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Abstract 

 

Automated visual inspection of patterned fabrics, rather than of plain and twill fabrics, has 

been increasingly focused on by our peers. The aim of this inspection is to detect, identify and 

locate any defects on a patterned fabric surface to maintain high quality control in 

manufacturing. This paper presents a novel Elo rating (ER) method to achieve defect detection 

in the spirit of sportsmanship, i.e., fair matches between partitions on an image. An image can 

be divided into partitions of standard size. With a start-up reference point, matches between 

various partitions are updated through an Elo point matrix. A partition with a light defect is 

regarded as a strong player who will always win, a defect-free partition is an average player 

with a tied result, and a partition with a dark defect is a weak player who will always lose. 

After finishing all matches, partitions with light defects accumulate high Elo points and 

partitions with dark defects accumulate low Elo points. Any partition with defects will be 

shown in the resultant thresholded image: a white resultant image corresponds to a light defect 

and a grey resultant image corresponds to a dark defect. The ER method was evaluated on 

databases of dot-patterned fabrics (110 defect-free and 120 defective images), star-patterned 

fabrics (30 defect-free and 26 defective images) and box-patterned fabrics (25 defect-free and 

25 defective images). By comparing the resultant and ground-truth images, an overall detection 

success rate of 97.07% was achieved, which is comparable to the state-of-the-art methods. 

 

Keywords: Elo rating, Sportsmanship, Match, Partition, Fabric inspection, Defect detection, 

Texture analysis, Patterned texture 
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1. INTRODUCTION 

Fabric is fundamental to many consumable products in daily life such as clothing, fashions, 

bags, bed coverings, nano-scale medical fabrics, and even air-conditioning ducts. Fabric 

inspection is a key component of quality control in textile manufacturing. Currently, most 

fabric inspection is conducted visually by human workers working at high cost, but it is not 

reliable due to human errors and eye fatigue. Automated visual inspection (AVI) of fabric 

applies computer vision techniques that offer not only an efficient, low-cost and accurate 

approach to replace the labour force but also expansion of inspection capabilities to cover a 

broader range of different fabric patterns, from the simplest to the most complicated. The aim 

of AVI is to detect and outline the shapes and locations of any defects on a fabric surface during 

or after weaving. There is much research on fabric inspection [1] of both simple and 

complicated patterned fabrics. This study focuses on fabric with complicated patterns (Fig. 1). 

A patterned fabric is composed of a basic fundamental unit, called the motif [2], which can be 

generated into the whole pattern by certain rules of symmetry. Based on these predefined rules, 

a patterned fabric can be classified into one of seventeen wallpaper groups [2]. 

Currently, AVI of fabric can be broadly classified into two main categories: motif- and 

non-motif-based. A number of methods have been developed for non-motif-based inspection. 

Most methods have been designed for the simplest patterns of the p1 group, plain and twill 

fabrics [1]. The five representative inspection approaches are statistical (e.g., regularity 

https://www.researchgate.net/publication/220612482_Automated_fabric_defect_detection-A_review?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
https://www.researchgate.net/publication/220612482_Automated_fabric_defect_detection-A_review?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
https://www.researchgate.net/publication/223169174_Motif-based_defect_detection_for_patterned_fabric?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
https://www.researchgate.net/publication/223169174_Motif-based_defect_detection_for_patterned_fabric?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
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measure [3], fractal feature [4], morphological filter [5,6]), spectral (e.g., Fourier transforms 

[7–9], Gabor [10], wavelet [11–13]), model-based (e.g., Gaussian Markov random field [14], 

sparse dictionary reconstruction [15]), learning (e.g., neural network [16], support vector 

machine [4]) and structural (e.g., maximum frequency distance [17]). In contrast, only a few 

methods target other wallpaper groups, such as wavelet-pre-processed golden image 

subtraction (WGIS) [18], direct thresholding (DT) [18], co-occurrence matrix (CM) [19], 

Bollinger bands (BB) [20], regular bands (RB) [21] and image decomposition (ID) [22]. The 

method developed herein aims to inspect the patterned fabrics of the non-p1 fabric groups. 

In this paper, a novel inspection method called the Elo rating (ER) method is proposed 

in which fabric inspection is treated as sporting matches between competing partitions 

(players). In other words, fabric inspection can be realised as sportsmanship during fairly 

 Defect-free Samples Defective Samples 

Dot-patterned Fabric 

 
(a) 

 
(b) 

Star-patterned Fabric 

 
(c) 

 
(d) 

Fig. 1. Dot-patterned fabric images of (a) a defect-free sample and (b) a defective sample with 
light defects. Star-patterned fabric images of (c) a defect-free sample and (d) a defective 
sample with dark defects. 

https://www.researchgate.net/publication/257334032_A_fast_regularity_measure_for_surface_defect_detection?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
https://www.researchgate.net/publication/220119324_Fabric_defect_detection_based_on_multiple_fractal_features_and_support_vector_data_description?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
https://www.researchgate.net/publication/220119324_Fabric_defect_detection_based_on_multiple_fractal_features_and_support_vector_data_description?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
https://www.researchgate.net/publication/220610935_Fabric_Defect_Detection_Using_Morphological_Filters?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
https://www.researchgate.net/publication/261123263_Fabric_defect_detection_algorithm_using_morphological_processing_and_DCT?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
https://www.researchgate.net/publication/3171009_Fabric_Defect_Detection_by_Fourier_Analysis?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
https://www.researchgate.net/publication/224164380_The_Phase_Only_Transform_for_unsupervised_surface_defect_detection?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
https://www.researchgate.net/publication/261260032_A_vision_based_system_for_high_precision_online_fabric_defect_detection?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
https://www.researchgate.net/publication/3872990_Defect_detection_in_textured_materials_using_Gabor_filters?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
https://www.researchgate.net/publication/221996939_Discriminative_training_approaches_to_fabric_defect_classification_based_on_wavelet_transform?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
https://www.researchgate.net/publication/269269066_Fabric_defect_detection_based_on_texture_enhancement?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
https://www.researchgate.net/publication/3191901_Automated_inspection_of_textile_fabrics_using_textural_models?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
https://www.researchgate.net/publication/262392723_Sparse_Dictionary_Reconstruction_for_Textile_Defect_Detection?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
https://www.researchgate.net/publication/269329299_The_fabric_defect_detection_technology_based_on_wavelet_transform_and_neural_network_convergence?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
https://www.researchgate.net/publication/3776853_Defect_detection_in_textile_materials_based_on_aspects_of_the_HVS?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
https://www.researchgate.net/publication/220600748_Wavelet_based_methods_on_patterned_fabric_defect_detection?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
https://www.researchgate.net/publication/220600748_Wavelet_based_methods_on_patterned_fabric_defect_detection?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
https://www.researchgate.net/publication/249785168_Gray_Relational_Analysis_for_Recognizing_Fabric_Defects?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
https://www.researchgate.net/publication/228633809_Novel_method_for_patterned_fabric_inspection_using_Bollinger_bands?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
https://www.researchgate.net/publication/224309582_Regularity_Analysis_for_Patterned_Texture_Inspection?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
https://www.researchgate.net/publication/263510246_Patterned_Fabric_Inspection_and_Visualization_by_the_Method_of_Image_Decomposition?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
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played matches between competing partitions. The idea of the ER method originates from a 

logistic distribution-based statistical system called the Elo rating system, developed by Elo 

[23]. This system is used to measure a player’s capability in many international chess matches, 

video matches [24] and even in many other international team sports including football, 

basketball, major league baseball, etc. 

