
YINKA-BANJO and AGWOGIE: MOBILE ROBOT PATH PLANNING IN AN OBSTACLE-FREE STATIC ENVIRONMENT 165

*Corresponding author: cyinkabanjo@unilag.edu.ng doi: http://dx.doi.org/10.4314/njtd.v17i3.3

ABSTRACT: This article presents the implementation and comparison of fruit fly optimization (FOA), ant colony

optimization (ACO) and particle swarm optimization (PSO) algorithms in solving the mobile robot path planning

problem. FOA is one of the newest nature-inspired algorithms while PSO and ACO has been in existence for a long

time. PSO has been shown by other studies to have long search time while ACO have fast convergence speed.

Therefore there is need to benchmark FOA performance with these older nature-inspired algorithms. The objective is

to find an optimal path in an obstacle free static environment from a start point to the goal point using the

aforementioned techniques. The performance of these algorithms was measured using three criteria: average path

length, average computational time and average convergence speed. The results show that the fruit fly algorithm

produced shorter path length (19.5128 m) with faster convergence speed (3149.217 m/secs) than the older swarm

intelligence algorithms. The computational time of the algorithms were in close range, with ant colony optimization

having the minimum (0.000576 secs).

KEYWORDS: Swarm intelligence, Fruit Fly algorithm, Ant Colony Optimization, Particle Swarm Optimization, optimal path,

mobile robot.

[Received January 22, 2020, Revised June 16, 2020, Accepted August 22, 2020] Print ISSN: 0189-9546 | Online ISSN: 2437-2110

I. INTRODUCTION

In an environment, there are many paths for a robot to

reach a specified goal, but the best path is selected according

to some criteria. These criteria are the shortest distance, the

shortest time, the least energy consumed. The most adopted

criterion is the shortest distance. Path planning is an

optimization problem since its purpose is to search for a path

with the shortest distance under certain constraints such as the

given environment with collision- free motion (Mansi et al,

2013).

Path planning algorithms can be classified into heuristics

and non-heuristics. Some of the well-known non-heuristics are

cell decomposition, Voronoi diagrams, and B-Spline curve. In

the cell decomposition technique, two methods are used. They

are the exact and the approximate cell decomposition methods.

The exact method is used to divide the search space into simple

cells and builds the adjacency relationships among the cells. It

explicitly determines the obstacles and build the cells (Choset,

2007), (Abbadi, et al. 2015). The combination of all the

generated cells will produce the exact free space. However,

determining the exact free space in a high dimensional

environment is not an easy task, hence the approximate method

was introduced.

Vonoroi diagram represents regions of influence around a

given set of points in a plane. Each region corresponds to one

section of the plane and all the points in one region are closer

to the section representing the region than to any other section.

Solanki et al., generated vonoroi diagran as the obstacle region

then used the adjacent vertex of the diagram as the start and

goal points. Then using the Dijkstra algorithm; they searched

for the shortest route from start to goal. B-splines is a

mathematical function that is used to form a curve using a few

control points in a segment rather than the entire points in the

segmented section. Connors and Elkaim (2007), applied the B-

spline function with a modification by introducing additional

control points in the neighborhood of each obstacle, they also

develop methods to shift these new control points away from

obstacles and into clear areas. E. Kan et al, introduced user-

specified threshold flying altitude in the enemy terrain and

used these new thresholds to generate a path for the Unmanned

Aerial Vehicles.

To overcome the limitations of classic methods to path

planning; researchers have over time move towards heuristics

methods. Heuristics methods has helped to deal with the

complexities and computational costs associated with classical

methods. However, one is not sure to come across a solution

while using the heuristics methods, but if there is a solution it

will be found much faster than the classical methods. There is

an increase in the development on heuristics methods over the

past two decades. Some of the heuristics techniques were

inspired from nature and can also be referred to as nature

inspired algorithms.

Mobile Robot Path Planning in an Obstacle-free

Static Environment using Multiple Optimization

Algorithms

C. O. Yinka-Banjo*, U. Agwogie

Department of Computer Sciences, University of Lagos, Akoka, Nigeria.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AJOL - African Journals Online

https://core.ac.uk/display/478457231?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

166 NIGERIAN JOURNAL OF TECHNOLOGICAL DEVELOPMENT, VOL. 17, NO.3, SEPTEMBER 2020

*Corresponding author:cyinkabanjo@unilag.edu.ng doi: http://dx.doi.org//njtd.

Nature-inspired algorithms are stochastic search methods

that mimic the behavior of natural biological evolution and/or

the social behavior of species. The behavior of these species is

guided by learning, adaptation, and evolution. To imitate the

efficient behavior of these species, several researchers have

developed computational systems that seek fast and robust

solutions to complex optimization problems. These algorithms

can be broadly classified into Evolutionary algorithms and

Swarm Intelligence based algorithms using their form of

inspiration (Binitha et al, 2012).

