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ABSTRACT: This article presents the implementation and comparison of fruit fly optimization (FOA), ant colony 

optimization (ACO) and particle swarm optimization (PSO) algorithms in solving the mobile robot path planning 

problem. FOA is one of the newest nature-inspired algorithms while PSO and ACO has been in existence for a long 

time. PSO has been shown by other studies to have long search time while ACO have fast convergence speed. 

Therefore there is need to benchmark FOA performance with these older nature-inspired algorithms. The objective is 

to find an optimal path in an obstacle free static environment from a start point to the goal point using the 

aforementioned techniques. The performance of these algorithms was measured using three criteria: average path 

length, average computational time and average convergence speed. The results show that the fruit fly algorithm 

produced shorter path length (19.5128 m) with faster convergence speed (3149.217 m/secs) than the older swarm 

intelligence algorithms. The computational time of the algorithms were in close range, with ant colony optimization 

having the minimum (0.000576 secs).  

KEYWORDS: Swarm intelligence, Fruit Fly algorithm, Ant Colony Optimization, Particle Swarm Optimization,   optimal path, 

mobile robot.  
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I.  INTRODUCTION 

In an environment, there are many paths for a robot to 

reach a specified goal, but the best path is selected according 

to some criteria. These criteria are the shortest distance, the 

shortest time, the least energy consumed. The most adopted 

criterion is the shortest distance. Path planning is an 

optimization problem since its purpose is to search for a path 

with the shortest distance under certain constraints such as the 

given environment with collision- free motion (Mansi et al, 

2013). 

Path planning algorithms can be classified into heuristics 

and non-heuristics. Some of the well-known non-heuristics are 

cell decomposition, Voronoi diagrams, and B-Spline curve. In 

the cell decomposition technique, two methods are used. They 

are the exact and the approximate cell decomposition methods. 

The exact method is used to divide the search space into simple 

cells and builds the adjacency relationships among the cells. It 

explicitly determines the obstacles and build the cells (Choset, 

2007), (Abbadi, et al. 2015). The combination of all the 

generated cells will produce the exact free space. However, 

determining the exact free space in a high dimensional 

environment is not an easy task, hence the approximate method 

was introduced.  

Vonoroi diagram represents regions of influence around a 

given set of points in a plane. Each region corresponds to one 

section of the plane and all the points in one region are closer 

to the section representing the region than to any other section. 

Solanki et al., generated vonoroi diagran as the obstacle region 

then used the adjacent vertex of the diagram as the start and 

goal points. Then using the Dijkstra algorithm; they searched 

for the shortest route from start to goal. B-splines is a 

mathematical function that is used to form a curve using a few 

control points in a segment rather than the entire points in the 

segmented section. Connors and Elkaim (2007), applied the B-

spline function with a modification by introducing additional 

control points in the neighborhood of each obstacle, they also 

develop methods to shift these new control points away from 

obstacles and into clear areas. E. Kan et al, introduced user-

specified threshold flying altitude in the enemy terrain and 

used these new thresholds to generate a path for the Unmanned 

Aerial Vehicles. 

To overcome the limitations of classic methods to path 

planning; researchers have over time move towards heuristics 

methods. Heuristics methods has helped to deal with the 

complexities and computational costs associated with classical 

methods. However, one is not sure to come across a solution 

while using the heuristics methods, but if there is a solution it 

will be found much faster than the classical methods. There is 

an increase in the development on heuristics methods over the 

past two decades.  Some of the heuristics techniques were 

inspired from nature and can also be referred to as nature 

inspired algorithms.  
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Nature-inspired algorithms are stochastic search methods 

that mimic the behavior of natural biological evolution and/or 

the social behavior of species. The behavior of these species is 

guided by learning, adaptation, and evolution. To imitate the 

efficient behavior of these species, several researchers have 

developed computational systems that seek fast and robust 

solutions to complex optimization problems.  These algorithms 

can be broadly classified into Evolutionary algorithms and 

Swarm Intelligence based algorithms using their form of 

inspiration (Binitha et al, 2012).   