Fabric inspection is treated in the spirit of sportsmanship by the ER method, which 

provides a new perspective for the detection of fabric defects. The idea is that each ݉ × ݊ 

extracted image partition from an ܯ × ܰ testing image acts like a player. Some partitions are 

selected as players and each player is assigned a starting Elo point (W.L.O.G. = 1000 as the 

starting number of base points). A player who wins a match gains some Elo points w.r.t. a 

formula suggested by Elo [23] based on a logistic distribution; otherwise the player loses some 

Elo points. In the long run, the Elo points accumulated are a fair indication of the player’s 

performance even though some players do not encounter each other in the matches. In 

patterned fabric defect detection, image partitions of a patterned fabric image are considered 

the players and a match is regarded as the matrix operation between these partitions. 

According to a score matrix of the ER method, a partition with light defective regions 

(Fig. 1(b)) will act like a strong player who tends to achieve a high score in the match and 

probably wins many matches. A partition with dark defective regions (Fig. 1(d)) will act like a 

weak player who tends to have a low score in the match and probably loses many matches. A 

partition that is defect-free will act like an ordinary player who tends to have an average score 

https://www.researchgate.net/publication/239022336_The_Ratings_of_Chess_Players_Past_and_Present?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
https://www.researchgate.net/publication/239022336_The_Ratings_of_Chess_Players_Past_and_Present?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
https://www.researchgate.net/publication/27700010_Elo-rating_as_a_tool_in_the_sequential_estimation_of_dominance_strength?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
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and ties many matches. Hence, a strong player with light defects should be able to gain Elo 

points by winning many matches, whereas a weak player with dark defects should lose Elo 

points by losing many matches. Therefore, an area of an image can be indicated as defective 

by tracking, partitions with relatively high or low Elo points. Match making in the ER method 

is designed as follows. For each partition (player), a certain number of other partitions (players) 

are randomly selected to have matches against it. The Elo points of a corresponding player will 

be updated after each match. In this paper, dot-, box-, and star-patterned fabrics comprising a 

total of 336 images (165 defect-free and 171 defective) are used. 

This paper makes the following contributions to the literature. 

1. A new application of the ER method is constructed by transforming its theoretical and 

physical properties for the purpose of patterned fabric inspection. Four key parameters in the 

ER method, including partition size, number of randomly located partitions, ݓ −  ,݈ܾ݁ܽ݅ݎܽݒ

and constant ܭ, are carefully justified in the performance evaluation. 

2. The ER method provides a binary classification of the nature of the defect in the final 

resultant image: white as a light defect, grey as a dark defect and black as defect-free.  

3. From fabric databases with ground-truth images, the ER method achieves 96.89% 

accuracy for dot-patterned fabrics using 110 defect-free and 120 defective images, 98.82% 

accuracy for star-patterned fabrics using 30 defect-free and 26 defective images and 99.07% 

for box-patterned fabrics using 25 defect-free and 25 defective images. These results 

outperform those of the WGIS method and are comparable to those of the previously developed 
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BB, RB and ID methods in [22]. 

The remainder of this paper is organized as follows. In section 2, we survey the literature 

on the detection of patterned fabric defects. Section 3 outlines the ER method and its 

procedures. In section 4, we evaluate the performance of the ER method and compare it with 

the WGIS, BB, RB and ID methods. Lastly, section 5 concludes the paper. 

II. LITERATURE REVIEW ON DEFECT DETECTION IN PLAIN AND TWILL FABRICS 

The AVI techniques for fabrics in motif-based classification [25] can be divided into two 

main categories. Only a few methods have been developed for the patterned fabrics of the non-

p1 wallpaper group. Research into the inspection of these patterned fabrics has been increasing 

in the last decade. The developed methods can be classified into four approaches: statistical, 

spectral, model-based and learning approaches. 

The statistical approach includes gray relational analysis with CM features [19] on 

Jacquard fabric images to study correlations between the analysed factors of chosen features 

from a randomised factor sequence. This method reached 94% detection accuracy for 50 

defective samples in [19]. The spectral approach includes many methods, such as WGIS [18], 

DT [18], wavelet-decomposition [26], template matching for discrepancy measure (TMPM) 

[27], BB [20], RB [21] and a Gabor filter [28]. The WGIS method [18] used a golden image 

to perform moving subtraction of each pixel along each row of every wavelet-pre-processed 

tested image. It generated 96.7% accuracy on 30 defect-free and 30 defective patterned images 

(pmm group). The DT method [18] applied a thresholding technique for defect detection on 

https://www.researchgate.net/publication/220600748_Wavelet_based_methods_on_patterned_fabric_defect_detection?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
https://www.researchgate.net/publication/220600748_Wavelet_based_methods_on_patterned_fabric_defect_detection?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
https://www.researchgate.net/publication/220600748_Wavelet_based_methods_on_patterned_fabric_defect_detection?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
https://www.researchgate.net/publication/249785168_Gray_Relational_Analysis_for_Recognizing_Fabric_Defects?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
https://www.researchgate.net/publication/249785168_Gray_Relational_Analysis_for_Recognizing_Fabric_Defects?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
https://www.researchgate.net/publication/228633809_Novel_method_for_patterned_fabric_inspection_using_Bollinger_bands?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
https://www.researchgate.net/publication/224309582_Regularity_Analysis_for_Patterned_Texture_Inspection?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
https://www.researchgate.net/publication/261427494_Fabric_defect_detection_using_wavelet_decomposition?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
https://www.researchgate.net/publication/284823883_Fabric_defect_detection_based_on_GLCM_and_Gabor_filter_A_comparison?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==


 8

level 4 of Haar wavelet horizontal and vertical detailed sub-images in the same database for 

the WGIS method and generated 88.3% accuracy. Li and Di [26] developed a wavelet-

decomposition method [26] to improve the DT method by extracting Haar level 2 high-

frequency coefficients as the vertical detailed sub-image for thresholding and applied a 

morphological filter to remove noise on a detected image. However, only one inspection on a 

knitted fabric sample was published. Stubl et al. [27] used a golden image-like approach to 

exploit a discrepancy measure as a fitness function to detect defects on patterned textures. They 

evaluated the TMPM method on the TILDA database (no details on the wallpaper group) and 

achieved 96.1% correct detection. The BB and RB methods, designed by different 

combinations of moving average and standard deviation, used the regularity property of a 

patterned texture to carry out defect detection on dot-, box- and star-patterned fabrics (p2, pmm 

and p4m groups, respectively). The BB and RB methods obtained accuracy rates of 98.59% 

(167 defect-free and 171 defective images) and 99.4% (80 defect-free and 86 defective images), 

respectively. Raheja et al. [28] proposed a Gabor filter method and a gray-level CM method 

that were then evaluated on 60 defect-free and defective samples (no details on the wallpaper 

group) from various fabrics with 98.33% and 95% correct detection, respectively.  

The model-based approach includes a recent ID method [22] that decomposed a fabric 

image into structures of cartoon (defective objects) and texture (repeated patterns). The ID 

method resulted in detection accuracies ranging from 94.9%-99.6% for the dot-, box- and star-

patterned fabrics. The ID method is carried out in a semi-supervised approach which is 
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different to the WGIS, BB and RB methods which are performed in a supervised approach. 

Lastly, in the learning approach, Li et al. [29] applied a spectral estimation technique to extract 

pattern features and fed them into a rough set classifier. They obtained 95.3% detection 

accuracy for a patterned fabric database (p4m group), in which 100 samples were used for 

training and 120 samples were used for testing.  

In short, no previous method has viewed fabric inspection as a series of matches between 

any two partitions of the image. A novel use of the ER method for fabric defect detection is 

thus presented. 