Swarm Intelligence (SI) is the study of the collective

behavior and emergent properties of complex systems within

predefined environment (Narendra et al, 2013). This

functionality creates the possibility of solving problem using

collective or distributed approaches. The provision of a

centralized control or global model is not required as the field

focuses on the collective behaviors that emerges from the local

interactions of the agents with each other and their

environment. Particle swarm optimization (PSO), ant colony

optimization and fruit fly optimization algorithms are

examples of the swarm intelligence techniques.

A. Particle Swarm Optimization (PSO)

Particle swarm optimization is a global optimization

method proposed by Doctor Kennedy and Eberhart in 1995.

PSO is inspired by the social foraging of bird flocking together.

In PSO, the bird is represented as a particle. A population of n

particles is randomly initialized with random position and

velocities. The position of each particle stands for the potential

solution in the search space. The particle uses some principles

to change its position: its inertia is maintained, its best position

and the position of the best positioned particle (Qinghai, 2010).

The fitness of a particle is calculated based on its distance to

the destination. Each particle updates its position and velocity

with its own memory and the social information gathered from

other particles.

Ajeil et al (2020), used the PSO algorithm with modified

frequency algorithm to solve multi-objective path planning of

an autonomous robot. The multi-objective goal is aimed at

achieving the shortest and smoothest path. Cholodowicz et al

(2017) applied a constrained PSO algorithm in static and

dynamic environments where a virtual robot was used to

control strategy and also check the efficiency of the proposed

methods.

B. Ant Colony Optimization (ACO)

Ant colony optimization is a meta-heuristic stochastic

optimization technique developed by Marco Dorigo in the

early 1990s (Christian, 2005), (AbWahab et al, 2015). ACO

was inspired from the ants searching behavior in finding the

shortest path between their nest and food sources. They

randomly explore around their nest at the initial stage and then

towards other regions in their quest for food. While moving

around, a chemical substance called pheromone is being

deposited by the ant along the path. As soon as a food source

is found, the quality and quantity are evaluated by the ant. Ants

use the same path to the food source back to their nest, by doing

so, more pheromone will be deposited on that path. This

chemical substance can be smelt by all ants which serves as a

communication information to other ants. As new ants leave

their nest for search of food sources, they tend towards paths

with high concentration of these pheromone (fitness value) It

is believed that a path with high pheromone concentration may

likely lead to a food source. The presence or absence of

pheromone trails on a path serves as a positive and negative

feedback respectively.

The performance of ACO and Firefly algorithm in

different dynamic environments of a rubber plantation was

compared by (Gangadharan et al, 2020). Simulations shows

that FF outperformed ACO in terms of path length and time of

execution. Yue (2019) used a novel ACO algorithm for

unmanned vehicle path planning, they introduce the use of the

search results of the poor path to enhance the volatilization

degree of the pheromone on the poor path and reduce the

number of traversal times. In this, they believe that the

concentration of the pheromone in the unexplored path will be

larger than the worst path and in turn exposing the ants to a

better solution in the unknown field.

C. Fruit Fly Optimization Algorithm (FOA)

Fruit fly algorithm is one of the newest meta-heuristics

algorithm in the class of swarm intelligence algorithms. It was

proposed by (Wen-Tsao, 2014), (Rizk, 2016). The inspiration

came from the foraging behaviors of the fruit flies in their

search for food using their sense of vision and smell (Hazim et

al, 2014). They have superior sense of smell and vision

compared to other species. A fruit fly can smell food at a

distance of 70km away from the food source (Ye et al, 2017).

The Fruit flies can measure the smell concentration in their

current position then compare their fitness. The swarm will

then move towards the location with the best fitness (Sheng et

al, 2017).

The basic characteristics of the fruit fly algorithm can be

deduced to four steps: initialization, olfactory searching, vision

searching and termination. The fruit fly optimization algorithm

has many advantages such as a simple structure, easy to

implement, less parameter to adjust and fast convergence in

finding solutions. Some drawbacks in the basic fruit fly

algorithm (Rizk, 2014), (Shui-ping et al, 2016) are its

premature convergence, poor swarm diversity and lack of

mechanism that enables it to jump out of local optimum.

Aiming at improving the standard fruit fly algorithm, Li

and Han introduced the fusion immune function at the later

stage of the search to enable it escape the fall into local

extremum (Rizk, 2014), (Sheng et al, 2017). Xing Guo et. al,

also introduced an improved fruit fly algorithm using a traction

population of fruit flies (Xing et al, 2017). This is using all the

worst recorded fly in each iteration when the algorithm has

fallen into its local optimum without finding a global

minimum. Then using this new population; it explores a larger

solution space in opposite direction in the quest for the best fly.

