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Abstract—Using simulation data of a regional ocean model,
Nardini et al. [1] applied pathline predicates for a detailed post-
hoc analysis of the Benguela upwelling system. In this work, we
evaluate the accuracy of this technique. Using different temporal
samplings, we aim at finding minimum requirements for the
temporal resolution of the flow data in the context of retroactive
particle pathline techniques. Besides the flow field, our simulation
data contains synthetic tracer fields for different tracer source
regions. Using the flow data, dense trajectories are computed
to enable deriving ”emulated tracer fields” based on the local
ratio of pathline particles originating from tracer source regions
to other ones, which can then be compared to the original
tracer fields. We find that the emulated tracer concentrations
are overestimated in comparison to the original ones. However,
the shape of the regions with high tracer concentration can be
reproduced.

Index Terms—Benguela Upwelling System, pathline predicates,
evaluation

I. INTRODUCTION

Driven by surface winds, coastal upwelling systems trans-
port cool and nutrient-rich water from greater depths to
shallower layers of the ocean and supply in this way nutrients
to the marine ecosystem. Beside a lack of understanding of
upwelling in detail, its importance to marine life, its variability
and potential future changes in a changing climate further
motivate research activities.

At the example of simulation data for the Benguela up-
welling system, one of the four major eastern boundary
upwelling systems (BUS) [2], [3], we apply Lagrangian tech-
niques to complement analysis methodologies already applied
by the domain scientists in order to gain a deeper understand-
ing of the complex spatio-temporal processes characterizing
the phenomenon. Among the methodologies used by domain
scientists is the computation of passive tracer fields with
geographically differing source regions to estimate contribu-
tions of different inflows to the upwelling system [4]. For
this technique, additional 3D scalar fields are defined in the
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model code and initialized with a concentration of 0.0. From
a user defined starting time on, grid cells within a source
region (that has to be defined before starting the simulation)
are set to a concentration of 1.0 at each simulation time
step. Within the simulation, advection and diffusion processes
transport and dilute the passive tracer. Given that the most
important source regions contributing to the upwelling system
are covered by the different synthetic tracer source regions,
analysis of the spatio-temporal evolution of the concentrations
of each tracer, mostly accomplished by studying horizontal and
vertical sections at different time steps, allows tracking related
flow and estimating their individual roles in the system.

However, with respect to more focused analyses, we aim
at a 3D-methodology that allows to identify actual upwelling
of individual water particles and a detailed analysis of their
pathlines. Nardini et al. [1] presented the use of the pathline
predicates methodology developed by Salzbrunn et al. and
Born et al. [5]–[8] for a study of the BUS. Based on the
time-dependent 3D flow field simulated with a regional ocean
model, they computed space-filling trajectories covering the
full model grid and used subsequent pathline predicates to
select only trajectories of particles encountering upwelling,
which enabled creating direct visualizations of the spatio-
temporal structure of the BUS. Furthermore, analyses of the
selected pathlines showed a distinct annual cycle in the up-
welling activity, which fits well to observation-based analyses
found in literature (cf. figure 4 in [9]).

The major advantage of the pathline predicates method
over passive tracer advection calculated directly within the
simulation is the ability ”to look back in time”. For any area of
interest, traversing trajectories can be examined with respect to
their past locations, and source regions of flows are identified
relatively straightforward, while the optimal source regions
for synthetic tracers need to be determined in a tedious and
compute-intensive trial and error process. However, to save
storage space and reduce the simulation costs, ocean model
data is typically stored at time intervals much larger than the
model time step. In this work, we demonstrate the impact of
different temporal output samplings on the possible accuracy



of post-hoc Lagrangian techniques.
Our analysis includes two parts. The first part compares,

using mean absolute distance, the trajectory positions derived
using data with coarser temporal samplings with those of a
3-hourly dataset. The second part of our analysis is using one
of several passive tracer fields directly computed within the
ocean simulation using the original short model time steps
as gold standard. We use the calculated trajectories from one
of the datasets and simulate a trajectory-based tracer field
with a technique similar to the upwelling particle ratio (UPR)
technique described in Nardini et al. [1]. After that, we can
compare the different resulting emulated tracer fields with the
passive tracers of the simulation. For our evaluation, we aim
at determining minimum requirements on the temporal reso-
lution of flow data for retroactively applying particle pathline
techniques for visual and statistical analysis. By analyzing the
skill in reproducing a synthetic model tracer field, we can set
up rules for using particle pathline methods in general.

