781 research outputs found

    Defect Detection for Patterned Fabric Images Based on GHOG and Low-Rank Decomposition

    Get PDF
    In contrast to defect-free fabric images with macro-homogeneous textures and regular patterns, the fabric images with the defect are characterized by the defect regions that are salient and sparse among the redundant background. Therefore, as an effective tool for separating an image into a redundant part (the background) and sparse part (the defect), the low-rank decomposition model provides an ideal solution for patterned fabric defect detection. In this paper, a novel patterned method for fabric defect detection is proposed based on a novel texture descriptor and the low-rank decomposition model. First, an efficient second-order orientation-aware descriptor, denoted as GHOG, is designed by combining Gabor and histogram of oriented gradient (HOG). In addition, a spatial pooling strategy based on human vision mechanism is utilized to further improve the discrimination ability of the proposed descriptor. The proposed texture descriptor can make the defect-free image blocks lay in a low-rank subspace, while the defective image blocks have deviated from this subspace. Then, a constructed low-rank decomposition model divides the feature matrix generated from all the image blocks into a low-rank part, which represents the defect-free background, and a sparse part, which represents sparse defects. In addition, a non-convex log det as a smooth surrogate function is utilized to improve the efficiency of the constructed low-rank model. Finally, the defects are localized by segmenting the saliency map generated by the sparse matrix. The qualitative results and quantitative evaluation results demonstrate that the proposed method improves the detection accuracy and self-adaptivity comparing with the state-of-the-art methods

    Fabric inspection based on the Elo rating method

    Get PDF
    postprin

    Defect detection in the textile industry using image-based machine learning methods: A brief review

    Get PDF
    Traditionally, computer vision solutions for detecting elements of interest (e.g., defects) are based on strict context-sensitive implementations to address contained problems with a set of well-defined conditions. On the other hand, several machine learning approaches have proven their generalization capacity, not only to improve classification continuously, but also to learn from new examples, based on a fundamental aspect: the separation of data from the algorithmic setup. The findings regarding backward-propagation and the progresses built upon graphical cards technologies boost the advances in machine learning towards a subfield known as deep learning that is becoming very popular among many industrial areas, due to its even greater robustness and flexibility to map and deal knowledge that is typically handled by humans, with, also, incredible scalability proneness. Fabric defect detection is one of the manual processes that has been progressively automatized resorting to the aforementioned approaches, as it is an essential process for quality control. The goal is manifold: reduce human error, fatigue, ergonomic issues and associated costs, while simultaneously improving the expeditiousness and preciseness of the involved tasks, with a direct impact on profit. Following such research line with a specific focus in the textile industry, this work aims to constitute a brief review of both defect types and Automated Optical Inspection (AOI) mostly based on machine learning techniques, which have been proving their effectiveness in identifying anomalies within the context of textile material analysis. The inclusion of Convolutional Neural Network (CNN) based on known architectures such as AlexNet or Visual Geometry Group (VGG16) on computerized defect analysis allowed to reach accuracies over 98%. A short discussion is also provided along with an analysis of the current state characterizing this field of intervention, as well as some future challenges.ERDF - European Regional Development Fund(undefined

    Fabric Defect Detection Based on Pattern Template Correction

    Get PDF
    This paper proposes a novel template-based correction (TC) method for the defect detection on images with periodic structures. In this method, a fabric image is segmented into lattices according to variation regularity, and correction is applied to reduce the effect of misalignment among lattices. Also, defect-free lattices are chosen for establishing an average template as a uniform reference. Furthermore, the defect detection procedure is composed of two steps, namely, defective lattices locating and defect shape outlining. Defective lattices locating is based on classification for defect-free and defective patterns, which involves an improved E-V method with template-based correction and centralized processing, while defect shape outlining provides pixel-level results by threshold segmentation. In this paper we also present some experiments on fabric defect detection. Experimental results show that the proposed method is effective

    A fuzzy system for detection and classification of textile defects to ensure the quality of fabric production

    Get PDF
    The aim of this research focuses on construct a computerized system for textile defects detection. The system merges between image processing methods, statistical methods in addition to the Intelligent techniques via Neural Network and Fuzzy Logic. Gabor filters were used to identify edges and to highlight defective areas in fabric images, then to train the neural network on statistical and geometry features derived from fabric images to form the special neural network distinguish and classify defects into the fourteen categories, which are the most common defects in the textile factory.  The proposed work includes two phases. The first phase is to detect the defects in fabrics. The second phase is the classification phase of the defect. At the defect detection stage, a Discrete Cosine Transfer (DCT) converts the images to the frequency domain.  Image features then drawn and introduce them to the Elman Neural Network to detect the existence of defects. In the classification stage, the images are converted to the frequency domain by the Gabor filter and then the image features are extracted and inserted into the back propagation network to classify the fabric defects in those images. Fuzzy logic is then applied to neural network outputs and interference values are used in fuzzy logic to increase final discrimination. We evaluate a distinction rate of 91.4286% .After applying the fuzzy logic to neural network output; the discrimination rate was raised to 97.1428%.