The aim of this research is to implement the traditional

Fruit Fly Optimization Algorithm, to solve the Mobile Robot

Path Planning problem to compare its performance with older

nature-inspired algorithm. To achieve this aim, the first version

http://dx.doi.org/njtd

YINKA-BANJO and AGWOGIE: MOBILE ROBOT PATH PLANNING IN AN OBSTACLE-FREE STATIC ENVIRONMENT 167

*Corresponding author: cyinkabanjo@unilag.edu.ng doi: http://dx.doi.org/10.4314/njtd.v17i3.3

FOOD

SOURCE

START

3

2

4

5

6

7

8

9

10

11

14

13

12

Fig 1: The Mobile Robot Environment.

of Ant Colony Optimization and Particle Swarm Optimization

Algorithms are implemented and the results compared against

some performance criteria.

 The following performance criteria were considered to

confirm the algorithm with the optimal path.

i. Average Path length

ii. Average Execution time

iii. Average Convergence speed

II. PROBLEM FORMATION

The mobile path planning problem is modelled as a global path

planning whereby the positions of the start node, path nodes

and goal node are known to the robot prior to its path planning.

The nodes are initialized using its x and y coordinates. The start

node is positioned at (0, 0) and the goal node is placed at (10,

10). The search space is bounded by the lower and upper

coordinates of the start and goal node. The robot is represented

as a point in the search space to avoid computational

complexities. Within the search space, there exist 13 path

nodes that can be selected from the start node to the goal node.

The search space is divided into sub swarms such that nodes

are interconnected using a matrix that forms the visibility

constraint of the robot. This is to say that the robot cannot jump

to the goal node from the start node; it must select a path node

from the possible nodes that are visible to it. The Sub swarms

are bounded by the upper and lower coordinates of the possible

nodes. The goal is to determine the shortest path to the goal

node from the start node. A feasible solution is represented by

a sequence of vertices linking the start node to the goal node.

A. Mathematical Representation of the Problem

 As shown in Fig. 1, the environment is represented in a 2-

dimensional map where the start node, 𝑆 (𝑛𝑜𝑑𝑒 1) and the goal

node, 𝐺 (𝑛𝑜𝑑𝑒 15) are represented in blue while the path

nodes (𝑛𝑜𝑑𝑒𝑖 , 𝑖 = 2, 3, 4, 5, 6, 7, 8, 9 ,10, 11 ,12 ,14) are

represented in yellow.

There are four sub swarms (𝑃𝑖 , 𝑖 = 𝑎, 𝑏, 𝑐, 𝑑) within the

search space with different number of path nodes. The

composition of the sub swarms is given below:

𝑆𝑢𝑏𝑠𝑤𝑎𝑟𝑚 𝐴 = (𝑃𝑎 , 𝑎 = 2,3), 𝑆𝑢𝑏𝑠𝑤𝑎𝑟𝑚 𝐵 = (𝑃𝑏 , 𝑏 =
4, 5, 6, 7), 𝑆𝑢𝑏𝑠𝑤𝑎𝑟𝑚 𝐶 = (𝑃𝑐 , 𝑐 =

8, 9, 10, 11), 𝑎𝑛𝑑 𝑆𝑢𝑏𝑠𝑤𝑎𝑟𝑚 𝐷 = (𝑃𝑑,𝑑 = 12, 13, 14).

A robot 𝑅, is initialized at the start node (𝑋0 , 𝑌0) in time

𝑡. (𝑋′, 𝑌′) is the next position of the robot in time 𝑡 + 1 The

Robot selects the next path node using a criteria that satisfies

the constraint function (Shortest distance).

The initial positions of the swarm population for the

implementation were initialized every time a new node is

selected until the goal node is reached. The coordinates of the

path nodes within the sub swarm represents the lower bound

and upper bound for which the initialization was done; as

shown in Eq. (1)(Xing et al, 2017).

𝑋𝑖 = 𝑋𝑎𝑥𝑖𝑠 + 𝑟𝑎𝑛𝑑(𝐿𝑅), 𝑌𝑖 = 𝑌𝑎𝑥𝑖𝑠
+ 𝑟𝑎𝑛𝑑(𝑈𝑅) (1)

B. The Fitness Function

To ensure proper search is done to avoid exploitation of the

algorithms, local and global search techniques were employed.

The fitness function is sub divided into two: Firstly, to

determine the individual in the swarm with the best fitness

value Eq. (2) (Lv et al, 2017).; Secondly using the coordinates

of the best fit individual; we can determine the next node the

robot can move to Eq. (3) (Lv et al, 2017).

𝐵𝑒𝑠𝑡𝐹𝑖𝑡𝑖 = min 𝐹(𝑥) (2)

 𝑁𝑒𝑥𝑡𝑁𝑜𝑑𝑒𝑖 = min 𝑁(𝑥) (3)

 𝐹(𝑥) Can be computed from Eq. (4) (Zhang et al, 2016).

 while 𝑁(𝑥) is determined from Eq. (7)

𝐹(𝑥) = 𝑆(𝑥) + 𝐺(𝑥), 2 ≤ 𝑥 ≤ (4)

 where the first term (local search) computes the distance of

each swarm from the origin (𝑋0 , 𝑌0) to its current position

(𝑋′, 𝑌′) using Eq. (5) (Allah, 2016), (Zhang et al, 2016).

