306 research outputs found

    Improving particle swarm optimization path planning through inclusion of flight mechanics

    Get PDF
    Military engagements are continuing the movement toward automated and unmanned vehicles for a variety of simple and complex tasks. This allows humans to stay away from dangerous situations and use their skills for more difficult tasks. One important piece of this strategy is the use of automated path planners for unmanned aerial vehicles (UAVs). Current UAV operation requires multiple individuals to control a single plane, tying up important human resources. Often paths are planned by creating waypoints for a vehicle to fly through, with the intention of doing reconnaissance while avoiding as much danger to the plane as possible. Path planners often plan routes without taking into consideration the UAV\u27s ability to perform the maneuvers required to fly the specified waypoints, instead relying upon them to fly as close as possible. This thesis presents a path planner solution incorporating vehicle mechanics to insure feasible flight paths. This path planner uses Particle Swarm Optimization (PSO) and digital pheromones to generate multiple three-dimensional flight paths for the operator to choose from. B-spline curves are generated using universal interpolation with each path waypoint representing a control point. The b-spline curve represents the flight path of the UAV. Each point along the curve is evaluated for fuel efficiency, threat avoidance, reconnaissance, terrain avoidance, and vehicle mechanics. Optimization of the flight path occurs based on operator defined performance characteristics, such as maximum threat avoidance or minimum vehicle dynamics cost. These performance characteristics can be defined for each unique aircraft, allowing the same formulation to be used for any aircraft. The vehicle mechanics conditions considered are pull-out, glide, climb, and steady, level, co-ordinate turns. Calculating the flight mechanics requires knowing the velocity and angle of the plane, calculated using the derivative of the point on the curve. The flight mechanics of the path allows the path planner to determine whether the path exceeds the maximum load factor (G-force), minimum velocity (stall velocity), or the minimum turning radius. Comparing the results between PSO Path Planner with flight mechanics and PSO Path Planner without flight mechanics over five scenarios indicates an increase in the feasibility of the returned paths. Visualizing the flight paths was improved by changing the original waypoint based visualization to a b-spline curve representation. Using b-spline curves allows for an accurate representation of the actual UAV flight path especially when considering turns. Operators no longer must create a mental representation of the flight path to match the waypoints

    Stochastic trajectory generation using particle swarm optimization for quadrotor unmanned aerial vehicles (UAVs)

    Get PDF
    The aim of this paper is to provide a realistic stochastic trajectory generation method for unmanned aerial vehicles that offers a tool for the emulation of trajectories in typical flight scenarios. Three scenarios are defined in this paper. The trajectories for these scenarios are implemented with quintic B-splines that grant smoothness in the second-order derivatives of Euler angles and accelerations. In order to tune the parameters of the quintic B-spline in the search space, a multi-objective optimization method called particle swarm optimization (PSO) is used. The proposed technique satisfies the constraints imposed by the configuration of the unmanned aerial vehicle (UAV). Further particular constraints can be introduced such as: obstacle avoidance, speed limitation, and actuator torque limitations due to the practical feasibility of the trajectories. Finally, the standard rapidly-exploring random tree (RRT*) algorithm, the standard (A*) algorithm and the genetic algorithm (GA) are simulated to make a comparison with the proposed algorithm in terms of execution time and effectiveness in finding the minimum length trajectory

    improving path planning of unmanned aerial vehicles in an immersive environment using meta-paths and terrain information

