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Abstract 
This thesis designed and realized a two-degree of freedom wrist and two finger 

manipulator that completes the six-degree of freedom Sensitive Manipulation Platform, the 

arm of which was previously developed. This platform extends the previous research in the 

field of robotics by covering not only the end effector with deformable tactile 

sensors, but also the links of the arm. Having tactile sensors on the arm will improve the 

dynamic model of the system during contact with its environment and will allow research 

in contact navigation to be explored. This type of research is intended for developing 

algorithms for exploring dynamic environments. Unlike traditional robots that focus on 

collision avoidance, this platform is designed to seek out contact and use it to gather 

important information about its surroundings. This small desktop platform was designed 

to have similar proportions and properties to a small human arm. These properties include 

compliant joints and tactile sensitivity along the lengths of the arms. The primary 

applications for the completed platform will be research in contact navigation and 

manipulation in dynamic environments. However, there are countless potential 

applications for a compliant arm with increased tactile feedback, including prosthetics and 

domestic robotics. This thesis covers the details behind the design, analysis, and evaluation 

of the two degrees of the Wrist and two two-link fingers, with particular attention being 

given to the integration of series elastics actuators, the decoupling of the fingers from the 

wrist, and the incorporation of tactile sensors in both the forearm motor module and 

fingers.   
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Chapter 1 Introduction 
Robots are historically suited for tasks that are dull, dirty, dangerous, or in areas 

inaccessible to humans. They are used to automate tasks that humans could perform but 

for a variety of reasons would rather have the task done for them. In an assembly line, the 

tasks involved are repetitive and dull. Because of this, assembly lines were one of the first 

locations that robotics was applied to supplement human labor. Robotics relived human 

factory workers from extremely mundane tasks, while increasing the efficacy of the 

production system.  Currently, there are over 1.5 million industrial robots in use worldwide 

with 159,346 new robots shipped in 2012 according to the International Federation of 

Robotics (1). In a factory setting, the product being manipulated is fairly consistent and the 

process is well defined. Because of this, most manipulation is accomplished with either a 

basic two-finger pincher mechanism or custom end effectors with task specific sensors. The 

success of these robots in the structured industrial setting has inspired the reapplication of 

robotics to dull tasks in more dynamic and unstructured environments. For example as 

personal assistance robotics equipped with sensitivity for helping the elderly. The robots 

found in the industrial setting focus on precision, accuracy, and speed, all of which require 

a very stiff, fast moving mechanism with only the required level of sensitivity to accomplish 

the particular task (2). This type of system raises many safety concerns for the robot, the 

operating environment, and potentially humans in the case of collisions. It also focuses on 

task specific manipulation and sensing which cannot be applied seamlessly into unknown 

manipulation and navigation tasks. 

For a robot to successfully perform tasks in a dynamic environment without being a 

hazard to itself and other objects, such as people in its environment, it needs to be 
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adaptable. In order to be adaptable, it needs to be aware of its environment so that it can 

react according to stimuli instead of simply following a simply preset set of instructs. These 

types of interactions are more event driven instead of procedural. Therefore, a flexible, 

compliant robot with a combination of both visual and sensory force feedback would be 

necessary.  Humans are a good example of a flexible and compliant system that pairs vision 

and haptic feedback to interact with their environment and can serve as an inspiration for 

further robotics development in this field.  

            Humans have flexible ligaments that add natural elasticity to their joints, which 

allows for compliant contacts with the outside world. This compliance makes 

overextending or spraining an ankle more common than breaking a bone.  This compliance 

protects the joints and bones from injury. This is especially evident in the fingers. After 

having extended the fingers as far back as possible, they can still be pulled back further 

without pain or damage. In a robotic system, compliance has the added benefit of 

simplifying the force control equation. Instead of using a complex equation that requires an 

accurate model of the system, the compliant element can be used to measure the joint 

torque and drastically simply the control equation. Having force control allows tasks like 

inserting a peg in a hole to become significantly easier. Humans easily perform this task by 

using force control to ‘feel’ for the edges of the hole in order to place the peg. Without force 

control, the robot would need to know exactly where the hole is and the orientation of the 

peg (2). 

Human rely on their sense of vision more than any other sense. For example, in the 

Mcgurk effect humans will hear different sounds based on the image they are shown of the 

person making the sound when in reality the same sound is played when both images are 
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presented (3). Vision is capable of overwriting any of the other sensors. Consider the 

sensation of walking on a broken moving walkway or escalator. Despite the fact that it is 

not moving, we still trip a little when entering and exiting. Vision, while not addressed 

directly in this project, will be applied to the platform in later experiments combining 

vision and contact based navigation and manipulation. 

Humans are also covered tactile sensors. These sensors have a range of resolutions 

depending on the location on the body. The fingers have the highest resolution and are able 

to detect separate impacts less than 5mm apart. When manipulating in the dark or in an 

area where there is no line of sight, humans relay heavily on this sense of touch. They work 

by exploring their environment using contact to map their environment. Tactile sensors in 

the skin are also important when doing fine manipulation. Johansson and Wrestling studied 

the feedback response of skin when grasping objects and how that affects finger control. 

They found that even with full vision, participants found grasping and manipulating objects 

difficult without tactile sensing. Tactile sensing was removed by forcing the participants to 

wear thick gloves. Despite the richness of information that can be gathered from tactile 

sensors, significantly more research has been done with vision (4).  The tactile research 

that has been conducted mostly examines tasks being completed in controlled 

environments (5) (6).However, sensitive manipulation is capable of proving a much more 

complete solution to both dynamic manipulation and navigation (7) (8) (9). 
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Figure 1 Tactile sensors applied to the inside of a hand (Torres-Jara E. , 2007). 

Sensitive manipulation has been explored on the inside of a hand (8), on the foot of a 

biped robot (10), and on the tips of the fingers of a robot (7). This project will expand this 

area of research by completing the six-degree of freedom arm (11) with a 4 degree of 

freedom, two finger gripper at the end. This platform will expand research on the benefits 

of increased tactile sensitivity by applying tactile sensor onto the exterior of the links of the 

arm and to all of the faces of the fingers, not just the inside.  This thesis covers the design 

and prototyping of the arm with the two-degree of freedom wrist and the gripper platform 

specifically designed for sensitive manipulation. The platform developed during this 

project will use only joints with incorporated elastic and tactile sensor coverage integrated 

into the design.  This thesis addresses the details behind the design, analysis, and 

evaluation of the two degrees of the Wrist and two two-link fingers, with particular 

attention being given to the integration of series elastics actuators, the decoupling of the 

fingers from the wrist, and the incorporation of tactile sensors in both the forearm motor 

module and fingers. 
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1.1 Literature Review 
Robotic manipulators have a wide variety of applications and are a major focus of 

research.  They have applications spanning across many different industries, from 

industrial applications to domestic applications. This section provides a comprehensive 

review on the history of robotics manipulators, series elastic actuators and tactile sensors. 

1.1.1 Robotics Manipulators 

Dr. George Devol and Dr. Englberge invented the first robotic hand for industrial 

applications in 1959 for use with their industrial ‘Unimate.’ Robotic Hands and automated 

industrial machines were developed in parallel.  This gripper was a very simple ‘grab-

release’ style, two prong manipulator that is still used in industrial applications today. This 

style of gripper focuses on accuracy and precise manipulation (12). 