𝑆(𝑥)𝑖 = √(𝑋𝑖
′ − 𝑋0)2 + (𝑌𝑖

′ − 𝑌0)2 (5)

The second term (global search) computes the distance of each

swarm from its current position (𝑋′, 𝑌′) to the goal node

(𝑋𝑔 , 𝑌𝑔) as seen in Eq. (6) (Lv et al, 2017.

𝐺(𝑥)𝑖 = √(𝑋𝑔 − 𝑋𝑖
′)

2
+ (𝑌𝑔 − 𝑌𝑖

′)
2

 (6)

The X and Y coordinates of the best fit individual in the swarm

is then applied to Eq. (7) (Lv et al, 2017). to determine the next

path node to be traverse to within the sub swarm.

𝑁(𝑥) = √(𝑋𝑛 − 𝑋𝑏𝑒𝑠𝑡𝑓𝑖𝑡)
2

+ (𝑌𝑛 − 𝑌𝑏𝑒𝑠𝑡𝑓𝑖𝑡)
2

 (7)

 Figure.1: Proposed Pseudo-code for Fruit Fly optimization algorithm.

168 NIGERIAN JOURNAL OF TECHNOLOGICAL DEVELOPMENT, VOL. 17, NO.3, SEPTEMBER 2020

*Corresponding author:cyinkabanjo@unilag.edu.ng doi: http://dx.doi.org//njtd.

III. IMPLEMENTATION OF THE SWARM

INTELLIGENCE ALGORITHMS

The described problem statement was solved using the

three swarm intelligent algorithms (FOA, ACO and PSO).

These algorithms have their respective drawbacks; FOA

suffers from high processing time due to its poor feedback

mechanism and in turn has premature convergence (Lv et al,

2017), (Zhang et al 2016). ACO lack a centralized processor to

guide it towards good solutions and performs poorly in large

search spaces (AbWahab et al, 2015). PSO suffers from weak

local search ability which leads it to slow convergence in a

refined search area (AbWahab et al, 2015). However, the

implementation did not seek to improve the traditional

algorithms rather the implementation of the traditional

algorithms is to benchmark the new heuristics algorithm FOA

in the obstacle free static environment for mobile path

planning.

A. Implementation of Mobile Path Planning Using FOA

In the implementation, the algorithm begins by randomly

initializing the initial positions of the fruit flies, then assigning

random distance and direction to them. The fitness value of

each fruit fly is evaluated to determine the best fruit fly in the

swarm. After which the coordinates of the best fruit fly are

used to compute the next node the robot can move to from the

nodes visible to it. The algorithm terminates once the selected

node is same as the goal node. Fig. (2) and (3) gives detailed

pseudo-code and flowchart of the proposed method.

Fig. 2: Proposed Pseudo-code for Fruit Fly optimization Algorithm

Fig. 3: Flowchart of Fruit Fly optimization algorithm.

D. Implementation of Mobile Path Planning Using PSO

In the implementation, the algorithm begins by randomly

initializing the positions and velocities of the particles in the

swarm, then the fitness value of each particle is evaluated to

determine the local best particle. The local best fitness value is

assigned to become the global best. The swarm particles

velocities and positions were then updated to enable the

particles move towards the global best particle in the swarm

using Eq. (8) and Eq. (9) respectively (Qinghai, 2010).

𝑁𝑒𝑤 𝑉𝑖 = 𝑢 ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑉𝑖 + 𝑐1 ∗ 𝑟𝑎𝑛𝑑(0,1) ∗ (𝑃𝑖 − 𝑋𝑖) +

𝑐2 ∗ 𝑟𝑎𝑛𝑑 (0,1) ∗ (𝑃𝑔 − 𝑋𝑖) (8)

𝑁𝑒𝑤 𝑝𝑜𝑠𝑡𝑛 𝑋𝑖 = 𝑐𝑢𝑟 𝑝𝑜𝑠𝑡𝑛 𝑋𝑖 + 𝑁𝑒𝑤 𝑉𝑖 (9)

where, Xi represents the current position of the particle, Pi

represents the best previous position, Vi represent the current

velocity of the particle, c1, c2 are two positive constants named

learning factors which regulates the speed of moving towards

the most optimal particle of the swarm and towards the

individual particle; rand (0,1) represents the random functions

in the range [0, 1] and u represents an inertia weight employed

as an improvement on the basic PSO.