III. THE ER METHOD 

3.1 Definitions for the ER method 

Definition 1 (Score of a competition). For an image of size ݉ × ݊, say ܩ௔, which has a match 

with another image of size ݉ × ݊, say ܩ௕, the score s for ܩ௔ is defined by 

s = ଵ௠௡ ∑ ∑ ௔೔,ೕܩ) −௡௝ୀଵ௠௜ୀଵ  ௕೔,ೕ).        (1)ܩ

Definition 2 (Expected value of a win). Suppose the Elo points of images ܩ௔ and ܩ௕ with size 

݉ × ݊ before a match are ܧ௔ and ܧ௕ respectively. The expected value of ܩ௔ winning the match, 

according to logistic distribution, is defined as 

௔݌ݔܧ = ଵଵାଵ଴(ಶ್షಶೌ)/ೢ.          (2) 

Without loss of generality, the starting Elo points of ܧ௔ and ܧ௕ are both set at 1000. In 

 ,௕  winning the game. Henceܩ ௔  andܩ ௕  are the respective probabilities of݌ݔܧ ௔  and݌ݔܧ ,(2)

note the mathematical property below: 
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௔݌ݔܧ ௕݌ݔܧ + = ଵଵାଵ଴(ಶ್షಶೌ)/ೢ + ଵଵାଵ଴(ಶೌషಶ್)/ೢ = ଵ଴ಶೌ/ೢଵ଴ಶೌ/ೢାଵ଴ಶ್/ೢ + ଵ଴ಶ್/ೢଵ଴ಶ್/ೢାଵ଴ಶೌ/ೢ = 1.      (3) 

As suggested by Elo [23], w =  400, which is called the ݓ −  ,of the ER system ݈ܾ݁ܽ݅ݎܽݒ

is set arbitrarily. For example, the Elo points of any image are stabilized at the loser being 

600 = ݐ݊݅݋݌ ݋݈ܧ ݃݊݅ݐݎܽݐݏ  −  400 or at the winner being 1400 = + ݐ݊݅݋݌ ݋݈ܧ ݃݊݅ݐݎܽݐݏ 
 400. If the number is large, the rating scale will be stretched out. 

Definition 3 (Elo points update). After a match, the new Elo points of an image ܩ௔ are defined 

by 

ᇱ௔ܧ = ௔ܧ + ௔ܺ)ܭ −  ௔).         (4)݌ݔܧ

where ܧ௔ is the original Elo points, ܧᇱ௔ is the updated Elo points, ܭ is a constant (K = 16 is 

used here) and ܺ௔ −  :௔ should be in between -1 and 1݌ݔܧ

ܺ௔ = ቐ1        ݂݅ ܩ௔ ݐ ݏ݊݅ݓℎ݁ ݉ܽܿݐℎ 0.5      ݂݅ ܩ௔ ݐ ݏ݁݅ݐℎ݁ ݉ܽܿݐℎ0       ݂݅ ܩ௔ ݈ݐ ݏ݁ݏ݋ℎ݁ ݉ܽܿݐℎ  .                  (5) 

The constant ܭ in (4), regarded as the maximum Elo points an image can gain or lose in one 

match, can be set arbitrarily, but its scale would be excessive at a large value. If ܭ = 16 and 

ݓ =  400, an image of “high skill level to win matches” will gain around 10 Elo points per 

win, and vice versa. Similarly, an image’s Elo points will be stabilized at 1400 =
+ ݐ݊݅݋݌ ݋݈ܧ ݃݊݅ݐݎܽݐݏ   400 if the image continues to win matches, and vice versa. 

The image in Definitions 1-3 above means the partition as described below. 

3.2 Procedures of the ER method 

The ER method involves three main phases: (A) acquisition of a score matrix, (B) the 

https://www.researchgate.net/publication/239022336_The_Ratings_of_Chess_Players_Past_and_Present?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
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training stage and (C) the testing stage. 

(A) Threshold acquisition from a score matrix 

Fig. 2 illustrates the procedure of threshold acquisition from a score matrix (see Algorithm 1 

in the Appendix) presented in algorithmic steps. 

1. Perform a level 2 Haar wavelet transform on defect-free images ܴ௜, i = 1, … , k to obtain 

corresponding approximated images ܣ௜, i = 1, … , k  of size ܯ × ܰ . A level 2 Haar 

approximated image is used because it reduces the computational time in subsequent 

stages (see the evaluation in Table 1). Level 2 strikes a balance between image size and 

computational time. The approximated image size of a level 3 Haar wavelet is 32 × 32, 

which would be too coarse for fabric inspection, and it is not considered. 

 
Fig. 2. Procedure for threshold acquisition from a score matrix. 

Table 1 
Computational requirements of different levels of wavelet extraction 

 Without 
wavelet 

Level 1 
Haar wavelet 

Level 2 
Haar wavelet 

 Image size 256 × 256 128 × 128 64 × 64 
Computational 
time 

Training stage 273.54 s 52.96 s 12.38 s 
Testing stage 50.51 s 9.47 s 1.97 s 



 12

2. For each ܯ × ܰ level 2 Haar wavelet transformed approximated image, extract a golden 

partition ܩ௞ of size ݉ × ݊, where ݉ × ݊ is roughly half the dimensions of the length and 

width of a motif (each patterned texture is generated by a motif [2]). 

3. Slide ܩ௞  on each pixel along each row p  on ܣ௞ . For each move of the sliding process, 

record the corresponding score ݏ௫,௬ in each match, where x ∈ M, y ∈ N. 

4. Output a score matrix ܵ = ܯ) ௞  of size{௫,௬ݏ} − ݉ + 1) × (ܰ − ݊ + 1)  and extract 

 .and ݉݅݊(ܵ௞) (௞ܵ) ݔܽ݉

5. Repeat steps 1-4 for four defect-free sample images (as k = 5 in total). Thus we can define 

ܶℎݏ݁ݎℎ݈݀݋௪௜௡ = ݉ܽ (௞ܵ)ݔ = ܵ௞೘ೌೣതതതതതതത  and ܶℎݏ݁ݎℎ݈݀݋௟௢௦௦ = ݉݅݊ (ܵ௞) = ܵ௞೘ഢ೙തതതതതതത ,  

where the bar sign means to obtain either the average value of all ݉ܽݔ (ܵ௞) or that of all 

݉݅݊(ܵ௞). 

6. Determine a win/tie/loss for any given match, with the interval between Threshold௪௜௡ 

and Threshold௟௢௦௦ used as below. 

If ܵܿ݁ݎ݋ > ܶℎݏ݁ݎℎ݈݀݋௪௜௡, the match is defined as a win. 

If ܶℎݏ݁ݎℎ݈݀݋௟௢௦௦ < > ݁ݎ݋ܿܵ ܶℎݏ݁ݎℎ݈݀݋௪௜௡, the match is defined as a tie. 

If ܵܿ݁ݎ݋ < ܶℎݏ݁ݎℎ݈݀݋௟௢௦௦ , the match is defined as a loss. 

(B) Training stage 

1. Perform level 2 Haar wavelet transform on a defect-free image to obtain approximated 

images ܣ௞ of size ܯ × ܰ (see Algorithm 2 in the Appendix for details). 

https://www.researchgate.net/publication/223169174_Motif-based_defect_detection_for_patterned_fabric?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
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2. Divide the approximated images into many partitions. Extract (ܯ − ݉ + 1) × (ܰ − ݊ +
1) partitions for each of size ݉ × ݊. For example, the approximated image ܣ௞ of a dot-

patterned fabric image is of size 64 × 64 and its motif is roughly of size 7×4. Therefore, 

(64 − 7 + 1) × (64 − 4 + 1) = 58 × 61 = 3538  partitions of size 7 × 4  are extracted 

for each sample. Name these partition ଵܲ.ଵ, ଵܲ.ଶ, … , ହ଼ܲ.଺ଵ according to their location. 

3. Assign each partition a starting Elo points value (1000 is assigned here). Hence, a 

reference matrix of Elo points ܧ = (1000)ହ଼×଺ଵ is obtained for future update. 

