

xl − xr

(3.4)

where, f is the camera focal length, b is the baseline (distance between the two cameras

in one plane), and xl−xr is the disparity. In our setup, both cameras were aligned in X axis

and thus the baseline and disparity is along the horizontal. Disparity is determined using

the column (c) coordinates of the matched corresponding point pairs.

In Fig. 3.7 we report the distance estimated using GPS and stereo vision for a snapshot

from our dataset. The goal of this analysis is not to propose a novel depth estimation algo-
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rithm, instead is to study how good or bad are the available methods for distance estimations

in our setup. We make the following observations based on the comparative evaluation of

the two methods:

(1) GPS method overestimates distance values compared to stereo method.

(2) Upon manual inspection of the frames with high distance estimates (peaks) we observe

that GPS method is highly susceptible to errors when the vehicle drives close to a bridge

(would apply same for a tunnel as well).

(3) Stereo vision based distance estimates are closer to reality (than GPS).

(4) Disparity based stereo vision distance estimates deviate significantly when the two vehi-

cles are at oblique angles from one another. This is because the corresponding points may

not lie in parallel image planes and thus disparity is no longer applicable. The peaks marked

by a red blob, in Fig. 3.7, correspond to these deviations.

(5) Stereo method underestimates distance values in some cases when the cars were very

close (shortest distance between vehicles was 5m in our dataset; measured using reference

landmarks on google maps).

In general, our experiments reveal that a simple stereo estimation method can help

estimate distance between two communicating vehicles. However, it is to be kept in mind

that stereo algorithms can have specific limitations depending on different driving scenarios

and vehicle behaviors.
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3.1.6 Verification Analysis

We have gained a better understanding of the degree of motion through our analysis of our

measured dataset. As an action of verifying our inferences from the analysis, we apply the

learning on a new dataset. To ensure fairness in the evaluation, we capture a completely

new set of data, which is mutually exclusive from the dataset for motion characterization

experiments discussed in this paper. We collected a total of 21 videos, amounting to about

2 hours of video footage, using a GoPro mounted on a follower car, of a lead car fit with

the bayer color pattern chessboard. In this experiment, the vehicles followed each other and

drove across local roads and a highway. The video frame rate was set at 30fps and resolution

at 1920 x 1080. Fig. 3.8 (a) and (b) show a single image frame from our verification dataset

and the drive map of the experiment, respectively.

The motive of motion characterization is to help build efficient trackers to help maintain

strong optical alignment of VLC links. In this regard, we test our findings by applying a

strawman tracker that fits a bounding box on the chessboard area on the image frame. The

dimensions of the bounding box are set to the values of δu and δv measured from the motion

experiments. We measure the accuracy of this bounding–box tracker using the ground–truth

values of the coordinates of chessboard vertices. For the evaluation, we assume that the pixel

coordinates of the region of interest is known on the first image of every video in the dataset.

The tracker marks each frame as a success if the heuristic bounding box retained all the

vertices of the chessboard. The tracker marked it as a failure even if one of the chessboard

vertex (corner) was outside the bounding box. When a failure is detected, the tracker is
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reinitialized to its ground–truth position on the subsequent frame. We compute the error

rate as the ratio of the number of reinitializations to the total number of processed image

frames.

In Fig. 3.8 (c) we show the error rate, averaged across the dataset, for each value of the

side length of the square bounding box. We can observe that the error rate is consistently

significantly low (< 1%) for bounding box size of 40 and above. This is in agreement with

the measured range of horizontal and vertical motion from the other dataset. The bounding

box tracker presents a proof–of–concept of the idea of improving tracking accuracy using

auxiliary information on the degree of motion.

To this end, our work lays the foundation step towards holistic understanding of the

degree of motion in realistic vehicular VLC settings.

3.1.7 Conclusion and Future Work

In this paper we presented an experimental study of vehicular motion by studying the relative

pixel motion on camera receivers, which were mapped to physical world distance units.

Through our experiments we generated a dataset worth over 15 hours of video footages.

Upon extensive analysis of our dataset we inferred that the typical range of horizontal and

vertical motion of the vehicles is bounded. We found that the bound for a high definition

image resolution (1920 x 1080) is of the order of 40 pixels; which translates to about 25cm

of lateral and vertical movement for a typical digital video camera at 10m distance between

transmitter and receiver vehicle. We also defined 8 vehicular movement behavior classes

and studied the motion values for each class. Through a strawman tracking application
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experiment on a new dataset that we created, we verified that our measurements concurred

with our understanding from our motion characterization experiments.

3.2 Camera and Camera Array Receiver Systems

Cameras integrated in modern vehicles are very useful resources for communication. They

enable a relatively wide field–of–view (FOV), allowing more flexibility during motion through

computer vision based tracking techniques. Tracking can include locating the optical trans-

mitter or even another vehicle (treated as a different node in the network). The large number

of highly directional receiver elements allow a longer communication range, as interference

and noise can be selectively filtered over the spatially diverse pixel elements of the camera’s

image sensor. Since the pixel values are digitized and quantized, analysis and processing can

be all done in software.

However, camera communication requires line–of–sight between the transmitter and re-

ceiver. This translates to the transmitter being imaged within the field–of–view (FOV) of

the camera. Typical FOVs for off-the-shelf cameras are in the range of ±60 degrees – approx-

imately being able to image 1 lane at a 12m distance between the transmitter and camera.

Cameras are also limited in their sampling rates, as typical sampling rates are of the order

of 10Hz to 1000Hz for off–the–shelf cameras. The cost significantly increases for frame-rates

higher than 1000fps and other custom cameras.

Multi-camera or camera-array systems can be very useful for vehicular networking ap-

plications from a multiple- input multiple-output (MIMO) system perspective (1)(89). The
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additional camera can help provide meta data, for example, for tracking purposes, while the

primary camera can be used for active data reception. Additionally, the multi-camera setup

(virtually) expands the receiving pixel array, thus enabling a potential throughput scaling

capability. In this paper, we position the idea of using camera communication for vehicle

to vehicle communication. In particular, we explore vehicular multiple camera communica-

tion where light emitters such as brake/tail lights can transmit information to be perceived

and decoded by cameras on following vehicles. Our experimental platform features a stereo

camera setup to enable dual usage of the cameras for perception and decoding, as well as,

distance estimation between vehicles. To address the key challenge for maintaining com-

munication reliability during vehicular mobility, we estimate the movement of the vehicle

through image analysis prior to decoding.

In the rest of this section, we will discuss our experimental findings and insights on vehicle

movement measurements and modeling in its 3 dimensions – X (lateral or horizontal), Y

(longitudinal or vertical) and Z (camera depth or distance between vehicles parallel to road

surface).

3.2.1 Pilot Experiment Study using Stereo Camera Setup

As a pilot study, two cameras were deployed on a car following a lead vehicle on local

roads (speeds between 30-45 mph) and highways (speeds between 50-65 mph) in Atlanta

GA. Fig. 3.9 shows the experiment setup along with the devices placements used in our

experimentation. A color chessboard presenting a Bayer RGB pattern was pasted on the

back of the lead car. The chessboard is treated equivalent to a static-valued light transmitter.
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Figure 3.9: Experiment setup involving the lead (transmitter from (1)) and follower (receiver)
vehicle. The driving roadways are highway (speeds 50-65 mph), local road (speeds 25–
45mph), and parking lot (speeds 5-25mph).

This transmitter setup is maintained identical to the setup used in the vehicle experiments in

our prior work in (1). The key update from our prior work, that we highlight and discuss in

this paper is the receiver stereo camera setup with two RaspberryPis and the corresponding

analysis of the depth (distance between vehicles) related information.

The transmitter car was followed by a receiver car that stationed two RaspberryPi3

cameras. The two cameras were placed at a distance of 12cm along the horizontal (X) and

zero relative height difference. The image view planes of the cameras were aligned parallel

to one another. The camera was set to operate at 1920 x 1080 pixel resolution and at 30

fps. Unless otherwise specified, these are the default camera settings in our experiments.

This new stereo camera receiver setup features two RaspberryPi cameras. The cameras,

integrated with the RaspberryPi module, were controlled remotely through secure shell (SSH)

and to operate (capture image and video) synchronously. Time synchronization is ensured

by enabling Network Time Protocol (NTP) on the RaspberryPi controllers, and parallelSSH

protocol was used to operate/control the two RaspberryPi at the same time. The two vehicles
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were fit with an On-board device (OBD) II vehicular diagnostic monitoring device and an

Android smartphone. The OBD–II recorded the GPS coordinates (latitude and longitude)

and car speed. The OBD-II device is paired with an Android tablet through Bluetooth

and uses Torque-Pro data logging application. The smartphone is stationed on the car’s

dashboard and recorded the angular rotation along 3 axis using an inertial measurement unit

(IMU) sensor logging application. The rotation angles along X, Y, Z axis are considered as

pitch, azimuth and roll, respectively. The frequency of all the sensor measurements were

set to 1 Hz on both Android devices. A SLAMTEC Rplidar A3 is used for ground truth

distance measurements, which is a single channel, 25 meters range radius, 16000 samples per

second enabled LIDAR.