Swarm Intelligence (SI) is the study of the collective 

behavior and emergent properties of complex systems within 

predefined environment (Narendra et al, 2013). This 

functionality creates the possibility of solving problem using 

collective or distributed approaches. The provision of a 

centralized control or global model is not required as the field 

focuses on the collective behaviors that emerges from the local 

interactions of the agents with each other and their 

environment. Particle swarm optimization (PSO), ant colony 

optimization and fruit fly optimization algorithms are 

examples of the swarm intelligence techniques. 

A.  Particle Swarm Optimization (PSO) 

Particle swarm optimization is a global optimization 

method proposed by Doctor Kennedy and Eberhart in 1995. 

PSO is inspired by the social foraging of bird flocking together. 

In PSO, the bird is represented as a particle. A population of n 

particles is randomly initialized with random position and 

velocities. The position of each particle stands for the potential 

solution in the search space. The particle uses some principles 

to change its position: its inertia is maintained, its best position 

and the position of the best positioned particle (Qinghai, 2010). 

The fitness of a particle is calculated based on its distance to 

the destination. Each particle updates its position and velocity 

with its own memory and the social information gathered from 

other particles.  

Ajeil et al (2020), used the PSO algorithm with modified 

frequency algorithm to solve multi-objective path planning of 

an autonomous robot. The multi-objective goal is aimed at 

achieving the shortest and smoothest path. Cholodowicz et al 

(2017) applied a constrained PSO algorithm in static and 

dynamic environments where a virtual robot was used to 

control strategy and also check the efficiency of the proposed 

methods. 

B.  Ant Colony Optimization (ACO) 

Ant colony optimization is a meta-heuristic stochastic 

optimization technique developed by Marco Dorigo in the 

early 1990s (Christian, 2005), (AbWahab et al, 2015). ACO 

was inspired from the ants searching behavior in finding the 

shortest path between their nest and food sources. They 

randomly explore around their nest at the initial stage and then 

towards other regions in their quest for food. While moving 

around, a chemical substance called pheromone is being 

deposited by the ant along the path.  As soon as a food source 

is found, the quality and quantity are evaluated by the ant. Ants 

use the same path to the food source back to their nest, by doing 

so, more pheromone will be deposited on that path. This 

chemical substance can be smelt by all ants which serves as a 

communication information to other ants. As new ants leave 

their nest for search of food sources, they tend towards paths 

with high concentration of these pheromone (fitness value) It 

is believed that a path with high pheromone concentration may 

likely lead to a food source. The presence or absence of 

pheromone trails on a path serves as a positive and negative 

feedback respectively. 

The performance of ACO and Firefly algorithm in 

different dynamic environments of a rubber plantation was 

compared by (Gangadharan et al, 2020). Simulations shows 

that FF outperformed ACO in terms of path length and time of 

execution. Yue (2019) used a novel ACO algorithm for 

unmanned vehicle path planning, they introduce the use of the 

search results of the poor path to enhance the volatilization 

degree of the pheromone on the poor path and reduce the 

number of traversal times. In this, they believe that the 

concentration of the pheromone in the unexplored path will be 

larger than the worst path and in turn exposing the ants to a 

better solution in the unknown field. 

C.  Fruit Fly Optimization Algorithm (FOA) 

Fruit fly algorithm is one of the newest meta-heuristics 

algorithm in the class of swarm intelligence algorithms. It was 

proposed by (Wen-Tsao, 2014), (Rizk, 2016). The inspiration 

came from the foraging behaviors of the fruit flies in their 

search for food using their sense of vision and smell (Hazim et 

al, 2014). They have superior sense of smell and vision 

compared to other species. A fruit fly can smell food at a 

distance of 70km away from the food source (Ye et al, 2017). 

The Fruit flies can measure the smell concentration in their 

current position then compare their fitness. The swarm will 

then move towards the location with the best fitness (Sheng et 

al, 2017).  

