84 research outputs found

    Robotic simulators for tissue examination training with multimodal sensory feedback

    Get PDF
    Tissue examination by hand remains an essential technique in clinical practice. The effective application depends on skills in sensorimotor coordination, mainly involving haptic, visual, and auditory feedback. The skills clinicians have to learn can be as subtle as regulating finger pressure with breathing, choosing palpation action, monitoring involuntary facial and vocal expressions in response to palpation, and using pain expressions both as a source of information and as a constraint on physical examination. Patient simulators can provide a safe learning platform to novice physicians before trying real patients. This paper reviews state-of-the-art medical simulators for the training for the first time with a consideration of providing multimodal feedback to learn as many manual examination techniques as possible. The study summarizes current advances in tissue examination training devices simulating different medical conditions and providing different types of feedback modalities. Opportunities with the development of pain expression, tissue modeling, actuation, and sensing are also analyzed to support the future design of effective tissue examination simulators

    Design methodology for the development of variable stiffness devices based on layer jamming transition

    Get PDF
    Variable stiffness mechanisms as Jamming Transition draw huge attention recently in Soft Robotics. This paper proposes a comprehensive design methodology for developing variable stiffness devices based on layer jamming. Starting from pre-existing modelling, we highlight the design parameters that should be considered, extracting them from literature and our direct experience with the phenomenon. Then we validated the methodology applying the design process to previous layer jamming cases presented in literature. The comparison between the results obtained from our methodology and those presented in the analyzed previous works highlights a good predictive capability, demonstrating that this methodology can be used as a valid tool to design variable stiffness devices based on layer jamming transition. Finally, in order to provide the scientific community with an easily usable tool to design variable stiffness structures based on layer jamming transition, we have elaborated a Matlab script that guides the user through the main design parameters implementing the proposed methodology in an interactive process

    Design of a Haptic Interface for Medical Applications using Magneto-Rheological Fluid based Actuators

    Get PDF
    This thesis reports on the design, construction, and evaluation of a prototype two degrees-of-freedom (DOF) haptic interface, which takes advantage of Magneto-Rheological Fluid (MRF) based clutches for actuation. Haptic information provides important cues in teleoperated systems and enables the user to feel the interaction with a remote or virtual environment during teleoperation. The two main objectives in designing a haptic interface are stability and transparency. Indeed, deficiencies in these factors in haptics-enabled telerobotic systems has the introduction of haptics in medical environments where safety and reliability are prime considerations. An actuator with poor dynamics, high inertia, large size, and heavy weight can significantly undermine the stability and transparency of a teleoperated system. In this work, the potential benefits of MRF-based actuators to the field of haptics in medical applications are studied. Devices developed with such fluids are known to possess superior mechanical characteristics over conventional servo systems. These characteristics significantly contribute to improved stability and transparency of haptic devices. This idea is evaluated and verified through both theoretical and experimental points of view. The design of a small-scale MRF-based clutch, suitable for a multi-DOF haptic interface, is discussed and its performance is compared with conventional servo systems. This design is developed into four prototype clutches. In addition, a closed-loop torque control strategy is presented. The feedback signal used in this control scheme comes from the magnetic field acquired from embedded Hall sensors in the clutch. The controller uses this feedback signal to compensate for the nonlinear behavior using an estimated model, based on Artificial Neural Networks. Such a control strategy eliminates the need for torque sensors for providing feedback signals. The performance of the developed design and the effectiveness of the proposed modeling and control techniques are experimentally validated. Next, a 2-DOF haptic interface based on a distributed antagonistic configuration of MRF-based clutches is constructed for a class of medical applications. This device is incorporated in a master-slave teleoperation setup that is used for applications involving needle insertion and soft-tissue palpation. Phantom and in vitro animal tissue were used to assess the performance of the haptic interface. The results show a great potential of MRF-based actuators for integration in haptic devices for medical interventions that require reliable, safe, accurate, highly transparent, and stable force reflection