II. RELATED WORK

As mentioned before, we evaluate the method described by
Nardini et al. [1] that builds upon the concept of pathline
predicates developed by Salzbrunn et al. and Born et al. [5]–
[8]. One part of the problem, the different precision of par-
ticle integration methods, has been well studied in numerical
mathematics and received attention in visualization literature.
An early work by Pang et al. in 1997 [10] visualized the
difference between Euler and Runge-Kutta integration as an
example of uncertainty visualization. Another aspect of our
work is a comparison between Eulerian methods (e.g. passive
tracers) and Lagrangian methods (e.g. trajectories). All of fluid
mechanics is concerned with these two fundamental lines of
thought and both approaches have their strength.

A comprehensive state-of-the-art survey on Lagrangian
techniques and tools for oceanographic applications was re-
cently given by Van Sebille et al. [11]. Stohl [12] gave
a well-received overview of errors in trajectory calculation
for the atmosphere. Physical experiments with balloons or
smoke were compared with computed trajectories to estimate
the precision of this method. Lagrangian particle dispersion
models (LPDM) were suggested to account for small-scale
turbulent processes.

The problem of reconstruction of pathlines from vector
fields at a coarse temporal resolution has also been addressed
by Chandler et al. [13]. They looked into the case of particle
based flow simulation such as smoothed particle hydrodynam-
ics, and by study of Qin et al. [14], who evaluated the impact
of coarse temporal samplings on the accuracy of Lagrangian
techniques in the field of ocean model analysis. In contrast to
our study, they used, however, data of a global high resolution
ocean model with a minimal temporal resolution of 3 days. For
coarser temporal resolutions of 9 to 30 days they found mean
changes in transports of up to 25 percent; the largest errors
occurred in regions with high eddy kinetic energy (EKE),
which also applies to the northern part of our simulation
domain.

III. SIMULATION DATA

For this work, we use ocean current data and passive tracer
fields from numerical simulations carried out with a regional
hydrodynamical model based on the modular ocean model
MOM version 5 [15]–[17]. The model domain covers the
southeast Atlantic, as shown in Figure 1, and is represented
by a stretched rectilinear grid of the size 261 x 351 x 62. The
cell size varies horizontally between 8 and 18km and vertically
between 1.5m at the surface and 500m at greater depths. ”Dry”
grid cells (land) are masked out with a special value to prevent
them from being used in the analysis. The maximal velocity
magnitude simulated for this domain is of the order of less
than 1 m/s.

Fig. 1. Example for filtered tracer pathlines visualized with draw line set
method. The image shows trajectories that contribute to upwelling in the
Benguela region between 15◦S and 27◦S, which are colored according to
different tracer source regions. Inset: Full simulation domain south-west of
Africa (black rectangle).

Due to storage constraints, ocean model data is often stored
at relatively coarse time intervals. Nardini et al. [1] used ocean
model data stored as 5-day means - a quite long time period
in spite of the original simulation time step of 20 minutes.
For this work, a simulation was carried out at an output
frequency of 3 hours in order to produce a data set that is
suitable for retrospective pathline computations; the maximal
distance traversed by particles within 3 hours is of the order
of the minimal cell size (~10 km). This temporal sampling
was the finest possible without encountering unacceptable I/O
times on the supercomputer. For a systematic evaluation using
different temporal samplings we derive datasets with coarser
temporal samplings by computing temporal means based on
the 3-hourly data for intervals of 6-hours, 12-hours, 1-day, 2-
days, 3-days and 5-days. In addition, we use a passive tracer
field that was computed within the simulation at the original
simulation time step of 20 minutes.



IV. METHODS

We evaluate the pathline computations for the temporally
differently sampled data with regard to two aspects: First,
we derive and compare the positional differences between
the trajectories. Secondly, we emulate passive tracer fields by
selecting only particles with pathlines that started from the
same grid cells as the passive tracers. We derive the ratio
between the corresponding particles and other particles in each
cell. The resulting density fields are then compared with the
original tracer fields.

For the comparison of pathlines computed on the basis
of different temporal resolutions, we emulate a 6-hourly,
12-hourly, 1-daily, 2-daily, 3-daily and 5-daily data set by
temporal smoothing and downsampling of a given 3-hourly
data set, or more specifically, by computation of according
temporal means.

A. Trajectory Density Field

For our evaluation, we need a dense set of trajectories
covering the whole simulation domain. In order to calculate
such a set, we follow the method developed by Salzbrunn
et al. [5], [6] and initialize a trajectory set by seeding N
weightless particle at time t = 0 in each of the models
grid cells. Following a Runge-Kutta 4th-order scheme (RK),
we compute their pathlines for the remaining time steps. To
cover the complete simulation time with a space filling set of
trajectories, we check at each time step the number of particles
contained in each cell. Whenever a grid cell is found with less
then N particles, new particles are seeded in this cell at this
time step. In case of N = 1, the new particle will be seeded
in the center of the cell. In the other cases, the cell is split
into N subcells and if one of these subcells is found empty, a
new particle is seeded in the center of this subcell. As these
particles only propagate forward from the current time step
through all remaining time steps in this first path, we also
perform a backward integration for each particle added (to the
very first timestep or until they leave the domain).