4. Perform a random locating process to have ݎ pairs of (x, y)-coordinates. For ݎ randomly 

located partitions, say ( ௫ܲ೓೔,௬ೖ೔ )௜ୀଵ,ଶ,…,௥ (i.e., for each x-coordinate [ݔଵ, ,ଶݔ … , -଺ଵ] and yݔ

coordinate [ݕଵ, ,ଶݕ … ,  locations. Thus we have  ݎ ହ଼] , we randomly pickݕ

,௛భݔ] ,௛మݔ … , ,௞భݕ] ௛ೝ] andݔ ,௞మݕ … ,  .([௞ೝݕ
5. Starting from ଵܲ.ଵ, ଵܲ.ଵ will have R matches with ( ௫ܲ೓೔,௬ೖ೔ ), with the result of each match 

(win/tie/loss) decided by step 6 of (A). After each match, the corresponding location on 

the Elo point matrix ܧ௞ will be updated by Definition 3 (Elo point update). Then obtain a 

new set of random located partitions ( ௫ܲ೓೔,௬ೖ೔ ) by repeating step 4. 

6. Keep sliding on each pixel on each row ݔ, so we can repeat step 5 from ଵܲ,ଵ ݋ݐ ହ଼ܲ,଺ଵ 

7. After step 6 has finished, an updated Elo point matrix E is obtained: 

൭ܧଵ,ଵ ଵ,ଶܧ … …⋮ ⋮ ⋱ ⋮… … …  ହ଼,଺ଵ൱.        (5)ܧ

Extract ݉ܽ(ܧ) ݔ and ݉݅݊(ܧ). 
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8. Repeat steps 1-7 for five defect-free sample images. Thus, it has  

ܶℎݏ݁ݎℎ݈݀݋௟௜௚௛௧ = ௗ௔௥௞݈݀݋ℎݏ݁ݎand ܶℎ (௞ܧ) ݔܽ݉ =  .(௞ܧ) ݊݅݉

9. Update the Elo point matrix ܧ௞ of a test image. If ܧ௜,௝  > ܶℎݏ݁ݎℎ݈݀݋௟௜௚௛௧, the partition ௜ܲ,௝ 

is defined as light defective (shown as white in the final image). If ܶℎݏ݁ݎℎ݈݀݋ௗ௔௥௞ <
௜,௝ܧ  < ܶℎݏ݁ݎℎ݈݀݋௟௜௚௛௧ , the partition ௜ܲ,௝  is defined as defect-free. If ܧ௜,௝ <
ܶℎݏ݁ݎℎ݈݀݋ௗ௔௥௞ , the partition ௜ܲ,௝ is defined as dark defective (shown as grey in the final 

image). 

(C) Testing Stage 

1. Carry out steps 1-6 of the training stage of Elo points to obtain an updated Elo point matrix 

E of a defective image. 

2. Perform defect detection according to step 9 of the training stage. 

3. Output a three-colour (black-grey-white) resultant image U:  

൭ ଵܷ,ଵ ଵܷ,ଶ … …⋮ ⋮ ⋱ ⋮… … … ܷହ଼,଺ଵ൱.        (6) 

If ௜ܲ,௝ is light defective, ௜ܷ,௝ = 1 (shown as white in the final image). 

If ௜ܲ,௝ is dark defective, ௜ܷ,௝ = 0.5 (shown as grey in the final image). 

If ௜ܲ,௝ is defect-free, ௜ܷ,௝ = 0 (shown as black in the final image). 

3.3 Application of a median filter on U to remove noise 

A fabric sample with a light defect will be shown as a white resultant image and a fabric 

sample with dark defect will be shown as a grey resultant image for visualisation purposes. Fig. 
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3 shows examples of final resultant images from the ER method with their corresponding mesh 

diagrams. A defective sample of Knots (k3) in the second column is considered a light defect 

and shows a white resultant image, whereas the defective samples of Thin Bar (t1), Thick Bar 

(tt1), Netting Multiple (n1), Broken End (b1) and Hole (h1) are regarded as dark defects and 

are shown as grey resultant images. 
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 Defective Images Resultant Images Mesh Disgrams of  
Elo Matrices 

Knots (k3) 

 

Thin Bar 
(t1) 

 

Thick Bar 
(tt1) 

 

Netting 
Multiple 

(n1) 

 

Broken 
End 
(b1) 

 

Hole 
(h1) 

 
Fig. 3. (1st column) Defective sample names; (2nd column) Defective images; (3rd column) 
Detection results; (4th column) Mesh diagrams of the Elo matrices. 
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IV. PERFORMANCE EVALUATION 
 

In total, 336 images of size 256 × 256  in 24-bit depth from the dot-, box- and star-

patterned fabric databases are used for evaluation. The dot-patterned fabric database contains 

110 defect-free and 120 defective images, the star-patterned database contains 30 defect-free 

and 26 defective images, and the box-patterned fabric database contains 25 defect-free and 25 

defective images. All defective images have corresponding binary ground-truth images that 

illustrate the defective regions as white (value 1) and the defect-free regions as black (value 0). 

Performance evaluation is carried out in two progressive steps. In the first step, the number of 

white pixels in the final resultant image is obtained. In the second step, a number of 

measurement metrics are obtained, namely true positive (TP), false positive (FP), true negative 

(TN), false negative (FN), detection success rate (DSR), true positive rate (TPR), false 

positive rate (FPR), positive predictive value (PPV) and negative predictive value (NPV). The 

details of these metrics are provided in [22]. 

In the first step, the number of white/grey pixels extracted by the thresholding in the ER 

method is obtained. However, this cannot fully reveal the detection performance because the 

white/grey pixels can actually be false alarms. Therefore, the second step provides a detailed 

analysis. The TPR and FPR are useful for an analysis of the TPR-FPR graph. The PPV can 

also be treated as a measure of precision on the fraction of the TP cases among the number of 

positive calls in inspection. These metrics assist us in verifying how the ER method performs 

with various patterns. We use a desktop computer with an AMD Athlon™ X4 740 Quad Core 
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320-GHz processor and 8.00 GB of memory. The programming language is MATLAB 7.0. 

The initial parameters of the ER method a partition size of 7 × 4 and 16 randomly located 

partitions is 16 (which is selected as a reasonable choice due to an analysis of computational 

requirement of different number of randomly selected partitions in Table 2).  

 

4.1 Tuning the parameters of the ER method 

In this section, four parameters are further tuned for the ER method: a) the partition size 

݉ × ݊, b) the number of randomly located partitions ݎ, c) ݓ −  in (2) and d) constant ݈ܾ݁ܽ݅ݎܽݒ

value ܭ in (4). 

a) Effect of the partition size ࢓ ×  ࢔

TABLE 2. 

COMPUTATIONAL REQUIREMENT OF DIFFERENT NUMBER OF RANDOMLY SELECTED PARTITIONS 

Number of 
Randomly 
Selected 

Partitions 
 9 16 25 36 3538 

Computational 
Time (seconds) 

Training Stage 7.05 s 12.38 s 16.95 s 25.46 s 2199.09 s 

Testing Stage 1.20 s 1.97 s 3.07 s 4.40 s 460.30 s 

        A partition size =7 × 4   
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Fig. 4 illustrates the DSR, TPR and FPR plots of the effect of the partition size, ݉ × ݊, 

on the dot-patterned (Fig. 4(a)), star-patterned (Fig. 4(b)) and box-patterned (Fig. 4(c) fabrics. 

The star- and box-patterned fabrics have undergone the same evaluation processes with the 

partition sizes of 3 × 2, 7 × 4, 10 × 6, 13 × 8 and 16 × 10. Fig. 4(a) and (b) clearly indicates 

that the 7 × 4 size offers the best TPR among the five choices (about 60% in the dot- and 20% 

in the star-patterned fabrics), whereas the TPR and FPR are quite stable at each size. In Fig. 

4(c), 10 × 6 provides the best TPR (about 20%) for the box-patterned fabric. 