The fitness value of the particles is re-evaluated again to

determine the new global best particle in the swarm. After

which the coordinates of the global best particle are used to

Set the start, goal and sub swarms nodes

While (goal node =false)

Initialize the swarm initial position using Equation (1)

Assign distance and direction to each fruit fly using Equation

(1)

Calculate the Smell Concentration (Fitness Value) of each fruit

fly using Equation (4)

Determine the Best Fly using Equation (2)

Calculate the transition probability of the robot using Eq. (7)

Determine the next node using Eq. (3)

Save the next node and its x and y coordinates

End While

Set the Start, Goal, Subswarm nodes

Initialize the swarm position using the upper

and lower limits of the possible variable path

Randomly assign direction and distance to

each fruit fly

Calculate the smell concentration (Fitness

Value) of each fruit fly

Output the Optimal Path

Compute the transitions probability of the

robot to each of the possible visible paths

Is next

node =

goal node?

NO

YES

Determine the Best fly

Determine the next node

http://dx.doi.org/njtd

YINKA-BANJO and AGWOGIE: MOBILE ROBOT PATH PLANNING IN AN OBSTACLE-FREE STATIC ENVIRONMENT 169

*Corresponding author: cyinkabanjo@unilag.edu.ng doi: http://dx.doi.org/10.4314/njtd.v17i3.3

compute the next node the robot can move to from the nodes

visible to it. The algorithm terminates once the selected node

is same as the goal node. Figs. (4) and (5) give detailed pseudo-

code and flowchart of the proposed method.

Set the start, goal and sub swarms nodes, learning factors (c1, c2),

weight (u)

 While (goal node =false)

 Initialize the swarm initial position and velocities of each

particles using Eq. (1)

 Calculate the Fitness Value of each particle using Eq. (4)

 Assign the Local best value to Global best

 Update the velocities of the particles using Eq. (8)

 Update the positions of the particles using Eq. (9)

 Determine the Global Best particle using Eq. (2)

 Calculate the transition probability of the robot using Eq. (7)

 Determine the next node using Eq. (3)

 Save the next node and its x and y coordinates

End While

Fig. 4: Pseudo code for Particle Swarm Optimization Algorithm.

 Fig. 5: Flowchart of Particle Swarm Optimization algorithm.

E. Implementation of Mobile Path Planning Using ACO

In the implementation, the coordinates of the nodes were

used to determine the weights and length of each path which

pheromone was initialized. The algorithm begins by

initializing the pheromone concentration on each path to zero.

This is to mean that the ants are still in their nest. The

pheromone concentration on a path is determined from the

length of the path, weight on each node, and attractiveness of

the node. As the ants move, more pheromone concentration on

each path are updated and consequently evaporated to allow

exploration using Eq. (10) (Blum, 2005) and Eq. (11)

(AbWahab et al, 2015) respectively.

𝜏𝑖 = 𝜏𝑖 +
𝑄

𝑙𝑖

, 𝑄 > 0, (10)

𝜏(𝑎,𝑏)(𝑡 + 1) = (1 − 𝜌) ∗ 𝜏(𝑎,𝑏)(𝑡) + ∑ [∆𝜏(𝑎,𝑏)
𝑘 (𝑡)]

𝑚

(𝑘=1)

 (11)

The ants then apply the transition probability on each node to

determine the node with high pheromone concentration using

Eq. 12. (Blum, 2005).

𝑝(𝑎,𝑏)
𝑘 (𝑡) =

([𝜏𝑎,𝑏(𝑡)]
𝛼

∗ [∩𝑎,𝑏]
𝛽

)

(∑ [𝜏𝑎,𝑏(𝑡)]
𝛼

𝑏𝜖𝑏𝑐 ∗ [∩𝑎,𝑏]
𝛽

)
 (12)

If α is higher than β, the searching probability will be

dependent on the pheromone concentration otherwise it will be

dependent on its visibility knowledge.

To allow exploration; the greedy selection method was not

used rather the robot randomly select a node from the possible

visible nodes. The algorithm terminates once the selected node

is same as the goal node. Figs. (6) and (7) gives detailed pseudo

code and flowchart of the proposed method.

Set the start, goal and subs warms nodes, alpha, beta,

attractiveness, evaporation rate

 While (goal node =false)

 Initialize the paths pheromone concentration to zero

 Compute the length of each path using its weight (x, y

coordinates)

 Calculate the pheromone Concentration on each path using the

length

 Update the pheromone concentration of each path using eq. (10)

 Apply the pheromone evaporation rate using Eq. (11)

 Calculate the transition probability of the robot using Eq. (12)

 Randomly determine the next node

 Save the next node and its x and y coordinates

End While

 Fig 6: Pseudo code for Ant Colony Optimization Algorithm.

Is next

node =

goal node?