The most common industrial applications for robotic grippers are in packaging and 

assembly, these applications being ideal for robotic manipulators as they require both 

precise grasping and placement. Robotic arms used in packaging are responsible for 

moving products, usually from a conveyor belt into a larger box for shipping. The gripper is 

a critical element in this process because it needs to be able to reliably control the product 

without damaging it and place it in its correct new location. It also needs to be capable of 

removing it from the conveyor belt safely. The most common grippers used for this type of 

application are the two prong manipulators mentioned above (13)and suction cups. The 

other common industrial application for grippers is assembly. During this process the 

gripper needs to be able to move components into the correct position for assembly or to 
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move products between different assembly steps. Most of this work is usually done with 

specifically engineered fixtures or suction cups. An example of an industry that uses 

robotics heavily for assembly is mass production circuit board assembly. This thesis 

develops a platform for sensitive manipulation capable of working in an unstructured 

dynamic environment with a variety of different objects, which is very different from the 

goals of its industrial predecessors.  

The first ‘sensitive’ gripper appeared in 1961 and was created by Hinrich Ernst at 

MIT (14). Like the manipulator on the Unimate (15), it had two fingers that pinched; 

however this gripper had pressure, photodiode, and touch sensors. Having a ‘sensitive’ 

gripper provides feedback and a closed-loop system to increase the accuracy of the gripper 

because it was able to ‘feel’ when it was grasping an object. Previously, if the robot failed to 

grasp a product or the product slipped out of the gripper, it would not be aware and 

proceed as if the motion had been successful. By adding sensitivity, the gripper is also able 

to detect the amount of force it is applying to the product and if it is lined up properly, 

reducing product drop rate and breakage (16).  

A summary of the following 51 years of history is in Table 1. Over the next 51 years, 

robotic manipulators have further developed to be capable of completing more complex 

manipulation tasks with a higher level of autonomy and intelligence because of a 

combination of advances in both design and controls.  Manipulators with different levels of 

sensitivity and flexibility and with different numbers of fingers in different orientations, 

have all been explored for different applications. 

Table 1: Historical Time Line (17) 

Year Invention Summary 
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1959 Unimation First industrial gripper 

1961 MH-1 First sensitive mechanical hand 

1961 Unimation First industrial gripper installed in a facility 

1963 Rancho Arm First gripper not made for industrial applications 

1974 Silver Arm First autonomous gripper that used feedback from touch and 
pressure 

1976 Shigoe Hirose First Soft Gripper that could conform to shape of grasped object 

1978 Nachi First electromotor-driven robot hand 

1982 Salisbury hand Three finger hand Build at Stanford University 

1983 N/A 66,000 Industrial robots in operation 

1987 Shadow hand First commercially available humanoid robotics hand 

1991 Haptic hand First Haptic system implemented on a Multi finger hand 

1998   

2005 Luke Arm First fully functional prosthetic Arm and Hand 

2008 Robotiq First flexible and adaptive three finger gripper on commercial 
market 

2009 Switzerland First Prosthetic hand that can ‘feel’ 

2010 Universal Gripper First gripper that doesn’t have digits 

 

1.1.2 Contact navigation 

One of the applications for this platform is contact navigation. Contact navigation is 

a new topic in robotics. The majority of the research done in this field has been at Georgia 

Tech. Their primary goal has been to use contact navigation to detect human-robot contact 

and implement force-following algorithms that respond to tactile cues provided by 

humans. Detecting human-robot contact is also important when this contact interferes with 

the robots task, because it can ensure the safety of the human. Their work broke tactile 

human robot interactions down into three topic areas: human contact that interferes with 
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the robots task, human contact that contributes to the robots task, and human contact that 

develops or modifies the robot task (18). Contact that interferes with a robotics task is 

important because it can effects the safety of the human involved. Contact that contributes 

to the robots includes assistive robotics, where a task too difficult for a human is assisted 

by a robot. For example, if a heavy load needed to be moved a robot arm could move it 

while being directed by a human operator. The final category of conduct includes conduct 

that is used for instructing or teaching a robot about its task. This includes developing new 

tasks for the robot or modifying the current ones.  

Another group explored the benefits of adding a tactile ‘skin’ of sensors to a robot 

arm by investigated how knowing the contact locations and determining the external 

wrench forces being applied to the system could help create a more complete dynamic 

representation of its interaction with the environment (19). The focus of this work was on 

determining external forces and didn’t investigate the methods for planning motion based 

on this information. Another field of research using skin on a robotic arm focused on using 

force feedback to navigate in a cluttered environment. This research focused on how tactile 

information from the arm could be used to help solve path planning problems. This 

research platform seen in Figure 1 was conducted on an arm that was not capable of 

manipulating objects. The platform being created in this thesis will be used for research on 

unintentional collisions and on using contact for navigation and gasping tasks. Unlike the 

other platforms used for this type of contact research, this platform uses tactile sensor 

capable of detecting shear forces as well as normal forces. This capability allows this 

platform to detect the difference between a sliding contact and a static contact.   
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Figure 2: Meka Arm with Tactile Skin 

1.1.3 Traditional Grasping 

Traditional grasping is based on having an accurate model and assessing whether 

the grasp on a target meets certain desirable criteria including robustness, reliability and 

stability. Most of the work on robot grasps planning focuses on pre-grasp analysis, which 

includes the location of the object to be grasped and the tasks that need to be considered to 

create a list of grasping candidates (20). Most of the research in this field falls into two 

different categories: determining the conditions to immobilization the object in particular 

configurations and computing stable configurations for a given object. These approach 

focuses on immobilizing the object being manipulated with fixtures and external forces, 

and therefore determining the quality of the grasp is critical. For example Nguye and others 

found that large friction cones are produced by grasping contact at the edges or vertices of 

an object. This explains why humans grasp objects at the edges as well (21). This also 
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explains why human fingers are soft enough to conform around these edges instead of 

being hard. This was an example of how the location of the grasp can affect its quality. This 

quality can also be measured using a variety of sensors, which are also used to determine 

the exact model. Many of these sensors are contact based, but some rely on visual input and 

proximity.  

 Vision is the most popular and suited sensor for determining the locations and basic 

orientations of objects in the workspace because it provides the richest amount of 

information. It can also be used to track the relationships between different moving objects 

in the workspace, including contacts (20). However vision is not completely reliable and 

needs other sensors to supplement it to account for sensing errors, calibration errors, and 

so on. It can also be more expensive than the other types mentioned and have specific size 

and positioning requirements. The raw data produced by vision can also be extremely 

complex to analyze and can require massive computational resources. Contact based 

sensors are used both to supplement vision systems and to be used on their own. Proximity 

sensors are frequently used but are the least common. 

 New trends in sensor fusion are replacing the traditional strategy done with kalman 

filters. These new trends are based on a hybrid control that integrates the sensor signals 

from a variety of sensors at the control level, like vision and tactile readings. This approach 

is more appropriate for dealing with the disparate sensors. Vision, tactile, and force sensors 

all produce different qualities and quantities of information compared to traditional 

sensors where the sensors were equated to a common representation and then integrated. 