The field measurements involved driving the vehicles under different road conditions and

driving speeds (parking lot, local road and highway). During the experiments the follower

car repeated the same action as the lead car, while maintaining a safe driving distance. For

example, if the lead car changed the lane, the follower car also changed the lane in the same

direction. During this process the cameras were set to record video footage while the LIDAR

recorded the distance to obstacles within 360 degree range of the z (depth) axis, and other

sensors logged the corresponding sensor values. Overall, we collected measurements worth

of about 12000 image frames and over 10000 sensor data samples. The motion model are

derived from this measurement dataset by using tools from computer vision, probability and

statistical error analysis.
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3.2.2 Experiment Results and Insights

Consider ∆pixels as the amount of motion of a specific object in the image the pixel domain

between successive frames. In our experiments this amounts to the movement of the vehicle

across frames. Given the camera intrinsic parameters (focal length and side length of a pixel

and image sensor center) (84), the equivalent amount of motion in world distance units can

be computed using perspective projection theory (85) as,

∆world = ∆pixels depth

( focal−length
pixel−side−length

)
(3.5)

Equation 3.5 implies that computation of the relative physical movement of the vehicles

in lateral (X) and longitudinal (Y) dimensions requires quantifying the movement along Z

dimension (or depth). From computer vision theory, a minimum of two cameras (stereo

vision) setup is required to estimate depth using the stereo correspondence algorithm (90).

In essence, the motion along the Z dimension, or depth, is measured as the spatial separa-

tion of the transmitter and receiver cars at a given time snapshot, which is equivalent to the

estimating the distance between the two vehicles at each time instance. We conduct a base-

line distance measurement between the two cars using the corresponding GPS coordinates

by applying the haversine distance formula using GPS latitudes and longitudes. The base-

line measure of the ground-truth distance between the two cars is obtained by synchronized

LIDAR distance values.

Stereo vision theory is an alternate for distance measurement in camera depth estimation.

Given the stereo camera setup, image frames were analyzed at matching (using timestamps)
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Figure 3.10: A snapshot from the dataset to show the comparison between estimated dis-
tance between vehicles using stereo vision and the ground truth values (measured using the
LIDAR).

time-slots from the two RaspberryPi cameras. Stereo correspondence mapping is employed

to match the chessboard vertices on the stereo image pair. Five points were used in the

image pairs; the points corresponded to the top left, top right, bottom left, bottom right

and centroid of a virtual box bounding the rectangular chessboard. The distance is computed

by stereo vision for each of these 5 points and record the mode (maximally occurring) of the

5 distance estimates

depth =
f ∗ b

xl − xr

, (3.6)

where f is the camera focal length, b is the baseline (distance between the two cameras in

one plane), and xl − xr is the disparity. In our setup, both cameras were aligned in X axis

and thus the baseline and disparity is along the horizontal. Disparity is determined using

the column (c) coordinates of the matched corresponding point pairs.

Fig. 3.10 shows the distance estimated using LIDAR and stereo vision for a snapshot
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Figure 3.11: A snapshot from the dataset to illustrate the disparity between distance between
vehicles estimated using GPS values and stereo-estimation.

from our dataset. The error bar graph demonstrates errors in meters in estimated stereo

distance compared to the ground distance. Based on our comparison between the LIDAR

and Stereo-camera estimates, we observe an error or difference between the two estimates in

the order of (absolute values) 1.2m on average, 1.5m median and 6m maximum. The goal of

this analysis is not to propose a novel depth estimation algorithm, instead is to study how

good or bad are the available methods for distance estimations in our setup. We make the

following observations based on our study:

• Upon manual inspection of the frames with high distance estimates (peaks) we observe

that GPS method is highly susceptible to errors when the vehicle drives close to a bridge

(same applies for a tunnel). Fig. 3.11 shows a snapshot (not shown in Fig. 3.10), to

illustrate the high GPS inaccuracies in general.

• Disparity based stereo vision distance estimates deviate significantly when the two
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vehicles are at oblique angles from one another. This is because the corresponding

points may not lie in parallel image planes and thus disparity is no longer applicable.

• Stereo method underestimates distance values in some cases when the cars were very

close (shortest distance between vehicles was 5m in our dataset; measured using refer-

ence landmarks on google maps).
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CHAPTER 4

DRONE COORDINATED LOCALIZATION: PEER TO PEER AND DRONE
SWARM LOCALIZATION USING CAMERA COMMUNICATION, WIFI

FTM, AND SIMULATION

Autonomous unmanned aerial vehicles (UAV) or drones, are increasingly becoming popular

due to their potential in achieving sensing capabilities over wide spatial areas (91). At

the outset, fundamentally, all drones rely on robust GPS location for precise automated

navigation during their mission flights. It is well known that GPS values are prone to errors

and failures (depending on the environment). More recently it has also been demonstrated

that drone GPS units are prone to a variety of security attacks (92), all the more, revealing

the fragility and vulnerability of GPS on drones.

We propose to achieve the localization between the UAVs to address the problem of UAV

GPS failure or its unavailability. Our proposed approach allows one UAV (helper drone) with

a functional global positioning system (GPS) unit to coordinate the localization of another

UAV (distressed drone) with a compromised or missing GPS system. The helper drone when

discovers a distressed drone flying in proximity, estimates the distress drone’s absolute GPS

location information respective to its own location. This is performed by computing the

relative position of the distress drone with the helper drone. The estimated location is then

communicated to the distress drone. In this paper, we evaluate two fundamental approaches

for range estimation for peer-to-peer relative positioning between drones: (a) camera and

computer vision projection theory, and (b) WiFi Fine Time Measurements (FTM). We eval-

uate our proposed peer-to-peer localization via error across three estimated measures: (i)
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range or distance between the drones, (ii) GPS bearing (angle), and (iii) GPS location (co-

ordinates). Based on our analysis of our dataset consisting of outdoor static and flying

drones setup, our methods result in a median localization error within 1-4m. We discuss this

research further in the section 4.1.

We also model and simulate drone swarm localization with several distressed drones to

evaluate our camera and WiFi FTM localization methods. The drone swarm modelling

allows us to conserve the inherent nature of random motion and interactions of the real-

world in-field experimentation while measuring the average localization error, and average

execution time in the presence of an increased number of distressed drones. We conducted

up to 160 simulations for 8 different parameter combinations. The simulation results attest

our in-field experimental localization error ranges, and gives us a holistic idea of the end-end

operation conduct timing for different number of drone participants. We discuss this research

further in the section 4.2.

4.1 Peer-to-Peer Localization using camera and WiFi FTM

Failure or attack of drone GPS units can significantly compromise the mission safety –

particularly, when the mission involves high value payloads. For that reason, redundancy of

GPS values is important. Today, the best available method to provide redundancy is the

inclusion of additional GPS modules and parallelizing GPS systems (93). Considering the

limited payload capacities of drones and the corresponding trade off with size and battery

lifetime, such redundancy approaches are bulky and largely impractical – especially, for
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Figure 4.1: A conceptual diagram of proposed P2P DroneLoc system for remotely operating
drones using on-board camera and WiFi FTM ranging devices.

medium and small drones that may not be able to mount multiple GPS units. This is

because most GPS modules being used on drones have integrated magnetometers and thus

have to be placed at a reasonable distance away from electromagnetic field interference from

integrated electronics and metallic beams to ensure accurate and proper functionality. This

way, adding GPS redundancy through the inclusion of additional GPS modules creates a

space issue on most consumer drones because each module has to be placed far from other

modules for magnetometers to function properly. It is due to these restrictions that most

consumer drones today, capable of automated flight, only contain a single GPS module and

lack redundancy.

P2P-DroneLoc. To address the GPS unreliability problem in drones, we propose an al-

ternative solution to GPS redundancy for multi drone systems. As shown in the conceptual

illustration in Fig. 4.1, we propose a design where drones with no GPS or non-functional

GPS units are able to receive help to localize themselves coordinated by a helper drone with

a functional GPS/location sensing unit. The key concept of our methods is a helper drone

(HD) tracks nearby GPS distressed drones (DD), and then estimates the relative position of

the distress drone – by estimating the distance and bearing angle. The absolute GPS coor-
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dinates of the distress drone can be determined using the helper drone’s GPS coordinates

and the relative positioning with the distress drone by leveraging the haversine formulation.

Proposed Approach. Most consumer and commercial drones capable of automated flight

have onboard cameras, inertial measurement units (IMU) for motion sensing, computing

units, and wireless networking capability. To this end, we leverage cameras and WiFi APs

that are already deployed commonly in drones. With advances to next generation of WiFi

(WiFi 6 and beyond), there are an increasing number of WiFi devices and APs incorporating

Fine Time Measurements (FTM) capabilities – uses an ACK based prototol to measure round

trip time of radio signal to estimate range between two WiFi FTM devices/APs. We propose

to use the FTM range estimates between helper and distress drone. For bearing or angle,

we use triangulation, using a mediator drone referred to as pseudo-HD. The camera-based

method is designed with a single on-board camera fitted on the helper drone. The helper

uses the camera images to visually track the drone under distress, then applying the camera

projection theory on the image the helper computes distance and bearing of distress drone.

