7 research outputs found

    CFD Simulation of Liquid-Liquid Extraction Columns and Visualization of Eulerian Datasets

    Get PDF
    In this joint work, a complete framework for modeling, simulating and visualizing multiphase fluid flow within an extraction column is presented. We first present a volume-of-fluid simulation, which is able to predict the surface of the droplets during coalescence. However, a fast and efficient model is needed for the simulation of a liquid-liquid extraction column due to the high number of occurring droplets. To simulate the velocity and droplet size in a DN32 extraction column, a coupled computational fluid dynamic-population balance model solver is used. The simulation is analyzed using path-line based visualization techniques. A novel semi-automatic re-seeding technique for droplet path-line integration is proposed. With our technique, path-lines of fluid droplets can be re-initialized after contact with the stirring devices. The droplet breakage is captured, allowing the engineer to improve the design of liquid-liquid columns layout

    Numerical Evaluation of Pathline Predicates of the Benguela Upwelling System

    Get PDF
    Using simulation data of a regional ocean model, Nardini et al. applied pathline predicates for a detailed post-hoc analysis of the Benguela upwelling system. In this work, we evaluate the accuracy of this technique. Using different temporal samplings, we aim at finding minimum requirements for the temporal resolution of the flow data in the context of retroactive particle pathline techniques. Besides the flow field, our simulation data contains synthetic tracer fields for different tracer source regions. Using the flow data, dense trajectories are computed to enable deriving ”emulated tracer fields” based on the local ratio of pathline particles originating from tracer source regions to other ones, which can then be compared to the original tracer fields. We find that the emulated tracer concentrations are overestimated in comparison to the original ones. However, the shape of the regions with high tracer concentration can be reproduced

    The State of the Art in Flow Visualization: Partition-Based Techniques

    Get PDF
    Flow visualization has been a very active subfield of scientific visualization in recent years. From the resulting large variety of methods this paper discusses partition-based techniques. The aim of these approaches is to partition the flow in areas of common structure. Based on this partitioning, subsequent visualization techniques can be applied. A classification is suggested and advantages/disadvantages of the different techniques are discussed as well

    Vortex detection and tracking in massively separated and turbulent flows

    Get PDF
    The vortex produced at the leading edge of the wing, known as the leading edge vortex (LEV), plays an important role in enhancing or destroying aerodynamic force, especially lift, upon its formation or shedding during the flapping flight of birds and insects. In this thesis, we integrate multiple new and traditional vortex identification approaches to visualize and track the LEV dynamics during its shedding process. The study is carried out using a 2D simulation of a flat plate undergoing a 45 degree pitch-up maneuver. The Eulerian 1 function and criterion are used along with the Lagrangian coherent structures (LCS) analyses including the finite-time Lyapunov exponent (FTLE), the geodesic LCS, and the Lagrangian-Averaged Vorticity Deviation (LAVD). Each of \h{these} Lagrangian methods \h{is} applied at the centers and boundaries of the vortices to detect the vortex dynamics. The techniques enable the tracking of identifiable features in the flow organization using the FTLE-saddles and -saddles. The FTLE-saddle traces have shown potential to identify the timing and location of vortex shedding, more precisely than by only studying the vortex cores as identified by Eulerian techniques. The traces and the shedding times of the FTLE-saddles on the LEV boundary matches well with the plate lift fluctuation, and indicates a consistent timing of LEV formation, growth, shedding. The formation number and vortex shedding mechanisms are compared in the thesis with the shedding time and location by the FTLE-saddle, which validates the result of the FTLE-saddles and provide explanations of vortex shedding in different aspects (vortex strength and flow dynamics). The techniques are applied to more cases involving vortex dominated flows to explore and expand their application in providing insight of flow physics. For a set of experimental two-component PIV data in the wake of a purely pitching trapezoidal panel, the Lagrangian analysis of FTLE-saddle tracking identifies and tracks the vortex breakdown location with relatively less user interaction and provide a more direct and consistent analysis. For a simulation of wall-bounded turbulence in a channel flow, tracking FTLE-saddles shows that the average structure convection speed exhibits a similar trend as a previously published result based on velocity and pressure correlations, giving validity to the method. When these Lagrangian techniques are applied in a study of the evolution of an isolated hairpin vortex, it shows the connection between primary and secondary hairpin heads of their circulation and position, and the contribution to the generation of the secondary hairpin by the flow characteristics at the channel wall. The current method of tracking vortices yields insight into the behavior of the vortices in all of the diverse flows presented, highlighting the breadth of its potential application

