203,149 research outputs found

    Personalized Pancreatic Tumor Growth Prediction via Group Learning

    Full text link
    Tumor growth prediction, a highly challenging task, has long been viewed as a mathematical modeling problem, where the tumor growth pattern is personalized based on imaging and clinical data of a target patient. Though mathematical models yield promising results, their prediction accuracy may be limited by the absence of population trend data and personalized clinical characteristics. In this paper, we propose a statistical group learning approach to predict the tumor growth pattern that incorporates both the population trend and personalized data, in order to discover high-level features from multimodal imaging data. A deep convolutional neural network approach is developed to model the voxel-wise spatio-temporal tumor progression. The deep features are combined with the time intervals and the clinical factors to feed a process of feature selection. Our predictive model is pretrained on a group data set and personalized on the target patient data to estimate the future spatio-temporal progression of the patient's tumor. Multimodal imaging data at multiple time points are used in the learning, personalization and inference stages. Our method achieves a Dice coefficient of 86.8% +- 3.6% and RVD of 7.9% +- 5.4% on a pancreatic tumor data set, outperforming the DSC of 84.4% +- 4.0% and RVD 13.9% +- 9.8% obtained by a previous state-of-the-art model-based method

    Cluster detection and risk estimation for spatio-temporal health data

    Full text link
    In epidemiological disease mapping one aims to estimate the spatio-temporal pattern in disease risk and identify high-risk clusters, allowing health interventions to be appropriately targeted. Bayesian spatio-temporal models are used to estimate smoothed risk surfaces, but this is contrary to the aim of identifying groups of areal units that exhibit elevated risks compared with their neighbours. Therefore, in this paper we propose a new Bayesian hierarchical modelling approach for simultaneously estimating disease risk and identifying high-risk clusters in space and time. Inference for this model is based on Markov chain Monte Carlo simulation, using the freely available R package CARBayesST that has been developed in conjunction with this paper. Our methodology is motivated by two case studies, the first of which assesses if there is a relationship between Public health Districts and colon cancer clusters in Georgia, while the second looks at the impact of the smoking ban in public places in England on cardiovascular disease clusters

    Comparative analysis of spatio/spectro-temporal data modelling techniques

    Get PDF
    A fundamental challenge in spatio/spectro-temporal data (SSTD) is to learn the pattern and extract meaningful information that lies within the data. The close interrelationship between the space and temporal components of SSTD directly increases the complexity and challenges in modelling the data [1]. Other challenges include the dynamic pattern of spatial components features and inconsistency in the number of samples and feature-length used in the training and sampling datasets [2]. Data pre-processing method such as removal of irregular-feature data structure, however, may cause data loss which will lead to the final result become error prone. Despite the difficulties to process information from SSTD, several works on predictive modelling have been published, including applications on brain data processing [3], stroke data [4-5], forecasting of weather-driven damage in electrical distribution system [6], and ecological or environmental event prediction [7]. According to [8], environmental events often occur in a predictable temporal structure. Hence, the ability to exploit spiking neural network (SNN) by incorporating SSTD modelling techniques may be able to aid the process of discovering the hidden pattern and relationship between the two components of STTD; time and space. Recent work in [5], stated that most events occurring in nature form SSTD which requires measuring spatial or/and spectral components over time. Therefore, this paper presents the comparative analysis between various techniques used to process information from SSTD. Section 2 overviews two different inference-based techniques for SSTD modelling which includes global modelling, local modelling, and personalized modelling; and data modelling for SSTD classifier including, support vector machines (SVM), Evolving Classification Function (ECF), k-Nearest Neighbor (kNN), weighted k-Nearest Neighbor (wkNN), and weighted-weighted k-Nearest Neighbor (wwkNN). Section 3 presents the results of the assessment both SSTD inference-based modelling techniques and data training algorithms, while Section 4 concludes the analysis and ideas for future works

    Why Neurons Have Thousands of Synapses, A Theory of Sequence Memory in Neocortex

    Get PDF
    Neocortical neurons have thousands of excitatory synapses. It is a mystery how neurons integrate the input from so many synapses and what kind of large-scale network behavior this enables. It has been previously proposed that non-linear properties of dendrites enable neurons to recognize multiple patterns. In this paper we extend this idea by showing that a neuron with several thousand synapses arranged along active dendrites can learn to accurately and robustly recognize hundreds of unique patterns of cellular activity, even in the presence of large amounts of noise and pattern variation. We then propose a neuron model where some of the patterns recognized by a neuron lead to action potentials and define the classic receptive field of the neuron, whereas the majority of the patterns recognized by a neuron act as predictions by slightly depolarizing the neuron without immediately generating an action potential. We then present a network model based on neurons with these properties and show that the network learns a robust model of time-based sequences. Given the similarity of excitatory neurons throughout the neocortex and the importance of sequence memory in inference and behavior, we propose that this form of sequence memory is a universal property of neocortical tissue. We further propose that cellular layers in the neocortex implement variations of the same sequence memory algorithm to achieve different aspects of inference and behavior. The neuron and network models we introduce are robust over a wide range of parameters as long as the network uses a sparse distributed code of cellular activations. The sequence capacity of the network scales linearly with the number of synapses on each neuron. Thus neurons need thousands of synapses to learn the many temporal patterns in sensory stimuli and motor sequences.Comment: Submitted for publicatio