Newer approaches develop a sensor hierarchy where different types of information are 

weighted above others. For example tactile information is usually weighted above visual. 
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 Traditional grasping favors an accuracy, repeatable, and payload capably systems, 

which are all weaknesses of a compliant manipulators. Compliant devices also can suffer 

from a weakened grasp, vibrations, and energy loss during dynamic loads. However there 

are also several key advantages to using a compliant system for manipulation when 

properly controlled and anticipated. Compliant manipulators can automatically correct of 

misalignment errors mechanically, decreasing the need for precision. For example this 

compliance could be helpful during assembly operations, peg into hole tasks, deburring 

tasks, or tasks in dynamics environment like with a prosthetic (2). Stiffer manipulators also 

tend to be heavier than their complaint counterparts. This negatively affects stiffer 

manipulators’ dynamic performances and power consumptions (20). These advantages and 

disadvantages usually result in an optimal trade-off solution between stiffness and 

compliance in both the mechanical design and controls being identified for each 

application. 

1.1.4 Compliant Grippers     

More sensitive and compliant manipulators have numerous advantages over their 

blind counterparts. More sensitive and compliant manipulators are capable of reacting to 

changes and uncertainties in their environment. As technology develops more there has 

been a trend towards developing more responsive gasping manipulators compared to the 

original ones that had stiff motions and relied on precision programming. Within a few 

years of the first industrial manipulator being created the first sensitive industrial 

manipulator was created. Same goes for fully functional prosthetics.  
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Having a degree of flexibility in a gripper is also very important. Human ligaments 

add flexibility to human joints. This flexibility protects the joints during high impact 

collisions. In Robotics applications flexibility in the joints can compensate for inaccuracies 

in manipulation and reduce the damage caused during unintentional collisions. This 

flexibility was originally accomplished by having pneumatic powered grippers that had a 

slight amount of give to them, and allowed them to pick up imperfect objects (12). 

Pneumatics use pressurized air to actuate pistons that move the joints. Since air is 

compressible, when fully actuated, the pivot has some give to it under high impact since the 

pressurized air compresses further. In the past, a variety of different strategies been 

implemented to achieve a variety of levels of flexibility. For example grippers with multiple 

weaker fingers have been created it increase the a more flexible and capabilities of the 

system, with the same gripping strength as a basic two finger manipulator. The JPL 

Designed Spiny-Finger Gripper is a good example of this seen in Figure 2, this gripper uses 

lots of little grippers to grab on the rocks for drilling (22). 
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Figure 3: NASA's Jet Propulsion LAb (JPL) Spiny Finger Grippers 

 iRobot was challenged by the government to make a hand that was “more capable, 

more robust, more dexterous, and [can be built] at a lower cost than any hand available on 

the market right now,” explains Mark Claffee, the principal robotic engineer at iRobot 

Research (23). They answered this challenge with a compliant three-fingered system. The 

compliance was added by having hard plastic links connected by rubber joints as seen in 

Figure 3. 
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Figure 4: iRobot compliant hand being developed for the military. 

Compliance has also been added to grippers through the use of pressure sensors, 

motor current monitors (2), and various control algorithms. When the pressure sensors are 

activated, the system knows that contact has been made and the normal force interaction 

can be monitored and controlled. Or if a spike in motor current is measured, the system 

knows that extra torque has been placed by an outside force, like a collision. By regulating 

the current the contact interaction can be monitored and controlled. However this 

approach is also limited because motors are used in conjunction with gear boxes. These 

gear boxes contain numerous gears that increase the torque and reduce the speed of the 

motor, which adds significant friction and momentum to the system resulting in a large 

impedance. They also rely on a software controller that can add a slight delay to the 

response; however this approach is limited. Therefore, direct drive systems are ill-suited 

for situations requiring fast reaction times to the sensor information. This down side to 
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direct drive system and the advantages associated with using series elastics made them an 

idea choice for this project. 

1.2 Series Elastic Actuators (SEA) 
Series Elastic Actuators have an elastic element the decouples the motor and the 

load. A block diagram of this concept can be seen in Figure 4. Having this elasticity between 

the motor and load can allows for greater shock resistance, lower inertia, better 

environment interactions, and more stable force control, at the cost of precision motion. 

 

Figure 5: Simple Diagram of Series Elastics (24) 

Additionally, elastic joints can compensate for minor irregularities in predicted contact 

locations, by flexing slightly on contact. These elastic elements also serve as a low pass 

filter for vibrations by reducing minor shock loads and torque ripples, which reduces wear 

and tear on the system and increases the stability of the controller . By measuring the 

displacement of the elastic element, force control becomes as easy as position control.  

Impedance, stiction and bandwidth are key characteristic of an actuator that can be 

used to measure their quality. Mechanical impedance refers to how much a structure 

resisted the load placed on it.  Mechanical impedance can be thought of as the opposite of 

mechanical mobility. Stiction is the static friction that needs to be overcome to enable 

motion of a stationary object. Stiction sets the minimum force the actuator will produce 
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with motion. Bandwidth is the frequency that the force produced by the motor can 

accurately produce. An ideal actuator has zero impedance, zero stiction and an infinite 

force bandwidth. Based only on these key characteristics a human muscle is the closest 

actuator to this ideal actuator. SEA’s are the second best actuators in these categories 

having low impedance, low friction, and decent bandwidth.  

Series elastic actuators simplify and stabilize the usually complex task of force 

control at the expense of precision. They take the complex force control problem and 

translate into a simple mechanical equation. Because there are springs incorporated into 

every joint, the force of a joint can be measured using Hooke’s Law, show in the equation 

below, where F is the force on the joint, k is the spring constant on the elastic element, and 

x is the measured displacement of the elastic element.  

 𝑭 = 𝒌 ∗ ∆𝒙 ( 1 )  

Instead of having to interpolate the current of the motor and relate it to the 

produced force, the displacement on the elastic element, the value of the spring constant, 

and the location of the force can be used to find this seam value. In traditional systems the 

force equations needs to account for the dynamics of the system including its inertia, the 

coriolis effect, and friction in the actuators. These equations are computationally more 

expensive and difficult to generate without a completely accurate model of the system. A 

completely accurate model of an robotic system is difficult to create, especially because this 

model would have to reflect changes that occur in the system during use.  

There are three main techniques for implementing series elastics. The first is based 

on torsion springs and works on rotary motion. The second uses compression springs and 

working in a linear motion with a ball and screw. The third method is a hybrid of the first 
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two and uses compression springs off the rotary motion at the joint. There are also 

numerous implementations of these three basic types.  

1.2.1 Torsion Springs and Rotation 

The first technique for implementing series elastics is more traditional is has been 

used mostly in older robotic system. This rotary SEA uses a custom torsion spring to 

decouple the joint and motor. These custom torsion springs are difficult and expensive to 

fabricate which makes this technique expensive. Torsion springs are much smaller than 

compression springs, however they are also stiffer. This additional stiffness reduced the 

amount of deflection that can be measured under force. This small amount of deflection is 

traditionally measured with strain gages which are very fragile. The biggest advantage to 

this technique is that they are smaller, can be directly mounted to the motor output shaft, 

and has good modularity. A schematic of its implementation can be seen in Figure 5. 

 
Figure 6: Torsion Spring SEA (24) 

1.2.2 Compression Springs and Linear  

 The second technique translates the rotational torque of the motor into a linear 

force acting on the cable and series elastic element with linear rails and a ball and screw. 

This system is also expensive because of the precision required for smooth linear motion 
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without jamming. Typically the compression springs are then integrated into this bus that 

pulls on the cables as see in Figure 6. A pushing force will result in the compression of the 

springs on the lower half, and a pulling force will result in a compression on the springs in 

the upper half. When the system is not experiencing any forces both sets of springs are at 

half compression. This system is completely modular and can be pre-compressed outside of 

the assembly.  

