99,724 research outputs found

    3D-printing of porous structures for reproduction of a femoral bone

    Get PDF
    Background: 3D-printing has shown potential in several medical advances because of its ability to create patient-specific surgical models and instruments. In fact, this technology makes it possible to acquire and study physical models that accurately reproduce patient-specific anatomy. The challenge is to apply 3D-printing to reproduce the porous structure of a bone tissue, consisting of compact bone, spongy bone and bone marrow. Methods: An interesting approach is presented here for reproducing the structure of a bone tissue of a femur by 3D-printing porous structure. Through the process of CT segmentation, the distribution of bone density was analysed. In 3D-printing, the bone density was compared with the density of infill. Results: The zone of compact bone, the zone of spongy bone and the zone of bone marrow can be recognized in the 3D printed model by a porous density additive manufacturing method. Conclusions: The application of 3D-printing to reproduce a porous structure, such as that of a bone, makes it possible to obtain physical anatomical models that likely represent the internal structure of a bone tissue. This process is low cost and easily reproduced

    \u3ci\u3eIn Vitro\u3c/i\u3e Validation of Patient-Specific Hemodynamic Simulations in Coronary Aneurysms Caused by Kawasaki Disease

    Get PDF
    To perform experimental validation of computational fluid dynamics (CFD) applied to patient specific coronary aneurysm anatomy of Kawasaki disease. We quantified hemodynamics in a patient-specific coronary artery aneurysm physical phantom under physiologic rest and exercise flow conditions. Using phase contrast MRI (PCMRI), we acquired 3-component flow velocity at two slice locations in the aneurysms. We then performed numerical simulations with the same geometry and inflow conditions, and performed qualitative and quantitative comparisons of velocities between experimental measurements and simulation results. We observed excellent qualitative agreement in flow pattern features. The quantitative spatially and temporally varying differences in velocity between PCMRI and CFD were proportional to the flow velocity. As a result, the percent discrepancy between simulation and experiment was relatively constant regardless of flow velocity variations. Through 1D and 2D quantitative comparisons, we found a 5–17% difference between measured and simulated velocities. Additional analysis assessed wall shear stress differences between deformable and rigid wall simulations. This study demonstrated that CFD produced good qualitative and quantitative predictions of velocities in a realistic coronary aneurysm anatomy under physiological flow conditions. The results provide insights on factors that may influence the level of agreement, and a set of in vitro experimental data that can be used by others to compare against CFD simulation results. The findings of this study increase confidence in the use of CFD for investigating hemodynamics in the specialized anatomy of coronary aneurysms. This provides a basis for future hemodynamics studies in patient-specific models of Kawasaki disease

    Using a Conformal Water Bolus to Adjust Heating Patterns of Microwave Waveguide Applicators

    Get PDF
    Background: Hyperthermia, i.e., raising tissue temperature to 40-45°C for 60 min, has been demonstrated to increase the effectiveness of radiation and chemotherapy for cancer. Although multi-element conformal heat applicators are under development to provide more adjustable heating of contoured anatomy, to date the most often used applicator to heat superficial disease is the simple microwave waveguide. With only a single power input, the operator must be resourceful to adjust heat treatment to accommodate variable size and shape tumors spreading across contoured anatomy. Methods: We used multiphysics simulation software that couples electromagnetic, thermal and fluid dynamics physics to simulate heating patterns in superficial tumors from commercially available microwave waveguide applicators. Temperature distributions were calculated inside homogenous muscle and layered skin-fat-muscle-tumor-bone tissue loads for a typical range of applicator coupling configurations and size of waterbolus. Variable thickness waterbolus was simulated as necessary to accommodate contoured anatomy. Physical models of several treatment configurations were constructed for comparison of simulation results with experimental specific absorption rate (SAR) measurements in homogenous muscle phantom. Results: Accuracy of the simulation model was confirmed with experimental SAR measurements of three unique applicator setups. Simulations demonstrated the ability to generate a wide range of power deposition patterns with commercially available waveguide antennas by controllably varying size and thickness of the waterbolus layer. Conclusion: Heating characteristics of 915 MHz waveguide antennas can be varied over a wide range by controlled adjustment of microwave power, coupling configuration, and waterbolus lateral size and thickness. The uniformity of thermal dose delivered to superficial tumors can be improved by cyclic switching of waterbolus thickness during treatment to proactively shift heat peaks and nulls around under the aperture, thereby reducing patient pain while increasing minimum thermal dose by end of treatment. © (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE)

