505 research outputs found

    Certifying Software Component Performance Specifications

    Get PDF
    In component-based software engineering, performance prediction approaches support the design of business information systems on the architectural level. They are based on behavior specifications of components. This work presents a round-trip approach for using, assessing, and certifying the accuracy of parameterized, probabilistic, deterministic, and concurrent performance specifications. Its applicability and effectiveness are demonstrated using the CoCoME benchmark

    A Mobility Case Study Framework for Validating Uncertainty Impact Analyses regarding Confidentiality

    Get PDF
    In den letzten zwei Jahrzehnten sind Software-Systeme globaler, vernetzter und komplexer geworden. Dabei ist die Vertraulichkeit zu einer wichtigen Sicherheitsanforderungen an Informationssysteme geworden. Je später Vertraulichkeitsverletzungen im Entwicklungsprozess festgestellt werden, desto kostenintensiver kann deren Behebung werden. Bereits im frühen Entwurf existieren Ungewissheiten, sowohl über das System als auch dessen Umgebung, die sich auf die Vertraulichkeit auswirken können. Daher ist es wichtig bereits zur Entwurfszeit solche Ungewissheiten zu berücksichtigen und deren Auswirkungen auf die Vertraulichkeit einzuschätzen. Es existieren Ansätze, die Softwarearchitekten und Softwarearchitektinnen unterstützen sollen, Ungewissheitsauswirkungen auf die Vertraulichkeit zu untersuchen. Diese wurden jedoch noch nicht umfangreich evaluiert und deren Nutzen noch nicht unabhängig nachgewiesen. Um die Validität zu erhöhen, sollten weitere unabhängige Fallstudien durchgeführt werden. Dabei ist ein einheitliches Vorgehen notwendig, um konsistente Ergebnissen au erzeugen. Obwohl es allgemein Arbeiten in diesem Bereich gibt, sind diese nicht spezifisch genug um die Anforderung zu erfüllen. Diese Arbeit soll diese Lücke schließen, indem ein Rahmenwerk vorgestellt wird, welches einen Untersuchungsprozess und ein Fallstudienprotokoll beinhaltet. Der Untersuchungsprozess besteht aus allgemeingültigen Schritten, die für Fallstudien notwendig sind und Schritten, die speziell für diese Klasse von Analysen notwendig sind. Das Fallstudienprotokoll beinhaltet Anforderungen an die Fallstudie und an den Fallstudienentwurf, der auf vorhandener Literatur aufbaut. Dieses Rahmenwerk soll Forschenden helfen, weitere Fallstudien zur Validierung der Ungewissheits-Auswirkungs-Analysen strukturiert durchzuführen und damit auch Ungewissheiten und deren Auswirkung auf Vertraulichkeit zu erforschen. Um das Rahmenwerk zu evaluieren, wird eine Mobilitätsfallstudie durchgeführt, mit der eine Ungewissheiten-Auswirkungs-Analyse unabhängig evaluiert wird. Diese Mobilitätsfallstudie stellt einen weiteren Beitrag dieser Arbeit dar. Abschließend wird in dieser Arbeit die Qualität des Untersuchungsprozesses und der Fallstudie sowie die Vollständigkeit der zu untersuchenden Aspekte evaluiert. Dabei richten sich der Evaluationsplan und der Evaluationsentwurf an den definierten Anforderungen aus. Durch die Evaluation soll untersucht werden, ob der Untersuchungsprozess und die Fallstudienstrategie eine fundierte Basis besitzen, durchführbar sind und aussagekräftige Ergebnisse fördern. Dabei wird eine Anforderungsabdeckung an die zu untersuchenden Aspekte von rund~80\% erreicht. Das vorgestellte Rahmenwerk unterstützt die Validierung der Ungewissheiten-Auswirkungs-Analyse: Im Rahmen der Fallstudie gewonnene Ergebnisse lassen darauf schließen, dass die strukturelle Ausbreitung von Ungewissheiten alleine nicht ausreichend ist, um den Softwarearchitektinnen und Softwarearchitekteneinen verlässlichen Ausgangspunkt für die weitere Vertraulichkeitsanalysen zu geben

    Reconstruction of Software Component Architectures and Behaviour Models using Static and Dynamic Analysis