The basic characteristics of the fruit fly algorithm can be 

deduced to four steps: initialization, olfactory searching, vision 

searching and termination. The fruit fly optimization algorithm 

has many advantages such as a simple structure, easy to 

implement, less parameter to adjust and fast convergence in 

finding solutions. Some drawbacks in the basic fruit fly 

algorithm (Rizk, 2014), (Shui-ping et al, 2016) are its 

premature convergence, poor swarm diversity and lack of 

mechanism that enables it to jump out of local optimum.  

Aiming at improving the standard fruit fly algorithm, Li 

and Han introduced the fusion immune function at the later 

stage of the search to enable it escape the fall into local 

extremum (Rizk, 2014), (Sheng et al, 2017). Xing Guo et. al, 

also introduced an improved fruit fly algorithm using a traction 

population of fruit flies (Xing et al, 2017). This is using all the 

worst recorded fly in each iteration when the algorithm has 

fallen into its local optimum without finding a global 

minimum. Then using this new population; it explores a larger 

solution space in opposite direction in the quest for the best fly. 

The aim of this research is to implement the traditional 

Fruit Fly Optimization Algorithm, to solve the Mobile Robot 

Path Planning problem to compare its performance with older 

nature-inspired algorithm. To achieve this aim, the first version 
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Fig 1: The Mobile Robot Environment. 

of Ant Colony Optimization and Particle Swarm Optimization 

Algorithms are implemented and the results compared against 

some performance criteria. 

 The following performance criteria were considered to 

confirm the algorithm with the optimal path. 

i. Average Path length 

ii. Average Execution time 

iii. Average Convergence speed 

II. PROBLEM FORMATION 

The mobile path planning problem is modelled as a global path 

planning whereby the positions of the start node, path nodes 

and goal node are known to the robot prior to its path planning. 

The nodes are initialized using its x and y coordinates. The start 

node is positioned at (0, 0) and the goal node is placed at (10, 

10). The search space is bounded by the lower and upper 

coordinates of the start and goal node. The robot is represented 

as a point in the search space to avoid computational 

complexities. Within the search space, there exist 13 path 

nodes that can be selected from the start node to the goal node. 

The search space is divided into sub swarms such that nodes 

are interconnected using a matrix that forms the visibility 

constraint of the robot. This is to say that the robot cannot jump 

to the goal node from the start node; it must select a path node 

from the possible nodes that are visible to it. The Sub swarms 

are bounded by the upper and lower coordinates of the possible 

nodes. The goal is to determine the shortest path to the goal 

node from the start node. A feasible solution is represented by 

a sequence of vertices linking the start node to the goal node.  

A. Mathematical Representation of the Problem  

 As shown in Fig. 1, the environment is represented in a 2-

dimensional map where the start node, 𝑆 (𝑛𝑜𝑑𝑒 1) and the goal 

node, 𝐺 (𝑛𝑜𝑑𝑒 15) are represented in blue while the path 

nodes (𝑛𝑜𝑑𝑒𝑖 , 𝑖 = 2, 3, 4, 5, 6, 7, 8, 9 ,10, 11 ,12 ,14) are 

represented in yellow.  

There are four sub swarms (𝑃𝑖 , 𝑖 = 𝑎, 𝑏, 𝑐, 𝑑) within the 

search space with different number of path nodes. The 

composition of the sub swarms is given below: 

𝑆𝑢𝑏𝑠𝑤𝑎𝑟𝑚 𝐴 =  (𝑃𝑎 , 𝑎 = 2,3), 𝑆𝑢𝑏𝑠𝑤𝑎𝑟𝑚 𝐵 = (𝑃𝑏 , 𝑏 =
4, 5, 6, 7), 𝑆𝑢𝑏𝑠𝑤𝑎𝑟𝑚 𝐶 = (𝑃𝑐 , 𝑐 =

8, 9, 10, 11), 𝑎𝑛𝑑 𝑆𝑢𝑏𝑠𝑤𝑎𝑟𝑚 𝐷 = (𝑃𝑑,𝑑 = 12, 13, 14).  