    Get PDF
    Effective command and control of unmanned aerial vehicles (UAVs) is an issue under investigation as the military pushes toward more automation and incorporation of technology into their operational strategy. UAVs require the intelligence to maneuver safely along a path to an intended target while avoiding obstacles such as other aircraft or enemy threats. To date, path-planning algorithms (designed to aid the operator in the control of semi-autonomous UAVs) have been limited to providing only a single solution (alternate path) without utilizing input or feedback from the UAV operator. The work presented in this thesis builds off of and improves an existing path planner. The original path planner presents a unique platform for decision making in a three-dimensional environment where multiple solution paths are generated using Particle Swarm Optimization (PSO) and returned to the operator for evaluation. The paths are optimized to minimize risk due to enemy threats, to minimize fuel consumption incurred by deviating from the original path, and to maximize reconnaissance over predefined targets. The work presented in this thesis focuses on improving the mathematical models of these objectives. Terrain data is also incorporated into the path planner to ensure that the generated alternate paths are feasible and at a safe height above ground. An effective interface is needed to evaluate the alternate paths returned by PSO. A meta-path is a new concept presented in this thesis to address this issue. Meta-paths allow an operator to explore paths in an efficient and organized manner by displaying multiple alternate paths as a single path cloud. The interface was augmented with more detailed information on these paths to allow the operator to make a more informed decision. Two other interaction techniques were investigated to allow the operator more interactive control over the results displayed by the path planner. Viewing the paths in an immersive environment enhances the operator\u27s understanding of the situation and the options while facilitating better decision making. The problem formulation and solution implementation are described along with the results from several simulated scenarios. Preliminary assessments using simulated scenarios show the usefulness of these features in improving command and control of UAVs. Finally, a user study was conducted to gauge how different visualization capabilities affect operator performance when using an interactive path planning tool. The study demonstrates that viewing alternate paths in 3D instead of 2D takes more time because the operator switches between multiple views of the paths but also suggests that 3D is better for allowing the operator to understand more complex situations

    A Co-optimal Coverage Path Planning Method for Aerial Scanning of Complex Structures

    Get PDF
    The utilization of unmanned aerial vehicles (UAVs) in survey and inspection of civil infrastructure has been growing rapidly. However, computationally efficient solvers that find optimal flight paths while ensuring high-quality data acquisition of the complete 3D structure remains a difficult problem. Existing solvers typically prioritize efficient flight paths, or coverage, or reducing computational complexity of the algorithm – but these objectives are not co-optimized holistically. In this work we introduce a co-optimal coverage path planning (CCPP) method that simultaneously co-optimizes the UAV path, the quality of the captured images, and reducing computational complexity of the solver all while adhering to safety and inspection requirements. The result is a highly parallelizable algorithm that produces more efficient paths where quality of the useful image data is improved. The path optimization algorithm utilizes a particle swarm optimization (PSO) framework which iteratively optimizes the coverage paths without needing to discretize the motion space or simplify the sensing models as is done in similar methods. The core of the method consists of a cost function that measures both the quality and efficiency of a coverage inspection path, and a greedy heuristic for the optimization enhancement by aggressively exploring the viewpoints search spaces. To assess the proposed method, a coverage path quality evaluation method is also presented in this research, which can be utilized as the benchmark for assessing other CPP methods for structural inspection purpose. The effectiveness of the proposed method is demonstrated by comparing the quality and efficiency of the proposed approach with the state-of-art through both synthetic and real-world scenes. The experiments show that our method enables significant performance improvement in coverage inspection quality while preserving the path efficiency on different test geometries

    Optimal Control of an Uninhabited Loyal Wingman

    Get PDF
    As researchers strive to achieve autonomy in systems, many believe the goal is not that machines should attain full autonomy, but rather to obtain the right level of autonomy for an appropriate man-machine interaction. A common phrase for this interaction is manned-unmanned teaming (MUM-T), a subset of which, for unmanned aerial vehicles, is the concept of the loyal wingman. This work demonstrates the use of optimal control and stochastic estimation techniques as an autonomous near real-time dynamic route planner for the DoD concept of the loyal wingman. First, the optimal control problem is formulated for a static threat environment and a hybrid numerical method is demonstrated. The optimal control problem is transcribed to a nonlinear program using direct orthogonal collocation, and a heuristic particle swarm optimization algorithm is used to supply an initial guess to the gradient-based nonlinear programming solver. Next, a dynamic and measurement update model and Kalman filter estimating tool is used to solve the loyal wingman optimal control problem in the presence of moving, stochastic threats. Finally, an algorithm is written to determine if and when the loyal wingman should dynamically re-plan the trajectory based on a critical distance metric which uses speed and stochastics of the moving threat as well as relative distance and angle of approach of the loyal wingman to the threat. These techniques are demonstrated through simulation for computing the global outer-loop optimal path for a minimum time rendezvous with a manned lead while avoiding static as well as moving, non-deterministic threats, then updating the global outer-loop optimal path based on changes in the threat mission environment. Results demonstrate a methodology for rapidly computing an optimal solution to the loyal wingman optimal control problem