Then, using spherical trigonometry, the helper drone estimates the distress drone’s absolute

GPS latitude and longitude coordinates. The helper uses WiFi communication to inform

the estimated location to the distress drone. In our preliminary baseline work, we have

already implemented and prototyped an ACK based P2P WiFi communication to conduct

inter-drone data transfer. Note that in this paper, we design, implement and evaluate the

full fledged localization where our prior work serves as a preliminary feasibility study.
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4.1.1 Novel Contributions

The key contributions presented in this paper are,

1. Design and implementation of single camera based P2P drone localization.

2. Implementation of a prototype system on two drones that integrates camera and WiFi

localization approaches and deployment for real-world trials.

3. Extensive empirical evaluation of localization accuracy in real-world outdoor flying and

static drone settings.

The rest of the sections in the paper are organized as follows: Section 4.1.2 discusses

related work, Section 4.1.4 presents an overview of all the proposed localization methods,

Section 4.1.5 discusses the detailed implementation of camera and WiFi localization tech-

niques. Section 4.1.6 discusses the evaluations, and Section 4.1.7 concludes the paper.

4.1.2 Related Work

Computer Vision based target localization. There is a good body of prior work in

vision-based ground target localization with a single UAV (94; 95; 96), and multiple UAVs

(97; 98). Our work is helping a flying drone to achieve its location information with another

single UAV. We propose an effective approach of finding a near accurate GPS information

of the target UAV with help of only a single camera and with no power hungry, complex

computer vision algorithm execution. A work (95) localizes a fixed target with a single

camera. Authors idea of finding target location was to triangulate between the camera, the
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target, and a static hypothetical reference point in the target plane itself. Camera-to-target,

and Camera-to-reference point angles were measured by back-projecting LOS unit vectors

derived from two pixelated points retrieved from the detected target and the reference points

in the image frame. The advancement in our work is, we avoid the complexity of finding Euler

angles(95) from UAV’s IMU sensors rather we derive distance (2), and bearing from camera

geometry and then use the Haversine Great circle distance formula (99) to find relative GPS

coordinates.

UAV-assisted localization—Optical and Radio Fusion. Almost all UAV assisted

localization are currently focused on search/rescue operations onto humans or onto static

targets. However, when an UAV itself is in need of localization assistance, the norm is that a

ground station sends help, contrary to the approach of an active UAV helping the lost UAV

recovering location information. Our approach is truly distributed and uses off-the-shelf

hardware and technology already available on drones. Among the few drone-assisted target

localization research, (100), uses an UAV to fly over a target object and assigns that target

the UAV’s location value. It uses RSSI and AoA technique with several antennas to estimate

target’s approximate positioning. Thus (100) may generate serious erroneous positioning

thus leads to an unreliable localization assistance. (101) another work proposed an UAV-

assisted target localization using LoRa network for ground level IoT device localization where

the UAVs act as mobile gateways. This work requires a LoRa network setup with a gateway

and only localizes ground IoT devices registered to that specific LoRa network. Whereas, we

develop more accurate UAV-assisted mobile target localization without any need of specific
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centralized or ground infrastructure setup.

4.1.3 Baseline System Design

Our implemented baseline system considers that the drones at the basic level are equipped

with a built–in flight controller (e.g. Pixhawk), GPS, barometer (altimeter) and IMU. We

propose to further equip the drones with a WiFi transceiver, computing unit – such as a

RaspberryPi or NVIDIA Jetson Nano board – a red LED array and a stereo–camera (e.g.

Stereolabs ZED or INTEL RealSense). Each drone carries an 8x8 LED array on each of

the four directions. In this design for demonstration purposes we assume two drones, one is

the helper drone and another is the distress drone. The distress drones are considered not

to have GPS units or that their GPS functions have been compromised or disabled. The

coordinated localization approach works as follows:

• Distress drone calls for help to localize itself and a SOS radio signal is broadcasted

using WiFi.

• Helper drone detects and receives the SOS signal and acknowledges the distress drone

that it can help. It sends a pairing ID.

• Distress drone communicates the association ID via WiFi which once received by the

helper drone initiates the localization help routine. In the meantime, the distress drone

displays a 2D barcode on its LED array.

• In addition to the 2D barcode, the distress drone modulates the ON LEDs of the array

using an ON-OFF Keying (OOK) pattern, where bit 1 is represented as LED-ON and
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bit 0 as LED-OFF. The modulation rate is set between 30-50Hz so that it is barely

visible to the naked eye yet can be captured and decoded from the frames of a video

camera (following Nyquist sampling criterion) using camera communication (102).

• In the localization routine, the helper drone first identifies the distress drone visually

by recognizing the 2D barcode and also decoding the bit pattern encoded in the LED

ON-OFF modulation. The bit pattern is set to the pairing ID, and thus successful

pairing between the drones is achieved when the helper drone decodes the ID correctly.

• Next in the localization routine, the helper drone computes the relative 3D position of

the distress drone. It uses the stereo-camera’s depth estimation to compute the spatial

separation between the drones. It uses the X and Y coordinates of the computer

vision tracking of the LED array’s barcode, to determine the lateral and longitudinal

(relative) orientation of the distress drone.

• Finally in the localization routine, the helper drone computes the GPS coordinates of

the distress drone by fusing the relative 3D position with its own GPS, barometer and

IMU sensor readings. It uses IMU sensor readings specifically to improve the precision

of the localization by tracking the relative movements of the drones while coordination.

This way, the coordination can be achieved with the drones in motion.

• The estimated GPS coordinates are then communicated using WiFi from the helper

drone to the distress drone.
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• The distress drone updates its own location by internally computing its locations using

its IMU sensors and the last known location (from helper drone).

4.1.3.1 Communication Protocol

The drones establish their coordination through communication over radio (WiFi) and op-

tical (LED-Camera) wireless channels. As described before, the helper drone pairs with the

distress drone through a pairing ID code. This code is first communicated from the helper

drone to the distress drone through WiFi. Then, it is communicated back to the helper

drone by modulating the LEDs on the distress drone. The helper drone, once SOS signal

is received, does a 360 degree rotation over the next 10 seconds to locate the distress drone

by tracking the 2D barcode displayed on the distress drone’s LED arrays using computer

vision. The rotation is to ensure the helper drone tracks the distress drone even if it were

not in its fully-frontal camera field-of-view. The helper drone uses camera communication

concept (102) to decode the pairing ID encoded in the LED array’s signals. Upon successful

decoding of this ID, the helper drone validates the distress drone’s request.

The helper drones enters into the localization routine phase after validation phase. In

this phase, the helper drone first finds the relative positioning of the distress drone in its

camera view using camera view projections. It further estimates the distress drone’s GPS

coordinates and communicates them through WiFi. This data is reorganized into a stan-

dardized format understood by the flight controller firmware (e.g. iNAV) used to pilot the

drones. The distress drone sends this data to its flight controller over a UART channel using

Multiwii Serial Protocol (MSP). This process is repeated at a frequency of 5Hz in order to
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provide iNAV with sufficient information for mission control. Once the drone successfully

reestablishes 3D hold, it responds back to the helper drone to maintain a flipped orientation

and proceed with the mission while guiding the distress drone. During this phase, the dis-

tress drone also continually reports its GPS status to the helper drone. If the helper drone

identifies that the distress drone has reestablished GPS connection or location then the assist

protocol is stopped. However, if the distress drone fails to retain GPS/location functionality,

the helper drone continues the assist protocol until it is manually terminated or until the

distress drone is guided to a safe location – last mission WAY POINT or HOME.

4.1.4 UAV assisted Coordinated Localization

To ensure clarity, we revisit the key abbreviations prominently used in the rest of the paper:

(a) HD - Helper Drone, (b) DD - Distress Drone, (c) Pseudo HD - Pseudo or Mediating Helper

Drone.The localization assistance process is initiated with the distress drone discovery, by

either a HD or by the DD. In the rest of this section, we discuss our camera-based and WiFi

FTM based localization methods.

4.1.4.1 Camera-based localization with a single HD

In this method the HD reaches to a distress drone (independently or from a group) to provide

localization assistance. In this setup the HD has an on-board camera and an active GPS

module. The DD does not carry any camera. The location assistance process starts with

detecting the flying DD in the captured image frame. An image frame indicates a point of

time and a specific location in the entire duration of DD’s flight. Moreover, an image frame
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can provide position information like, the distance between HD to DD, and the bearing angle

between HD to DD for that point of time. We synchronize image capturing timestamp with

the built-in GPS (serving as HD’s ground truth location). The DD’s ground truth location

is collected using its onboard GPS-module. The time-synchronization ensures that, we are

able to estimate DD’s unknown location (GPS) by estimating distance, and bearing angle

from a camera image frame and also be able to validate the estimated location with ground

truth location.