A robot  𝑅, is initialized at the start node (𝑋0 , 𝑌0)   in time   

𝑡. (𝑋′, 𝑌′) is the next position of the robot in time 𝑡 + 1  The 

Robot selects the next path node using a criteria that satisfies 

the constraint function (Shortest distance).  

The initial positions of the swarm population for the 

implementation were initialized every time a new node is 

selected until the goal node is reached. The coordinates of the 

path nodes within the sub swarm represents the lower bound  

and upper bound  for which the initialization was done; as 

shown in Eq. (1)(Xing et al, 2017). 

𝑋𝑖 = 𝑋𝑎𝑥𝑖𝑠 + 𝑟𝑎𝑛𝑑(𝐿𝑅),  𝑌𝑖 = 𝑌𝑎𝑥𝑖𝑠     
+ 𝑟𝑎𝑛𝑑(𝑈𝑅)                                                                   (1) 

B.    The Fitness Function 

To ensure proper search is done to avoid exploitation of the 

algorithms, local and global search techniques were employed. 

The fitness function is sub divided into two: Firstly, to 

determine the individual in the swarm with the best fitness 

value Eq. (2) (Lv et al, 2017).; Secondly using the coordinates 

of the best fit individual; we can determine the next node the 

robot can move to Eq. (3) (Lv et al, 2017). 

𝐵𝑒𝑠𝑡𝐹𝑖𝑡𝑖 = min 𝐹(𝑥)                                                       (2) 
 
       𝑁𝑒𝑥𝑡𝑁𝑜𝑑𝑒𝑖 = min 𝑁(𝑥)                                                (3) 
 
  𝐹(𝑥) Can be computed from Eq. (4) (Zhang et al, 2016).  

 while  𝑁(𝑥)  is determined from Eq. (7)  

𝐹(𝑥) =  𝑆(𝑥) +  𝐺(𝑥),      2 ≤ 𝑥 ≤                              (4) 

 where the first term (local search) computes the distance of 

each swarm from the origin (𝑋0 , 𝑌0) to its current position 

(𝑋′, 𝑌′) using Eq. (5) (Allah, 2016), (Zhang et al, 2016).  

 

𝑆(𝑥)𝑖 = √(𝑋𝑖
′ − 𝑋0)2 + (𝑌𝑖

′ − 𝑌0)2                               (5) 

 

The second term (global search) computes the distance of each 

swarm from its current position  (𝑋′, 𝑌′) to the goal node 

(𝑋𝑔 , 𝑌𝑔) as seen in Eq. (6) (Lv et al, 2017. 

 

𝐺(𝑥)𝑖 = √(𝑋𝑔 − 𝑋𝑖
′)

2
+ (𝑌𝑔 − 𝑌𝑖

′)
2

                              (6) 

 

The X and Y coordinates of the best fit individual in the swarm 

is then applied to Eq. (7) (Lv et al, 2017). to determine the next 

path node to be traverse to within the sub swarm. 

 

𝑁(𝑥) = √(𝑋𝑛 − 𝑋𝑏𝑒𝑠𝑡𝑓𝑖𝑡)
2

+ (𝑌𝑛 − 𝑌𝑏𝑒𝑠𝑡𝑓𝑖𝑡)
2

               (7) 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 Figure.1: Proposed Pseudo-code for Fruit Fly optimization algorithm. 
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III. IMPLEMENTATION OF THE SWARM 

INTELLIGENCE ALGORITHMS  
 

The described problem statement was solved using the 

three swarm intelligent algorithms (FOA, ACO and PSO). 