 

Figure 7: Linear SEA Assembly (2) 

1.2.3 Compression Springs and Rotation 

The final technique is a hybrid between the previous two. Unlike the others, the 

series elastic component for this style is located at the joint instead of the motor. At the 

joint the linear motion of the compression spring is directly translated to the rotation at the 

joint as seen in Figure 7.  
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Figure 8: Simplified SEA module (25) 

Like the second technique the springs are at half compression when no load is 

present. The primary advantage to this technique over the other two is that it uses off the 

shelf components and doesn’t require expensive linear systems or custom torque springs. 

While being more scalable and smaller than the previous style, this technique is less 

compact than the torsion spring setup. The disadvantage to this technique is that there is 

constant tension on the cable equal to at least half the length of the spring multiplied by the 

spring constant. This constant tension needs to be considered in the design and provide 

sufficient support of the cable path. 

Another variation on this technique is to build the series elastic module directly into 

the joint as seen in Figure 8 instead of as a separate modular module as discussed 

previously. This method is more difficult to assemble because the springs need to be 

compressed halfway before cabling can be completed on the robot instead of separately. 

The springs are compressed by running the motor one direction until one of the springs is 

half compression, then pinning it. Next the motor is run in the other direction half 

compressing the other side, completing the cabling. This means that the motors are 

necessary for the cabling and tensioning process.  
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Figure 9: Cutaway section view of the Series elastic module integrated into the joint (10) 

1.2.4 Series Elastic Actuator Summary  

In summary, series elastics are good in applications where unintentional collisions 

are frequent and where force control is more important than position control. They are 

also good for working near or with humans because the elastic element can be tuned to be 

safe around humans. Since the manipulator being developed in this project is intended for 

human environments, series elastics will be incorporated into every joint. As this platform 

is additional intended for research in tactile manipulation, it needs an accurate force 

controller to respond to the contacts. As a result of the primary requirements of modularity 

and low cost, the hybrid version of SEA’s will be used. 

1.3 Tactile Sensors 
        An important aspect of manipulation is tactile sensing. The accuracy and precision 

of fine manipulation is greatly increased with the use of force and tactile sensor, because it 

allows an adaptive closed loop controller to be used. This effect can be seen in human 

manipulation as well. It becomes difficult to manipulate object accurately when (26). 
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Several studies have been done to understand the importance of somatosensory 

input (force and touch) on manipulation. Johansson and Wrestling studied the feedback 

response of skin when grasping objects and how that affects finger control (27). This study 

found that even with full vision, participants found grasping and manipulating objects 

difficult without tactile sensing participants found grasping and manipulating objects 

difficult. Tactile sensing was removed by forcing the participants to wear thick gloves. 

While compliant spring based manipulators can be used to successfully grasp 

objects despite locational errors, there is a potential for large forces to be unintentionally 

applied. These large forces are caused by errors causing large deflections on the passive 

spring joints. Depending on the gasping location, as well as the object’s geometry, friction, 

and mass distribution, these forces have the potential to displace the object before it is 

grasped, changing the gasping problem (5). Limiting these large forces would increase the 

number and variety of objects that can be grasped. This characteristic of compliant 

manipulators makes them a good application of tactile feedback. Using tactile sensors, the 

earliest stages of contact can be detected and responded to correctly, rather than letting 

large contact forces build up at only one point of contact. When using tactile sensing in the 

approach phase of grasping, they are used to detect the exact location of the object, so that 

the arm can then center the hand on its actual location instead of the estimated position. 

Having the hand centered on the object increases the stability of the grasp, and decreases 

unbalanced contact grasping forces. 

Tactile sensors can also play a critical role during the actual grasping phase. They 

can determine the stability of the grasp and if there is unbalanced force contacting the 

object. Tactile sensors that are capable of detecting shear forces can also be used to 
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determine if an object is sliding. If any object is sliding in a grasp this could indicate that the 

object is not being grasped firmly enough or that it is in contact with an external object. In 

both cases, application of tactile feedback is mostly being used for event-driven 

manipulation, and plays a large role in determining the actions the robot performs and how 

it assesses its progress. 

1.3.1 Types of Tactile and Contact Sensing Technologies 

Several different technologies have been developed for contact or tactile sensing 

(27). Contact sensing and tactile sensing refer to two similar but distinct concepts. Tactile 

sensing includes skin-like sensing that measure information like pressure distribution, 

temperature, texture, compliance, etc. Contact sensing only refers to the perception of 

forces and torques generated during point contacts. Each of these types of sensors rely on 

different electrical engineering principles to gather comparable information that can be 

used to measure contact interactions. Each of the types described in this section have 

different advantages and disadvantages. 

Resistive Sensors 
The most common type of tactile sensor used on the market today is the resistive-

based sensor. These sensors change in resistance in response to the force being applied to 

the area. They are most commonly used in pressure sensing ‘buttons’ but have also been 

applied to robotics. They have an average sensitivity range but are also cheaper and less 

accurate than the other technologies. They are also rugged enough to operate satisfactorily 

in moderately hostile environments. The biggest disadvantage to this type of sensor is that 

they have size limitations. They have a very limited and set size range they can be made, 
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and the reading they produce doesn’t give an indication of where on the pad the force was 

applied, only that it exists somewhere. 

Quantum tunneling Composite (QTC) 
QTC is a flexible polymer that is normally a near-perfect electrical insulator, 

however when deformed it becomes a metal like conductor. QTC based sensors are good 

for soft circuits and they can be used in a variety of different sensor geometries. They are 

also more sensitive than the resistor based technology. The disadvantages of this 

technology are they need to be allowed to return to their normal state and they also cannot 

withstand high forces. 

Capacitive 
Capacity sensors rely on the principle that the capacity between two plates is a 

factor of the distance and surface area. So the applied force either changes the distance of 

the effective surface area of the capacitor. As the size is reduced to increase the spatial 

resolution of this type of sensor the sensor’s absolute capacitance decreases. Because of 

this there is an effective limit on the resolution and size of this type of sensor. Capacitive 

sensors are overall very sensitive but if placed near the end effector or the robots earthed 

metal components it can experience severe hysteresis and stray capacity. 

Optical-based tactile sensors 
Optical-based tactile sensors work by changing the intensity of light by moving an 

obstruction into the lights’ path or by using photoelasticity which is a phenomenon where 

stress or strain causes birefringence in the translation photoelastic material, which rotates 

the polarization and the intensity of the light with the applied force. These sensors are very 

sensitive, flexible, and fast. They are intrinsically safe, and since they use optical fibers, the 
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actual sensors can be located a distance away from the optical source and receiver. 

Unfortunately this type of sensors is extremely bulky. 

 

1.3.2 Tactile Sensing in Humans 

 Many different robotics applications have biological inspirations, like robotic snakes 

and stereo vision. Humans have also been an inspiration for the development of touch 

sensors. Mechanoreceptors are human receptors, seen in Figure 9, in the skin that sense 

contact and can detect a shapes, size, texture, temperature and position. These sensors 

were used as an inspiration for the tactile sensor used in this thesis. 

 

Figure 10: Mechanoreceptors in Human Skin (27) 
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Deformable Tactile Sensors by Eduardo Torres-Jara 
 Eduardo Torres-Jara developed a deformable tactile sensor based on the human 

Mechanoreceptors that gives a more complete understanding of the object in contact. This 

type of sensor is more suited for tactile sensing in an unstructured environment. This type 

of sensor has been proven effective in a number of humanoid robots platforms including 

Obrero and Go-bot seen in Figure 10 and Figure 11. 