    Local wavelet features for statistical object classification and localisation

    Get PDF
    This article presents a system for texture-based probabilistic classification and localisation of 3D objects in 2D digital images and discusses selected applications. The objects are described by local feature vectors computed using the wavelet transform. In the training phase, object features are statistically modelled as normal density functions. In the recognition phase, a maximisation algorithm compares the learned density functions with the feature vectors extracted from a real scene and yields the classes and poses of objects found in it. Experiments carried out on a real dataset of over 40000 images demonstrate the robustness of the system in terms of classification and localisation accuracy. Finally, two important application scenarios are discussed, namely classification of museum artefacts and classification of metallography images

    Deep CNN-Based Automated Optical Inspection for Aerospace Components

    Get PDF
    ABSTRACT The defect detection problem is of outmost importance in high-tech industries such as aerospace manufacturing and is widely employed using automated industrial quality control systems. In the aerospace manufacturing industry, composite materials are extensively applied as structural components in civilian and military aircraft. To ensure the quality of the product and high reliability, manual inspection and traditional automatic optical inspection have been employed to identify the defects throughout production and maintenance. These inspection techniques have several limitations such as tedious, time- consuming, inconsistent, subjective, labor intensive, expensive, etc. To make the operation effective and efficient, modern automated optical inspection needs to be preferred. In this dissertation work, automatic defect detection techniques are tested on three levels using a novel aerospace composite materials image dataset (ACMID). First, classical machine learning models, namely, Support Vector Machine and Random Forest, are employed for both datasets. Second, deep CNN-based models, such as improved ResNet50 and MobileNetV2 architectures are trained on ACMID datasets. Third, an efficient defect detection technique that combines the features of deep learning and classical machine learning model is proposed for ACMID dataset. To assess the aerospace composite components, all the models are trained and tested on ACMID datasets with distinct sizes. In addition, this work investigates the scenario when defective and non-defective samples are scarce and imbalanced. To overcome the problems of imbalanced and scarce datasets, oversampling techniques and data augmentation using improved deep convolutional generative adversarial networks (DCGAN) are considered. Furthermore, the proposed models are also validated using one of the benchmark steel surface defects (SSD) dataset

    Energy-Efficiency of Conveyor Belts in Raw Materials Industry

    Get PDF
    This book focuses on research related to the energy efficiency of conveyor transportation. The solutions presented in the Special Issue have an impact on optimizing, and thus reducing, the costs of energy consumption by belt conveyors. This is due, inter alia, to the use of better materials for conveyor belts, which reduce its rolling resistance and noise, and improve its ability to adsorb the impact energy from the material falling on the belt. The use of mobile robots designed to detect defects in the conveyor's components makes the conveyor operation safer, and means that the conveyor works for longer and there are no unplanned stops due to damage

    Advanced 3D ultrasonic characterisation of 2D woven composites

    Get PDF
    The principal aim of this project was to generate an automated mapping programme that will identify and quantify deviations from design, due to either manufacturing processes or in-service defects. Focusing on woven carbon fibre composites, using data acquired from ultrasonic non-destructive testing, individual weave identities have been developed. Knowledge of the individual weave identity will enable two key pieces of information when analysing components; lay-up and the presence of defects in terms of shear and rotation. Knowledge of the lay-up and presence of defects results in better informed decisions regarding the manufacture and the longevity of components. In many cases the requirement for a twin component to be manufactured will be negated; subsequently saving both time and money.The development of individual weave identities, alongside automation of the classification procedure is the key contribution of this thesis. The literature review shows that this capability does not currently exist. The weave identity work began with the adaption of Miller Indices from crystallography. In order to automate the weave identification, a spatial frequency vs. angle plot was established using image transformation. It was the realisation that the weave characteristic lines (and their subsequent spots on the spatial frequency vs. angle plots) are different from the lines corresponding to the fibre’s warp and weft tows which allowed for the discrimination of weave type. The process of weave identification was automated and both the accuracy and precision of the measurement of in-plane were established. Consequently, the developed technique enables the identification of angular distortions in woven carbon fibre composites. Finally, the testing of real samples showed that the presented method of weave classification works well, providing the images of the weaves are good, and that the imaging of the weave gets worse with depth, surface roughness and when the probe frequency does not match the ply resonance
    corecore