These algorithms have their respective drawbacks; FOA 

suffers from high processing time due to its poor feedback 

mechanism and in turn has premature convergence (Lv et al, 

2017), (Zhang et al 2016). ACO lack a centralized processor to 

guide it towards good solutions and performs poorly in large 

search spaces (AbWahab et al, 2015). PSO suffers from weak 

local search ability which leads it to slow convergence in a 

refined search area (AbWahab et al, 2015). However, the 

implementation did not seek to improve the traditional 

algorithms rather the implementation of the traditional 

algorithms is to benchmark the new heuristics algorithm FOA 

in the obstacle free static environment for mobile path 

planning. 

 

A. Implementation of Mobile Path Planning Using FOA 

In the implementation, the algorithm begins by randomly 

initializing the initial positions of the fruit flies, then assigning 

random distance and direction to them. The fitness value of 

each fruit fly is evaluated to determine the best fruit fly in the 

swarm. After which the coordinates of the best fruit fly are 

used to compute the next node the robot can move to from the 

nodes visible to it. The algorithm terminates once the selected 

node is same as the goal node. Fig. (2) and (3) gives detailed 

pseudo-code and flowchart of the proposed method. 

 

Fig. 2: Proposed Pseudo-code for Fruit Fly optimization Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Flowchart of Fruit Fly optimization algorithm.  

D.  Implementation of Mobile Path Planning Using PSO 

In the implementation, the algorithm begins by randomly 

initializing the positions and velocities of the particles in the 

swarm, then the fitness value of each particle is evaluated to 

determine the local best particle. The local best fitness value is 

assigned to become the global best. The swarm particles 

velocities and positions were then updated to enable the 

particles move towards the global best particle in the swarm 

using Eq. (8) and Eq. (9) respectively (Qinghai, 2010).  

 
𝑁𝑒𝑤 𝑉𝑖 = 𝑢 ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑉𝑖 + 𝑐1 ∗ 𝑟𝑎𝑛𝑑(0,1) ∗ (𝑃𝑖 − 𝑋𝑖) +

𝑐2 ∗ 𝑟𝑎𝑛𝑑 (0,1) ∗ (𝑃𝑔 − 𝑋𝑖)                                               (8)    

 
𝑁𝑒𝑤 𝑝𝑜𝑠𝑡𝑛 𝑋𝑖 = 𝑐𝑢𝑟 𝑝𝑜𝑠𝑡𝑛 𝑋𝑖 + 𝑁𝑒𝑤 𝑉𝑖                (9) 

 

where, Xi represents the current position of the particle, Pi 

represents the best previous position, Vi represent the current 

velocity of the particle, c1, c2 are two positive constants named 

learning factors which regulates the speed of moving towards 

the most optimal particle of the swarm and towards the 

individual particle; rand (0,1) represents the random functions 

in the range [0, 1] and u represents an inertia weight employed 

as an improvement on the basic PSO.  

The fitness value of the particles is re-evaluated again to 

determine the new global best particle in the swarm. After 

which the coordinates of the global best particle are used to 

Set the start, goal and sub swarms nodes 

While (goal node =false) 

Initialize the swarm initial position using Equation (1) 

Assign distance and direction to each fruit fly using Equation 

(1) 

Calculate the Smell Concentration (Fitness Value) of each fruit 

fly using Equation (4) 

Determine the Best Fly using Equation (2) 

Calculate the transition probability of the robot using Eq. (7) 

Determine the next node using Eq. (3) 

Save the next node and its x and y coordinates 

End While 

 

Set the Start, Goal, Subswarm nodes 

Initialize the swarm position using the upper 

and lower limits of the possible variable path 

Randomly assign direction and distance to 

each fruit fly 

Calculate the smell concentration (Fitness 

Value) of each fruit fly 

Output the Optimal Path 

Compute the transitions probability of the 

robot to each of the possible visible paths 

Is next 

node = 

goal node? 

NO 

YES 

Determine the Best fly 

Determine the next node 
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compute the next node the robot can move to from the nodes 

visible to it. The algorithm terminates once the selected node 

is same as the goal node. Figs. (4) and (5) give detailed pseudo-

code and flowchart of the proposed method. 