    Collision Avoidance Method for Self-Organizing Unmanned Aerial Vehicle Flights

    Get PDF
    This work was supported in part by the National Natural Science Foundation of China, China, under Grant 71601181, in part by the Young Talents Lifting Project, China, under Grant 17JCJQQT048, in part by the Huxiang Young Talents, China, under Grant 2018RS3079, and in part by the Complex Situational Cognitive Technology under Grant 315050202.Autonomous unmanned aerial vehicle (UAV) swarm flights have been investigated widely. In the presence of a high airspace density and increasingly complex flight conditions, collision avoidance between UAV swarms is very important; however, this problem has not been fully addressed, particularly among self-organizing flight clusters. In this paper, we developed a method for avoiding collisions between different types of self-organized UAV clusters in various flight situations. The Reynolds rules were applied to self-organized flights of UAVs and a parameter optimization framework was used to optimize their organization, before developing a collision avoidance solution for UAV swarms. The proposed method can self-organize the flight of each UAV swarm during the overall process and the UAV swarm can continue to fly according to the self-organizing rules in the collision avoidance process. The UAVs in the airspace all make decisions according to their individual type. The UAVs in different UAV swarms can merge in the same space while avoiding collisions, where the UAV's self-organized flight process and collision avoidance process are very closely linked, and the trajectory is smooth to satisfy the actual operational needs. The numerical and experimental tests were conducted to demonstrate the effectiveness of the proposed algorithm. The results confirmed the effectiveness of this approach where self-organized flight cluster collision avoidance was successfully achieved by the UAV swarms

    Mobile Robot Path Planning in an Obstacle-free Static Environment using Multiple Optimization Algorithms

    Get PDF
    This article presents the implementation and comparison of fruit fly optimization (FOA), ant colony optimization (ACO) and particle swarm optimization (PSO) algorithms in solving the mobile robot path planning problem. FOA is one of the newest nature-inspired algorithms while PSO and ACO has been in existence for a long time. PSO has been shown by other studies to have long search time while ACO have fast convergence speed. Therefore there is need to benchmark FOA performance with these older nature-inspired algorithms. The objective is to find an optimal path in an obstacle free static environment from a start point to the goal point using the aforementioned techniques. The performance of these algorithms was measured using three criteria: average path length, average computational time and average convergence speed. The results show that the fruit fly algorithm produced shorter path length (19.5128 m) with faster convergence speed (3149.217 m/secs) than the older swarm intelligence algorithms. The computational time of the algorithms were in close range, with ant colony optimization having the minimum (0.000576 secs). Keywords:  Swarm intelligence, Fruit Fly algorithm, Ant Colony Optimization, Particle Swarm Optimization, optimal path, mobile robot

    Trajectory optimization for high-altitude long endurance UAV maritime radar surveillance

    Get PDF
    For an unmanned aerial vehicle (UAV) carrying out a maritime radar surveillance mission, there is a tradeoff between maximizing information obtained from the search area and minimizing fuel consumption. This paper presents an approach for the optimization of a UAV's trajectory for maritime radar wide area persistent surveillance to simultaneously minimize fuel consumption, maximize mean probability of detection, and minimize mean revisit time. Quintic polynomials are used to generate UAV trajectories due to their ability to provide complete and complex solutions while requiring few inputs. Furthermore, the UAV dynamics and surveillance mission requirements are used to ensure a trajectory is realistic and mission compatible. A wide area search radar model is used within this paper in conjunction with a discretized grid in order to determine the search area's mean probability of detection and mean revisit time. The trajectory generation method is then used in conjunction with a multi-objective particle swarm optimization (MOPSO) algorithm to obtain a global optimum in terms of path, airspeed (and thus time), and altitude. The performance of the approach is then tested over two common maritime surveillance scenarios and compared to an industry recommended baseline
    • …
    corecore