    Get PDF
    Model-based performance prediction systematically deals with the evaluation of software performance to avoid for example bottlenecks, estimate execution environment sizing, or identify scalability limitations for new usage scenarios. Such performance predictions require up-to-date software performance models. This book describes a new integrated reverse engineering approach for the reconstruction of parameterised software performance models (software component architecture and behaviour)

    Automated Improvement of Software Architecture Models for Performance and Other Quality Attributes

    Get PDF

    Architectural Data Flow Analysis for Detecting Violations of Confidentiality Requirements

    Get PDF
    Software vendors must consider confidentiality especially while creating software architectures because decisions made here are hard to change later. Our approach represents and analyzes data flows in software architectures. Systems specify data flows and confidentiality requirements specify limitations of data flows. Software architects use detected violations of these limitations to improve the system. We demonstrate how to integrate our approach into existing development processes

    Architectural Data Flow Analysis for Detecting Violations of Confidentiality Requirements

    Get PDF
    Software vendors must consider confidentiality especially while creating software architectures because decisions made here are hard to change later. Our approach represents and analyzes data flows in software architectures. Systems specify data flows and confidentiality requirements specify limitations of data flows. Software architects use detected violations of these limitations to improve the system. We demonstrate how to integrate our approach into existing development processes

    A Mobility Case Study for Validating Attack Propagation Analyses

    Get PDF
    The Architectural Attack Propagation Analysis for Identifying Confidentiality Issues proposed by Walter et al. considers vulnerability analysis in software architecture. The analysis is using access control policies together with the vulnerabilities and their combinations to propagate through the system. This phenomenon has to be investigated thoroughly in a real-life context to be able to make conclusions about metrics, e.g. accuracy. However, a concrete approach to achieve the investigation of Attack Propagation Analyses in a real-life context is missing. This work aims to fill this gap with A Mobility Case Study for Validating Attack Propagation Analyses. In order to achieve validity, conventional properties of case studies in software engineering were identified. Afterward, the end result, in form of a software model, was reviewed according to these properties. This review has revealed that all properties were fulfilled, however not in the highest degree of fulfillment. A discussion about this is held in this paper

    Architectural Data Flow Analysis for Detecting Violations of Confidentiality Requirements