 
Set the start, goal and sub swarms nodes, learning factors (c1, c2), 

weight (u) 

 While (goal node =false) 

  Initialize the swarm initial position and velocities of each     

particles using Eq. (1) 

  Calculate the Fitness Value of each particle using Eq. (4) 

  Assign the Local best value to Global best 

  Update the velocities of the particles using Eq. (8)  

  Update the positions of the particles using Eq. (9) 

  Determine the Global Best particle using Eq. (2) 

  Calculate the transition probability of the robot using Eq. (7) 

  Determine the next node using Eq. (3) 

  Save the next node and its x and y coordinates 

End While 
 

Fig. 4: Pseudo code for Particle Swarm Optimization Algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

  Fig. 5: Flowchart of Particle Swarm Optimization algorithm. 

 
 

 

E.  Implementation of Mobile Path Planning Using ACO 

In the implementation, the coordinates of the nodes were 

used to determine the weights and length of each path which 

pheromone was initialized. The algorithm begins by 

initializing the pheromone concentration on each path to zero. 

This is to mean that the ants are still in their nest. The 

pheromone concentration on a path is determined from the 

length of the path, weight on each node, and attractiveness of 

the node. As the ants move, more pheromone concentration on 

each path are updated and consequently evaporated to allow 

exploration using Eq. (10) (Blum, 2005) and Eq. (11) 

(AbWahab et al, 2015) respectively. 

𝜏𝑖 = 𝜏𝑖 +
𝑄

𝑙𝑖

, 𝑄 > 0,                                                   (10) 

𝜏(𝑎,𝑏)(𝑡 + 1) = (1 − 𝜌) ∗ 𝜏(𝑎,𝑏)(𝑡) +  ∑ [∆𝜏(𝑎,𝑏)
𝑘 (𝑡)]

𝑚

(𝑘=1)

  (11) 

The ants then apply the transition probability on each node to 

determine the node with high pheromone concentration using 

Eq. 12. (Blum, 2005). 

𝑝(𝑎,𝑏)
𝑘 (𝑡) =

([𝜏𝑎,𝑏(𝑡)]
𝛼

∗  [∩𝑎,𝑏]
𝛽

)

(∑ [𝜏𝑎,𝑏(𝑡)]
𝛼

𝑏𝜖𝑏𝑐 ∗  [∩𝑎,𝑏]
𝛽

)
                           (12) 

 

If α is higher than β, the searching probability will be 

dependent on the pheromone concentration otherwise it will be 

dependent on its visibility knowledge.  

To allow exploration; the greedy selection method was not 

used rather the robot randomly select a node from the possible 

visible nodes. The algorithm terminates once the selected node 

is same as the goal node. Figs. (6) and (7) gives detailed pseudo 

code and flowchart of the proposed method. 

 
Set the start, goal and subs warms nodes, alpha, beta, 

attractiveness, evaporation rate 

  While (goal node =false) 

  Initialize the paths pheromone concentration to zero 

  Compute the length of each path using its weight (x, y 

coordinates) 

  Calculate the pheromone Concentration on each path using the 

length 

  Update the pheromone concentration of each path using eq. (10) 

  Apply the pheromone evaporation rate using Eq. (11) 

  Calculate the transition probability of the robot using Eq. (12) 

  Randomly determine the next node 

  Save the next node and its x and y coordinates 

End While 
 

 Fig 6: Pseudo code for Ant Colony Optimization Algorithm. 

 

 

 

 

 

 

Is next 

node = 

goal node? 

Set the Start, Goal, Subswarm nodes, learning factors (c1,c2), 

weight (u) 

Initiatilize the swarm positions and velocities of each particle 

using the upper and lower limits of the possible variable paths 

Assign the Local Best value to Global best 

Update the velocities of each particle 

Output the Optimal Path 

Determine the global best 

NO 

YES 

Update the positions of each particle 

Determine the next node 

Compute the transition probability of the robot to each of the 

possible variable paths 
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Fig.7: Flowchart of Ant Colony Optimization Algorithm. 