    Pattern search for the visualization of scalar, vector, and line fields

    Get PDF
    The main topic of this thesis is pattern search in data sets for the purpose of visual data analysis. By giving a reference pattern, pattern search aims to discover similar occurrences in a data set with invariance to translation, rotation and scaling. To address this problem, we developed algorithms dealing with different types of data: scalar fields, vector fields, and line fields. For scalar fields, we use the SIFT algorithm (Scale-Invariant Feature Transform) to find a sparse sampling of prominent features in the data with invariance to translation, rotation, and scaling. Then, the user can define a pattern as a set of SIFT features by e.g. brushing a region of interest. Finally, we locate and rank matching patterns in the entire data set. Due to the sparsity and accuracy of SIFT features, we achieve fast and memory-saving pattern query in large scale scalar fields. For vector fields, we propose a hashing strategy in scale space to accelerate the convolution-based pattern query. We encode the local flow behavior in scale space using a sequence of hierarchical base descriptors, which are pre-computed and hashed into a number of hash tables. This ensures a fast fetching of similar occurrences in the flow and requires only a constant number of table lookups. For line fields, we present a stream line segmentation algorithm to split long stream lines into globally-consistent segments, which provides similar segmentations for similar flow structures. It gives the benefit of isolating a pattern from long and dense stream lines, so that our patterns can be defined sparsely and have a significant extent, i.e., they are integration-based and not local. This allows for a greater flexibility in defining features of interest. For user-defined patterns of curve segments, our algorithm finds similar ones that are invariant to similarity transformations. Additionally, we present a method for shape recovery from multiple views. This semi-automatic method fits a template mesh to high-resolution normal data. In contrast to existing 3D reconstruction approaches, we accelerate the data acquisition time by omitting the structured light scanning step of obtaining low frequency 3D information.Das Hauptthema dieser Arbeit ist die Mustersuche in Datensätzen zur visuellen Datenanalyse. Durch die Vorgabe eines Referenzmusters versucht die Mustersuche ähnliche Vorkommen in einem Datensatz mit Translations-, Rotations- und Skalierungsinvarianz zu entdecken. In diesem Zusammenhang haben wir Algorithmen entwickelt, die sich mit verschiedenen Arten von Daten befassen: Skalarfelder, Vektorfelder und Linienfelder. Bei Skalarfeldern benutzen wir den SIFT-Algorithmus (Scale-Invariant Feature Transform), um ein spärliches Abtasten von markanten Merkmalen in Daten mit Translations-, Rotations- und Skalierungsinvarianz zu finden. Danach kann der Benutzer ein Muster als Menge von SIFT-Merkmalspunkten definieren, zum Beispiel durch Markieren einer interessierenden Region. Schließlich lokalisieren wir passende Muster im gesamten Datensatz und stufen sie ein. Aufgrund der spärlichen Verteilung und der Genauigkeit von SIFT-Merkmalspunkten erreichen wir eine schnelle und speichersparende Musterabfrage in großen Skalarfeldern. Für Vektorfelder schlagen wir eine Hashing-Strategie zur Beschleunigung der faltungsbasierten Musterabfrage im Skalenraum vor. Wir kodieren das lokale Flussverhalten im Skalenraum durch eine Sequenz von hierarchischen Basisdeskriptoren, welche vorberechnet und als Zahlen in einer Hashtabelle gespeichert sind. Dies stellt eine schnelle Abfrage von ähnlichen Vorkommen im Fluss sicher und benötigt lediglich eine konstante Anzahl von Nachschlageoperationen in der Tabelle. Für Linienfelder präsentieren wir einen Algorithmus zur Segmentierung von Stromlinien, um lange Stromlinen in global konsistente Segmente aufzuteilen. Dies erlaubt eine größere Flexibilität bei der Definition von Mustern. Für vom Benutzer definierte Muster von Kurvensegmenten findet unser Algorithmus ähnliche Kurvensegmente, die unter Ähnlichkeitstransformationen invariant sind. Zusätzlich präsentieren wir eine Methode zur Rekonstruktion von Formen aus mehreren Ansichten. Diese halbautomatische Methode passt ein Template an hochauflösendeNormalendatenan. Im Gegensatz zu existierenden 3D-Rekonstruktionsverfahren beschleunigen wir die Datenaufnahme, indem wir auf die Streifenprojektion verzichten, um niederfrequente 3D Informationen zu gewinnen

