56 research outputs found

    Texture and Colour in Image Analysis

    Get PDF
    Research in colour and texture has experienced major changes in the last few years. This book presents some recent advances in the field, specifically in the theory and applications of colour texture analysis. This volume also features benchmarks, comparative evaluations and reviews

    Automatic classification of colorectal and prostatic histologic tumor images using multiscale multispectral local binary pattern texture features and stacked generalization

    Get PDF
    This paper proposes a new multispectral multiscale local binary pattern feature extraction method for automatic classification of colorectal and prostatic tumor biopsies samples. A multilevel stacked generalization classification technique is also proposed and the key idea of the paper considers a grade diagnostic problem rather than a simple malignant versus tumorous tissue problem using the concept of multispectral imagery in both the visible and near infrared spectra. To validate the proposed algorithm performances, a comparative study against related works using multispectral imagery is conducted including an evaluation on three different multiclass datasets of multispectral histology images: two representing images of colorectal biopsies - one dataset was acquired in the visible spectrum while the second captures near-infrared spectra. The proposed algorithm achieves an accuracy of 99.6% on the different datasets. The results obtained demonstrate the advantages of infrared wavelengths to capture more efficiently the most discriminative information. The results obtained show that our proposed algorithm outperforms other similar methods

    Automated classification of cancer tissues using multispectral imagery

    Get PDF
    Automated classification of medical images for colorectal and prostate cancer diagnosis is a crucial tool for improving routine diagnosis decisions. Therefore, in the last few decades, there has been an increasing interest in refining and adapting machine learning algorithms to classify microscopic images of tumour biopsies. Recently, multispectral imagery has received a significant interest from the research community due to the fast-growing development of high-performance computers. This thesis investigates novel algorithms for automatic classification of colorectal and prostate cancer using multispectral imagery in order to propose a system outperforming the state-of-the-art techniques in the field. To achieve this objective, several feature extraction methods based on image texture have been investigated, analysed and evaluated. A novel texture feature for multispectral images is also constructed as an adaptation of the local binary pattern texture feature to multispectral images by expanding the pixels neighbourhood to the spectral dimension. It has the advantage of capturing the multispectral information with a limited feature vector size. This feature has demonstrated improved classification results when compared against traditional texture features. In order to further enhance the systems performance, advanced classification schemes such as bag-of-features - to better capture local information - and stacked generalisation - to select the most discriminative texture features - are explored and evaluated. Finally, the recent years have seen an accelerated and exponential rise of deep learning, boosted by the advances in hardware, and more specifically graphics processing units. Such models have demonstrated excellent results for supervised learning in multiple applications. This observation has motivated the employment in this thesis of deep neural network architectures, namely convolutional neural networks. Experiments were also carried out to evaluate and compare the performance obtained with the features extracted using convolutional neural networks with random initialisation against features extracted with pre-trained models on ImageNet dataset. The analysis of the classication accuracy achieved with deep learning models reveals that the latter outperforms the previously proposed texture extraction methods. In this thesis, the algorithms are assessed using two separate multiclass datasets: the first one consists of prostate tumour multispectral images, and the second contains multispectral images of colorectal tumours. The colorectal dataset was acquired on a wide domain of the light spectrum ranging from the visible to the infrared wavelengths. This dataset was used to demonstrate the improved results produced using infrared light as well as visible light

    On The Potential of Image Moments for Medical Diagnosis

    Get PDF
    Medical imaging is widely used for diagnosis and postoperative or post-therapy monitoring. The ever-increasing number of images produced has encouraged the introduction of automated methods to assist doctors or pathologists. In recent years, especially after the advent of convolutional neural networks, many researchers have focused on this approach, considering it to be the only method for diagnosis since it can perform a direct classification of images. However, many diagnostic systems still rely on handcrafted features to improve interpretability and limit resource consumption. In this work, we focused our efforts on orthogonal moments, first by providing an overview and taxonomy of their macrocategories and then by analysing their classification performance on very different medical tasks represented by four public benchmark data sets. The results confirmed that convolutional neural networks achieved excellent performance on all tasks. Despite being composed of much fewer features than those extracted by the networks, orthogonal moments proved to be competitive with them, showing comparable and, in some cases, better performance. In addition, Cartesian and harmonic categories provided a very low standard deviation, proving their robustness in medical diagnostic tasks. We strongly believe that the integration of the studied orthogonal moments can lead to more robust and reliable diagnostic systems, considering the performance obtained and the low variation of the results. Finally, since they have been shown to be effective on both magnetic resonance and computed tomography images, they can be easily extended to other imaging techniques