4.1.4.2 WiFiFTM ranging based localization with a HD and a Pseudo-HD

In this design we only use WiFi FTM ranging technology to provide location assistance to

the DD. The HD and DD are each equipped with a WiFi FTM transceiver. However, in this

radio based localization assistance method we need at least three drones in the scene. The

three drones help setup triangulation to estimate the relative position of the DD compared

to other two drone’s position in the 3D world. This method is camera independent and

instead introduces a secondary helper drone (pseudo HD). A pseudo-HD is in reality another

DD which is location enabled through some means. We posit that, among a group of DDs

a recently localized DD can be acting as a pseudo-HD and assist the primary HD in helping

other DDs. The rationale for the three drone (triangulation) approach is, firstly, this method

enables us estimating bearing using angle of arrival (AoA) without help of any on-board

camera in any of the drones in the scene, and secondly, with the help of HD, a DD, once

received localization assistance can then be denominated as a pseudo HD and can start to

help other DDs in vicinity.
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4.1.4.3 Location Estimation of DD

After the detection of a distressed drone we estimate the location of that distressed drone.

The idea is, we can find the latitude-longitude of point B relative to point A when we know

the latitude-longitude of point A, the azimuth/bearing of point B as seen from point A, and

the euclidean distance between point A to point B. In the context of our system, point A

refers to helper drone and point B to a distressed drone. For estimating bearing and distance

we explore the potential of both the optical (camera) and radio (WiFi) channels. Note that,

we get the altitude information from drone altimeter. However, changes of altitude of the

flying DD does not effect our proposed localization methods. In the next section 4.1.5 we

describe the mechanics of both our optical and radio based location estimation methods.

4.1.5 Localization Method

4.1.5.1 Location Estimation in Optical Channel

We design methods to estimate location of a DD using only a single on-board camera in

the HD. We use computer vision camera projection theory to estimate the distance and

bearing between HD to DD, then apply spherical trigonometry formulas (103) to estimate

the absolute lat-long of DD.

Step 1A. Distance Measurement. [Finding distance between HD’s on-board camera

and the detected DD in the image frame] From the system calibration the DD’s real world

dimensions are known. Therefore, having the DD as a reference object on the camera image

frame enables us to measure the world distance between the DD and the HD. The key
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concept of estimating real-world distance between a single camera to an object captured in

the image frame is, ratio of the size of the captured object on the image sensor and the size

of the object in real life is the same as the ratio between the focal length and distance to the

object (perspective projection theory).

Step 2A. Bearing Measurement. [Finding bearing angle between HD’s on-board camera

and the detected DD in the image frame] The bearing angle that is the real world angle

between HD’s north to the DD in clockwise direction, can be estimated from the camera

image. Finding angle between HD on-board camera to the DD in the image frame leads to

estimating the actual bearing angle calculation with an offset angle denoting north of the

HD itself. In our hardware setup, we assume the north of the HD is pointing towards the

sky, south is pointing to the ground, east to the left and west to the right of drone’s forward

direction, respectively. We attached our camera facing forward to cover the frontal view of

the HD, considering the target object to be captured in the HD’s camera is another flying

drone (possibly a DD). Therefore, according to our camera orientation, we claim the angle

between the camera to detected DD refers to the actual bearing angle.

The bearing angle estimation includes, (i) detecting flying DD in a captured image, and

(ii) measuring angle between the image frame bottom-middle pixel and the midpoint pixel

of DD’s bounding box. We borrowed the drone detection module from our baseline work in

the section 4.1.3. However, we implemented the bearing angle measurement in (ii) using the

concept of angle measurement between camera to an object in image frame. We posit that,

the image midline connecting image bottom-mid pixel (x, y) and top-mid pixel (x1, y1) is
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Figure 4.2: Bearing between HD to DD estimated from image.

vector v⃗1, and the line connecting the drone bounding box mid pixel (x2, y2) and image

bottom-mid pixel (x, y) is vector v⃗2. We can say that both v⃗1 and v⃗2 projects onto the image

center as two rays from some real world 3D points. Now, with the inverse camera intrinsic

matrix and given pixels representing these vectors, those same rays can be back projected

into the 3D world. Therefore, given our image top-mid pixel (x1, y1) and bounding box

mid-pixel (x2, y2), we back project vectors v⃗1 and v⃗2 into 3D space. The angle between

them is then computed from the dot product. Fig. 4.2 shows an image frame taken from

our dataset with estimated bearing marker.

4.1.5.2 Location Estimation in Radio Channel

As mentioned before, the WiFiFTM method requires an HD with on-board AP, a pseudo-HD

with on-board FTM transceiver, and the DD with another on-board FTM transceiver. We

assume, the three drones form a triangle while flying. The localization process follows below

steps.
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• The distance between HD to DD, pseudo-HD to DD, and HD to pseudo-HD is measured

using WiFi FTM ranging protocol. The distances form a hypothetical triangle where

each distance between any two drones refers to a side of the triangle and the drones

are vertices.

• From the law of cosine the SSS triangle is solved and the angles are measured.

• Given two known GPS coordinates of HD, and pseudo-HD, and distance between HD

to pseudo-HD we estimate the bearing angle between HD and pseudo-HD.

• The HD calculates the bearing from its location to the DD’s location in reference to

the triangle-angles and the bearing between HD and pseudo-HD.

• Now that the HD has its own latitude-longitude pair, the distance between itself and

the DD, and the bearing of DD as seen from HD itself, therefore, the HD estimates the

target latitude-longitude pair of the DD using spherical trigonometry and sends along

the pair to the DD.

Step 1B. Distance Measurement: [Finding distance between HD to DD, pseudo-HD to

DD, and HD to pseudo-HD] We use WiFi FTM ranging protocol for distance measurements.

We synchronize the on-board ground truth GPS values with these distance measurements

using timestamps to validate both estimated distances and estimated GPS coordinates of

DD.

Step 2B. Bearing, and Latitude-Longitude Measurement: [Finding bearing angle of

DD as seen from HD, and estimating latitude longitude] After solving the SSS triangle we
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Figure 4.3: Bearing estimation of DD w.r.t HD and pseudo-HD, through fusion of triangu-
lation and spherical trigonometry. The left subfigure presents HD, pseudo-HD w.r.t origin,
the right subfigure shows possible locations of DD

have all three angles ∠A, ∠B, ∠C and sides a, b, c. In the 3D space, we imagine a coordinate

system, where A is located in the origin. The bearing of B can be derived from the pair

of latitude-longitude of A, B and the distance between A, B that is, c. Thus, B’s location

in the space with respect to A can be discovered with the help of bearing and distance as

shown in the left sub fig. 4.3. Now, interestingly, we have the angle ∠A that is ∠BAC, so

two possible positions of DD can be derived C and C ′. One, where C is located on one side

of the hypothetical line AB, or in the other side as shown in the right sub fig. 4.3. Since,

we do not have any knowledge of C’s bearing from either A or B, an approach to rule out

a location among C and C ′ is to have information about DD’s previous location. So, we

propose and implement the aspect, by broadcasting DD’s last active location coordinates.

The concept is, the newly estimated location is highly prone to be closer to the previous

active location. As shown in the right sub fig. 4.3 the accepted newly estimated location of

DD is C assuming the blue star denotes the previous active location of the DD, thus C ′ is
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Figure 4.4: From left HD’s forward view with on-board camera, next HD’s backward view
while performing camera calibration, then the DD with on-board pixel 2 (WiFi FTM RTT
client device), lastly a snapshot of HD filming a flying DD.

ruled out since its comparatively far from the previous location.

4.1.6 Evaluation

4.1.6.1 Experiment Setup

The hardware configuration involving proposed camera and WiFi FTM methods includes

mainly (i) a single camera, (ii) two WiFi FTM client devices, (iii) one FTM supported WiFi

access point (AP), (iv) Helper Drone, (v) Distress Drone, and a (vi) NVIDIA Jetson Nano

computing/processing unit. For the camera unit we use footage of a single camera among

two cameras of the ZED that we mounted in our HD (see Figure 4.4). For the FTM client

devices we use two Pixel2 phones. Both the phones have the WiFiRttScan app installed.

WiFiRTTScan app enables real-time wireless ranging between the FTM client and the AP

with 1-2 meter range accuracy. We use Google Nest WiFi router as the AP. This Google

WiFi supports IEEE 802.11mc FTM RTT since 2018 and it uses a single Qualcomm IPQ4019

chipset for both 2.4 GHz (no FTM RTT) and 5 GHz (FTM RTT enabled). With the two

client devices and a single AP we can only get distances between any two devices, however,

for some of our experiments we need distances between every pair of drones in a three-drone
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setup. Hence, we use another android app WiFiNanScan that collects distance between the

other two drones. WiFiNanScan app uses IEEE 802.11mc FTM RTT too. Moreover, The

app measures the distance between two smartphones using the Wi-Fi Aware protocol (also

called Neighborhood Aware Networking(NAN). The helper drone in our system is a basic

drone with built-in flight controller, GPS, barometer, and IMU. We further install a WiFi

transceiver unit and a NVIDIA Jetson Nano board to serve as a processing unit. Distress

drone however in our system design, is a low-payload drone comparative to the helper drone

without the GPS and any camera modules installed.

Figure 4.5: Camera-based localization evaluation results. From left, (i) estimated bearing,
(ii) estimated distance accuracy, (iii) estimated location accuracy, (iv) comparison of esti-
mated distance and location accuracy.