    Get PDF
    Diese Arbeit präsentiert einen Ansatz zur systematischen Berücksichtigung von Vertraulichkeitsanforderungen in Softwarearchitekturen mittels Abbildung und Analyse von Datenflüssen. Die Stärkung von Datenschutzregularien, wie bspw. durch die europäische Datenschutzgrundverordnung (DSGVO), und die Reaktionen der Bevölkerung auf Datenskandale, wie bspw. den Skandal um Cambridge Analytica, haben gezeigt, dass die Wahrung von Vertraulichkeit für Organisationen von essentieller Bedeutung ist. Um Vertraulichkeit zu wahren, muss diese während des gesamten Softwareentwicklungsprozesses berücksichtigt werden. Frühe Entwicklungsphasen benötigen hier insbesondere große Beachtung, weil ein beträchtlicher Anteil an späteren Problemen auf Fehler in diesen frühen Entwicklungsphasen zurückzuführen ist. Hinzu kommt, dass der Aufwand zum Beseitigen von Fehlern aus der Softwarearchitektur in späteren Entwicklungsphasen überproportional steigt. Um Verletzungen von Vertraulichkeitsanforderungen zu erkennen, werden in früheren Entwicklungsphasen häufig datenorientierte Dokumentationen der Softwaresysteme verwendet. Dies kommt daher, dass die Untersuchung einer solchen Verletzung häufig erfordert, Datenflüssen zu folgen. Datenflussdiagramme (DFDs) werden gerne genutzt, um Sicherheit im Allgemeinen und Vertraulichkeit im Speziellen zu untersuchen. Allerdings sind reine DFDs noch nicht ausreichend, um darauf aufbauende Analysen zu formalisieren und zu automatisieren. Stattdessen müssen DFDs oder auch andere Architekturbeschreibungssprachen (ADLs) erweitert werden, um die zur Untersuchung von Vertraulichkeit notwendigen Informationen repräsentieren zu können. Solche Erweiterungen unterstützen häufig nur Vertraulichkeitsanforderungen für genau einen Vertraulichkeitsmechanismus wie etwa Zugriffskontrolle. Eine Kombination von Mechanismen unterstützen solche auf einen einzigen Zweck fokussierten Erweiterungen nicht, was deren Ausdrucksmächtigkeit einschränkt. Möchte ein Softwarearchitekt oder eine Softwarearchitektin den eingesetzten Vertraulichkeitsmechanismus wechseln, muss er oder sie auch die ADL wechseln, was mit hohem Aufwand für das erneute Modellieren der Softwarearchitektur einhergeht. Darüber hinaus bieten viele Analyseansätze keine Integration in bestehende ADLs und Entwicklungsprozesse. Ein systematischer Einsatz eines solchen Ansatzes wird dadurch deutlich erschwert. Existierende, datenorientierte Ansätze bauen entweder stark auf manuelle Aktivitäten und hohe Expertise oder unterstützen nicht die gleichzeitige Repräsentation von Zugriffs- und Informationsflusskontrolle, sowie Verschlüsselung im selben Artefakt zur Architekturspezifikation. Weil die genannten Vertraulichkeitsmechanismen am verbreitetsten sind, ist es wahrscheinlich, dass Softwarearchitekten und Softwarearchitektinnen an der Nutzung all dieser Mechanismen interessiert sind. Die erwähnten, manuellen Tätigkeiten umfassen u.a. die Identifikation von Verletzungen mittels Inspektionen und das Nachverfolgen von Daten durch das System. Beide Tätigkeiten benötigen ein beträchtliches Maß an Erfahrung im Bereich Vertraulichkeit. Wir adressieren in dieser Arbeit die zuvor genannten Probleme mittels vier Beiträgen: Zuerst präsentieren wir eine Erweiterung der DFD-Syntax, durch die die zur Untersuchung von Zugriffs- und Informationsflusskontrolle, sowie Verschlüsselung notwendigen Informationen mittels Eigenschaften und Verhaltensbeschreibungen innerhalb des selben Artefakts zur Architekturspezifikation ausgedrückt werden können. Zweitens stellen wir eine Semantik dieser erweiterten DFD-Syntax vor, die das Verhalten von DFDs über die Ausbreitung von Attributen (engl.: label propagation) formalisiert und damit eine automatisierte Rückverfolgung von Daten ermöglicht. Drittens präsentieren wir Analysedefinitionen, die basierend auf der DFD-Syntax und -Semantik Verletzungen von Vertraulichkeitsanforderungen identifizieren kann. Die unterstützten Vertraulichkeitsanforderungen decken die wichtigsten Varianten von Zugriffs- und Informationsflusskontrolle, sowie Verschlüsselung ab. Viertens stellen wir einen Leitfaden zur Integration des Rahmenwerks für datenorientierte Analysen in bestehende ADLs und deren zugehörige Entwicklungsprozesse vor. Das Rahmenwerk besteht aus den vorherigen drei Beiträgen. Die Validierung der Ausdrucksmächtigkeit, der Ergebnisqualität und des Modellierungsaufwands unserer Beiträge erfolgt fallstudienbasiert auf siebzehn Fallstudiensystemen. Die Fallstudiensysteme stammen größtenteils aus verwandten Arbeiten und decken fünf Arten von Zugriffskontrollanforderungen, vier Arten von Informationsflussanforderungen, zwei Arten von Verschlüsselung und Anforderungen einer Kombination beider Vertraulichkeitsmechanismen ab. Wir haben die Ausdrucksmächtigkeit der DFD-Syntax, sowie der mittels des Integrationsleitfadens erstellten ADLs validiert und konnten alle außer ein Fallstudiensystem repräsentieren. Wir konnten außerdem die Vertraulichkeitsanforderungen von sechzehn Fallstudiensystemen mittels unserer Analysedefinitionen repräsentieren. Die DFD-basierten, sowie die ADL-basierten Analysen lieferten die erwarteten Ergebnisse, was eine hohe Ergebnisqualität bedeutet. Den Modellierungsaufwand in den erweiterten ADLs validierten wir sowohl für das Hinzufügen, als auch das Wechseln eines Vertraulichkeitsmechanismus bei einer bestehenden Softwarearchitektur. In beiden Validierungen konnten wir zeigen, dass die ADL-Integrationen Modellierungsaufwand einsparen, indem beträchtliche Teile bestehender Softwarearchitekturen wiederverwendet werden können. Von unseren Beiträgen profitieren Softwarearchitekten durch gesteigerte Flexibilität bei der Auswahl von Vertraulichkeitsmechanismen, sowie beim Wechsel zwischen diesen Mechanismen. Die frühe Identifikation von Vertraulichkeitsverletzungen verringert darüber hinaus den Aufwand zum Beheben der zugrundeliegenden Probleme