         

Figure 11: Obrero Robot (8)      Figure 12: Go-bot Robot (7) 

The tactile sensor modules are the green domes located on the fingers. The tactile 

sensor used in Obrero is composed of a magnet encapsulated in the membrane of a flexible 

hemispherical dome which is tracked using four hall-effect sensors to localize its position. 

This sensor technology was improved and used on Go-bot. The new version used four 

phototransistors and one infrared led which measured the diffractions off the hemisphere 

dome. This upgrade decreased the size of each dome, weight of the board, and the cost of 

each module. It also eliminated the interference that ferrous materials had on the sensors 

and simplifies the assembly process. The illustration of the sensor used on Go-bot can be 
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seen in Figure 12. This sensor is inspired by the ridges on human fingerprints, and is 

capable of detecting both normal and shear forces, so unlike the other sensors it gives an 

indication of the direction of the force.  

 
Figure 13: Optical Deformable Tactile Sensor (10) 

 Limited attention has been given to the advantages of having tactile feedback on the 

entire surface area of the platform so that all of the interaction with the environment can 

be monitored and controlled. The goals of this project are to create a platform that can be 

used in contact navigation and for navigation in locations in which vision based sensing is 

difficult, like in a box.  

1.4 Contributing Projects 
Several previous projects under the advisement of professor Torres-Jara at WPI laid 

the groundwork for this project. Below, we will provide a brief summary of each project, 

including the portions that are relevant to this project and the results of each project. It is 

noted below how each project furthered research within the field of sensitive 

manipulation. For more information on each of the projects below, consult the project 

reports. 
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1.4.1 Obrero 

Obrero is an upper body humanoid robot consisting of a hand, arm, and head 

designed to provide high level haptic and tactile feedback. Each joint on the manipulator 

provides intrinsic elasticity and force feedback using series elastic actuators. The arm has 6 

degrees of freedom: three in the shoulder, one in the elbow, and one in the wrist. The 

manipulator consists of a palm, thumb, middle, and an index finger. The exterior of the 

hand is covered in tactile sensors which provide a sensitive, deformable interface when 

gripping objects. The completed assembly of Obrero can be seen in Figure 13. 

 
Figure 14: Obrero Robot reaching for an object (9) 

 

The series elastic actuators in the arm are based on the second method using linear 

rails and ball screw. The series elastic elements in the fingers are based on the optimized 

version of series elastic actuators. The hand has low mechanical stiffness to soften contact 

with objects during grasping and increased the sensitivity. It is also under actuated and the 

seven joints are driven by only five motors. This hand was the first applied application for 

the deformable tactile sensors seen on the hand. 
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This platform was used to prove that the use of haptic feedback enhanced the robots 

ability to interact with an unstructured environment intelligently. This platform was used 

in a routine that allowed it to grasp objects without any prior knowledge about their shape 

or location. Instead of focusing on precision, it focused on the potential advantages of 

exploration and sensitivity. This routine identified both the arm and object based on 

motion and then moves the hand close to the object. Using a depth, hover, and pushing 

behavior the object was found using the tactile feedback. Obrero only failed seven out of 

the 104 trails using four different unknown objects. 

1.4.2 Go-Bot 

The Go-Bot, developed by Dr. Eduardo Torres-Jara and Gabriel Gomez, represents a 

precursor to this project. The project used sensitive manipulation coupled with series 

elastic actuators to perform delicate manipulation of small components. Goals of this 

project included showing that sensitive grippers can allow for more delicate manipulation 

in dynamic environments and to show that they can compensate for the inaccuracy induced 

by compliant grippers. The project showed this by designing the robot used in the project 

to play the game Go. Accomplishing this goal required the robot to execute 3 tasks:  pick up 

a stone from a bowl, place a stone on the board, and pick up a stone from the GO board. 
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Figure 15: Go-Bot Robot platform 

The robot designed for this purpose uses a SCARA style arm, with two horizontally 

joined links and a single vertical axis of motion. Compliance was added to each joint using 

series elastic actuators. Like in this project, the tips of the fingers were sheathed in the 

tactile deformation sensors. These were used to provide the tactile feedback that allows the 

gripper to act as a sensitive manipulator. The gripper was not specifically designed to 

manipulate Go pieces, but was instead a general-purpose hand made for detailed 

manipulation using tactile feedback. The robot used cameras for the rough localization of 

the target stone and then used contact based navigation to localize the stone and grip it. 
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This project laid the groundwork for this thesis, which follows up on the work done 

on Go-bot and Obrero. This project will continue the manipulation goals of the Go-bot with 

a higher payload, greater range of motion through an improved base arm, and a 

significantly larger portion of the arm covered by tactile sensors. This project will also not 

be integrated into a task-oriented robot, instead serving as a general platform for research. 

1.4.3 Sensitive Arm Platform 

The manipulator developed in this project was mounted to an arm designed in a 

previous thesis project which also incorporates tactile feedback. This arm, developed by 

Nigel Cochran in 2013 and referred to as the Sensitive Arm Platform, incorporates 

compliant joints and a shell that detects tactile input. The Sensitive Arm Platform is a four 

degree of freedom arm with a rotating base, two link arm, and rotating wrist joint. For a full 

description of the project, please see the report.

 

Figure 16: Compliant Sensitive Arm displaying a previous iteration of the wrist and hand modules developed in 
this thesis  (11) 
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The compliance in the shoulder rotation joint was created using springs at the 

terminating ends of the cables. These springs also acted as tensioners on the cables. The 

two pivot joints utilized an isolated module attached to the links to create the compliance. 

This module isolated the cable attachment point from the component that the cable is 

acting on using a set of springs to either side of the attachment point and a guiding case. 

The case keeps the force of the cable acting on its original vector while the springs add 

compliance to the input along that vector. This module served as the inspiration for the 

finger modules, but in the fingers it was miniaturized and made into an integrated part of 

the link that is being moved as a opposed to a separate module. 

 

Figure 17: Shoulder Pivot SEA pivot spring box (11) 
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Tactile feedback was designed to be provided by a network of deformable tactile 

sensors attached to a shell around the two links of the arm. Figure 17 shows a CAD of the 

arm including an outdated version of both the wrist and fingers, which were developed in 

this thesis.  This shell was designed and constructed, but the sensors themselves were not 

implemented as part of the project. These sensors can detect both normal and shear forces, 

allowing the arm to detect and move around obstructions without harming them. This, 

combined with the compliance in the mechanisms, would create an arm that can work in 

crowded and human occupied environments without worrying about damaging people, 

surrounding, or itself. 

 

Figure 18: Complete Arm CAD of a previous iteration of the entire design, including the finger and wrist 
components from this thesis (11) 

This arm interfaces with the manipulator above the wrist rotation joint. The 

manipulator incorporates two carbon fiber rods similar to those shown in Figure 18. These 

serve as the interface point. The manipulator designed in this project can takes full 
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advantage of the arm’s original four axis.

 

Figure 19: Completed Assembly of the arm and elbow portion of the Sensitive Arm Platform to be attached to the 
fingers and wrist of this thesis (11) 

 

 

1.5 Thesis Contributions 
 This thesis completes the Sensitive Arm Platform that created the first four links of 

the total six degree of freedom arm seen in Figure 15. The primary contributions to the 

project are the final two degrees of freedom of the arm: the two axes of the wrist and the 

manipulator consisting of two fingers with high mechanical compliance. This project also 

examines methods of incorporating and utilizing the feedback from series elastic actuators 

and tactile sensors in robotic manipulation. The ultimate contribution of this thesis is to 

complete the Sensitive Arm Platform so that it can be used in researching control 

algorithms to best utilize tactile feedback. These control algorithms will utilize both the 
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force information from the series elastic elements and from the tactile sensors. In this 

thesis, basic force and position control algorithms were developed and implemented. 