    The Development of a Sensitive Manipulation End Effector

    Get PDF
    This thesis designed and realized a two-degree of freedom wrist and two finger manipulator that completes the six-degree of freedom Sensitive Manipulation Platform, the arm of which was previously developed. This platform extends the previous research in the field of robotics by covering not only the end effector with deformable tactile sensors, but also the links of the arm. Having tactile sensors on the arm will improve the dynamic model of the system during contact with its environment and will allow research in contact navigation to be explored. This type of research is intended for developing algorithms for exploring dynamic environments. Unlike traditional robots that focus on collision avoidance, this platform is designed to seek out contact and use it to gather important information about its surroundings. This small desktop platform was designed to have similar proportions and properties to a small human arm. These properties include compliant joints and tactile sensitivity along the lengths of the arms. The primary applications for the completed platform will be research in contact navigation and manipulation in dynamic environments. However, there are countless potential applications for a compliant arm with increased tactile feedback, including prosthetics and domestic robotics. This thesis covers the details behind the design, analysis, and evaluation of the two degrees of the Wrist and two two-link fingers, with particular attention being given to the integration of series elastics actuators, the decoupling of the fingers from the wrist, and the incorporation of tactile sensors in both the forearm motor module and fingers

    Cyber-Human Systems, Space Technologies, and Threats

    Get PDF
    CYBER-HUMAN SYSTEMS, SPACE TECHNOLOGIES, AND THREATS is our eighth textbook in a series covering the world of UASs / CUAS/ UUVs / SPACE. Other textbooks in our series are Space Systems Emerging Technologies and Operations; Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD); Disruptive Technologies with applications in Airline, Marine, Defense Industries; Unmanned Vehicle Systems & Operations On Air, Sea, Land; Counter Unmanned Aircraft Systems Technologies and Operations; Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets, 2nd edition; and Unmanned Aircraft Systems (UAS) in the Cyber Domain Protecting USA’s Advanced Air Assets, 1st edition. Our previous seven titles have received considerable global recognition in the field. (Nichols & Carter, 2022) (Nichols, et al., 2021) (Nichols R. K., et al., 2020) (Nichols R. , et al., 2020) (Nichols R. , et al., 2019) (Nichols R. K., 2018) (Nichols R. K., et al., 2022)https://newprairiepress.org/ebooks/1052/thumbnail.jp

    Human skill capturing and modelling using wearable devices

    Get PDF
    Industrial robots are delivering more and more manipulation services in manufacturing. However, when the task is complex, it is difficult to programme a robot to fulfil all the requirements because even a relatively simple task such as a peg-in-hole insertion contains many uncertainties, e.g. clearance, initial grasping position and insertion path. Humans, on the other hand, can deal with these variations using their vision and haptic feedback. Although humans can adapt to uncertainties easily, most of the time, the skilled based performances that relate to their tacit knowledge cannot be easily articulated. Even though the automation solution may not fully imitate human motion since some of them are not necessary, it would be useful if the skill based performance from a human could be firstly interpreted and modelled, which will then allow it to be transferred to the robot. This thesis aims to reduce robot programming efforts significantly by developing a methodology to capture, model and transfer the manual manufacturing skills from a human demonstrator to the robot. Recently, Learning from Demonstration (LfD) is gaining interest as a framework to transfer skills from human teacher to robot using probability encoding approaches to model observations and state transition uncertainties. In close or actual contact manipulation tasks, it is difficult to reliabley record the state-action examples without interfering with the human senses and activities. Therefore, wearable sensors are investigated as a promising device to record the state-action examples without restricting the human experts during the skilled execution of their tasks. Firstly to track human motions accurately and reliably in a defined 3-dimensional workspace, a hybrid system of Vicon and IMUs is proposed to compensate for the known limitations of the individual system. The data fusion method was able to overcome occlusion and frame flipping problems in the two camera Vicon setup and the drifting problem associated with the IMUs. The results indicated that occlusion and frame flipping problems associated with Vicon can be mitigated by using the IMU measurements. Furthermore, the proposed method improves the Mean Square Error (MSE) tracking accuracy range from 0.8˚ to 6.4˚ compared with the IMU only method. Secondly, to record haptic feedback from a teacher without physically obstructing their interactions with the workpiece, wearable surface electromyography (sEMG) armbands were used as an indirect method to indicate contact feedback during manual manipulations. A muscle-force model using a Time Delayed Neural Network (TDNN) was built to map the sEMG signals to the known contact force. The results indicated that the model was capable of estimating the force from the sEMG armbands in the applications of interest, namely in peg-in-hole and beater winding tasks, with MSE of 2.75N and 0.18N respectively. Finally, given the force estimation and the motion trajectories, a Hidden Markov Model (HMM) based approach was utilised as a state recognition method to encode and generalise the spatial and temporal information of the skilled executions. This method would allow a more representative control policy to be derived. A modified Gaussian Mixture Regression (GMR) method was then applied to enable motions reproduction by using the learned state-action policy. To simplify the validation procedure, instead of using the robot, additional demonstrations from the teacher were used to verify the reproduction performance of the policy, by assuming human teacher and robot learner are physical identical systems. The results confirmed the generalisation capability of the HMM model across a number of demonstrations from different subjects; and the reproduced motions from GMR were acceptable in these additional tests. The proposed methodology provides a framework for producing a state-action model from skilled demonstrations that can be translated into robot kinematics and joint states for the robot to execute. The implication to industry is reduced efforts and time in programming the robots for applications where human skilled performances are required to cope robustly with various uncertainties during tasks execution

