62 research outputs found

    Using a Conformal Water Bolus to Adjust Heating Patterns of Microwave Waveguide Applicators

    Get PDF
    Background: Hyperthermia, i.e., raising tissue temperature to 40-45°C for 60 min, has been demonstrated to increase the effectiveness of radiation and chemotherapy for cancer. Although multi-element conformal heat applicators are under development to provide more adjustable heating of contoured anatomy, to date the most often used applicator to heat superficial disease is the simple microwave waveguide. With only a single power input, the operator must be resourceful to adjust heat treatment to accommodate variable size and shape tumors spreading across contoured anatomy. Methods: We used multiphysics simulation software that couples electromagnetic, thermal and fluid dynamics physics to simulate heating patterns in superficial tumors from commercially available microwave waveguide applicators. Temperature distributions were calculated inside homogenous muscle and layered skin-fat-muscle-tumor-bone tissue loads for a typical range of applicator coupling configurations and size of waterbolus. Variable thickness waterbolus was simulated as necessary to accommodate contoured anatomy. Physical models of several treatment configurations were constructed for comparison of simulation results with experimental specific absorption rate (SAR) measurements in homogenous muscle phantom. Results: Accuracy of the simulation model was confirmed with experimental SAR measurements of three unique applicator setups. Simulations demonstrated the ability to generate a wide range of power deposition patterns with commercially available waveguide antennas by controllably varying size and thickness of the waterbolus layer. Conclusion: Heating characteristics of 915 MHz waveguide antennas can be varied over a wide range by controlled adjustment of microwave power, coupling configuration, and waterbolus lateral size and thickness. The uniformity of thermal dose delivered to superficial tumors can be improved by cyclic switching of waterbolus thickness during treatment to proactively shift heat peaks and nulls around under the aperture, thereby reducing patient pain while increasing minimum thermal dose by end of treatment. © (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE)

    Application of an artificial intelligence segmentation for deep hyperthermia treatment planning in the pelvic region

    Get PDF
    During a microwave hyperthermia oncology treatment, the target region temperature is elevated to the temperatures of 40–44 °C, which improves the therapeutic effect of a standard radiotherapy and/or chemotherapy treatments. Amplitudes and phases of antenna input signals in the phased array setup surrounding the 3D patient model are optimised with respect to maximise the energy deposition in the target region. In this study, we successfully integrated an automatic artificial intelligence segmentation routine, used for patient-specific 3D model generation, into the hyperthermia treatment planning process. This allows us to apply more realistic patient 3D model for the online hyperthermia guidance including detailed retrospective analyses of the overall treatment quality, possibly leading to a widespread clinical use of the hyperthermia treatment planning

    Comparison of Constant and Temperature Dependent Blood Perfusion in Temperature Prediction for Superficial Hyperthermia

    Get PDF
    The purpose of this study was to determine whether prediction of the 3D temperature profile for superficial hyperthermia using constant blood perfusion model could be matched to one with a temperature dependent blood perfusion. We compared three different constant blood perfusion scenarios with one temperature dependent blood perfusion using a layered model of biological tissue consisting of skin (2 mm), fat (10 mm) and muscle (108 mm). For all four scenarios the maximum temperature of 43 °C was found in the muscle tissue in the close proximity (1 – 3 mm) of fat layer. Cumulative histograms of temperature versus volume were identical for the region of 100x100x40 mm3 under the applicator aperture for the three constant blood perfusion models. For temperature dependent blood perfusion model, 85 % of the studied region was covered with the temperature equal or higher than 40 °C in comparison with 43 % for the constant blood perfusion models. Hence this study demonstrates that constant blood perfusion scenarios cannot be matched to one with a temperature dependent blood perfusion

    Assessment of the thermal tissue models for the head and neck hyperthermia treatment planning

    Get PDF
    Purpose: To compare different thermal tissue models for head and neck hyperthermia treatment planning, and to assess the results using predicted and measured applied power data from clinical treatments. Methods: Three commonly used temperature models from literature were analysed: “constant baseline”, “constant thermal stress” and “temperature dependent”. Power and phase data of 93 treatments of 20 head and neck patients treated with the HYPERcollar3D applicator were used. The impact on predicted median temperature T50 inside the target region was analysed with maximum allowed temperature of 44 °C in healthy tissue. The robustness of predicted T50 for the three models against the influence of blood perfusion, thermal conductivity and the assumed hotspot temperature level was analysed. Results: We found an average predicted T50 of 41.0 ± 1.3 °C (constant baseline model), 39.9 ± 1.1 °C (constant thermal stress model) and 41.7 ± 1.1 °C (temperature dependent model). The constant thermal stress model resulted in the best agreement between the predicted power (P = 132.7 ± 45.9 W) and the average power measured during the hyperthermia treatments (P = 129.1 ± 83.0 W). Conclusion: The temperature dependent model predicts an unrealistically high T50. The power values for the constant thermal stress model, after scaling simulated maximum temperatures to 44 °C, matched best to the average measured powers. We consider this model to be the most appropriate for temperature predictions using the HYPERcollar3D applicator, however further studies are necessary for developing of robust temperature model for tissues during heat stress.</p

    Standardization of patient modeling in hyperthermia simulation studies: introducing the Erasmus Virtual Patient Repository