Previous research has mostly focused on using information from only one or the other of 

these sources. A pioneer research to investigate the effect of having both series elastics and 

tactile sensor when detecting contact during path planning did not investigate 

manipulation as well. The robot Obrero also combined tactile sensors and series elastics 

(9), but the surface area covered by the sensors was minimal and only could be helpful 

during grasping. This thesis combines manipulation with contact path planning.  

 The primarily focus of this thesis is the mechanical design, analysis, and assembly of 

the wrist and fingers and the sensor selection. A cabling system with tensioners and series 

elastic elements was developed to control joint articulation of the wrist. Sensors were 

natively integrated into the design for position and joint force feedback. For the fingers, the 

babbling system was designed tin integrate tensioners, flexible cable support and guidance 

tubing with multiple spring series elastic elements. Because the system is meant as a 

research platform, it was designed to be as inexpensive and for easy assembly and 

manufacturing. Furthermore, it acts as a convenient infrastructure to support integration 

and maximized tactile feedback sensor coverage to provide ample sensory input for future 

tactile driven control development. This thesis also created methods and mechanisms to 

detect force applied to the joint through deformation of the series elastic elements. The 

electronics and software architecture are not the focus of this particular thesis and will be 

the subject of follow up research using this platform. The software written for this project 

was developed primarily for testing and basic control. 



 35 

1.6 Thesis Layout 
The body of this thesis paper is organized to cover the design, analysis, parts 

selection, assembly, tensioning, and testing of the robotic platform. Chapter 2 addresses the 

mechanical design including the design requirements, justifications for design decisions, 

and component selection. Chapter 3 outlines the electrical architecture of the system and 

the selection of sensors. Chapter 4 discusses Tactile Sensor Integration for both the sensors 

on the fingers and on the Motor Module. Chapter 5 goes through the system validation and 

how each of the design requirements and goals were tested during this project through 

experimental validations. Chapter 6 summarizes the entire thesis and offers suggestions for 

future work on the project. 
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Chapter 2 Mechanical Design 
The major contribution of this project to the field of robotics is a platform for 

sensitive manipulation. A successful platform relies heavily on a good mechanical design 

oriented towards the task. This Chapter of the report covers the mechanical design. First 

Design requirements for this project are covered. A good Mechanical design is, 

conscientious of the Design requirements, while still being aesthetically pleasing and 

machinable. Next the mechanical design is broken down into details including the analysis 

and selection calculations. Finally the design of the tactile sensor shell is covered. 

2.1 Design Requirements  
Before developing an initial design a list of design constraints was identified for the 

wrist and Fingers. This list of constraints included: 

1. The wrist and fingers must be able of manipulating a 1kg payload 

2. The arm must have at least a tactile sensor spatial resolution of 40 mm., which is 

that of a human 

3. The fingers need to have the highest spatial resolution physically possible given the 

chosen sensors 

4. The Wrist must have 2 Degrees of Freedom that are arranged as a gimble 

5. There must be two, 2 DOF fingers attached to the wrist. 

6. Each joint of the wrist and fingers must have series elastic actuators  

7. Each SEA must be inexpensive and easy to assemble. 

8. All of the Motors for the Wrist and Fingers must fit in a 5 inch long 3.5inch diameter 

tube 
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9. Robotic Wrist and Hand need to be easily integrated into the Sensitive Arm platform 

10. The fingers need to be able to deflect easily on contact but be strong enough to 

support payload. 

11. Wrist will not deflect more than 8 degrees during maximum dynamic load 

12. The fingers need to be a comparable size to a humans.  

13. The range of motion of the Wrist and fingers needs to be comparable to the 

equivalent human joint. 

 
 

[Req 1] This robotics appendage was designed for research purposes. This research 

focuses on contact navigation, the interaction between the robot and other objects, and 

how robots use the sense of touch to explore their world. These research goals don’t 

require the wrist and fingers to be extremely strong so a 1 kg payload was determined to 

be sufficient for this application. 

        [Req 2] As the focus of this project is on sensing, having an adequate coverage of 

tactile sensor on the fingers and wrist is required to meet that goal. In order to better 

mimic the human body, which has different levels of sensitivity on the arm and the hand, 

different size sensors will need to be used for these different areas. Since this project 

mostly focuses on the platform, the board construction and design for the tactile sensors 

are not included. However the support shell for the arm and the molds for the sensors are 

included as they relate to the hardware design of the arm itself. 

        [Req 3] The human wrist forms a mock spherical wrist with the rotation of the 

forearm. Since this rotation is enabled by the arm, the wrist must have two inline degrees 

of freedom that allow it to emulate this type of motion and maneuverability. The dexterity 
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of a 6-axis arm is mainly due to the final three axis, which have to concentrate the final 

three axes of rotation into a compact space, while the entire length of the robotic arm is 

mainly responsible for positioning the wrist. [Req 8] Also as the manipulator is relying on 

the arm for its ability to rotate, it must be able to easily integrate with the arm. [Req 4] 

Unlike the human hand and more similar to industrial robotics, this platform must have 

two fingers that will allow it to pinch objects. In order to be able to explore the effect of 

different types of contact, at least 2 Degrees Of Freedom are necessary in the fingers. 

According to statistical studies, from 60 to 70 % of man’s grasping of objects of cylindrical, 

parallelepiped, and pyramidal shapes is performed with only two fingers [4, 13]. 

        [Req 7] The wrist and fingers must aesthetically match the arm of the robot all of the 

motors need to fit within the fore arm and match the tube like form of the rest of the arm. 

So that it looks like it was cohesive extension. Because of this all of the motors must fit in 

the a 5 inch diameter tube. 

 [Req 11] This research is going to be conducted in dynamic environment and is 

based on human biology. To most closely represent human interactions with their 

environment the fingers need to be a comparable size to a human. Since human hands have 

three joints and the fingers in this project only have two the combined length needs to be 

comparable to the sum of all the joints in a human finger.  

 [Req 12] Not only is this robot intended for research in a human environment, but it 

also needs to have a similar range of motion and reflect the same capabilities of a human 

wrist and individual finger. This means that one of the pivots of the wrist needs to be able 

to rotate 150 degrees, and the other pivot needs to be able to rotate 60 degrees. The first 
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link of the finger needs to be able to rotate 150 degrees, and the second joints needs to be 

able to rotate 90 degrees. 

        [Req 5] Finally every joint must incorporate series elastic actuators. The benefits of 

series elastic actuators were highlighted in the background section. However their primary 

purpose in the arm is to add compliance to the system. [Req 9]  In the fingers, not only are 

the SEAs adding compliance but they are also adding sensitivity. This sensitivity was 

accomplished by detecting deformation in the SEA. This means that the SEAs must deform 

when light contact is encountered, but still be rigid enough to support the required load. 

[Req 10] To avoid excess compliance in the wrist, the requirement that it shall not deform 

more than 8 degrees during maximum dynamic loading was also added. This ensures that 

the wrist is compliant, but also rigid enough to perform its required function. 