Figure 4.6: WifiFTM ranging based localization with a helper drone and a pseudo helper
drone. From left, (i) estimated bearing accuracy, (ii) estimated distance accuracy, (iii)
estimated location accuracy
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4.1.6.2 Results

We present the experiment based evaluation of the two methods independently. We evaluate

our system based on the localization accuracy based on the ranging error, angle estimation

error and the overall estimated GPS coordinates error. We also present the current prototype

status that integrates both camera and radio localization in an actual fully functional drone

system. (1) Single Camera based Localization Accuracy

Setup and Methodology: Our experiments involved a single HD located static and

a single DD flying in the range of 3 to 10 meters of the HD. The HD’s on-board camera

takes video/picture of the flying DD. The images are processed to estimate the distance

and bearing angle between the HD and the DD. To validate estimated distance, bearing,

and location (lat-long) we require (1) ground truth distance (GT-distance), (2) ground truth

bearing (GT-bearing), and (3) ground truth GPS (GT-GPS) measurements between the

HD and the DD. We measure GT-distance from GPS coordinates recorded by the HD and

DD. The GPS data has dual usage, one is GT-distance, and another is GT-GPS during our

evaluation. In a data collection session, a flying DD’s GPS coordinates change depending

on its changing positions, however, the coordinates remain unchanged for the static HD.

Both the HD and DD records GPS coordinates continuously. We also marked our outdoor

experiment site’s ground with meter markers. These markers are an extra level of, more

accurate than GPS distancing, verification for camera-to-DD distance estimation that serves

us as a redundant set of GT-distances. Contrarily, GT-bearing between camera to an object

can be derived by presuming a triangle formed by three points, with three sides connecting
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two points on the detected object and the other point is the camera itself. Since collecting

these triangle side measurements in real world units is only realistic in static setups and

not possible when drones are mobile, so, for validation of estimated bearing we rely on the

accuracy of the estimated location as a whole.

Metrics: We evaluate the camera-based localization for, (i) accuracy of the estimated

distance between the HD (camera) and the DD (ii) accuracy of estimated GPS location of

DD. The distance and location estimation accuracy is defined by error between the estimated

distance to GT-GPS distancing, and estimated location to GT-GPS coordinates respectively.

Results Discussion: In Fig. 4.5 left-most (first from left), we report estimated bearing

from all our image datasets. We observe that mostly the bearing values are in the range

of 5◦ to 10◦ and some are between 325◦ to 350◦. We explain these bearing values by our

camera FOV and the concept of bearing measurement. According to the placement of the

camera to cover up the frontal view it shots objects between 0◦ to 90◦ that is the right half

of the image frame, and between 270◦ to 360◦, that is the left half of the image frame. In the

second-from-left plot we show estimated distance accuracy for all datasets, with a median

of 1.5m with spread of (+/-)1m. The third plot shows estimated GPS location accuracy,

with a median of 4.5m with spread of (+/-)2m. Due to drone mobility, a limitation of using

GPS as ground truth is that we have to be prepared to deal with noisy ground truth data.

This explains the reason for the median of 4.5m error in GPS coordinate estimation as the

ground-truth itself can incur an average 3m error (standard GPS accuracy). In the right-

most (fourth from left) graph in Fig. 4.5 we show the comparison between camera estimated
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distance error and camera estimated location error. We observe that the errors, though not

exactly matching in a linear fashion, are consistent with GPS errors, however, are at a lower

value.

(2) WiFi FTM Ranging Based Localization Assistance with HD and Pseudo-HD

Setup and Methodology: In this setup we have a static HD, a static pseudo-HD, and

a DD flying in proximity of the HD and pseudo-HD ranging from 3 meters to 15 meters.

The ranging data collected in this experiment are (i) distance between HD to DD collected

using WiFiRttScan, (ii) distance between HD to Pseudo-HD collected using WiFiRTTScan,

and (ii) distance between DD to Pseudo-HD collected using WiFiNanScan. We use two

WiFiFTM RTT devices and an AP, that is, two pixel phones attached on the pseudo-HD,

DD, and AP on the HD. Similar to the camera based localization we validate estimated

distance, bearing, and location of our generated results.

Results Discussion: In Fig. 4.6 we show the bespoke accuracy values at different

distances, i.e., 3, 5, 7, 10, 15 (meters). The distance groups refer to the ground markers

that we mentioned earlier while describing our different experiment setups. We adopt the

distance group concept to demonstrate exactly how our localization methods performs in

different distances. The first-from-left plot shows absolute errors of bearing estimation for

all datasets. The median accuracy of estimated bearing over all the distance groups is 8◦

with spread of (+/-) 9◦. The second-from-left plot shows estimated distance accuracy for all

distance groups. The median accuracy of estimated distance over all the distance groups is

1m with spread of (+/-)1m. In the third-from-left plot, the median accuracy of estimated
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location over all the distance groups is 1m with spread of (+/-)1m. Overall, the WiFi FTM

based results indicate that our measurements are in conformity with the standard FTM

ranging accuracy of about 1m. We have been able to demonstrate that by using a P2P WiFi

FTM modality, we can estimate the GPS coordinates with the same fidelity as the ranging

accuracy for state-of-the-art FTM technology.

4.1.7 Conclusion

In this work we designed and evaluated methods for peer-to-peer truly distributed drone-to-

drone localization. The notion is to present a GPS redundancy/alternative to low payload

smaller drones with common-already existing on-board hardware and processing power. We

designed localization methods that estimate distance, bearing, which are used to compute

GPS coordinates between HD and the DD by using a (1) camera (optical) and (2) WiFi

(radio) ranging. The camera-based method provides location accuracy in median range of

1–3m with a standard deviation of 2m, and the WiFi FTM ranging based method provides

location accuracy of 1m with standard deviation of 1m.

4.2 Modelling and Simulation of Drone Swarm Localization

We complete our drone localization endeavor by appending the drone swarm localization

modelling. In this work, we design, implement, and evaluate the drone swarm modelling

and simulations where our (i) inter-drone communication prototype and (ii) peer-to-peer

Camera-Wifi localization serves as preliminary feasibility study and full-fledged outdoor

in-field localization respectively. In our swarm localization model a group of location infor-
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mation deprived drones (distressed drone) fly randomly and arbitrarily. Another drone with

working navigation location perceives the environment and intentionally comes to look for

such location information distressed drones and help those achieve near accurate localization.

Moreover, we evaluate the swarm model by designing more than 100 simulated experiments

with control parameters, average localization accuracy, and an increasing number of DDs.

4.2.1 Novel Contributions

The aspects of modelling this entire swarm localization is listed below.

1. Modelling a distress drone capable of flying randomly and aimlessly in a specified area

and continuously seeking localization help.

2. Modelling a group of distress drones to be able to fly and coexist in a specified area

by ensuring collision avoidance.

3. Modelling a helper drone that searches for distressed drones, identify them, calculate

their near appropriate relative GPS coordinates, and send coordinates to them.

4. Simulating the entire system model mentioned in points 1, 2, and 3 through repeated

experiments using integrated parameter sweeping toolkit to understand the drone

swarm location behavior based on multiple control parameters.

4.2.2 Introduction to Modelling and Simulation

In this work, an experimental environment of drone swarm localization simulation is carried

out in an arbitrary search space. The search space is assumed to be a open sky. This model
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is general enough for it to be implemented in different size search space. We have used

Netlogo 6.2.2 (104) platform and it’s programming tools for simulating our experiment and

result generation.

a. Agents: An agent is defined as a computer system located in an environment and able

to accomplish autonomous actions in order to reach its aims in that environment. The agent

perceives its environment, acts autonomously, interacts to share the aims, constraints, etc.,

anticipates and reacts with flexibility with its environment and learns from its experiences

and adapts to its environment.

b. Model: A model is a mathematical, graphic and computerized representation of the

objects and the relations between them in a confined zone of the real world. A model can

also be viewed as a simplified representation of a complex reality. To be useful, models must

be adapted to their objects and be conveniently studied and validated.

c. Simulation: Systems composed by a large number of individuals submitted to several

environmental variations, which interact between them and with their environment, like

helping a group of arbitrarily flying lost drones struggling to navigate themselves, where a

helper drone must repeatedly scan a perimeter, avoid obstacles, identify help seeking drones,

and send navigation information, etc. this is a complex and dynamic system. As a whole,

modelling and simulation first of all consist in the designing of a model. It is a way of making

explicit the complexity of a system in order to better understand its functioning and to make

good decisions. It brings the complex system to experiment without altering it too much,

often difficult in real life situations.
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4.2.3 Necessity, Challenges, and Solutions: Drone Swarm Localization
Modelling

In this part we address fundamental questions regarding the necessity, challenges, and solu-

tions of a drone swarm localization modelling and simulation tool set.

Why do we need/adopt a simulation platform for drone swarm localization?

To ensure effective and laboratory planned experimentation we would need several drone

units and a lot of expensive auxiliary hardware. In-field drone experiments are costly, time-

consuming, and greatly impacted by drone failure. Among all these constraints the most

restrictive matter is flying a group of drones would require a group of proficient pilots.