    Get PDF
    Purpose: Thermal dose-effect relations have demonstrated that clinical effectiveness of hyperthermia would benefit from more controlled heating of the tumor. Hyperthermia treatment planning (HTP) is a potent tool to study strategies enabling target conformal heating, but its accuracy is affected by patient modeling approximations. Homogeneous phantoms models are being used that do not match the body shape of patients in treatment position and often have unrealistic target volumes. As a consequence, simulation accuracy is affected, and performance comparisons are difficult. The aim of this study is to provide the first step toward standardization of HTP simulation studies in terms of patient modeling by introducing the Erasmus Virtual Patient Repository (EVPR): a virtual patient model database.Methods: Four patients with a tumor in the head and neck or the pelvis region were selected, and corresponding models were created using a clinical segmentation procedure. Using the Erasmus University Medical Center standard procedure, HTP was applied to these models and compared to HTP for commonly used surrogate models.Results: Although this study was aimed at presenting the EVPR database, our study illustrates that there is a non-negligible difference in the predicted SAR patterns between patient models and homogeneous phantom-based surrogate models. We further demonstrate the dif

    Feasibility and relevance of discrete vasculature modeling in routine hyperthermia treatment planning

    Get PDF
    Purpose: To investigate the effect of patient specific vessel cooling on head and neck hyperthermia treatment planning (HTP). Methods and materials: Twelve patients undergoing radiotherapy were scanned using computed tomography (CT), magnetic resonance imaging (MRI) and contrast enhanced MR angiography (CEMRA). 3D patient models were constructed using the CT and MRI data. The arterial vessel tree was constructed from the MRA images using the ‘graph-cut’ method, combining information from Frangi vesselness filtering and region growing, and the results were validated against manually placed markers in/outside the vessels. Patient specific HTP was performed and the change in thermal distribution prediction caused by arterial cooling was evaluated by adding discrete vasculature (DIVA) modeling to the Pennes bioheat equation (PBHE). Results: Inclusion of arterial cooling showed a relevant impact, i.e., DIVA modeling predicts a decreased treatment quality by on average 0.19 °C (T90), 0.32 °C (T50) and 0.35 °C (T20) that is robust against variations in the inflow blood rate (|ΔT| 0.5 °C) were observed. Conclusion: Addition of patient-specific DIVA into the thermal modeling can significantly change predicted treatment quality. In cases where clinically detectable vessels pass the heated region, we advise to perform DIVA modeling

    Hyperthermia treatment planning guided applicator selection for sub-superficial head and neck tumors heating

    Get PDF
    textabstractPurpose: In this study, we investigated the differences in hyperthermia treatment (HT) quality between treatments applied with different hyperthermia systems for sub-superficial tumours in the head and neck (H&N) region. Materials and methods: In 24 patients, with a clinical target volume (CTV) extending up to 6 cm from the surface, we retrospectively analysed the predicted HT quality achievable by two planar applicator arrays or one phased-array hyperthermia system. Hereto, we calculated and compared the specific absorption rate (SAR) and temperature distribution coverage of the CTV and gross tumour volume (GTV) for the Lucite cone applicator (LCA: planar), current sheet applicator (CSA: planar) and the HYPERcollar (phased-array). Results: The HYPERcollar provides better SAR coverage than planar applicators if the target region is fully enclosed by its applicator frame. For targets extending outside the HYPERcollar frame, suffic

    Comparison of Constant and Temperature Dependent Blood Perfusion in Temperature Prediction for Superficial Hyperthermia

    No full text
    The purpose of this study was to determine whether prediction of the 3D temperature profile for superficial hyperthermia using constant blood perfusion model could be matched to one with a temperature dependent blood perfusion. We compared three different constant blood perfusion scenarios with one temperature dependent blood perfusion using a layered model of biological tissue consisting of skin (2 mm), fat (10 mm) and muscle (108 mm). For all four scenarios the maximum temperature of 43 °C was found in the muscle tissue in the close proximity (1 – 3 mm) of fat layer. Cumulative histograms of temperature versus volume were identical for the region of 100x100x40 mm3 under the applicator aperture for the three constant blood perfusion models. For temperature dependent blood perfusion model, 85 % of the studied region was covered with the temperature equal or higher than 40 °C in comparison with 43 % for the constant blood perfusion models. Hence this study demonstrates that constant blood perfusion scenarios cannot be matched to one with a temperature dependent blood perfusion

    Computational electromagnetic modeling is key in objective control of hyperthermia

    No full text
    \u3cp\u3eConfining treatment to the tumor to improve therapeutic outcome and reduce toxicity, is a hot issue in cancer research. Hyperthermia is recognized as a strong sensitizer for radiotherapy and chemotherapy enhancing tumor control without increasing toxicity. Today's electromagnetic hyperthermia systems heat large tissue volumes with limited ability to selectively heat the tumor. Fortunately, tremendous improvements in 3-dimensional electromagnetic &amp; temperature modelling provide an exciting opportunity to design advanced multi-element electromagnetic applicator systems. Together with feedback control using MR non-invasive thermometry and smart E-field sensors, this paves the way for selective tumor heating and potentially prescription of a thermal dose.\u3c/p\u3
    corecore