(a) dot-patterned (b) star-patterned (c) box-patterned 
 

Fig. 4. DSR, TPR and FPR versus number of partitions for the (a) dot-patterned, (b) star-
patterned and (c) box-patterned fabrics. 
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With respect to the different defective samples of the dot-patterned fabric, Knots, Thin 

Bar, Thick Bar, Netting Multiple, Broken End and Hole, Fig. 5 depicts selected results of the 

various partition sizes of a golden partition ܩ௞ of size ݉ × ݊: 3 × 2, 7 × 4, 10 × 6, 13 × 8, 

16 × 10 and 19 × 12. All of the procedures of the ER method remain the same. Although the 

Defective Images Resultant Images 

Partition Size 3 × 2 7 × 4 10 × 6 13 × 8 16 × 10 

Number of Randomly 
Located Partitions 9 9 9 9 9 

Image Size 256 × 256 62 × 60 61 × 58 60 × 56 58 × 54 57 × 52 

Knots (k3) 

  

Thin Bar 
(t1) 

  

Thick 
Bar 
(tt1) 

  

Netting 
Multiple 

(n1) 

  

Broken 
End 
(b1) 

 

Hole 
(h5) 

  
Average DSR 97.28% 95.70% 94.29% 93.46% 91.84% 
Average TPR 28.31% 58.95% 40.13% 37.26% 35.25% 
Average FPR 0.39% 3.15% 3.85% 4.25% 6.09% 

Fig. 5. Effect on the various partition sizes.



 21

size 3 × 2  generates the highest average DSR of 97.28%, it actually misses many true 

defective regions. In contrast, the metric TPR reveals the performance more accurately: the 

size 7 × 4 provides an average TPR of 58.95%, which is the highest among the three options.  

 

b) Effect of the number of randomly located partitions ࢘ 

For the second parameter, the number of randomly located partitions ݎ is tested from 5 

to 60. Fig. 6 depicts the plots of DSR, TPR and FPR for this parameter. For the sake of 

computational efficiency, ݎ should be as small as possible for DSR, TPR and FPR to maintain 

reasonable good rates. In Fig. 6(a), TPR is 60.63% at ݎ଴ = 10  and 64.94% at ݎ = 15  and 

continues to increase thereafter; however the computational demand also rises. Therefore, ݎ =
15 is an optimal choice for the dot-patterned fabric. Fig. 6(b) shows ݎ = 40 to be an optimal 

choice when the TPR reaches 31.07% and becomes stable for the star-patterned fabric. Fig. 

6(c) shows that ݎ = 15 is an optimal choice for the box-patterned fabric because all TPRs 

 
(a) dot-patterned 

 
(b) star-patterned 

 
(c) box-patterned 

 

Fig. 6. DSR, TPR and FPR versus number of randomly located partitions for the (a) dot-
patterned, (b) star-patterned and (c) box-patterned fabrics. 
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begin to be stable around 18% thereafter. For all ݎ  values, the DSRs and FPRs in Figs. 

6(a),(b),(c) for all three patterned fabrics are all very stable at the levels of greater than 95% 

Defective images Resultant images 
Partition size 7 × 4 7 × 4 7 × 4 

Number of randomly  
located partitions 9 16 25 

Image Size  256 × 256 61 × 58 61 × 58 61 × 58 

Knots (k3) 

 

Thin Bar 
(t1) 

 

Thick 
Bar 
(tt1) 

 

Netting 
Multiple 

(n1) 

 

Broken End 
(b1) 

 

Hole 
(h1) 

 
Average DSR 95.70% 95.62% 95.43% 
Average TPR 48.95% 56.58% 55.18% 

Fig. 7. Effect of the number of randomly located partitions as the locating process randomly 
picks up a certain number of pairs of (x,y) coordinates to locate a partition (see Section 3.2(B), 
step 4). 
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and less than 5%, respectively. 

Fig. 7 shows the results when the choices of ݎ are 9, 16 and 25 for dot-patterned fabric. 

In Fig. 6(a), the average DSR is shown to very stable, around 95%, across the variation in the 

number of randomly located partitions. The TPR increases from 49.30% to 69.50% when ݎ 

rises from 5 to 60. The FPR remains relatively stable at 4% at around 25 along the range of 5 

and 60. The increase in ݎ does cause an increasing noise effect in the detection. For example, 

when ݎ ≥ 20, noise appears in the final result of some defect types such as Thick Bar in Fig. 

7. In the third row of Fig. 7, noise appears only in Thick Bar (tt1) because its defective area is 

too large (around 1/4 of the image). Therefore, when ݎ is high, a defect-free partition will have 

a relatively high probability of matching a defective partition. Thus, defect-free partitions can 

gain a number of Elo points by matching with those defective partitions. As a result, many 

defect-free partitions are misclassified as light defects. It can be seen that ݎ =  16 is a good 

trade-off for the dot-patterned fabric, for which the ݎ is very close to 15.  

 

c) Effect of the ࢝ −  ࢋ࢒࢈ࢇ࢏࢘ࢇ࢜

The ݓ −  .determines the number of Elo points to be gained or lost per match ݈ܾ݁ܽ݅ݎܽݒ

If the difference in original Elo points between partitions ܣ  and ܤ  (i.e., ܧ௔ −  ௕  before theܧ

match) is larger than ݓ −  then the ER method will predict this match as a “must ,݈ܾ݁ܽ݅ݎܽݒ

win” for partition ܣ. Hence, partition ܣ will gain a low number of Elo points if it truly wins 

this match; otherwise, it will lose a large number of Elo points for the loss of this match. In 
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other words, the ݓ −  is capable of strengthening the small differences between the ݈ܾ݁ܽ݅ݎܽݒ

partitions in the image. The advantage of using a small ݓ −  is to intensify the small ݈ܾ݁ܽ݅ݎܽݒ

differences between any two partitions. Its shortcoming is that it may overemphasise the 

differences, sometimes leading the ER method to mistakenly treat a pattern as a defect. Thus, 

in fabric inspection, a small ݓ −  .should be used if the contrast in a pattern is large ݈ܾ݁ܽ݅ݎܽݒ

Conversely, a large ݓ −  .should be used for a low-contrast pattern ݈ܾ݁ܽ݅ݎܽݒ

We set the original ݓ −  to 400, but it can be arbitrarily chosen. To study how ݈ܾ݁ܽ݅ݎܽݒ

this affects the inspection results, Fig. 8 illustrates the effect of ݓ −  ,-in (2) on dot ݈ܾ݁ܽ݅ݎܽݒ

star- and box-patterned fabrics. In Fig. 8(a) of the dot-patterned fabric, the DSR increases from 

92.75% at ݓ = 100 and remains around 95% after ݓ ≥ 200. TPR and FPR behave differently 

from the DSR in that both start at higher rates at ݓ = 100 (TPR = 69.43%, FPR = 6.85%) and 

then decrease to lower rates and stabilize when ݓ ≥ 200 (TPR between 62.02% and 64.80%, 

FPR between 3.01% and 3.65). The box-patterned fabric in Fig. 8(c) has similar but more stable 

performance of DSR, TPR and FPR (all rates appear stable for all choices of ݓ −  (݈ܾ݁ܽ݅ݎܽݒ

(a) dot-patterned (b) star-patterned (c) box-patterned 
 

Fig. 8. DSR, TPR and FPR versus ݓ −  for (a) dot-patterned, (b) star-patterned and ݈ܾ݁ܽ݅ݎܽݒ
(c) box-patterned fabrics. 
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compared with the dot-patterned fabric. The stable performance is actually due to the low 

contrast of the dot- and box-patterned fabrics. If ݓ −  is set to equal 100, it will  ݈ܾ݁ܽ݅ݎܽݒ

overemphasise the differences between any two partitions and the ER method will mistakenly 

treat a dot or box pattern as a defect. This problem can be immediately resolved by using a 

large ݓ − ݓ Therefore, all three measurement matrices stabilise with a large . ݈ܾ݁ܽ݅ݎܽݒ −
 .at 400 in the dot- and box-patterned fabrics ݈ܾ݁ܽ݅ݎܽݒ