    Illustrative Flow Visualization of 4D PC-MRI Blood Flow and CFD Data

    Get PDF
    Das zentrale Thema dieser Dissertation ist die Anwendung illustrativer Methoden auf zwei bisher ungelöste Probleme der Strömungsvisualisierung. Das Ziel der Strömungsvisualisierung ist die Bereitstellung von Software, die Experten beim Auswerten ihrer Strömungsdaten und damit beim Erkenntnisgewinn unterstützt. Bei der illustrativen Visualisierung handelt es sich um einen Zweig der Visualisierung, der sich an der künstlerischen Arbeit von Illustratoren orientiert. Letztere sind darauf spezialisiert komplizierte Zusammenhänge verständlich und ansprechend zu vermitteln. Die angewendeten Techniken werden in der illustrativen Visualisierung auf reale Daten übertragen, um die Effektivität der Darstellung zu erhöhen. Das erste Problem, das im Rahmen dieser Dissertation bearbeitet wurde, ist die eingeschränkte Verständlichkeit von komplexen Stromflächen. Selbstverdeckungen oder Aufrollungen behindern die Form- und Strömungswahrnehmung und machen diese Flächen gerade in interessanten Strömungssituationen wenig nützlich. Auf Basis von handgezeichneten Strömungsdarstellungen haben wir ein Flächenrendering entwickelt, das Silhouetten, nicht-photorealistische Beleuchtung und illustrative Stromlinien verwendet. Interaktive Flächenschnitte erlauben die Exploration der Flächen und der Strömungen, die sie repräsentieren. Angewendet auf verschiedene Stromflächen ließ sich zeigen, dass die Methoden die Verständlichkeit erhöhen, v.a. in Bereichen komplexer Strömung mit Aufwicklungen oder Singularitäten. Das zweite Problem ist die Strömungsanalyse des Blutes aus 4D PC-MRI-Daten. An diese relativ neue Datenmodalität werden hohe Erwartungen für die Erforschung und Behandlung kardiovaskulärer Krankheiten geknüpft, da sie erstmals ein dreidimensionales, zeitlich aufgelöstes Abbild der Hämodynamik liefert. Bisher werden 4D PC-MRI-Daten meist mit Werkzeugen der klassischen Strömungsvisualisierung verarbeitet. Diese werden den besonderen Ansprüchen der medizinischen Anwender jedoch nicht gerecht, die in kurzer Zeit eine übersichtliche Darstellung der relevanten Strömungsaspekte erhalten möchten. Wir haben ein Werkzeug zur visuellen Analyse der Blutströmung entwickelt, welches eine einfache Detektion von markanten Strömungsmustern erlaubt, wie z.B. Jets, Wirbel oder Bereiche mit hoher Blutverweildauer. Die Grundidee ist hierbei aus vorberechneten Integrallinien mit Hilfe speziell definierter Linienprädikate die relevanten, d.h. am gefragten Strömungsmuster, beteiligten Linien ausgewählt werden. Um eine intuitive Darstellung der Resultate zu erreichen, haben wir uns von Blutflußillustrationen inspirieren lassen und präsentieren eine abstrakte Linienbündel- und Wirbeldarstellung. Die Linienprädikatmethode sowie die abstrakte Darstellung der Strömungsmuster wurden an 4D PC-MRI-Daten von gesunden und pathologischen Aorten- und Herzdaten erfolgreich getestet. Auch die Evaluierung durch Experten zeigt die Nützlichkeit der Methode und ihr Potential für den Einsatz in der Forschung und der Klinik.This thesis’ central theme is the use of illustrative methods to solve flow visualization problems. The goal of flow visualization is to provide users with software tools supporting them analyzing and extracting knowledge from their fluid dynamics data. This fluid dynamics data is produced in large amounts by simulations or measurements to answer diverse questions in application fields like engineering or medicine. This thesis deals with two unsolved problems in flow visualization and tackles them with methods of illustrative visualization. The latter is a subbranch of visualization whose methods are inspired by the art work of professional illustrators. They are specialized in the comprehensible and esthetic representation of complex knowledge. With illustrative visualization, their techniques are applied to real data to enhance their representation. The first problem dealt with in this thesis is the limited shape and flow perception of complex stream surfaces. Self-occlusion and wrap-ups hinder their effective use in the most interesting flow situations. On the basis of hand-drawn flow illustrations, a surface rendering method was designed that uses silhouettes, non-photorealistic shading, and illustrative surface stream lines. Additionally, geometrical and flow-based surface cuts allow the user an interactive exploration of the surface and the flow it represents. By applying this illustrative technique to various stream surfaces and collecting expert feedback, we could show that the comprehensibility of the stream surfaces was enhanced – especially in complex areas with surface wrap-ups and singularities. The second problem tackled in this thesis is the analysis of blood flow from 4D PC-MRI data. From this rather young data modality, medical experts expect many advances in the research of cardiovascular diseases because it delivers a three-dimensional and time-resolved image of the hemodynamics. However, 4D PC-MRI data are mainly processed with standard flow visualizaton tools, which do not fulfill the requirements of medical users. They need a quick and easy-to-understand display of the relevant blood flow aspects. We developed a tool for the visual analysis of blood flow that allows a fast detection of distinctive flow patterns, such as high-velocity jets, vortices, or areas with high residence times. The basic idea is to precalculate integral lines and use specifically designed line predicates to select and display only lines involved in the pattern of interest. Traditional blood flow illustrations inspired us to an abstract and comprehensible depiction of the resulting line bundles and vortices. The line predicate method and the illustrative flow pattern representation were successfully tested with 4D PC-MRI data of healthy and pathological aortae and hearts. Also, the feedback of several medical experts confirmed the usefulness of our methods and their capabilities for a future application in the clinical research and routine
    corecore