Set the Start, Goal, Subswarm nodes, learning factors (c1,c2),

weight (u)

Initiatilize the swarm positions and velocities of each particle

using the upper and lower limits of the possible variable paths

Assign the Local Best value to Global best

Update the velocities of each particle

Output the Optimal Path

Determine the global best

NO

YES

Update the positions of each particle

Determine the next node

Compute the transition probability of the robot to each of the

possible variable paths

170 NIGERIAN JOURNAL OF TECHNOLOGICAL DEVELOPMENT, VOL. 17, NO.3, SEPTEMBER 2020

*Corresponding author:cyinkabanjo@unilag.edu.ng doi: http://dx.doi.org//njtd.

Fig.7: Flowchart of Ant Colony Optimization Algorithm.

IV. SIMULATION RESULT AND DISCUSSION

The robot environment was represented as a graph bounded

with the coordinates of the start and target nodes. The start

node is at (0.0) and the target is at (10, 10). The search space

consists of 15 static nodes where Node 1 is the start node and

Node 15 is the target node. The experiment is to generate a path

from the start node to the goal node. The three swarm

intelligence algorithms were applied to generate a path. The

performance of these algorithms is compared using the

following performance criteria: Average shortest distance,

Computational time, Convergence Speed. The code was

written with Python programming language on the spider

editor. The experiment is performed on a 1.70GHz dual core

CPU computer with 4GB RAM. The user must input the

swarm size.

The experiment is presented in obstacle free environment.

We used the three swarm intelligence algorithm to find the

shortest path for a Mobile robot to move from the start node to

the target node. A transition matrix of nodes in the

environment was generated and the positions were known to

the robot. Each node was assigned a computed weight which

is called the cost of selecting the node (CN). Number of runs

(NN) was given as a parameter before simulation begins. The

results of the simulation are to generate average path length,

average execution time and average convergence speed.

The path length (PT) is calculated using sum of the cost of the

selected nodes from start node (s) to the goal node (g).

 𝑃𝑇 = ∑ 𝐶𝑁 (13)𝑠
𝑔

 The execution time (ET) is calculated using the time the robot

reaches the goal node minus the start time of the algorithm.

 𝐸𝑇 = 𝐸𝑛𝑑𝑡𝑖𝑚𝑒 − 𝑆𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 (14)

The convergence speed (CS) is calculated using sum of the

path length divided by execution time for each run.

 𝐶𝑆 =
𝑃𝑇

𝐸𝑇
 (15)

The average path length is calculated using sum of the cost of

the selected nodes for each run divided by the number of runs

the algorithm ran before reaching the target node.

 𝐴𝑣𝑔. 𝑃𝑇 = ∑ 𝑃𝑇/𝑁𝑁𝑛𝑛
𝑖=1 (16)

The average execution time is calculated using sum of the time

the robot reaches the goal node minus the start time of the

algorithm for each run divided by the number of runs the

algorithm ran before reaching the target node.

 𝐴𝑣𝑔. 𝐸𝑇 = ∑ 𝐸𝑇/𝑁𝑁𝑛𝑛
𝑖=1 (17)

The average convergence speed is calculated using sum of the

convergence speed for each run divided by the number of runs

the algorithm ran before reaching the target node.

 𝐴𝑣𝑔. 𝐶𝑆 = ∑ 𝐶𝑆/𝑁𝑁𝑛𝑛
𝑖=1 (18)

 In Table I, the parameters for each algorithm is stated.

Table II gives the computed results for each algorithm when

executed for 50 runs. It is shown that FOA generated the

shortest average path with 19.51m when compared with PSO

and ACO; while PSO and ACO were in close range with

21.27m and 21.41m respectively. Again, the Convergence

speed of FOA can be seen in Table 2 to outperform that of PSO

and ACO. FOA was able to converge with a speed of

314921m/s as against that of ACO and PSO which are

51051.93m/s and 3655.371 m/s respectively. However, the

execution time of FOA was worst compared with ACO whose

execution time outperformed the FOA and ACO algorithm.

 Table 1: Parameters used in the experiment.

 Algorithm/Parameters FOA ACO PSO

 Swarm Size 100 100 100

 Number of Runs(NN) 50 50 50

 C1 (Learning factor) * * 1.49445

 C2 (Learning factor) * * 1.49445

 W (Inertia) * * 0.729

 Q (Attractive Constant) * 0.1 *

 Alpha(Influence factor) * 0.1 *

 Beta(Inf. of adjacent nodes) * 0.1 *

 P(Evaporation rate) * 0.1 *

* the parameter is not applicable.

 Figs (8-12) give the paths generated by the FOA, PSO and

ACO at run 10, 20, 30, 40 and 50. The individual result of the

execution runs at 10, 20, 30, 40 and 50 can be seen on Table

III. With the individual runs, the performance of FOA in

determining the shortest path with a faster speed can also be

concluded.

Set the Start, Goal, Subswarm nodes, alpha,

beta, attractiveness, evaporation rate

Initialize the paths pheromone concentration to

zero

Calculate the pheromone concentration on each

path

Update the pheromone concentration each path

Output the Optimal Path

Is next

node =

goal node?