    OntONeo: The Obstetric and Neonatal Ontology

    Get PDF
    This paper presents the Obstetric and Neonatal Ontology (OntONeo). This ontology has been created to provide a consensus representation of salient electronic health record (EHR) data and to serve interoperability of the associated data and information systems. More generally, it will serve interoperability of clinical and translational data, for example deriving from genomics disciplines and from clinical trials. Interoperability of EHR data is important to ensuring continuity of care during the prenatal and postnatal periods for both mother and child. As a strategy to advance such interoperability we use an approach based on ontological realism and on the ontology development principles of the Open Biomedical Ontologies Foundry, including reuse of reference ontologies wherever possible. We describe the structure and coverage domain of OntONeo and the process of creating and maintaining the ontology

    Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): Guidelines for medical 3D printing and appropriateness for clinical scenarios

    Get PDF
    Este número da revista Cadernos de Estudos Sociais estava em organização quando fomos colhidos pela morte do sociólogo Ernesto Laclau. Seu falecimento em 13 de abril de 2014 surpreendeu a todos, e particularmente ao editor Joanildo Burity, que foi seu orientando de doutorado na University of Essex, Inglaterra, e que recentemente o trouxe à Fundação Joaquim Nabuco para uma palestra, permitindo que muitos pudessem dialogar com um dos grandes intelectuais latinoamericanos contemporâneos. Assim, buscamos fazer uma homenagem ao sociólogo argentino publicando uma entrevista inédita concedida durante a sua passagem pelo Recife, em 2013, encerrando essa revista com uma sessão especial sobre a sua trajetória

    The residual STL volume as a metric to evaluate accuracy and reproducibility of anatomic models for 3D printing: application in the validation of 3D-printable models of maxillofacial bone from reduced radiation dose CT images.

    Get PDF
    BackgroundThe effects of reduced radiation dose CT for the generation of maxillofacial bone STL models for 3D printing is currently unknown. Images of two full-face transplantation patients scanned with non-contrast 320-detector row CT were reconstructed at fractions of the acquisition radiation dose using noise simulation software and both filtered back-projection (FBP) and Adaptive Iterative Dose Reduction 3D (AIDR3D). The maxillofacial bone STL model segmented with thresholding from AIDR3D images at 100 % dose was considered the reference. For all other dose/reconstruction method combinations, a "residual STL volume" was calculated as the topologic subtraction of the STL model derived from that dataset from the reference and correlated to radiation dose.ResultsThe residual volume decreased with increasing radiation dose and was lower for AIDR3D compared to FBP reconstructions at all doses. As a fraction of the reference STL volume, the residual volume decreased from 2.9 % (20 % dose) to 1.4 % (50 % dose) in patient 1, and from 4.1 % to 1.9 %, respectively in patient 2 for AIDR3D reconstructions. For FBP reconstructions it decreased from 3.3 % (20 % dose) to 1.0 % (100 % dose) in patient 1, and from 5.5 % to 1.6 %, respectively in patient 2. Its morphology resembled a thin shell on the osseous surface with average thickness <0.1 mm.ConclusionThe residual volume, a topological difference metric of STL models of tissue depicted in DICOM images supports that reduction of CT dose by up to 80 % of the clinical acquisition in conjunction with iterative reconstruction yields maxillofacial bone models accurate for 3D printing

    Physical and statistical shape modelling in craniomaxillofacial surgery: a personalised approach for outcome prediction

    Get PDF
    Orthognathic surgery involves repositioning of the jaw bones to restore face function and shape for patients who require an operation as a result of a syndrome, due to growth disturbances in childhood or after trauma. As part of the preoperative assessment, three-dimensional medical imaging and computer-assisted surgical planning help to improve outcomes, and save time and cost. Computer-assisted surgical planning involves visualisation and manipulation of the patient anatomy and can be used to aid objective diagnosis, patient communication, outcome evaluation, and surgical simulation. Despite the benefits, the adoption of three-dimensional tools has remained limited beyond specialised hospitals and traditional two-dimensional cephalometric analysis is still the gold standard. This thesis presents a multidisciplinary approach to innovative surgical simulation involving clinical patient data, medical image analysis, engineering principles, and state-of-the-art machine learning and computer vision algorithms. Two novel three-dimensional computational models were developed to overcome the limitations of current computer-assisted surgical planning tools. First, a physical modelling approach – based on a probabilistic finite element model – provided patient-specific simulations and, through training and validation, population-specific parameters. The probabilistic model was equally accurate compared to two commercial programs whilst giving additional information regarding uncertainties relating to the material properties and the mismatch in bone position between planning and surgery. Second, a statistical modelling approach was developed that presents a paradigm shift in its modelling formulation and use. Specifically, a 3D morphable model was constructed from 5,000 non-patient and orthognathic patient faces for fully-automated diagnosis and surgical planning. Contrary to traditional physical models that are limited to a finite number of tests, the statistical model employs machine learning algorithms to provide the surgeon with a goal-driven patient-specific surgical plan. The findings in this thesis provide markers for future translational research and may accelerate the adoption of the next generation surgical planning tools to further supplement the clinical decision-making process and ultimately to improve patients’ quality of life
    • …
    corecore