For the different temporal samplings (3h, 6h, 12h, 1d, 2d,
3d, 5d), we carry out a set of experiments using the RK 4th-
order scheme with an integration time step of 3 hours, and, by
setting the minimum number of particles to N = 1, N = 4,
and N = 16, for different spatial subsamplings. For com-
patibility with [1], we also run experiments for the different
temporal samplings using the Euler integration method (only
with N = 1).

B. Pathline Error Estimation

For the difference analysis between the different time res-
olutions and the two integrations methods, we used N = 1
particles in each cell. The initial particles have the same start
position and the same starting time thanks to our emulation
modifications. We propagate all particles forward in time to the
end or until they leave the domain. Looking for a value, which
describes the deviation from trajectories computed with a low
temporal sampling (∆t = 6h, 12h, 1d, 2d, 3d, 5d) to the path
lines calculated with the finest temporal sampling (∆t = 3h),

we calculate the mean absolute distance (MAD), the mean
squared distance (MSD), and the mean line difference (MLD).

MAD(m, t) =
1

n

n∑
i=1

∥∥post3h(i)− postm(i)
∥∥ (1)

MSD(m, t) =
1

n

n∑
i=1

post3h(i)2 − postm(i)2 (2)

MLD(m, t) = 1
n

∑n
i=1 |

∥∥pos03h(i)− post3h(i)
∥∥−∥∥pos0m(i)− postm(i)

∥∥ | (3)

Here post3h(i) is the position of particle i at time t for the 3h
data while postm(i) is the position of particle i (i.e. a particle
started at the very same position and time) at time t integrated
using the data with ∆t = m. MAD and MSD compare the
particle position with the position in the 3-hour mean trajectory
set directly. In contrast, MLD checks the distances between
initial position and current position.

Fig. 2. This plot shows the mean absolute distance (MAD) of pathlines
integrated on the 6h, 12h, and 1d dataset compared to the 3h data. As
integration methods we use modified Euler and Runge Kutta 4th-order
schemes.

C. Trajectory Based Tracer Field

The idea of the trajectory based tracer field is to reproduce
a passive tracer field based on information contained in our
trajectory sets. While the classical passive tracers and their
source regions have to be defined ahead of the simulation run,
pathline predicates allow a post-processing analysis which is
much faster and much more flexible. Advection and diffusion
of the passive tracers, which distribute them in the model
domain, is calculated within the simulation using time steps
of 20 minutes. During the simulation, the passive tracer is
continuously released at a defined source plane or region from
a defined time onward till the end of the simulation.

For emulation of the tracer concentration, we imitate the
source area by marking all cells intersecting the tracer source
region as tracer cells. All particles running through these cells
are marked as tracer particles. By evaluating the according
pathline predicates, the trajectory set is partitioned into a set of
non-tracer-trajectories and a set of tracer-trajectories (Figure
1). As a generalization of this UPR technique proposed by
Nardini et al. [1], we define the predicate particle ratio
(PPR) between marked particles (here: particles marked with
the tracer predicate) and unmarked particles in each cell at



each time step, which is our approximation of the local
tracer concentration. For the visualization of the passive tracer
concentration and PPR, we use volume rendering based on
simple ray casting.

Fig. 3. Distribution of the passive tracer (Figure A) and PPR distributions
(B-D) 69 time steps after tracer initialization (about 1 year) with a varying
temporal sampling (∆t) and minimum number of particles per cell (N ).
Parameters: B with ∆t = 3h, N = 1; C with ∆t = 3h, N = 4; D with
∆t = 3h, N = 16; E with ∆t = 1d, N = 4; F with ∆t = 5d, N = 4;

V. RESULTS

A. Pathline Error Analysis

We compare pathlines starting at the same spatial position
and time stamp for different temporal resolutions. We use
the best available temporal resolution, i. e. ∆t = 3h, with a
standard RK integration (stepsize of 3h) as reference. In Figure
2, we show the mean average distance (MAD) for the 6h, 12h,
and 1d resolutions. Besides comparing pathlines computed for
the different temporal resolutions, we also compare a modified
Euler scheme with the RK integrator. The graphs show that
the error grows with time. As expected, the lowest MAD is
achieved by using the RK integration using the 6h data. While
using a time step of 6h creates an average error of 41 km
within one year, we see 70 km for 12h and 100 km for daily
data. We conclude that the temporal resolution has a severe
impact on the accuracy of individual particle pathlines also for
temporal resolutions of much less than one day. It seems likely
that we would also see some differences between the given
3h data and the original simulation timestep of 20 minutes,
which is chosen to keep the model numerically stable for a
given spatial resolution.