    Feature detection using spikes: the greedy approach

    Full text link
    A goal of low-level neural processes is to build an efficient code extracting the relevant information from the sensory input. It is believed that this is implemented in cortical areas by elementary inferential computations dynamically extracting the most likely parameters corresponding to the sensory signal. We explore here a neuro-mimetic feed-forward model of the primary visual area (VI) solving this problem in the case where the signal may be described by a robust linear generative model. This model uses an over-complete dictionary of primitives which provides a distributed probabilistic representation of input features. Relying on an efficiency criterion, we derive an algorithm as an approximate solution which uses incremental greedy inference processes. This algorithm is similar to 'Matching Pursuit' and mimics the parallel architecture of neural computations. We propose here a simple implementation using a network of spiking integrate-and-fire neurons which communicate using lateral interactions. Numerical simulations show that this Sparse Spike Coding strategy provides an efficient model for representing visual data from a set of natural images. Even though it is simplistic, this transformation of spatial data into a spatio-temporal pattern of binary events provides an accurate description of some complex neural patterns observed in the spiking activity of biological neural networks.Comment: This work links Matching Pursuit with bayesian inference by providing the underlying hypotheses (linear model, uniform prior, gaussian noise model). A parallel with the parallel and event-based nature of neural computations is explored and we show application to modelling Primary Visual Cortex / image processsing. http://incm.cnrs-mrs.fr/perrinet/dynn/LaurentPerrinet/Publications/Perrinet04tau

    Analysis of Spatial Data

    Get PDF
    In many areas of the agriculture, biological, physical and social sciences, spatial lattice data are becoming increasingly common. In addition, a large amount of lattice data shows not only visible spatial pattern but also temporal pattern (see, Zhu et al. 2005). An interesting problem is to develop a model to systematically model the relationship between the response variable and possible explanatory variable, while accounting for space and time effect simultaneously. Spatial-temporal linear model and the corresponding likelihood-based statistical inference are important tools for the analysis of spatial-temporal lattice data. We propose a general asymptotic framework for spatial-temporal linear models and investigate the property of maximum likelihood estimates under such framework. Mild regularity conditions on the spatial-temporal weight matrices will be put in order to derive the asymptotic properties (consistency and asymptotic normality) of maximum likelihood estimates. A simulation study is conducted to examine the finite-sample properties of the maximum likelihood estimates. For spatial data, aside from traditional likelihood-based method, a variety of literature has discussed Bayesian approach to estimate the correlation (auto-covariance function) among spatial data, especially Zheng et al. (2010) proposed a nonparametric Bayesian approach to estimate a spectral density. We will also discuss nonparametric Bayesian approach in analyzing spatial data. We will propose a general procedure for constructing a multivariate Feller prior and establish its theoretical property as a nonparametric prior. A blocked Gibbs sampling algorithm is also proposed for computation since the posterior distribution is analytically manageable

    TMA: Temporal Motion Aggregation for Event-based Optical Flow

    Full text link
    Event cameras have the ability to record continuous and detailed trajectories of objects with high temporal resolution, thereby providing intuitive motion cues for optical flow estimation. Nevertheless, most existing learning-based approaches for event optical flow estimation directly remould the paradigm of conventional images by representing the consecutive event stream as static frames, ignoring the inherent temporal continuity of event data. In this paper, we argue that temporal continuity is a vital element of event-based optical flow and propose a novel Temporal Motion Aggregation (TMA) approach to unlock its potential. Technically, TMA comprises three components: an event splitting strategy to incorporate intermediate motion information underlying the temporal context, a linear lookup strategy to align temporally fine-grained motion features and a novel motion pattern aggregation module to emphasize consistent patterns for motion feature enhancement. By incorporating temporally fine-grained motion information, TMA can derive better flow estimates than existing methods at early stages, which not only enables TMA to obtain more accurate final predictions, but also greatly reduces the demand for a number of refinements. Extensive experiments on DSEC-Flow and MVSEC datasets verify the effectiveness and superiority of our TMA. Remarkably, compared to E-RAFT, TMA achieves a 6\% improvement in accuracy and a 40\% reduction in inference time on DSEC-Flow. Code will be available at \url{https://github.com/ispc-lab/TMA}.Comment: Accepted by ICCV202
    • …
    corecore