In Fig. 8(b) of the star-patterned fabric, the contrast is very large (the star pattern is 

completely white and the background region is completely dark) so that the ER method easily 

misclassifies the star pattern as a defect. The best TPR is 37.49% at ݓ = 100, whereas the 

later values of TPR decrease at ݓ > 100 . Therefore, a small ݓ −  can (i.e., 100)  ݈ܾ݁ܽ݅ݎܽݒ

provide a more accurate result in terms of TPR. 

d) Effect of the constant ࡷ 

The value of ܭ  is the maximum or minimum number of Elo points of a player at a 

different skill level that can be gained or lost in a single match. It also relates to the speed at 

which a partition gains or loses a certain number of Elo points. In Fig. 9, the effect of K behaves 

similarly to the effect of the ݓ − ݓ acts like a multiplying factor to the  ܭ . ݈ܾ݁ܽ݅ݎܽݒ −
 in the ER method. A partition can gain or lose a large number of Elo points if the ݈ܾ݁ܽ݅ݎܽݒ

difference between two partitions is greater than ݓ −  is also used, a ܭ If a large .݈ܾ݁ܽ݅ݎܽݒ
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partition will quickly gain or lose enough Elo points that the difference between this partition 

and other partitions will exceed ݓ −  .݈ܾ݁ܽ݅ݎܽݒ

Fig. 9 shows the effect of ܭ on the dot-, star- and box-patterned fabrics. In Fig. 9(a), the 

DSR and FPR are very stable, at about 95% and 3.5% between 10 and 100, respectively, 

whereas TPR fluctuates with a lower bound of 63.23% and an upper bound of 67.85% along 

the range of 10 to 100. The values between 10 and 30 are very stable, indicating that ܭ = 16 

is reasonable. Fig. 9(c) shows similar results for the box-patterned fabric. When a large ݓ −
ݓ) ݈ܾ݁ܽ݅ݎܽݒ = 400) is used for either the dot- or box-patterned fabric, K has no effect on the 

DSR, TPR and FPR. Even if a K as large as 100 is used, it is still not high enough for a partition 

to gain or lose enough Elo points such that the differences between this partition and other 

partitions exceeds the designated ݓ −  In addition, it is not reasonable to try an . ݈ܾ݁ܽ݅ݎܽݒ

extremely large ܭ =  100000 because the contrast in the dot- and box-patterned fabrics is low. 

Therefore, a large ݓ −  could prevent the overemphasis of the difference between ݈ܾ݁ܽ݅ݎܽݒ

partitions. Trying a large ܭ  here means it will outweigh the effort of the setting the ݓ −

 
(a) dot-patterned (b) star-patterned (c) box-patterned 

 

Fig. 9. DSR, TPR and FPR versus constant K for (a) dot-patterned, (b) star-patterned and (c) 
box-patterned fabrics. 
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 ,is found to be arbitrary as long as it does not exceed 100. Therefore ܭ ,In summary .݈ܾ݁ܽ݅ݎܽݒ

16 is chosen ast the initial K, as suggested by Elo [23]. 

Contrastingly, when the K is large in the star-patterned fabric, the values of DSR, TPR 

and FPR become unstable (Fig. 9(b)). Therefore, a relatively small ݓ −  is required ݈ܾ݁ܽ݅ݎܽݒ

for star-patterned fabrics (ݓ = 100). If a relatively large K is used here, a partition can quickly 

gain or lose enough Elo points such that the difference between this partition and other 

partitions will exceed the ݓ −  which ,ܭ However, noise also accompanies a large .݈ܾ݁ܽ݅ݎܽݒ

increases the FPR and decreases the DSR due to overemphasis of the difference between 

partitions. ܭ is set to 10 for the star-patterned fabric because this value performs relatively well 

and the DSR, TPR and FPR are all stable. 

 

4.2 Overall results of the ER method 

From Section 4.1 (a)-(d), the optimised sets of values for partition size ݉ × ݊, numbers 

randomly located in partitions ݓ ,ݎ − ݉}} ,ܭ and constant ݈ܾ݁ܽ݅ݎܽݒ × ,ݓ ,ݎ ,{݊ are {7 ,{ܭ ×
4, 15, 400, 16} , {7 × 4, 40, 100, 10}  and {10 × 6, 15, 400, 16}  for the dot-, star-, box- 

patterned fabrics, respectively. 

a) Numerical and graphical results 

Tables 3, 4 and 5 tabulate the numerical results of each defect type in dot-, star- and box-

patterned fabric images with two performance evaluation steps. The results of the recent fabric 

inspection method WGIS [18] are compared with those of the ER method. This is the first time, 

https://www.researchgate.net/publication/220600748_Wavelet_based_methods_on_patterned_fabric_defect_detection?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
https://www.researchgate.net/publication/239022336_The_Ratings_of_Chess_Players_Past_and_Present?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
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to our knowledge, that the WGIS method has been be tested on star- and box-patterned fabric 

images. The performance of other recent fabric inspection methods, such as the BB, RB and 

ID methods, on all three patterned fabrics can be obtained from our previous report [22]. 

It must be noted that the final total number of pixels in a resultant image in the ER method 

is 3538, which is lower than that of the WGIS method with its 65536 pixels. In the first step, 

the percentage white pixels of the total pixels obtained in the ER method for the dot-, star- and 

box-patterned fabric defect-free images are 0.11% ( ଷ.଼଻ଷହଷ଼), 0 and 0 white pixels, whereas those 

obtained with the WGIS method are 28.43% (ଵ଼଺ଷହ଺ହହଷ଺) , 3.57% ( ଶଷଷଽ଺ହହଷ଺)  and 25.13% (ଵ଺ସ଻଴଺ହହଷ଺) 

white pixels, respectively. This shows that the ER method performs well because it generates 

fewer white pixels for defect-free images. 

The ER method also results in fewer white pixels than the WGIS method in the defective 

images of all three types of patterned fabrics. For the dot-patterned fabric samples in the ER 

method, the percentage of white pixels of the total pixels in the resultant images are between 

~0% ( ଴.ଷଷଷହଷ଼)  and 23.58% ( ଼ଷସ.ଷଷଷହଷ଼ )  from Table 3 (dot-patterned), between 1.23% ( ସଷ.ସଷହଷ଼)  and 

4.53% (ଵ଺଴.ଶଷହଷ଼)  from Table 4 (star-patterned) and within 0 (or 0%)  and 4.54% (ଵସ଻.ସଷଶସହ)  from 

Table 5 (box-patterned). In comparison, the WGIS method gives ranges between 

11.19% (଻ଷଷଶ.଺଺଺ହହଷ଺ )  and 25.65% ( ଵ଺଼ଵଶ଺ହହଷ଺)  from Table 3, 3.5% ( ଶଶଽହ଺ହହଷ଺)  and 3.65% (ଶଷ଼଼.ଽ଺ହହଷ଺)  from 

Table 4 and 2.47% ( ଵ଺ଵ଻଺ହହଷ଺)  and 24.84% (ଵ଺ଶ଻଻଺ହହଷ଺)  from Table 5. As a result, the ER method 

obtains a higher percentage of white pixels and demonstrates stronger discriminative power to 

detect defects in the first step. 

https://www.researchgate.net/publication/263510246_Patterned_Fabric_Inspection_and_Visualization_by_the_Method_of_Image_Decomposition?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
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The detailed measurement metrics are obtained in the second step. Here, the ER method 

obtains overall results of 96.89% DSR, 42.40% TPR, 0.04% FPR, 34.91% PPV and 97.32% 

NPV for the dot-patterned fabric (Table 3), whereas the WGIS method generates overall results 

of 77.04% DSR, 58.10% TPR, 0.17% FPR, 12.82% PPV and 97.98% NPV. The higher value 

of PPV means that the ER method is more accurate when detecting defective regions, and the 

lower values of FPR and NPV mean that the method is more accurate when detecting defect-

free regions. A higher DSR means better overall performance in detection. Fig. 10 depicts the 

detection results of the WGIS and ER methods compared with the ground-truth images. The 

ER method detects the light defect, Knots (first row) and Loose Pick (ninth row), more 

accurately than the WGIS method. For the dark defects, i.e., Thin Bar, Thick Bar, Netting 

Multiple, Broken End, Hole, Oil Warp, Oil Weft and Miss Pick, the ER method performs better 

than the WGIS method with more accurate locations and more finely detected defect shapes. 