 [Req 6] Many series elastic platform have complex and expensive series elastics 

elements. One of the goals of this platform is to avoid that, while still maintaining true 

series elastics properties.   
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2.2 Design Summary 

 
Figure 20: The image to the left is the CAD of the entire system developed in this thesis with the modules 

described depicted. The image to the right is of the completed system. 

The final assembly can be broken down into three different modules, as seen in 

Figure 19: the motor module, the wrist rotation, and the fingers. The motor model houses 

the 6 motors that actuate the joint in the other models. This model is mounted directly to 

the elbow joint on the arm. The major components in this module are two parallel carbon 

fiber tubes that are clamped by the elbow joint of the Cochren arm, two motor supports 

that are attached to the carbon fiber tubes, the 6 motors, and a 3D printed shell. The shell is 

a cylindrical grid that completely contains the motor module. The motors are spaced evenly 

in a circle with three motors on each side of the carbon fiber tubes. The first motor support 

is closest to the elbow and supports two of the motors and their respective pulleys. The 
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second motor support is near the wrist module and supports the other 4 motors and their 

respective pulleys.  

The Wrist module has two degrees of freedom; pitch and yaw seen in Figure 19.Two 

support pieces attach the wrist gimbal to the motor module. These pieces support the 

outside of the gimbal. A middle gimbal skeleton pivot in relationship to these outer support 

skeleton pieces and provides the pitch axis of rotation. The final piece rotates in the center 

of these skeletons and provides the yaw axis of rotation. The two finger modules are 

attached to this center pivot piece. Unlike a standard gimbal both of these joint incorporate 

the series elastic elements at the joint.   

 The finger modules have two links each. These links are 3D printed modules with a 

metal slider in the middle and a metal cap. The body of each link of the finger contains the 

springs for the series elastic element. The controlling cables for these joints are attached to 

the sliding metal piece that pushes against the internal springs. The links of the fingers are 

connected to the wrist by a metal piece that routes the cables from the finger joints into the 

Bowden tubes. Bowden tubes are flexible tubes that route control cables around other 

joints so that they maintain their independence. 

 The entire assembly consists of six powered joints; two for the wrist and two for 

each of the two fingers. The first joint in the wrist is independent from any of the other 

joints. The second joint of the wrist is in line with the wrist and is dependent on the first 

joint. Combined with the rotation from the last joint on the arm they create a motion 

similar to a ball-and-socket joint. The Bowden cables keep the joints of the fingers 

independent of the motion of the wrist. The first joint in the fingers is independent and the 

second joint is dependent on the motion of first.  
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2.3 Wrist Module 
The wrist module is the section of the manipulator containing a pitch joint and a 

yaw joint, located above the motors and below the fingers. This module provides the last 

two degrees of freedom for the six axis arm and provides a mounting point for the gripper 

seen in Figure 20. This section discusses the requirements, material selections, and cable 

routing. Also addressed is the modeling of the system and its effect on motor selection. The 

description of the wrist concludes with a discussion of the design of the series elastic 

actuators used in this module, a discussion of the assembly and tensioning methods used 

during arm construction, and evolution of the module’s design during the course of the 

project. 

 

Figure 21: Depictions of the wrist module. The image to the left is a CAD of the system with the axis of rotation 
depicted while the right is the actual produced system 

2.3.1 Design Requirements 

Based on the design requirements this module needed to have two in-line series 

elastic joints capable of manipulating a 1 kg payload. The series elastic element also needs 
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to deflect a maximum of 8 Degrees based on the desired requirments for the platform, be 

inexpensive in both the materials and manufacturing process and be easy to assemble. The 

additional requirement for this model is that the motors that power it be located as close to 

the Cochran arm as possible. The motors are located away from the joints to reduce the 

torque requirements on the arm.  Because the motors are not directly in-line with either of 

the joints cables were selected to translate the motion of the motors to the joints. Cables 

were chosen over chains or belts for the power translation because of their flexibility and 

ability to be routed three dimensionally instead of in a plane. 

 

2.3.2 Material selection and Manufacturing 

The structural components for this module where all milled from 6062 Aluminum 

and all the components that come in contact with the cable were machined from Delrin 

Plastic. Aluminum was chosen because it of its balance of strength and weight. Delrin was 

chosen for the pulleys and cable redirectors because of its low coefficient and easy 

machinability.  Before being Machined all of the components were checked using Finite 

Element Analysis (FEA) and were checked for machinability. The number of set up 

required for all of the pieces combined was also considered during the design process. 

Having fewer total set ups reduces the machining cost and the number of required pieces. 

Having few parts reduces the weight of the assembly and the torque requirements on the 

arm. 
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Figure 22 FEA of Wrist support piece 

 

 

2.3.3 Cable Routing 

The cables for the first joint, the pitch axis, come from the motor facing down the 

upper arm in the motor module. This cable is then routed through the center of the upper 

arm and then to the rotation pivot. This .75-inch diameter pivot pulley and the .5-inches 

pulley at the motor further gear down the motor output. By gearing it down some in system 

it makes the requirements for selecting the motor easier to meet. After wrapping around 

the pulley the cable then grounds into the spring box, which is described in Section 2.3.7. 

This path can be seen in Figure 20 using the green and purple cables. 
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Figure 23: Cable routing for both joints of the wrist 

 
 

The cables for the second joint, the yaw joint, follow a similar path to the previous 

joint. However, after wrapping around the pulley at the pivot point for the pitch rotation, it 

is then redirected by a Delerin piece to the pivot pulleys for the yaw joint. Instead of having 

a full pulley that would transfer the cable from the first joint pivot to the second, a small 
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Delerin piece is used because of space limitations. Using a pulley would reduce losses 

caused by friction, but a pulley takes up significantly more space. This space requirement 

would reduce the range of motion of the second yaw joint. Also, several other robotics 

hands use Dyneema sliding on Delerin, such as the hand on the Justin Robot in Germany, 

because of the low coefficient of friction between the two surfaces. Since the cable rotates 

around the pivot point of the previous joint, it is motion dependent on this joint. This 

relationship between the two joints needs to be considered when designing the controls. 

This cable routing for the second joint can be seen in Figure 20 in the red and orange 

cables. 

After rotating about the second yaw pivot point the cables are then directed to its 

corresponding spring box by a second Delerin Director. Normally having a cable slide along 

a surface is an undesirable routing option. Because of this, most designs only have the cable 

touching pulleys that can freely and easily rotate on their respective axles. However, in this 

case it was impossible to have sufficient space for a pulley while still maintaining the size 

constraints on the platform. So instead Delerin redirectors were created. The additional 

friction produced by having the cable slide instead of on a pulley is reduced by the material 

selection for both the cable and the redirector. Both Delrin and Dyneema have a fairly small 

coefficient of friction. There are several other examples of other robotics applications, like 

the DLR robotics hand, intentionally sliding the cable along a plastic director because of 

size constraints. 

 

2.3.4 Cable Selection 
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The cables used for the wrist module are the same cables that were used for the 

Sensitive Arm Platform. These cables are 12 strand, braided, 2mm Dyneema cable. 

Dyneema is a lightweight, high-strength, oriented-strand, low-stretch gel spun cable from 

Ultra-high-molecular-weight polyethylene. It has a comparable yield strength to steel, and a 

higher one than low-carbon steels. Dyneema fibers are commonly used in personal anti-

ballistic armor, bow strings, climbing equipment, fishing lines, high-performance sails, and 

parachutes.  Dyneema and Spectra are made from the same molecule using different 

spinning methods. Dyneema is produced in Europe and Spectra is produced in the US. 