 

 

IV. SIMULATION RESULT AND DISCUSSION 

The robot environment was represented as a graph bounded 

with the coordinates of the start and target nodes. The start 

node is at (0.0) and the target is at (10, 10). The search space 

consists of 15 static nodes where Node 1 is the start node and 

Node 15 is the target node. The experiment is to generate a path 

from the start node to the goal node. The three swarm 

intelligence algorithms were applied to generate a path. The 

performance of these algorithms is compared using the 

following performance criteria: Average shortest distance, 

Computational time, Convergence Speed. The code was 

written with Python programming language on the spider 

editor. The experiment is performed on a 1.70GHz dual core 

CPU computer with 4GB RAM. The user must input the 

swarm size. 

The experiment is presented in obstacle free environment. 

We used the three swarm intelligence algorithm to find the 

shortest path for a Mobile robot to move from the start node to 

the target node. A transition matrix of nodes in the 

environment was generated and the positions were known to 

the robot. Each node was assigned a computed weight which 

is called the cost of selecting the node (CN). Number of runs 

(NN) was given as a parameter before simulation begins. The 

results of the simulation are to generate average path length, 

average execution time and average convergence speed. 

The path length (PT) is calculated using sum of the cost of the 

selected nodes from start node (s) to the goal node (g). 

 

             𝑃𝑇 = ∑ 𝐶𝑁                                                             (13)𝑠
𝑔   

 The execution time (ET) is calculated using the time the robot 

reaches the goal node minus the start time of the algorithm.  

      𝐸𝑇 = 𝐸𝑛𝑑𝑡𝑖𝑚𝑒 − 𝑆𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒                                     (14)  

The convergence speed (CS) is calculated using sum of the 

path length divided by execution time for each run. 

      𝐶𝑆 =
𝑃𝑇

𝐸𝑇 
                                                                              (15)  

The average path length is calculated using sum of the cost of 

the selected nodes for each run divided by the number of runs 

the algorithm ran before reaching the target node. 

       𝐴𝑣𝑔. 𝑃𝑇 = ∑ 𝑃𝑇/𝑁𝑁𝑛𝑛
𝑖=1                                                (16) 

The average execution time is calculated using sum of the time 

the robot reaches the goal node minus the start time of the 

algorithm for each run divided by the number of runs the 

algorithm ran before reaching the target node. 

        𝐴𝑣𝑔. 𝐸𝑇 = ∑ 𝐸𝑇/𝑁𝑁𝑛𝑛
𝑖=1                                                 (17)  

The average convergence speed is calculated using sum of the 

convergence speed for each run divided by the number of runs 

the algorithm ran before reaching the target node. 

        𝐴𝑣𝑔. 𝐶𝑆 = ∑ 𝐶𝑆/𝑁𝑁𝑛𝑛
𝑖=1                                                   (18)  

  In Table I, the parameters for each algorithm is stated. 

Table II gives the computed results for each algorithm when 

executed for 50 runs. It is shown that FOA generated the 

shortest average path with 19.51m when compared with PSO 

and ACO; while PSO and ACO were in close range with 

21.27m and 21.41m respectively. Again, the Convergence 

speed of FOA can be seen in Table 2 to outperform that of PSO 

and ACO. FOA was able to converge with a speed of 

314921m/s as against that of ACO and PSO which are 

51051.93m/s and 3655.371 m/s respectively. However, the 

execution time of FOA was worst compared with ACO whose 

execution time outperformed the FOA and ACO algorithm. 
 

              Table 1: Parameters used in the experiment. 