Reproducing any test cases in the outdoor experimentation area is often not possible. On

the contrary the simulation environment permits the researcher modelling the lab designed

experiments allowing to mimic near-real-world scenarios.

For implementing drone swarm localization basically which type of simulation

platform we need? Ans: Agent based modelling.

In our system a group of drones fly randomly and arbitrarily while perceiving the envi-

ronment, interacting with other entities, and making decisions along the way. Denoting each

drone an agent our system can be mirrored through Agent Based Modelling (ABM). An ABM

is a computational model for simulating the navigation and interaction of an autonomous

agent with intention of achieving certain goals, while understanding the system behavior and

outcomes of a series of algorithmic process execution in that complex environment.

Why use Netlogo than other ABM systems? (Comparison of agent based mod-
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eling software)

There are several agent base modelling platforms available, functioning as market pricing

forecaster, evolving community/system modeler, social and natural sciences modeler, AI

modeler, general purpose agent modelling, human AI modeler, etc. The characteristics of

the drone swarm localization operation is a controlled natural phenomenon that can be

related to any spontaneous operation of search-identify-rescue/help. For example, a crowd

evacuation during an emergency, ant colonization, traffic flow control, etc. Therefore, our

needs are best served by adopting a social and natural sciences modeler like Netlogo.

We chose Netlogo based on the perks that it provides for its users and programmers.

There are very few social/natural sciences modelers that exist in the current time. Namely

those are Mason (105), Repast (106), StarLogoT (107), Netlogo, and Swarm (108). Except

StarLogoT and Netlogo all the other platform’s programming language is either Java or

Objective C. Except Netlogo all of them require heavy computational hardware (GPUs).

The project turnover time is exponentially higher in Mason, Repast, Swarm because of the

programming language constraints. Contrarily, the programming language of StarLogoT and

Netlogo are parallel extensions of Logo programming language, the first and most powerful

agent-based modelling language.

Now while choosing between StarLogoT we considered the advancements of NetLogo over

StarLogoT, StarlogoT requires multiple virtual machines for each agent type, while Netlogo

uses a single virtual machine. While it might seem that using multiple virtual machines

in parallel might enhance the model execution time, the communication between agents
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operating in different virtual machines overall impacts the execution speed negatively.

Netlogo owns more battles over StarLogoT and over all the above-mentioned platforms,

that it is open source to the community to contribute, development up to date, ensures

extensibilities through APIs, provides integrated parameter sweeping-tool that allows exper-

imentation with models. Moreover, Netlogo in-an-itself a bundle consisting of components

like, programming language, compiler, interpreter, interface builder, simulator, syntax high-

lighter, a graphics engine (both for web and desktop). Also, Netlogo has a huge pre-built

model library (109) for providing examples to the programming community. For so many

other reasons, that we would discover throughout our model description, among several

agent-based natural science modeler we found Netlogo to be the best suited for drone swarm

localization.

What is the general mechanism of Netlogo?

Everything in the Netlogo world is a certain kind of agent. Agents are entities that can

follow instructions, preserve states, monitor and memorize states, few agents move, few do

not. There are four kinds of agents, turtles, patches, links, observer.

The Netlogo world is made up of 2D gird of patches. Patches are square tiles that cover

the simulation space. Patches are marked by 2D coordinates with an origin (0.0) at the

center of the word. Patche coordinates are integers because there is no slicing of patches.

Patches are alive but they do not move. It is turtles that move around the world over

the patches. Turtles have coordinates too for denoting their respective positions. While

moving over patches turtles can have decimal value coordinates that indicate a partial or a
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non-central presence over a patch.

Links connect any two turtles; they don’t have any separate location coordinates except

they are connecting two turtles in the field. The observer is defined to observe the Netlogo

world from outside of the world itself. Observer does not observe passively but it asks

turtles and patches to perform actions. At the initial stage there is no turtle in world,

observer creates new turtles and patches (110).

Why Netlogo is an efficient platform to simulate our group localization ap-

proaches?

The goals of scientific modeling are compromised if programs are long, cryptic, and plat-

form specific. A NetLogo model is less likely to suffer these problems than one written in

common. General-purpose languages like Java and C++. NetLogo is its own programming

language, embedded in an integrated, interactive modeling environment. The difficulty of

programming in Java or C++ isn’t due only to the language itself. It’s also due to the

complication of the environments. When we add in the added complexity of getting the

environment to talk to a modeling library or toolkit, the initial barrier for entry for new

programmers becomes quite high—even before they start dealing with the difficulties of the

languages themselves. In contrast, the NetLogo environment allows a smooth, almost unno-

ticeable transition from exploring existing models into programming. Besides, a significant

facility applicable in our swarm localization modelling is that, NetLogo is usually faster for

models with complex code and smaller numbers of agents. Ultimately, the NetLogo engine

is single-threaded, and runs in a single virtual machine. At the operating system level, the
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NetLogo application is one process, and the NetLogo engine is one thread within that pro-

cess (104). Therefore, overhead of communicating between virtual machines in agent level

interactions is thankfully absent in Netlogo, which ensures faster simulations.

General Description of Swarm Localization Model: What do we model? What

are the aspects of our model implementation?

Our model can be segregated into multiple sub-models. Ultimately our goal is to simulate

a swarm of drones flying in the sky randomly and aimlessly in absence of location information.

Next, another drone with working navigation location intentionally comes to look for such

location information deprived drones (distressed drone) and help those achieve near accurate

localization. Therefore, the aspects of modelling this entire course can be listed below.

1. Modelling a distress drone capable of flying randomly and aimlessly in a specified area

and continuously seeking localization help.

2. Modelling a group of distress drones to be able to fly and coexist in a specified area

by ensuring collision avoidance.

3. Modelling a helper drone that searches for distressed drones, identify them, calculate

their near appropriate relative GPS coordinates, and send coordinates to them.

4. Simulating the entire system model mentioned in points a, b, and c through repeated

experiments using integrated parameter sweeping toolkit to understand the drone

swarm location behavior based on multiple control parameters.



138

4.2.4 Methodology and Design

(1) Neighbor discovery.

Each drone in our system uses an innovative radio-optical fusion for discovering neigh-

boring drones. We demonstrated a working prototype of this system in our baseline work,

an ACK-based inter-drone data transfer prototype using two drones described in the section

4.1.3. Neighbor discovery includes steps: (i) Scan – sensing with WiFi distress signal and

camera vision, (ii) Identify – uniquely identify DD and pairing.

(2) Swarm Formation and Localization Process.

As the direction of the motion of DDs are random their is no flocking happens among

them. Which ideally justifies the absence of their positioning information. DDs are designed

to be moved in a certain speed arbitrarily. Next, the HD appears in the experiment area. HD

travels to different directions and scans the neighboring space periodically. The scanning

range and angle is defined by the range and angle of camera communication and WiFi

channel. While scanning on discovery of DD/s those are added to the neighbor nodeset.

Next, HD looks for unlocalized DDs in the neighbor nodeset which then are paired with the

HD. Once discovered and paired the HD then estimates the distance to the DD. Distance

is represented by total number blocks in between the HD and the discovered DD. The HD

then assigns a uniformly picked localization error value from the in-field experiment results.

The localization error is chosen depending on the distance group, that the DD falls in. The

justification of not modelling the actual GPS estimation in the Netlogo model is that, we

already validated the both the camera and WiFi localization methods through outdoor in-
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field experiments as shown in our P2P DroneLoc work (described in the sections 4.1.4 -

4.1.6). We refrain to measure and estimate real GPS coordinates in this modelling. Our

goal of this modelling is to build a tool for understanding key fundamental behaviour of our

P2P localization system in a realistic environment with many drone participants. All the

DDs discovered during a scan receives localization help before HD moving forward. Once a

DD receives the location information from the HD it will switch from the random hovering

mode to a regular motion and gradually will move towards the predefined goal-location. HD

repeats above process until all DD’s are localized.

(3) Model Design and Parameter Details.

Since the network is mobile the HD and DD may change position from one block to any

adjacent block. Therefore, the distance between a HD to a DD and the position of a DD

may change during the swarm localization period. However, once a DD is localized by a HD

then it is ignored in the subsequent localization phases, even if the DD is discovered multiple

times during different scanning processes. So, every DD and HDs needs to preserve some

state information during the entire time of the algorithm execution. The state information

of a DD are (i) a unique ID, (ii) localization status, (iii) localization error. The scanning

and the localization process is limited by the camera and WiFi vision distance constraint.

The HD follows the distance group ranges while assigning the localization error value to

DDs. For example, the HD scan 8-neighboring blocks to cover a 360◦ view WiFi localization

mode, or the immediately adjacent 3 front blocks while in camera localization mode with

FOV approximately 180◦. Depending on the FOV of the camera HD scans the next adjacent
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5 blocks, or next-next adjacent 7 blocks. The consecutive, 3-5-7 block rows form an angular

frontal FOV of the camera. We introduce different fashions and approaches for scanning the

search space. For example, (i) changing the number of DDs, (ii) different scanning modes

i.e., scanning with only camera, scanning with only WiFi.