    Design of a shape memory alloy actuator for soft wearable robots

    Get PDF
    Soft robotics represents a paradigm shift in the design of conventional robots; while the latter are designed as monolithic structures, made of rigid materials and normally composed of several stiff joints, the design of soft robots is based on the use of deformable materials such as polymers, fluids or gels, resulting in a biomimetic design that replicates the behavior of organic tissues. The introduction of this design philosophy into the field of wearable robots has transformed them from rigid and cumbersome devices into something we could call exo-suits or exo-musculatures: motorized, lightweight and comfortable clothing-like devices. If one thinks of the ideal soft wearable robot (exoskeleton) as a piece of clothing in which the actuation system is fully integrated into its fabrics, we consider that that existing technologies currently used in the design of these devices do not fully satisfy this premise. Ultimately, these actuation systems are based on conventional technologies such as DC motors or pneumatic actuators, which due to their volume and weight, prevent a seamless integration into the structure of the soft exoskeleton. The aim of this thesis is, therefore, to design of an actuator that represents an alternative to the technologies currently used in the field of soft wearable robotics, after having determined the need for an actuator for soft exoskeletons that is compact, flexible and lightweight, while also being able to produce the force required to move the limbs of a human user. Since conventional actuation technologies do not allow the design of an actuator with the required characteristics, the proposed actuator design has been based on so-called emerging actuation technologies, more specifically, on shape memory alloys (SMA). The mechanical design of the actuator is based on the Bowden transmission system. The SMA wire used as the transducer of the actuator has been routed into a flexible sheath, which, in addition to being easily adaptable to the user's body, increases the actuation bandwidth by reducing the cooling time of the SMA element by 30 %. At its nominal operating regime, the actuator provides an output displacement of 24 mm and generates a force of 64 N. Along with the actuator, a thermomechanical model of its SMA transducer has been developed to simulate its complex behavior. The developed model is a useful tool in the design process of future SMA-based applications, accelerating development ix time and reducing costs. The model shows very few discrepancies with respect to the behavior of a real wire. In addition, the model simulates characteristic phenomena of these alloys such as thermal hysteresis, including internal hysteresis loops and returnpoint memory, the dependence between transformation temperatures and applied force, or the effects of latent heat of transformation on the wire heating and cooling processes. To control the actuator, the use of a non-linear control technique called four-term bilinear proportional-integral-derivative controller (BPID) is proposed. The BPID controller compensates the non-linear behavior of the actuator caused by the thermal hysteresis of the SMA. Compared to the operation of two other implemented controllers, the BPID controller offers a very stable and robust performance, minimizing steady-state errors and without the appearance of limit cycles or other effects associated with the control of these alloys. To demonstrate that the proposed actuator together with the BPID controller are a valid solution for implementing the actuation system of a soft exoskeleton, both developments have been integrated into a real soft hand exoskeleton, designed to provide force assistance to astronauts. In this case, in addition to using the BPID controller to control the position of the actuators, it has been applied to the control of the assistive force provided by the exoskeleton. Through a simple mechanical multiplication mechanism, the actuator generates a linear displacement of 54 mm and a force of 31 N, thus fulfilling the design requirements imposed by the application of the exoskeleton. Regarding the control of the device, the BPID controller is a valid control technique to control both the position and the force of a soft exoskeleton using an actuation system based on the actuator proposed in this thesis.La robótica flexible (soft robotics) ha supuesto un cambio de paradigma en el diseño de robots convencionales; mientras que estos consisten en estructuras monolíticas, hechas de materiales duros y normalmente compuestas de varias