    A Reference Structure for Modular Model-based Analyses

    Get PDF
    Kontext: In dieser Arbeit haben wir die Evolvierbarkeit, Verständlichkeit und Wiederverwendbarkeit von modellbasierten Analysen untersucht. Darum untersuchten wir die Wechselbeziehungen zwischen Modellen und Analysen, insbesondere die Struktur und Abhängigkeiten von Artefakten und die Dekomposition und Komposition von modellbasierten Analysen. Herausforderungen: Softwareentwickler verwenden Modelle von Softwaresystemen, um die Evolvierbarkeit und Wiederverwendbarkeit eines Architekturentwurfs zu bestimmen. Diese Modelle ermöglichen die Softwarearchitektur zu analysieren, bevor die erste Zeile Code geschreiben wird. Aufgrund evolutionärer Veränderungen sind modellbasierte Analysen jedoch auch anfällig für eine Verschlechterung der Evolvierbarkeit, Verständlichkeit und Wiederverwendbarkeit. Diese Probleme lassen sich auf die Ko-Evolution von Modellierungssprache und Analyse zurückführen. Der Zweck einer Analyse ist die systematische Untersuchung bestimmter Eigenschaften eines zu untersuchenden Systems. Nehmen wir zum Beispiel an, dass Softwareentwickler neue Eigenschaften eines Softwaresystems analysieren wollen. In diesem Fall müssen sie Merkmale der Modellierungssprache und die entsprechenden modellbasierten Analysen anpassen, bevor sie neue Eigenschaften analysieren können. Merkmale in einer modellbasierten Analyse sind z.\,B. eine Analysetechnik, die eine solche Qualitätseigenschaft analysiert. Solche Änderungen führen zu einer erhöhten Komplexität der modellbasierten Analysen und damit zu schwer zu pflegenden modellbasierten Analysen. Diese steigende Komplexität verringert die Verständlichkeit der modellbasierten Analysen. Infolgedessen verlängern sich die Entwicklungszyklen, und die Softwareentwickler benötigen mehr Zeit, um das Softwaresystem an veränderte Anforderungen anzupassen. Stand der Technik: Derzeitige Ansätze ermöglichen die Kopplung von Analysen auf einem System oder über verteilte Systeme hinweg. Diese Ansätze bieten die technische Struktur für die Kopplung von Simulationen, nicht aber eine Struktur wie Komponenten (de)komponiert werden können. Eine weitere Herausforderung beim Komponieren von Analysen ist der Verhaltensaspekt, der sich darin äußert, wie sich die Analysekomponenten gegenseitig beeinflussen. Durch die Synchronisierung jeder beteiligten Simulation erhöht die Modularisierung von Simulationen den Kommunikationsbedarf. Derzeitige Ansätze erlauben es, den Kommunikationsaufwand zu reduzieren; allerdings werden bei diesen Ansätzen die Dekomposition und Komposition dem Benutzer überlassen. Beiträge: Ziel dieser Arbeit ist es, die Evolvierbarkeit, Verständlichkeit und Wiederverwendbarkeit von modellbasierten Analysen zu verbessern. Zu diesem Zweck wird die Referenzarchitektur für domänenspezifische Modellierungssprachen als Grundlage genommen und die Übertragbarkeit der Struktur der Referenzarchitektur auf modellbasierte Analysen untersucht. Die geschichtete Referenzarchitektur bildet die Abhängigkeiten der Analysefunktionen und Analysekomponenten ab, indem sie diese bestimmten Schichten zuordnet. Wir haben drei Prozesse für die Anwendung der Referenzarchitektur entwickelt: (i) Refactoring einer bestehenden modellbasierten Analyse, (ii) Entwurf einer neuen modellbasierten Analyse und (iii) Erweiterung einer bestehenden modellbasierten Analyse. Zusätzlich zur Referenzarchitektur für modellbasierte Analysen haben wir wiederkehrende Strukturen identifiziert, die zu Problemen bei der Evolvierbarkeit, Verständlichkeit und Wiederverwendbarkeit führen; in der Literatur werden diese wiederkehrenden Strukturen auch als Bad Smells bezeichnet. Wir haben etablierte modellbasierte Analysen untersucht und