120 research outputs found

    PATTERN-BASED ERROR RECOVERY OF LOW RESOLUTION SUBBANDS IN JPEG2000

    Get PDF
    ABSTRACT Digital image transmission is widely used in consumer products, such as digital cameras and cellular phones, where low bit rate coding is required. In any low bit rate encoder, such as the JPEG2000 standard, data truncation (during the encoding process), and data loss (during transmission) will result in lost bit-planes, which will be normally replaced by zeros. In this paper a new algorithm has been proposed, which recovers the lost/truncated lower bit-planes of coefficients in the LL subband of a wavelet transform in a JPEG2000 stream using the data available in higher bitplanes of the same coefficient and its eight neighbors. Simulation results indicate that the proposed algorithm achieves 5.40-8.77 dB improvement with respect to zero filling data recovery method

    An Adaptive Spread Spectrum (SS) Synchronous Data Hiding Strategy for Scalable 3D Terrain Visualization

    No full text
    International audienceThe diversity of clients in today's network environment compels us to think about solutions that more than satisfy their needs according to their resources. For 3D terrain visualization this translates into two main requirements, namely the scalability and synchronous unification of a disparate data that requires at least two files, the texture image and its corresponding digital elevation model (DEM). In this work the scalability is achieved through the multiresolution discrete wavelet transform (DWT) of the JPEG2000 codec. For the unification of data, a simple DWT-domain spread spectrum (SS) strategy is employed in order to synchronously hide the DEM in the corresponding texture while conserving the JPEG2000 standard file format. Highest possible quality texture is renderable due to the reversible nature of the SS data hiding. As far as DEM quality is concerned, it is ensured through the adaptation of synchronization in embedding that would exclude some highest frequency subbands. To estimate the maximum tolerable error in the DEM according to a given viewpoint, a human visual system (HVS) based psycho-visual analysis is being presented. This analysis is helpful in determining the degree of adaptation in synchronization

    Adaptively Synchronous Scalable Spread Spectrum (A4S) Data-Hiding Strategy for Three-Dimensional Visualization

    No full text
    International audienceWe propose an adaptively synchronous scalable spread spectrum (A4S) data-hiding strategy to integrate disparate data, needed for a typical 3-D visualization, into a single JPEG2000 for- mat file. JPEG2000 encoding provides a standard format on one hand and the needed multiresolution for scalability on the other. The method has the potential of being imperceptible and robust at the same time. While the spread spectrum (SS) methods are known for the high robustness they offer, our data-hiding strategy is removable at the same time, which ensures highest possible visualization qual- ity. The SS embedding of the discrete wavelet transform (DWT)- domain depth map is carried out in transform domain YCrCb com- ponents from the JPEG2000 coding stream just after the DWT stage. To maintain synchronization, the embedding is carried out while taking into account the correspondence of subbands. Since security is not the immediate concern, we are at liberty with the strength of embedding. This permits us to increase the robustness and bring the reversibility of our method. To estimate the maximum tolerable error in the depth map according to a given viewpoint, a human visual system (HVS)-based psychovisual analysis is also presented

    Image fusion in the JPEG 2000 domain

    Get PDF

    On robustness against JPEG2000: a performance evaluation of wavelet-based watermarking techniques

    Get PDF
    With the emergence of new scalable coding standards, such as JPEG2000, multimedia is stored as scalable coded bit streams that may be adapted to cater network, device and usage preferences in multimedia usage chains providing universal multimedia access. These adaptations include quality, resolution, frame rate and region of interest scalability and achieved by discarding least significant parts of the bit stream according to the scalability criteria. Such content adaptations may also affect the content protection data, such as watermarks, hidden in the original content. Many wavelet-based robust watermarking techniques robust to such JPEG2000 compression attacks are proposed in the literature. In this paper, we have categorized and evaluated the robustness of such wavelet-based image watermarking techniques against JPEG2000 compression, in terms of algorithmic choices, wavelet kernel selection, subband selection, or watermark selection using a new modular framework. As most of the algorithms use a different set of parametric combination, this analysis is particularly useful to understand the effect of various parameters on the robustness under a common platform and helpful to design any such new algorithm. The analysis also considers the imperceptibility performance of the watermark embedding, as robustness and imperceptibility are two main watermarking properties, complementary to each other

    JPEG2000-Based Data Hiding to Synchronously Unify Disparate Facial Data for Scalable 3D Visualization

    No full text
    International audienceWe present a scalable encoding strategy for the 3D facial data in various bandwidth scenarios. The scalability, needed to cater diverse clients, is achieved through the multiresolution characteristic of JPEG2000. The disparate 3D facial data is synchronously unified by the application of data hiding wherein the 2.5D facial model is embedded in the corresponding 2D texture in the discrete wavelet transform (DWT) domain. The unified file conforms to the JPEG2000 standard and thus no novel format is introduced. The method is effective and has the potential to be applied in videosurveillance and videoconference applications