NO

YES

Calculate the transition probability of the robot

Determine the next node

http://dx.doi.org/njtd

YINKA-BANJO and AGWOGIE: MOBILE ROBOT PATH PLANNING IN AN OBSTACLE-FREE STATIC ENVIRONMENT 171

*Corresponding author: cyinkabanjo@unilag.edu.ng doi: http://dx.doi.org/10.4314/njtd.v17i3.3

Table 2: Comparison of Results for FOA, ACO and PSO algorithms.

Algorithm FOA ACO PSO

Avg. Path Length (m) 19.5128 21.4148 21.2746

Avg. Execution Time(s) 0.008117 0.000576 0.007203

Avg. Speed (m/sec) 3149.217 51051.93 3655.371

 Table 3: Result for Execution No.10, 20, 30, 40 and 50.

Exec.

 No. Criteria FOA ACO PSO

10

Path Length 16.41 27.32 15.76

Exec. Time 0.00563236 0.000354 0.0052055

Conv. Speed 2913.521153 77219.64 3027.567

20

Path Length 18.33 24 26.72

Exec. Time 0.0055828 0.000336 0.0051934

Conv. Speed 3283.298703 71369.1 5144.9521

30

Path Length 21.65 26.86 19.81

Exec. Time 0.005564 0.000334 0.0057814

Conv. Speed 3891.08555 80467.35 3426.5057

40

Path Length 18.17 21.39 19.47

Exec. Time 0.0055883 0.000328 0.0053256

Conv. Speed 3251.436036 65246.24 3655.9261

50

Path Length 16.57 19.16 21.39

Exec. Time 0.005766 0.000351 0.0054766

Conv. Speed 2873.742629 54527.86 3905.7151

Fig 8: Path generation at execution no. 10.

Fig 10: Path generation at execution no. 30.

Fig 11: Path generation at execution no. 40.

Fig 9: Path generation at execution no. 20.

172 NIGERIAN JOURNAL OF TECHNOLOGICAL DEVELOPMENT, VOL. 17, NO.3, SEPTEMBER 2020

*Corresponding author:cyinkabanjo@unilag.edu.ng doi: http://dx.doi.org//njtd.

V. CONCLUSION

In this study we presented the application of three swarm

intelligence algorithms namely: Fruit-fly optimization

Algorithm (FOA), Particle Swarm Optimization Algorithm

(PSO) and Ant Colony Optimization Algorithm (ACO) to the

Mobile robot path planning problem in an obstacle free static

environment. The three algorithms were able to generate a path

from the start node to the target node within the search space.

We can conclude that the algorithms have similar execution

times, path length and convergence speed irrespective of the

number of runs it is executed with same parameters thus the

number of runs do not affect the performance of the

algorithms. ACO was observed to have the least execution

time than FOA and PSO but did not achieve the best path

length. With this we can conclude that ACO falls into

premature convergence than FOA and PSO. FOA has the

highest execution time which tells us about the high processing

time due to its feedback mechanism.

We also observed that the basic FOA was able to produce

path with shorter length than the basic PSO and ACO counter

parties. This could be attributed to simple implementation

method FOA implores in the search. FOA which is one of the

newest swarm intelligence algorithms in the optimization

world is seen to out-perform the older swarm intelligence

algorithms in convergence speed. It is also worthy to note that

the implementation of FOA is far easier than ACO and PSO

due to its minimum parameter. In the next paper, we intend to

apply these basic versions of the three algorithms in an

environment with obstacles to also compare their performance

in such condition.

REFERENCES

AbWahab M. N.; S. Nefti-Meziani and A. Atyabi.

(2015). A Comprehensive Review of Swarm Optimization

Algorithms. PLOS ONE 10(5): 1-36.

Ajeil F.H.; I. K. Ibraheem and M. A. Sahib. (2020).
Multi-objective path planning of an autonomous mobile robot

using hybrid PSO-MFB optimization algorithm, Applied Soft

Computing Journal, 89, 1-27.

Allah, R. M. (2016). Hybridization of Fruit Fly

Optimization Algorithm and Firefly Algorithm for Solving

Nonlinear Programming Problems. International Journal of

Swarm Intelligence and Evolutionary Computation, 5(2), 1-10.

Blum, C. (2005). Ant Colony Optimization: Introduction

and recent trends. Elsevier, Physics of Life Review 2, 353–

373.

Cholodowicz E. and Figureurowski D. (2017). Mobile

Robot Path Planning with Obstacle Avoidance using Particle

Swarm Optimization. Research Gate, DOI:

10.14313/PAR_225/59, 59–68.

Closet H. (2007). Robotic Motion Planning: Cell

Decompositions. Available online at:

https://www.cs.cmu.edu/~motionplanning/lecture/Chap6-

CellDecomp_howie.pdf, Accessed on June 7, 2020.