    Review of the state of the art of deep learning for plant diseases: a broad analysis and discussion

    Get PDF
    Deep learning (DL) represents the golden era in the machine learning (ML) domain, and it has gradually become the leading approach in many fields. It is currently playing a vital role in the early detection and classification of plant diseases. The use of ML techniques in this field is viewed as having brought considerable improvement in cultivation productivity sectors, particularly with the recent emergence of DL, which seems to have increased accuracy levels. Recently, many DL architectures have been implemented accompanying visualisation techniques that are essential for determining symptoms and classifying plant diseases. This review investigates and analyses the most recent methods, developed over three years leading up to 2020, for training, augmentation, feature fusion and extraction, recognising and counting crops, and detecting plant diseases, including how these methods can be harnessed to feed deep classifiers and their effects on classifier accuracy

    Road Surface State Recognition Based on SVM Optimization and Image Segmentation Processing

    Get PDF

    Computational Methods for Pigmented Skin Lesion Classification in Images: Review and Future Trends

    Get PDF
    Skin cancer is considered as one of the most common types of cancer in several countries, and its incidence rate has increased in recent years. Melanoma cases have caused an increasing number of deaths worldwide, since this type of skin cancer is the most aggressive compared to other types. Computational methods have been developed to assist dermatologists in early diagnosis of skin cancer. An overview of the main and current computational methods that have been proposed for pattern analysis and pigmented skin lesion classification is addressed in this review. In addition, a discussion about the application of such methods, as well as future trends, is also provided. Several methods for feature extraction from both macroscopic and dermoscopic images and models for feature selection are introduced and discussed. Furthermore, classification algorithms and evaluation procedures are described, and performance results for lesion classification and pattern analysis are given

    Image splicing detection scheme using adaptive threshold mean ternary pattern descriptor

    Get PDF
    The rapid growth of image editing applications has an impact on image forgery cases. Image forgery is a big challenge in authentic image identification. Images can be readily altered using post-processing effects, such as blurring shallow depth, JPEG compression, homogenous regions, and noise to forge the image. Besides, the process can be applied in the spliced image to produce a composite image. Thus, there is a need to develop a scheme of image forgery detection for image splicing. In this research, suitable features of the descriptors for the detection of spliced forgery are defined. These features will reduce the impact of blurring shallow depth, homogenous area, and noise attacks to improve the accuracy. Therefore, a technique to detect forgery at the image level of the image splicing was designed and developed. At this level, the technique involves four important steps. Firstly, convert colour image to three colour channels followed by partition of image into overlapping block and each block is partitioned into non-overlapping cells. Next, Adaptive Thresholding Mean Ternary Pattern Descriptor (ATMTP) is applied on each cell to produce six ATMTP codes and finally, the tested image is classified. In the next part of the scheme, detected forgery object in the spliced image involves five major steps. Initially, similarity among every neighbouring district is computed and the two most comparable areas are assembled together to the point that the entire picture turns into a single area. Secondly, merge similar regions according to specific state, which satisfies the condition of fewer than four pixels between similar regions that lead to obtaining the desired regions to represent objects that exist in the spliced image. Thirdly, select random blocks from the edge of the binary image based on the binary mask. Fourthly, for each block, the Gabor Filter feature is extracted to assess the edges extracted of the segmented image. Finally, the Support Vector Machine (SVM) is used to classify the images. Evaluation of the scheme was experimented using three sets of standard datasets, namely, the Institute of Automation, Chinese Academy of Sciences (CASIA) version TIDE 1.0 and 2.0, and Columbia University. The results showed that, the ATMTP achieved higher accuracy of 98.95%, 99.03% and 99.17% respectively for each set of datasets. Therefore, the findings of this research has proven the significant contribution of the scheme in improving image forgery detection. It is recommended that the scheme be further improved in the future by considering geometrical perspective
    corecore