   Algorithm/Parameters FOA ACO PSO 

   Swarm Size 100 100 100 

   Number of Runs(NN) 50 50 50 

   C1 (Learning factor) * * 1.49445 

   C2 (Learning factor) * * 1.49445 

   W (Inertia) * * 0.729 

   Q (Attractive Constant) * 0.1 * 

   Alpha(Influence factor) * 0.1 * 

   Beta(Inf. of adjacent nodes) * 0.1 * 

   P(Evaporation rate) * 0.1 * 

* the parameter is not applicable. 
  

 Figs (8-12) give the paths generated by the FOA, PSO and 

ACO at run 10, 20, 30, 40 and 50. The individual result of the 

execution runs at 10, 20, 30, 40 and 50 can be seen on Table 

III. With the individual runs, the performance of FOA in 

determining the shortest path with a faster speed can also be 

concluded. 

 

 

 

 
 

 

Set the Start, Goal, Subswarm nodes, alpha, 

beta, attractiveness, evaporation rate 

Initialize the paths pheromone concentration to 

zero 

Calculate the pheromone concentration on each 

path 
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NO 
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Calculate the transition probability of the robot 

Determine the next node 
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Table 2: Comparison of Results for FOA, ACO and PSO algorithms. 

Algorithm FOA ACO PSO 

Avg. Path Length (m) 19.5128 21.4148 21.2746 

Avg. Execution Time(s)  0.008117 0.000576 0.007203 

Avg. Speed (m/sec) 3149.217 51051.93 3655.371 

 
        Table 3: Result for Execution No.10, 20, 30, 40 and 50. 

Exec. 

 No. Criteria FOA ACO PSO 

10 

Path Length 16.41 27.32 15.76 

Exec. Time 0.00563236 0.000354 0.0052055 

Conv. Speed 2913.521153 77219.64 3027.567 

20 

Path Length 18.33 24 26.72 

Exec. Time 0.0055828 0.000336 0.0051934 

Conv. Speed 3283.298703 71369.1 5144.9521 

30 

Path Length 21.65 26.86 19.81 

Exec. Time 0.005564 0.000334 0.0057814 

Conv. Speed 3891.08555 80467.35 3426.5057 

40 

Path Length 18.17 21.39 19.47 

Exec. Time 0.0055883 0.000328 0.0053256 

Conv. Speed 3251.436036 65246.24 3655.9261 

50 

Path Length 16.57 19.16 21.39 

Exec. Time 0.005766 0.000351 0.0054766 

Conv. Speed 2873.742629 54527.86 3905.7151 

     

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 8: Path generation at execution no. 10. 

Fig 10: Path generation at execution no. 30. 

Fig 11: Path generation at execution no. 40. 

 

Fig 9: Path generation at execution no. 20. 
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V.  CONCLUSION 

In this study we presented the application of three swarm 

intelligence algorithms namely: Fruit-fly optimization 

Algorithm (FOA), Particle Swarm Optimization Algorithm 

(PSO) and Ant Colony Optimization Algorithm (ACO) to the 

Mobile robot path planning problem in an obstacle free static 

environment. The three algorithms were able to generate a path 

from the start node to the target node within the search space.  

We can conclude that the algorithms have similar execution 

times, path length and convergence speed irrespective of the 

number of runs it is executed with same parameters thus the 

number of runs do not affect the performance of the 

algorithms.  ACO was observed to have the least execution 

time than FOA and PSO but did not achieve the best path 

length. With this we can conclude that ACO falls into 

premature convergence than FOA and PSO. FOA has the 

highest execution time which tells us about the high processing 

time due to its feedback mechanism.   

We also observed that the basic FOA was able to produce 

path with shorter length than the basic PSO and ACO counter 

parties. This could be attributed to simple implementation 

method FOA implores in the search. FOA which is one of the 

newest swarm intelligence algorithms in the optimization 

world is seen to out-perform the older swarm intelligence 

algorithms in convergence speed. It is also worthy to note that 

the implementation of FOA is far easier than ACO and PSO 

due to its minimum parameter. In the next paper, we intend to 

apply these basic versions of the three algorithms in an 

environment with obstacles to also compare their performance 

in such condition. 
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