4.2.5 Implementation of Drone Swarm Localization Model

4.2.5.1 Implementation and Algorithmic Overview

(1) Preface: Building the Netlogo model Any Netlogo model mandates to override

an initialization phase and an execution phase. The initialization phase is implemented

by overriding the built in ‘setup’ procedure, contrarily the execution phase is implemented

by overriding the built in ‘go’ procedure. Agents depending on the modelling needs can

be derived by overriding the base agent types. Custom typed agents can preserve states,

features, and are allowed to define behaviors. Our Drone swarm localization model contains

two different custom typed agents, DD, and HD. Each agent is created with initial states

and behavior. For example, a DD initially carries localization status=FALSE which then

changes during the simulation process. Contrarily an HD carries a list of identified DDs.

The agents depict their behavior through their actions. For instance, during the simulation

the typical DD actions are, setting random head direction, moving to the adjacent ground,

seeking help, collision avoidance, etc. We show the model overview in the Fig. 4.7.

(2) Implementation and Algorithmic Flow There are three main components we model

in the Drone swarm localization, DD, HD, and the repeated experimentation of the complete
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Figure 4.7: Overview of the Drone Swarm Localization demonstrating the model components
with their respective states and actions.

drone swarm localization model using parameter-sweeping. Initially we write the setup

procedure. An experimentation area is defined by specific number of patches making a 2D

grid. Please note that, in our localization algorithms the altitude difference between drones

in a certain range does not affect the localization results significantly. Therefore, in our

simulations the altitude difference is set to uniform and our simulation ground is set to be

a 2D space. We load the data and necessary environment settings in the setup phase too.

Then the search space is initiated with a group of DD agents. The DD are landed in the

patch grid in a random manner. At the outset, there is no HD present inside the experiment

area. Next, it’s time to write the ‘go’ procedure. Beginning of the execution of ‘go’ the

model execution starts. Fig. 4.8 is the flow chart of the drone swarm model.

Upon start of the execution the DD starts hovering the patch grid in different arbitrary
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Figure 4.8: The flow chart of the Drone Swarm Localization Model

direction. Hovering is implemented in three main actions, (i) setting a random heading, (ii)

perceiving surroundings to ensure collision avoidance, speed control, and maintaining hov-

ering path inside the experimentation space, (iii) moving towards the next patch according

to the heading. Hovering continues until the DD gets localization help from a HD.

Next, the HD is launched in the experimentation area by clicking a button from the

simulation interface. Once launched the HD lands on an arbitrary patch in the grid. The HD

starts scanning the perimeter in a random fashion. HD has the similar behavior implemented

like the DD in terms of navigation itself in the experimentation area, i.e, perceiving the

environment, speed control, maintain a scanning path, moving and flying around the search

space. Significantly, while perceiving the surroundings the HD scans the neighboring region

to identify location help seeking lost distressed drones. The scanning process is mentioned

already in the methodology and design section. The identification is described in our baseline
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work section. Upon identification of one of more DDs the HD measures their distance from

itself. HD then pick up a location accuracy data in a uniformly random manner from

our previously shown in-field experimentation results according to the distance group that

falls under the distance range between the current subject agent-DD and agent-HD. Once

all the adjacent discovered DDs receives localization accuracy data the HD moves forward

to scan other part of the search area, also the DD’s localization status gets updated to

TRUE. The stopping condition is maintained by the netlogo-observer, that is, if there is

no localization status=FALSE then it means the HD has done its job and all DDs received

localization help. Then the model execution stops. The average localization error for all the

DDs and the execution elapsed time is recorded in the result CSV. The Fig. 4.9 shows an

ongoing execution screenshot of the drone swarm localization model.

4.2.6 Simulation Design and Evaluation

4.2.6.1 Control and Output parameters

The primary control parameters are the number of drones and the localization mode. De-

pending on the variable number of drones and scanning mode the required execution time

varies significantly. The model execution time also differs by the scanning behavior of the

HD and hovering motion of the DDs. We model two localization modes (i) Camera lo-

calization, (ii) WiFi Localization. The algorithmic development and in-field evaluation of

these two localization methods are described in the 4.1.5 and 4.1.6 sections. In the cam-

era localization mode, HD’s vision is determined by the camera vision angle and range. In
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Figure 4.9: A snapshot of the Drone Swarm Localization model while in execution. The
arrows are turtles thus agents. Red turtle is the HD, the blue turtles are DDs yet to be
localized, the green turtles are DDs received localization help already from the HD. The
visited path of the HD is realtime updated and is marked as gray color patches.

the WiFi localization mode HD’s vision is defined by the WiFi data propagation angle and

range. The output parameters on the other hand are average localization error and time

required for model execution completion. The average localization accuracy is measured by

the mean localization error over the total number of DDs on completion of a single cycle

model execution period.

4.2.6.2 Timing Analysis

Understanding of the time estimation process is necessary before we look into the time eval-

uation graphs. A single localization operation completion mainly depends on the scanning-
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Figure 4.10: A conceptual demonstration of HD operating in the search space starting with
travelling and scanning for DDs, then pairing with the discovered DDs, finally estimate and
communicate DD’s absolute lat-lon.

pairing-communication process. The steps include, (i) HD scanning the surrounding with

its sensor (camera/WiFi), (ii) pairing with the detected DD through back-to-back ID com-

munication. (iii) Lat-Lon estimation and communication over WiFi channel. As depicted in

the conceptual diagram 4.10.

Scanning includes (a) HD moving forward with a pre-specified speed, and (b) drone detec-

tion from the captured image frames. To cover a search area the drone detection is performed

in an interval of camera vision range. The camera prototype is capable of perceiving upto 15

meter. Therefore, in every 15 meters the HD performs a camera object detection. The Pix-

hawk drone used in our prototype maintains a speed of about 10 meter/sec, also the drone

detection from a camera image takes around 0.32 seconds (102; 2). For instance, to cover

a 40 meter path with the approximately 180◦ FOV the HD would take about (40/10) = 4

sec to travel the path. While travelling this 40 meters HD would attempt for DD detection

(40/15) ∼= 3 times. DD detection attempts take total (0.32×3) ∼= 1 sec. Therefore, the total
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scanning time (HD travel time + total drone detection time) = ( 4 + 1) ∼= 5sec.

Next, pairing includes both WiFi and led-camera communication. Pairing is described

in detail in the Baseline System Design section 4.1.3. The WiFi communication takes about

20ms between drones. The camera-led communication speed is defined by the camera frame

rate. In our previous works, drone communication evaluation (102) and mobile VLC demodu-

lation prototype (2) we have demonstrated working camera-LED communication supporting

upto 50 bit packets per 1 sec. The Nyquest theory allows a 50b/s sampling in a 100 FPS

camera. According to our baseline work for a 4 bits pairing ID we can work with as low as

30 FPS camera. Therefore, each single pairing include (LED-camera Communication time

+ WiFi Communication time), roughly around (1 + 0.02) = 1.02 sec.

The next part is HD communicating the estimated lat-Lon over WiFi channel. The

estimation of the lat-lon takes about 20 ms on the HD side. Then it takes another 20

ms for the DD to receive the lat-lon transmitted by the HD. The estimation and WiFi

communication time both are the worst case timing limit. Mostly, the estimation takes

about 10 ms and WiFi communication takes about 5 to 10 ms. The Fig. 4.11 demonstrate

the entire model execution delay including intermediate components.

4.2.6.3 Timing Calculation in Netlogo Model

We relate the scanning-pairing-communication process in the netlogo world by mapping it’s

patch and agent behaviour. Since patch grid represents the search space thus each patch

represents a unit distance. In our model a single block represents 3-meter real world distance.

Three meters is the lowest distance we consider between any HD-DD pair. In accordance
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Figure 4.11: Timing Analysis: Drone Swarm Localization Model execution delay including
intermediate components. This pipeline represents timing measurements for a single cycle
of scanning-pairing-communication during model execution.)

to the Netlogo world, HD travel distance is the number of patches the HD travels in a

path. On that note, we find HD travel distance in meter by multiplying HD traveled patches

by 3. Then the HD travel time, α is calculated from (HD traveled distance / HD speed).

Contrarily, a DD detection attempt is taken in every 15 meters, or 5. patches. Therefore,

the number of drone detections is derived by (total number of HD traveled patches/5) = β.

The total drone detection time ( β * 0.32) sec. Finally, the scanning time is derived from

(α + β × 0.32).

Now, for pairing time estimation, a single cycle LED-Camera communication time is 1

sec and the WiFi communication time is around 20 millisecond, therefore, a single pairing

time (1 + 0.02)sec. We recall that HD and DD pairs only when the HD finds an yet to be

unlocalized DD. Please note that the pairing count does not exceeds the number of DDs in the

experiment space. However, the pairing count may be less or equal to the number of DDs as

we allows simultaneous drone discovery. Be the pairing count γ, we estimate the total pairing

time during complete model execution time is, γ × (LED camera communication time +

WiFi communication time).
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Next the HD estimates DD’s lat-lon and the communicate to the DD. A single cycle lat-lon

estimation and communication takes about 20 ms on the the HD processing unit, then the lat-

lon is communicated in tentatively another 20ms. So, a single estimation and communication

consumes (0.02 + 0.02) sec. Moreover, during the entire model execution time the estimation

and communiocation will only happens when the HD and DD is paired. So we calculate the

total estimation and communication time re-using the pairing count γ. The total estimation-

communication time during complete model execution time is, γ × (0.02 + 0.02)sec.