Interestingly, the increase in accuracy by using a higher
order integration method seem to be smaller for samplings

above 12h, as can also be seen on Figure 2 by comparing the
curves for Euler and RK. Nevertheless, there is a substantial
difference that justifies the use of the computationally more
expensive RK integration in this case. We have also analyzed
MSD and MLD, but they show very similar effects and do not
lead to generally other findings.

B. Comparison of Tracer and Emulated Tracer

Nardini et al. [1] introduced the upwelling particle ratio
(UPR) as the ratio between upwelling particles and other
particles for each cell at a given time. This post-hoc derived
scalar field was introduced to enable application of scalar
field visualization methods, in particular volume rendering,
to filtered trajectory data. We further investigate the potential
of PPR to emulate passive tracers with respect to shape and
position of the concentration fields as well as to absolute
concentrations. Figure 3 shows six volume rendering visual-
izations. The upper left image shows the concentration of the
passive tracer as directly simulated by the ocean model (A),
while the remaining five (B-F) show the post-hoc derived PPR-
fields for different temporal samplings and different numbers
of particles per cell.

Images B-D show PPR based on ∆t = 3h, ∆t = 1d, and
∆t = 5d data with the minimum number of particles per cell
set to N = 4. The remaining two images E-F show the results
for ∆t = 3h, but with N = 1 resp. N = 16. It is evident
at first glance that all emulated tracer fields overestimate
the concentration compared to that of the original passive
tracer - as can be seen from the color code. Interestingly, the
quantitatively best emulation is F, the one with a 4-particle
sampling and 5d time interval.

Fig. 4. The plot shows the average difference between PPR and the
concentration of the passive tracer. Cases of a zero value in both fields receive
no consideration.

However, the shape of the area with noticeable tracer
concentration above 0 is reproduced rather well by PPR.
To quantify this finding, we calculate the average difference
between the values of the simulated tracer fields and the
original one. Figure 4 shows a plot with the average difference
of the same variants as before. In the case of ∆t = 5d we could
improve the results by using more than one particle per cell.
Apart from the ∆t = 5d dataset, the results are comparable,
similarly to figure 3.



VI. DISCUSSION AND CONCLUSION

We evaluated the precision of the pathline predicates ap-
proach proposed by Nardini et al. [1] for temporal samplings
between 3h and 5d. Similarly to [14] for temporal samplings
between 3d and one month, we found that the temporal
resolution of the data has a rather strong effect on the pathlines
also for much shorter time intervals. If one uses a sampling
of 6h instead of 3h, the mean absolute distance is already
of the order of the grid interval after a few days. Since
typical analyses of climatic processes span months to years,
this positional error has to be taken into account. This finding
also raises the issue of the difference between the available
3h resolution and the 20 minute simulation time step used
within the model. As expected, it is shown that Runge-Kutta
integration with a step size of about the temporal resolution of
the data works much better than the modified Euler scheme.
Here, additional research is necessary, including methods like
LPDM as described by Stohl [12].

Our evaluation of PPR as a replacement for passive tracer
concentration shows two major results. First, even the highest
tested number of particles (a minimum of N = 16 particles in
each cell at any timestep) and the highest available temporal
resolution ∆t = 3h shows a substantial deviation of PPR
from tracer density. The differences are much larger than the
differences to the PPR values derived from lower temporal
resolutions except for the variant with ∆t = 5d and N = 5.
With this variant, the big step sizes in combination with a
small number of particles lead to rather small values. In
contrast, we found that PPR indicates quite well where the
tracer would move, i.e. which cells are reached. With some
caution, we can therefore state that the emulated tracer ratio
allows for qualitative studies, but may not directly be used
for quantitative mass transport analyses within the upwelling
system. This somewhat surprising combination of simulated
particle transport to the correct locations and, at the same time,
a clear overestimation of the resulting emulated tracer density
is a pressing question for further research.

A possible explanation might be the lack of diffusion that
passive tracers undergo while the particles in our implemen-
tation do not. However, for sparse temporal samplings, Qin et
al. [14] couldn’t reduce the error by adding diffusion to their
trajectories. The work of Wolfram et al. [18] about diffusivity
could be a reasonable enhancement of our method in order
to evaluate the impact of diffusion on pathlines for dense
temporal sampling. Also, the passive tracers in ocean models
are designed to accomplish exact mass conservation, while the
new particles inserted by our method to ensure dense sampling
may compromise mass conservation.

As future work we envisage to further enhance our method-
ology with respect to a quantitatively correct reproduction of
passive tracer concentrations. To do this, more experiments and
more detailed analyses will be needed. Furthermore, we would
like to improve the visualization of filtered pathlines fulfilling
researcher defined requirements. The work of Festl et al. [19]
or Whitaker et al. [20] could be a promising approach.
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