articulaciones rígidas, el diseño de los robots flexibles se basa en el uso de materiales deformables como polímeros, fluidos o geles, resultando en un diseño biomimético que replica el comportamiento de los tejidos orgánicos. La introducción de esta filosofía de diseño en el campo de los robots vestibles (wearable robots) ha hecho que estos pasen de ser dispositivos rígidos y pesados a ser algo que podríamos llamar exo-trajes o exo-musculaturas: prendas de vestir motorizadas, ligeras y cómodas. Si se piensa en el robot vestible (exoesqueleto) flexible ideal como una prenda de vestir en la que el sistema de actuación está totalmente integrado en sus tejidos, consideramos que las tecnologías existentes que se utilizan actualmente en el diseño de estos dispositivos no satisfacen plenamente esta premisa. En última instancia, estos sistemas de actuaci on se basan en tecnologías convencionales como los motores de corriente continua o los actuadores neumáticos, que debido a su volumen y peso, hacen imposible una integraci on completa en la estructura del exoesqueleto flexible. El objetivo de esta tesis es, por tanto, el diseño de un actuador que suponga una alternativa a las tecnologias actualmente utilizadas en el campo de los exoesqueletos flexibles, tras haber determinado la necesidad de un actuador para estos dispositivos que sea compacto, flexible y ligero, y que al mismo tiempo sea capaz de producir la fuerza necesaria para mover las extremidades de un usuario humano. Dado que las tecnologías de actuación convencionales no permiten diseñar un actuador de las características necesarias, se ha optado por basar el diseño del actuador propuesto en las llamadas tecnologías de actuación emergentes, en concreto, en las aleaciones con memoria de forma (SMA). El diseño mecánico del actuador está basado en el sistema de transmisión Bowden. El hilo de SMA usado como transductor del actuador se ha introducido en una funda flexible que, además de adaptarse facilmente al cuerpo del usuario, aumenta el ancho de banda de actuación al reducir un 30 % el tiempo de enfriamiento del elemento SMA. En su régimen nominal de operaci on, el actuador proporciona un desplazamiento de salida de 24 mm y genera una fuerza de 64 N. Además del actuador, se ha desarrollado un modelo termomecánico de su transductor SMA que permite simular su complejo comportamiento. El modelo desarrollado es una herramienta útil en el proceso de diseño de futuras aplicaciones basadas en SMA, acelerando el tiempo de desarrollo y reduciendo costes. El modelo muestra muy pocas discrepancias con respecto al comportamiento de un hilo real. Además, es capaz de simular fenómenos característicos de estas aleaciones como la histéresis térmica, incluyendo los bucles internos de histéresis y la memoria de puntos de retorno (return-point memory), la dependencia entre las temperaturas de transformacion y la fuerza aplicada, o los efectos del calor latente de transformación en el calentamiento y el enfriamiento del hilo. Para controlar el actuador, se propone el uso de una t ecnica de control no lineal llamada controlador proporcional-integral-derivativo bilineal de cuatro términos (BPID). El controlador BPID compensa el comportamiento no lineal del actuador causado por la histéresis térmica del SMA. Comparado con el funcionamiento de otros dos controladores implementados, el controlador BPID ofrece un rendimiento muy estable y robusto, minimizando el error de estado estacionario y sin la aparición de ciclos límite u otros efectos asociados al control de estas aleaciones. Para demostrar que el actuador propuesto junto con el controlador BPID son una soluci on válida para implementar el sistema de actuación de un exoesqueleto flexible, se han integrado ambos desarrollos en un exoesqueleto flexible de mano real, diseñado para proporcionar asistencia de fuerza a astronautas. En este caso, además de utilizar el controlador BPID para controlar la posición de los actuadores, se ha aplicado al control de la fuerza proporcionada por el exoesqueleto. Mediante un simple mecanismo de multiplicación mecánica, el actuador genera un desplazamiento lineal de 54 mm y una fuerza de 31 N, cumpliendo así con los requisitos de diseño impuestos por la aplicación del exoesqueleto. Respecto al control del dispositivo, el controlador BPID es una técnica de control válida para controlar tanto la posición como la fuerza de un exoesqueleto flexible que use un sistema de actuación basado en el actuador propuesto en esta tesis.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Fabio Bonsignorio.- Secretario: Concepción Alicia Monje Micharet.- Vocal: Elena García Armad
    corecore