From Table 4 of the star-patterned fabric, the ER method shows better overall results 

than the WGIS method in the metrics of DSR (98.82% versus 95.73%), TPR (32.93% versus 

1.2%) and PPV (19.70% versus 1.22%) but poorer results for FPR (7.71% versus 3.58%) and 

NPV (99.12% versus 98.51%). In Fig. 11, the WGIS method only provides white dots, which 

are not a satisfactory visualised result, compared with the ER method. Table 5 shows the results 

from the box-patterned fabric, in which the ER method shows higher rates than the WGIS 

method in the overall results of DSR (95.51% versus 49.91%) and PPV (15.84% versus 2.09%) 

and lower rates for TPR (7.80% versus 35.31%), FPR (1.39% versus 24.88%) and NPV 
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(96.80% versus 98.89%). Fig. 12 illustrates that the WGIS method offers many extra white 

boxes, which are falsely detected as defective regions. This is also why the WGIS method 

 Defective images Ground-truth images WGIS ER 

Knots 
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Thin Bar 
(t1) 

 

Thick 
Bar 
(tt1) 

 

Netting 
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Hole 
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obtains a high TPR (35.31%) and FPR (24.88%). The ER method is found to be incapable of 

detecting the defects of Netting Multiple and Hole, as indicated by Fig. 12. 

 

 

 Defective images Ground-truth images WGIS ER

Oil Warp 
(op12) 

 

Oil Weft 
(ot3) 

 

Loose Pick 
(l4) 

 

Miss Pick 
(m9) 

 
Fig. 10. Dot-patterned fabric: (1st column) Defective sample names; (2nd column) Defective 
images; (3rd column) Ground-truth image; (4th column) Detection results of WGIS method; (5th 
column) Detection results of ER method. Partition size = 7 × 4, Number of randomly located 
partitions = 16, ݓ − ܭ Constant ,400 = ݈ܾ݁ܽ݅ݎܽݒ = 16. Remark: Thresholdlight value in the ER 
method is reduced by 5% for Loose Pick. 
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 Defective images Ground-truth images WGIS ER
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Fig. 11. Star-patterned fabric: (1st column) Defective sample names; (2nd column) Defective 
images; (3rd column) Ground-truth image; (4th column) Detection results of WGIS method; 
(5th column) Detection results of ER method. Partition size = 7 × 4, Number of randomly 
located partitions = 40, ݓ − ܭ Constant ,100 = ݈ܾ݁ܽ݅ݎܽݒ = 10. 
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Table 3 
Numerical results of each defect type: WGIS and ER methods on dot-patterned fabric images 

 Avg defective pixels (No.) DSR (%) TPR (%) FPR (%) PPV (%) NPV (%) Method 

Defect-free 
(110) 

18635 71.57 N/A N/A N/A N/A WGIS 

3.87 99.99 N/A N/A N/A N/A ER 

Knots (12) 
16812.00 73.55 38.61 0.25 4.89 97.10 WGIS 

115.08 97.07 54.35 0.01 66.88 98.10 ER 

Thin Bar (12) 
11360.21 83.39 66.69 0.16 10.66 98.64 WGIS 

333.08 92.50 81.22 0.07 26.81 99.30 ER 

Thick Bar (12) 
15284.02 81.49 71.66 0.17 33.18 95.58 WGIS 

834.33 84.76 84.94 0.15 49.46 96.19 ER 

Netting 
Multiple (12) 

13055.00 81.06 62.92 0.18 14.10 97.73 WGIS 

92.00 96.41 43.79 0.01 80.95 97.79 ER 

Broken End 
(12) 

14890.23 80.04 54.93 0.18 25.51 93.90 WGIS 

236.75 91.69 32.27 0.01 56.25 91.90 ER 

Hole (12) 
11975.31 83.06 75.13 0.17 10.92 99.15 WGIS 

232.00 94.49 69.21 0.05 30.63 98.94 ER 

Oil Warp (12) 
10450.53 83.88 42.85 0.16 2.43 99.34 WGIS 

87.75 97.03 24.58 0.02 8.84 99.20 ER 

Oil Weft (12) 
10618.33 83.96 56.75 0.16 3.85 99.45 WGIS 

93.25 96.82 24.85 0.02 11.47 99.11 ER 

Loose Pick (12) 
7332.66 88.72 36.70 0.11 1.08 99.76 WGIS 

0.33 99.62 0.00 0.00 0.00 99.63 ER 

Miss Pick (12) 
14524.36 81.48 74.76 0.18 21.59 98.14 WGIS 

137.00 90.10 8.74 0.03 17.81 93.02 ER 

Overall 
N/A 77.04 58.10 0.17 12.82 97.98 WGIS 

N/A 96.89 42.40 0.04 34.91 97.32 ER 

Remark: The total number of pixels of resultant images of the WGIS and ER methods are 256 × 256 = 65536  and 58 × 61 = 3538 , 
respectively. The numbers in brackets indicate the number of samples. 
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Table 4 
Numerical results of each defect type: WGIS and ER methods on star-patterned fabric images 

 Avg defective pixels (No.) DSR (%) TPR (%) FPR (%) PPV (%) NPV (%) Method 

Defect-free (30) 2339.6 96.43 N/A N/A N/A N/A WGIS 
0 100 N/A N/A N/A N/A ER

Thin Bar (5) 2370 95.42 0 3.65 0 99.00 WGIS
120.6 96.72 45.47 2.83 12.50 99.45 ER

Thick Bar (6) 2295 93.40 4.37 3.44 5.09 96.63 WGIS
160.2 97.30 69.52 1.67 54.52 98.81 ER

Netting 
Multiple (5) 

2345 94.76 1.03 3.61 0.88 98.25 WGIS
46.8 97.76 16.42 0.82 12.61 98.54 ER

Broken End (5) 2318 95.74 0.26 3.56 0.09 99.24 WGIS
43.4 98.13 8.79 1.16 7.17 99.27 ER

Hole (5) 2388.9 95.82 0.34 3.66 0.05 99.45 WGIS 
49 98.32 24.47 1.23 11.68 99.54 ER 

Overall N/A 95.73 1.2 3.58 1.22 98.51 WGIS 
N/A 98.82 32.93 7.71 19.70 99.12 ER 

Remark: The total number of pixels of resultant images of the WGIS and ER methods are 256 × 256 = 65536 and 58 × 61 = 3538, 
respectively. The numbers in brackets indicate the number of samples.  