4.2.6.4 Result Discussion

In the Fig. 4.12 we present the evaluation of the drone swarm localization model. The exper-

iments are executed for four different DD counts, five, ten, fifteen, and twenty. The complete

localization model runs several times repeatedly by parameter sweeping on the control pa-

rameters, localization mode [Camera, WiFi], number of DDs [5, 10, 15, 20]. Therefore, we

have ζ = (number of DDs * localization mode) number of combinations. However, the model

is equipped to allow increase and decrease in DD counts. Primarily, we run our model ζ

times to inspect the model behavior in terms of average localization error. Moreover, we

then run each combination of parameters several times more to inspect the model behavior

in depth.

In the fig 4.12 from left (first) the plot shows the dispersion of average localization error

for different dd-counts. We see that the average error value is on the lower side when there

are only five DDs in the experiment area. Whereas when the DD-count is higher than the

error is much higher. The dd-count vs average error graph shows a lower average error with
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a lower number of dds in the experiment area. While the localization error increases with

the increase in number of DDs in the experiment area. Possibilities are there were more

DDs near the HD and the model’s field was crowded. The result analysis from the infield

experiments shows that the localization error increases with lower distant DDs. Thus, the

error increases with a higher number of DDs being present very close to the HD in the

simulation field. Moreover, from our P2P DroneLoc in-field evaluation results it is evident

that camera localization error is on the higher side comparative to the WiFi localization.

The 2nd graph from left represents average localization error corresponding to DD dis-

tancing (in meters) [3m, 5m, 7m, 10m, 15m]. The DD distancing refers to the different

distance groups in which range the HD identified one or more DDs. For instance a DD falls

under distance group 7m when the DD and HD was approximately 7 meters apart while

localization was conducted. For better understanding the nature of localization accuracy

for drones operating in different ranges, and available localization mode (Camera, WiFi)

we measure and evaluate our methods in distance groups. This plot likewise shows that

the camera localization error is higher. Besides we see that in the both camera and WiFi

localization mode the error increases in the 3, 5 meter distance range. This error exagger-

ation occurs mainly for the inherent behaviour of weak depth estimation performance in

the lower range camera projection theory, and lower range congestion possibility in WiFi

communication channel.

The 3rd graph from left shows the simulation execution time for different number of DDs

present in the search space. The timing is coherently increasing on increase of drone count.
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However, depending on the random travelling behaviour of the HD and DDs the simulation

conclusion time may differ irrespective to the number of DDs present in the field. As we

demonstrated that a unit camera localization takes more time considering the DD detection

in the camera image, moreover, the delay increases in camera localization mode because

the scanning vision angle in WiFi is 360◦ whereas, in camera the vision angle is nearly

180◦. So, for these reasons compared to WiFi localization mode, it takes more time for the

camera localization to be concluded. Besides this timing box plot, we have also presented

the average localization error, and model execution times in the tabular form in the Table

4.1. This tabular presents real values from the simulation results to provide the reader a

more comprehensive view on the average localization error values and timing segregation in

different parts of the simulation process.

Figure 4.12: Drone swarm localization model simulation results using parameter sweeping.
From left, (i) average localization error in relation to DD-count, (ii) average localization error
in relation to distance groups, (iii) model execution time in relation to different DD-counts

4.2.7 Conclusion

We design and build a drone swarm localization model using Netlogo programming lan-

guage and interface. Validate the model through simulations using parameter sweeping with
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Camera Localization 5 1.06 263.2 300.1 0.2 563.5
Camera Localization 10 1.71 256.6 540.2 0.4 797.2
Camera Localization 15 1.4 533.6 780.3 0.5 1314.4
Camera Localization 20 2.4 331.6 1200.4 0.8 1532.8
WiFi Localization 5 0.8 257.3 300.1 0.2 557.6
WiFi Localization 10 0.4 741.1 600.2 0.4 1341.7
WiFi Localization 15 0.6 330.8 900.3 0.6 1231.7
WiFi Localization 20 1.1 88.8 960.3 0.6 1049.7

Table 4.1: This tabular holistically represents the average localization error, and model
execution time in relation to the localization mode, number of DDs in the field. The distance
between HD and DD is within 15 meters. The Model Execution Time is the summation of
Avg. Scanning time, Avg. Pairing Time, and Avg. Communicating time. Each parameter
combination was repeated four times. For 2 localization modes, 4 different DD-counts, and 4
repetitions, the total number of simulation iterations this tabular presents is (2×4×4) = 32.
All times are in seconds and error is in meter.

control parameters like average localization error, swarm of DDs. We present an in-depth

validation of our previously innovated (i) camera localization, (ii) WiFi localization meth-

ods. Conducting around 160 simulated experiments with different control parameter values

and combination of repetitions we manifested that our drone swarm localization simulation

results are in harmony with the in-field camera and WiFi experiment results. Our Model

allows to curate a real-life coordinated drone swarm localization environment setup, pro-

vides flexibility to design several simulations with parameter sweeping for significant control

parameters like any real-world drone swarm setup would require and leverage. We con-

firm through our result evaluation that, our innovative drone coordinated camera and WiFi
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localization protocols are not only universally usable, also establish a pioneering research

opportunity in the drone localization.
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CHAPTER 5

CONCLUSION

This thesis presented a novel architecture for NLOS perception for road vehicles, that en-

ables a virtual see through an occluded vehicle functionality. Our system uses a dashboard

stereo-camera to perceive the scene in front and communicate that through visible light

communication to a follower vehicle. We have designed and implemented a proof-of-concept

prototype of a NLOS perception system, that can enable identification of nine safety events,

corresponding to traffic light statuses (red, yellow or green), other vehicle merge behaviors,

and pedestrian presence. Through experimental evaluations on real-world driving camera

footage and real-time trace-based testing, we demonstrated that our system is able to iden-

tify occluded events up to 90% accuracy and sustain communication packet error rates in less

than 7%. The key usecase of our system is for driving assists, by notifying about safety and

time critical events which falls under the level-2 autonomy definition for autonomous vehicles.

Such a feature can be very helpful when integrated into a fully autonomous driving vehicle,

which plants seeds for the future work emanating from this research. We further extended

our NLOS perception work and position a Cognitive Information Processing Pipeline for

Multiple–Access Vehicular Camera Communication. We designed an algorithm comprising

of prediction attention concepts. In the prediction module we estimate all event occurrence

possibilities based on the locally perceived scene data (LOS information). The attention

module prioritizes among the probable events and select the most critical one. In addition,

we designed a decision-making module that prioritized and chooses the most critical safety
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event based on the information from neighboring vehicles. Next, we presented a mobility

characterization study through extensive experiments in real world driving scenarios. We

characterized motion using a constantly illuminated transmitter on a lead vehicle and a

multi–camera setup on a following vehicle. The observations from our experiments reveal

key insights on the degree of relative motion of a vehicle along its spatial axis and different

vehicular motion behaviors.

With the vehicle-vehicle camera optical communication experiences we extended our

quest to address the GPS unreliability problem in drones. We proposed an alternative solu-

tion to GPS redundancy for multi drone systems. We presented, implemented and evaluated

a design where drones with no GPS or non-functional GPS units are able to receive help to

localize themselves coordinated by a helper drone with a functional GPS/location sensing

unit. The key concept of our methods is a helper drone (HD) tracks nearby GPS distressed

drones (DD), and then estimates the relative position of the distress drone – by estimating

the distance and bearing angle. In our preliminary baseline, we implemented and prototyped

an acknowledgement based peer-to-peer (P2P) WiFi communication to conduct inter-drone

data transfer between two drones. Next, in our P2P-DroneLoc work, we evaluated two

fundamental approaches for range estimation for peer-to-peer relative positioning between

drones: (a) camera and computer vision projection theory, and (b) WiFi Fine Time Mea-

surements (FTM). We evaluate our proposed peer-to-peer localization via error across three

estimated measures: (i) range or distance between the drones, (ii) GPS bearing (angle), and

(iii) GPS location (coordinates). Finally, through design and implementation of a drone
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swarm localization model we complete our drone localization endeavor. We designed model

simulations using parameter sweeping with control parameters like average localization er-

ror, swarm of DDs. We presented an in-depth validation of (i) camera localization, and (ii)

WiFi localization methods presented in the P2P-DroneLoc. Conducting around 160 sim-

ulated experiments with different control parameter values and combination of repetitions

we confirmed that our drone swarm localization simulation results are in harmony with the

in-field camera and WiFi experiment results.

The future possibilities and use cases of our research are endless. The intelligent NLOS

vehicular perception module can be installed in any system that demands a mobile or even

immobile machine intelligence for understanding road or driving situations. By inheriting the

proposed concept of our virtual see through work, various multi-modal monitoring systems

can use such perception capabilities beyond occlusion. Our drone coordinated localization

in P2P and in the swarm mode can be useful for addressing challenges in building practical

drone swarm systems.
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