dreizehn Bad Smells identifiziert und spezifiziert. Neben der Spezifizierung der Bad Smells bieten wir einen Prozess zur automatischen Identifizierung dieser Bad Smells und Strategien für deren Refactoring, damit Entwickler diese Bad Smells vermeiden oder beheben können. In dieser Arbeit haben wir auch eine Modellierungssprache zur Spezifikation der Struktur und des Verhaltens von Simulationskomponenten entwickelt. Simulationen sind Analysen, um ein System zu untersuchen, wenn das Experimentieren mit dem bestehenden System zu zeitaufwändig, zu teuer, zu gefährlich oder einfach unmöglich ist, weil das System (noch) nicht existiert. Entwickler können die Spezifikation nutzen, um Simulationskomponenten zu vergleichen und so identische Komponenten zu identifizieren. Validierung: Die Referenzarchitektur für modellbasierte Analysen, haben wir evaluiert, indem wir vier modellbasierte Analysen in die Referenzarchitektur überführt haben. Wir haben eine szenariobasierte Evaluierung gewählt, die historische Änderungsszenarien aus den Repositories der modellbasierten Analysen ableitet. In der Auswertung können wir zeigen, dass sich die Evolvierbarkeit und Verständlichkeit durch die Bestimmung der Komplexität, der Kopplung und der Kohäsion verbessert. Die von uns verwendeten Metriken stammen aus der Informationstheorie, wurden aber bereits zur Bewertung der Referenzarchitektur für DSMLs verwendet. Die Bad Smells, die durch die Co-Abhängigkeit von modellbasierten Analysen und ihren entsprechenden DSMLs entstehen, haben wir evaluiert, indem wir vier modellbasierte Analysen nach dem Auftreten unserer schlechten Gerüche durchsucht und dann die gefundenen Bad Smells behoben haben. Wir haben auch eine szenariobasierte Auswertung gewählt, die historische Änderungsszenarien aus den Repositories der modellbasierten Analysen ableitet. Wir können zeigen, dass die Bad Smells die Evolvierbarkeit und Verständlichkeit negativ beeinflussen, indem wir die Komplexität, Kopplung und Kohäsion vor und nach der Refaktorisierung bestimmen. Den Ansatz zum Spezifizieren und Finden von Komponenten modellbasierter Analysen haben wir evaluiert, indem wir Komponenten von zwei modellbasierten Analysen spezifizieren und unseren Suchalgorithmus verwenden, um ähnliche Analysekomponenten zu finden. Die Ergebnisse der Evaluierung zeigen, dass wir in der Lage sind, ähnliche Analysekomponenten zu finden und dass unser Ansatz die Suche nach Analysekomponenten mit ähnlicher Struktur und ähnlichem Verhalten und damit die Wiederverwendung solcher Komponenten ermöglicht. Nutzen: Die Beiträge unserer Arbeit unterstützen Architekten und Entwickler bei ihrer täglichen Arbeit, um wartbare und wiederverwendbare modellbasierte Analysen zu entwickeln. Zu diesem Zweck stellen wir eine Referenzarchitektur bereit, die die modellbasierte Analyse und die domänenspezifische Modellierungssprache aufeinander abstimmt und so die Koevolution erleichtert. Zusätzlich zur Referenzarchitektur bieten wir auch Refaktorisierungsoperationen an, die es Architekten und Entwicklern ermöglichen, eine bestehende modellbasierte Analyse an die Referenzarchitektur anzupassen. Zusätzlich zu diesem technischen Aspekt haben wir drei Prozesse identifiziert, die es Architekten und Entwicklern ermöglichen, eine neue modellbasierte Analyse zu entwickeln, eine bestehende modellbasierte Analyse zu modularisieren und eine bestehende modellbasierte Analyse zu erweitern. Dies geschieht natürlich so, dass die Ergebnisse mit der Referenzarchitektur konform sind. Darüber hinaus ermöglicht unsere Spezifikation den Entwicklern, bestehende Simulationskomponenten zu vergleichen und sie bei Bedarf wiederzuverwenden. Dies erspart den Entwicklern die Neuimplementierung von Komponenten
    corecore