Table 5 
Numerical results of each defect type: WGIS and ER methods on box-patterned fabric images 

 Avg defective pixels (No.) DSR (%) TPR (%) FPR (%) PPV (%) NPV (%) Method 

Defect-free (25) 16470 25.13 N/A N/A N/A N/A WGIS 
0 100 N/A N/A N/A N/A ER

Thin Bar (5) 15870 75.33 26.90 24.20 1.02 99.07 WGIS
147.4 93.41 5.84 4.51 2.36 97.68 ER

Thick Bar (5) 16277 75.32 49.08 24.24 4.30 98.77 WGIS
86.4 95.43 22.76 1.68 42.40 96.93 ER

Netting 
Multiple (5) 

1684 73.77 33.00 25.68 1.28 98.87 WGIS
1.4 95.77 0.15 0.04 4 95.81 ER

Broken End (5) 1617 74.85 36.39 24.43 2.94 98.40 WGIS
34.6 95.27 10.26 0.69 30.43 95.88 ER

Hole (5) 1675 74.17 31.17 25.52 0.92 99.31 WGIS 
0.8 97.66 0 0.03 0 97.69 ER 

Overall N/A 49.91 35.31 24.88 2.09 98.89 WGIS 
N/A 95.51 7.80 1.39 15.84 96.80 ER 

Remark: The total number of pixels of resultant images of the WGIS and ER methods are 256 × 256 = 65536 and 55 × 59 = 3538, 
respectively. The numbers in brackets indicate the number of samples. 
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Fig. 12. Box-patterned fabric: (1st column) Defective sample names; (2nd column) Defective 
images; (3rd column) Ground-truth image; (4th column) Detection results of WGIS method; (5th 
column) Detection results of ER method. Partition size = 10 × 6, Number of randomly located 
partitions = 25. ݓ − ܭ Constant ,400 = ݈ܾ݁ܽ݅ݎܽݒ = 16. The median filtering in the last step is 
skipped for this box-patterned fabric. 
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b) TPR-FPR graphs with optimised parameters 

A further detailed comparison with TPR-FPR graphs [22] between the BB, RB, ID, 

WGIS and ER methods is shown in Fig. 13. All methods were evaluated on the dot-, star- and 

box-patterned fabric databases in [21]. Similar to that in an ROC graph, a point located closer 

to the top left corner of the TPR-FPR graphs is regarded as an optimised result. The TPR-FPR 

graphs are formulated by the TPR and FPR values of each defective sample of the dot-, star- 

and box-patterned fabrics by the BB, RB, ID, WGIS and ER methods. This TPR-FPR graph 

can help to evaluate how each method performs on each particular defect type. Only dot-

patterned fabric has the Knots defect. The blue dots in Fig. 13(a) clearly show that the TPR-

FPR points of the ER method are close to the top left corner of the graph than those of the BB, 

RB and WGIS methods. For the dot-patterned fabric, the ER method obviously outperforms 

the BB, RB and WGIS methods for each defect type. In regard to the star-patterned fabric, the 

ER method (blue diamonds) demonstrates superiority in the Thin Bar (Fig. 13(b)), Thick Bar 

(Fig. 13(c)), Netting Multiple (Fig. 13(d)), Broken End (Fig. 13(e)) and Hole (Fig. 13(f)) 

defects. Most of the TPR-FPR points of the BB, RB and WGIS methods, shown as cyan, 

magenta and red diamonds, are located at the bottom left corner of the plots, indicating both 

low TPR and low FPR. This is also due to the complete darkness in the final resultant images 

once all noise is removed. For the box-patterned fabric, most methods do not performs as well 

as in the previous two patterned fabrics. The ER method performs slightly better than the WGIS 

method and much better than the BB and RB methods in the Thick bar defect (ER: blue boxes 

https://www.researchgate.net/publication/224309582_Regularity_Analysis_for_Patterned_Texture_Inspection?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
https://www.researchgate.net/publication/263510246_Patterned_Fabric_Inspection_and_Visualization_by_the_Method_of_Image_Decomposition?el=1_x_8&enrichId=rgreq-699d93f567ccc21efa455cb2ff7ef9b3-XXX&enrichSource=Y292ZXJQYWdlOzI4NDAwMTQxNDtBUzozNjI3MDk0NjQ5NjEwMjVAMTQ2MzQ4ODA4Mzc4NQ==
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with lower FPR and higher TPR in Fig. 13(c)) and Broken End (Fig. 13(e)). However, the ER 

method performs worse than the WGIS method in the Thin Bar (Fig. 13(b)), Netting Multiple 

 
(a)  

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 13. FPR-TPR graphs of six defect types of dot-, box- and star-patterned fabric samples: (a) Knots, (b) Thin 
Bar, (c) Thick Bar, (d) Netting Multiple, (e) Broken End and (f) Hole. BB method (cyan); RB method 
(magenta); ID method (green); WGIS method (red); ER method (blue). Dot-pattern (circles); box-pattern 
(squares); star-pattern (diamonds). 
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(Fig. 13(d)), Broken End (Fig. 13(e)) and Hole defects (Fig. 13(f)), with most of the blue boxes 

found at the bottom left in those plots. Compared with the corresponding red boxes of the  

WGIS method, they have higher a TPR and a higher FPR, indicating that the ER method still 

has room for improvement in the inspection of box-patterned fabric. In short, although the ID 

method generated better TPR-FPR points than the ER method, it is a semi-supervised approach 

that requires a defective sample and a defect-free sample for training. On the contrary, the 

WGIS, BB, RB and ER methods as a supervised approach employed only defect-free samples 

for training that reveals more close to the real inspection situation because defects are not 

predictable.  

V. CONCLUSION 

This paper presents a new method of patterned fabric inspection called the ER method, 

in which the detection of defects is similar to carrying out fair matches in the spirit of good 

sportsmanship. The ER method achieved an overall 97.07% detection success rate based on 

336 images from dot-, star- and box-patterned fabrics, compared with the evaluation of ground-

truth images. The ER method depends on four parameters, partition size, the number of 

randomly located partitions, ݓ −  and constant K. A study of their significance was ݈ܾ݁ܽ݅ݎܽݒ

carried out. The ER method performed well in the dot- and star-patterned fabrics, but it still 

has room for improvement in the box-patterned fabric. In the future, additional theoretical 

development involving game theory for matches as it relates to defect detection should be 

carried out. Such research will be beneficial for defect detection in the textile, tile, ceramics, 
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wallpaper, aircraft window and printed circuit board industries and for the latest three-

dimensional printing technologies. 
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APPENDIX 

 
 
 
 
 

Algorithm 1 Threshold acquisition from a score matrix 
Require:  k defect-free image. (݇ = 5 in our case.) 
1: for each defect-free image R 
2:   perform level 2 Haar wavelet transformation 
3: end     
4: output: k level 2 Haar wavelet transformed defect-free image, ܣ௞ of size ܯ × ܰ    
5: for each ܣ௞    
6:   select a golden partition of size m × n, ܩ௞         
7: end             
8: for each ܩ௞ 
9:   slide ܩ௞ on each pixel along each row p on ܣ௞, x ∈ M 
10:       for y = 1: N  
11:          calculate ݏ௫,௬ in each match 
12:   end  
13: end 
14: output: a score matrix ܵ௞ =  ௞{௫,௬ݏ}
15: for each ܵ௞ 
16:   obtain the maximum and minimum values, ݉ܽ (௞ܵ)ݔ = ܵ௞೘ೌೣ, ݉݅݊(ܵ௞) = ܵ௞೘೔೙ 
17: end 
18: take average of all ܵ௞೘ೌೣ and ܵ௞೘೔೙ 
19: output: Threshold௪௜௡ = ܵ௞೘ೌೣതതതതതതത and Threshold௟௢௦௦ = ܵ௞೘ഢ೙തതതതതതത 

Algorithm 2 Training stage of the ER method 
Require:  k Elo reference matrix ܧ௞ w.r.t. k level 2 Harr wavelet transformed defect-free 

image, ܣ௞. (݇ = 5 in our case) 
1: for each ܣ௞ 
2:   slide on each pixel along each row x, x ∈ M and obtain a m × n partition ௫ܲ.௬      
3:    for each ௫ܲ.௬      
4:           randomly select r partitions to have matches with ௫ܲ.௬  
5:         match’s win/tie/loss determined by {Threshold௪௜௡, Threshold௟௢௦௦} in Algorithm 

1: Threshold Acquisition from a Score Matrix 
6:           update the corresponding element on ܧ௞ 
7:       end          
8: end         
9: output: updated Elo matrix ܧ௞     
10: for each ܧ௞       
11:   obtain the maximum ܧ௞೘ೌೣ and minimum value ܧ௞೘೔೙   
12: end 
13: output: Threshold௟௜௚௛௧ = ௞೘ೌೣതതതതതതത and Thresholdௗ௔௥௞ܧ  =  ௞೘ഢ೙തതതതതതതܧ
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