Connors, J. and Elkaim G. (2007). Manipulating B-

Spline Based Paths for Obstacle Avoidance in Autonomous

Ground Vehicles, Proceedings of the National Technical

Meeting of The Institute of Navigation, San Diego, CA, 1081-

1088

Gangadharan M. M. and Salgaonkar A. (2020). Ant

colony optimization and firefly algorithms for robotic motion

planning in dynamic environments: University of Mumbai,

India. Engineering Reports published by John Wiley & Sons,

Ltd.

Hazim I. and Mesut, G. (2014). Parameter Analysis on

Fruit Fly Optimization Algorithm. Journal of Computer and

Communications, 2: 137-141.

Kan E.; M. Lim; S. Yeo; J. Ho and Z. Shao. (2011).
Contour Based Path Planning with B-Spline Trajectory

Generation for Unmanned Aerial Vehicles (UAVs) over

Hostile Terrain. Journal of Intelligent Learning Systems and

Applications, 3(3): 122-130. doi: 10.4236/jilsa.2011.33014
Li, Y. and Han, M. (2020). Improved fruit fly algorithm

on structural optimization. Brain Informatics, 7(1): 1-13.

Mansi, A. and Priyanka, G. (2013). Path planning of

Mobile robots using Bee Colony Algorithm. MIT International

Journal of Computer Science & Information Technology, 3(2):

86–89.

Narendra, S. P. and Sanjeev, S. (2013). Robot Path

planning using Swarm Intelligence: A Survey. International

Journal of Computer Applications 83(12): 0975 – 8887.

Pratap, B. S.; V. R. Harsha and M. Amitabha. (2013).
Voronoi Diagram Based Roadmap Motion Planning. Available

online at:

https://cse.iitk.ac.in/users/cs365/2013/submissions/~prabhanu

/cs365/project/report.pdf Accessed on June 7, 2020.

Qinghai, B. (2010). Analysis of Particle Swarm

Optimization Algorithm. Computer and Information Science,

3(1): 180-184.

Rizk, M. A. (2016). Hybridization of Fruit Fly

Optimization Algorithm and Firefly algorithm for Solving

Nonlinear Programming Problems. International Journal of

Swarm Intelligence and Evolutionary Computation 5(2): 1-10,

DOI: 10.4172/2090-4908.1000134.

Fig 12: Path generation at execution no. 50.

http://dx.doi.org/njtd
https://www.cs.cmu.edu/~motionplanning/lecture/Chap6-CellDecomp_howie.pdf
https://www.cs.cmu.edu/~motionplanning/lecture/Chap6-CellDecomp_howie.pdf
http://dx.doi.org/10.4236/jilsa.2011.33014
https://cse.iitk.ac.in/users/cs365/2013/submissions/~prabhanu/cs365/project/report.pdf
https://cse.iitk.ac.in/users/cs365/2013/submissions/~prabhanu/cs365/project/report.pdf

YINKA-BANJO and AGWOGIE: MOBILE ROBOT PATH PLANNING IN AN OBSTACLE-FREE STATIC ENVIRONMENT 173

*Corresponding author: cyinkabanjo@unilag.edu.ng doi: http://dx.doi.org/10.4314/njtd.v17i3.3

Sheng-Xiang, L.; Z. Yu‑Rong and W. Lin. (2018). An

effective fruit fly optimization algorithm with hybrid

information exchange and its applications. International

Journal of Machine Learning and Cybernetics. 9 (10): 1623-

1648.

Shui-ping, Z.; C. Yang and G. Yang-dan. (2016). Fruit

fly algorithm Based on Extremal optimization. 12th

International Conference on Computational Intelligence and

Security, Chicago, USA. 534-537.

Wen–Tsao, P. (2014). A New Evolutionary Computation

– Fruit Fly optimization Algorithm second edition. Taiwan,

China: Canghai Press.

Xing, G.; Z. Jian; L. Wei and Z. Yiwen. (2017). A fruit

fly optimization algorithm with a traction mechanism and its

applications. International journal of distributed sensor

network. 13(11): 1-12, DOI: 10.1177/1550147717739831.

Ye, F.; X.Y. Lou and L.F. Sun. (2017). An improved

chaotic fruit fly optimization based on a mutation strategy for

simultaneous feature selection and parameter optimization for

SVM and its applications. PLOS ONE, 12(4): 1-36.

Yue, L. and Chen, H. (2019). Unmanned vehicle path

planning using a novel ant colony algorithm EURASIP

Journal on Wireless Communications and Networking. 136,

1-9. https://doi.org/10.1186/s13638-019-1474-5

Zhang, L.; L. Liu; X. Yang and Y. Dai. (2016). A Novel

Hybrid Firefly Algorithm for Global Optimization.11(9): 1-

17.

https://doi.org/10.1186/s13638-019-1474-5