    WAVELET BASED DATA HIDING OF DEM IN THE CONTEXT OF REALTIME 3D VISUALIZATION (Visualisation 3D Temps-Réel à Distance de MNT par Insertion de Données Cachées Basée Ondelettes)

    No full text
    The use of aerial photographs, satellite images, scanned maps and digital elevation models necessitates the setting up of strategies for the storage and visualization of these data. In order to obtain a three dimensional visualization it is necessary to drape the images, called textures, onto the terrain geometry, called Digital Elevation Model (DEM). Practically, all these information are stored in three different files: DEM, texture and position/projection of the data in a geo-referential system. In this paper we propose to stock all these information in a single file for the purpose of synchronization. For this we have developed a wavelet-based embedding method for hiding the data in a colored image. The texture images containing hidden DEM data can then be sent from the server to a client in order to effect 3D visualization of terrains. The embedding method is integrable with the JPEG2000 coder to accommodate compression and multi-resolution visualization. Résumé L'utilisation de photographies aériennes, d'images satellites, de cartes scannées et de modèles numériques de terrains amène à mettre en place des stratégies de stockage et de visualisation de ces données. Afin d'obtenir une visualisation en trois dimensions, il est nécessaire de lier ces images appelées textures avec la géométrie du terrain nommée Modèle Numérique de Terrain (MNT). Ces informations sont en pratiques stockées dans trois fichiers différents : MNT, texture, position et projection des données dans un système géo-référencé. Dans cet article, nous proposons de stocker toutes ces informations dans un seul fichier afin de les synchroniser. Nous avons développé pour cela une méthode d'insertion de données cachées basée ondelettes dans une image couleur. Les images de texture contenant les données MNT cachées peuvent ensuite être envoyées du serveur au client afin d'effectuer une visualisation 3D de terrains. Afin de combiner une visualisation en multirésolution et une compression, l'insertion des données cachées est intégrable dans le codeur JPEG 2000

    Bit Plane Coding Based Steganography Technique for JPEG2000 Images and Videos

    Get PDF
    In this paper, a Bit Plane Coding (BPC) based steganography technique for JPEG2000 images and Motion JPEG2000 video is proposed. Embedding in this technique is performed in the lowest significant bit planes of the wavelet coefficients of a cover image. In JPEG2000 standard, the number of bit planes of wavelet coefficients to be used in encoding is dependent on the compression rate and are used in Tier-2 process of JPEG2000. In the proposed technique, Tier-1 and Tier-2 processes of JPEG2000 and Motion JPEG2000 are executed twice on the encoder side to collect the information about the lowest bit planes of all code blocks of a cover image, which is utilized in embedding and transmitted to the decoder. After embedding secret data, Optimal Pixel Adjustment Process (OPAP) is applied on stego images to enhance its visual quality. Experimental results show that proposed technique provides large embedding capacity and better visual quality of stego images than existing steganography techniques for JPEG2000 compressed images and videos. Extracted secret image is similar to the original secret image

    A digital signature and watermarking based authentication system for JPEG2000 images

    Get PDF
    In this thesis, digital signature based authentication system was introduced, which is able to protect JPEG2000 images in different flavors, including fragile authentication and semi-fragile authentication. The fragile authentication is to protect the image at code-stream level, and the semi-fragile is to protect the image at the content level. The semi-fragile can be further classified into lossy and lossless authentication. With lossless authentication, the original image can be recovered after verification. The lossless authentication and the new image compression standard, JPEG2000 is mainly discussed in this thesis

    A human visual system based image coder

    Get PDF
    Over the years, society has changed considerably due to technological changes, and digital images have become part and parcel of our everyday lives. Irrespective of applications (i.e., digital camera) and services (information sharing, e.g., Youtube, archive / storage), there is the need for high image quality with high compression ratios. Hence, considerable efforts have been invested in the area of image compression. The traditional image compression systems take into account of statistical redundancies inherent in the image data. However, the development and adaptation of vision models, which take into account the properties of the human visual system (HVS), into picture coders have since shown promising results. The objective of the thesis is to propose the implementation of a vision model in two different manners in the JPEG2000 coding system: (a) a Perceptual Colour Distortion Measure (PCDM) for colour images in the encoding stage, and (b) a Perceptual Post Filtering (PPF) algorithm for colour images in the decoding stage. Both implementations are embedded into the JPEG2000 coder. The vision model here exploits the contrast sensitivity, the inter-orientation masking and intra-band masking visual properties of the HVS. Extensive calibration work has been undertaken to fine-tune the 42 model parameters of the PCDM and Just-Noticeable-Difference thresholds of the PPF for colour images. Evaluation with subjective assessments of PCDM based coder has shown perceived quality improvement over the JPEG2000 benchmark with the MSE (mean square error) and CVIS criteria. For the PPF adapted JPEG2000 decoder, performance evaluation has also shown promising results against the JPEG2000 benchmarks. Based on subjective evaluation, when both PCDM and PPF are used in the JPEG2000 coding system, the overall perceived image quality is superior to the stand-alone JPEG2000 with the PCDM
    corecore