Between the two, Dyneema is stronger and more stretch resistant, but is also more 

expensive and more difficult to source in the US. This cable was selected based on research 

done in past robotic projects in the lab (Caminante). Unlike the traditional steel cable 

commonly used in this type of application, Dyneema has a much higher  strength ratio  to 

weight, significantly smaller turn radius, and a much smaller coefficient of friction. These 

advantages allow it to be manipulated in smaller spaces and while reducing the 

inefficiencies caused by friction. This cable is capable of withstanding up to 950 lbs. of 

static load before breaking it, which makes it one of the strongest points in the system. This 

cable was also chosen because there is a known way of grounding the cable developed by 

Igus Corporation. This method is based on inserting a cone into the center of the Dyneema 

braid, then compressing the braid in between the code and a conical hole. This method of 

terminating the cable is used at all the ends. The brass pieces from Igus are used in the 

tensioning system, and a custom brass pieces is used in the series elastic end. Because of 

Dyneema’s low coefficient of friction grounding the cable can be a very difficult task, with 

enough force it can slide through knots, traditional clamps, and crimps. Having a reliable 
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grounding method already in place reduces the amount of potential issues and engineering 

needed to use this type of cable in this application. 

All of the joints in this module are D-shafts supported by bushings. Bearings and 

bushings are mechanical elements that reduce the friction between rotating parts and 

constrain the allowable motion. Bearings have three main components, an outer ring, an 

inner ring, and a roller element. Bushings are a low friction plastic ring. While bushings are 

not as frictionless bearings, they are much cheaper and smaller. They also don’t require the 

same level of machine tolerancing that bearings require. The primary reason bushings 

were selected over bearings for the points of rotation was because of the size difference. D-

shafts were chosen for the axles because they reduce the chance that the setscrew locking 

it will slide by increasing the surface area it makes contact with.  

2.3.5 Kinematic and Dynamic Modeling  

The kinematics and dynamics of the wrist alone are fairly straightforward to 

calculate as the wrist is simply equivalent to a spherical joint. The torque requirements on 

these joints are fairly low because of their proximity to the payload. The Peter Corke 

toolbox was used to calculate the joint torques of all six joints in the arm.  

The Peter Corke toolbox uses the Newton-Euler method. This method starts at the 

bottom of the linkage and works its way up through each joint, solving for the linear and 

angular motion, and then works its way back down the arm using this information to solve 

for the joint torques.  These dynamic equations were used to determine the tourque for 

selecting the motor. The elastic element is not considered because the elastic element are 
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more relevant when the hand makes contact with an object. The first step in this method 

defines the dynamic model seen in Equation  (2).  

𝑀(𝑞) ∗ �̈� + 𝐶(𝑞, �̇�) ∗ 𝑞 + 𝑔(𝑞) = 𝑢̇         (2) 

q = Vector of joint variables 

u = Vector of torques 

M = Inertia matrix 

C = Centrifugal and Coriolis terms 

G = Gravity vector 

Using the completed CAD, the following information was used to create the dynamic 

model necessary for the Newton-Euler approach.  

Table 2 Dynamic Parameters 

Link Length 
(m) 

Mass 
(kg) 

CGx 
(m) 

CGy 
(m) 

CGz 
(m) 

Ixx 
(kg* m2) 

Iyy 
(kg* m2) 

Izz 
(kg* m2) 

Spinning 
Motor 
Assembly 

0 3.34 0.00119 -0.08468 -0.00167 0.00722 0.00804 0.01099 

Lower Arm 0.304 1.55 -0.16192 0.01293 0 0.00197 0.01378 0.01424 

Elbow 0.021 0.45 0.008769 0.000223 0.056031 0.000209 0.000782 0.000795 

Spinning 
Forearm 

0.314 1.65 0 0.96270 0 0.00253 0.00701 0.00729 

Wrist 0 0 0 0 0 0 0 0 

Hand 0 1.15 0.06645 0 0.00130 0.00014 0.00041 0.00049 

 

In addition to this information a trajectory 𝑞� = �
𝑞
�̇�
�̈�
�, was also necessary. This 

trajectory was based on the starting position, and the average speed of human joints 

determined experimentally. Trajectories are used to generate the torque values . Joint 1 

corresponds to the first shoulder, 2 to the second shoulder, 3 to the elbow, and 5 and 6 
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correspond to the two wrist joints. The arm joint is included because it affects the torque 

values on the wrist. The starting position was chosen to generate the highest torques. A 

visualization of the trajectories of the joints can be seen in Figure 22. 

 

 

 

Figure 24: Trajectories used to determine the torques on the wrist joints. The joint numbers map to the system in 
the following way: . Joint 1 corresponds to the first shoulder, 2 to the second shoulder, 3 to the elbow, and 5 and 6 

correspond to the two wrist joints. 
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The final result for the Matlab toolbox is displayed in Figure 23. The maximum dynamic 

joint torque for the joints of the Wrist is 1.18 Nm. They share the same joint torque because 

they share an origin.  

 

Figure 25 Joint Torques 

As a comparison, the calculation for the maximum static torque was also calculated 

to compare the torque values.  As seen in Equation (6), the static maximum torque is .585 

Nm, which is about half as much as the dynamic maximum torque on the joint.  

𝐿𝑒𝑛𝑔𝑡ℎ = 4𝑖𝑛           (3) 

𝑃𝑢𝑙𝑙𝑒𝑦𝑊𝑟𝑖𝑠𝑡 = .75
2
𝑖𝑛𝑐ℎ𝑒𝑠          (4) 

𝑃𝑢𝑙𝑙𝑒𝑦𝑀𝑜𝑡𝑜𝑟 = .6 𝑖𝑛𝑐ℎ𝑒𝑠          (5) 

𝐽𝑊𝑡𝑜𝑟𝑞𝑢𝑒 =  𝐿𝑒𝑛𝑔𝑡ℎ ∗ 𝑔 ∗ 𝑙𝑜𝑎𝑑 = .585 𝑁𝑚       (6) 

2.3.6 Motor Selection 

Motors for the wrist were selected based on dynamic torque and maximum static 

torque results from the previous section. These torques were then converted into the 

maximum tension on the cable, which has a stretch of 3% as latter discussed in detail in the 

tensioning section, and then back to the torque need by the motor. The required speed of 
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the motor was also calculated in order to help with the motor and gearbox selection 

process.   The torque and speed requirements for the two wrists joints are identical 

because they are in line with each other. The equations for this are summarized below. 

𝐽𝑊𝑚𝑜𝑡𝑜𝑟 = 𝐽𝑊𝑡𝑜𝑟𝑞𝑢𝑒 ∗ 𝑃𝑢𝑙𝑙𝑒𝑦𝑀𝑜𝑡𝑜𝑟 = 1.067 𝑁 ∗ 𝑚      (7) 

𝐽𝑜𝑖𝑛𝑡𝑆𝑝𝑒𝑒𝑑 =  𝜋 𝑟𝑎𝑑          (8) 

𝑆𝑝𝑒𝑒𝑑𝑊𝑟𝑖𝑠𝑡 = 𝑃𝑢𝑙𝑙𝑒𝑦𝑊𝑟𝑖𝑠𝑡
𝑃𝑢𝑙𝑙𝑒𝑦𝑀𝑜𝑡𝑜𝑟

∗ 𝐽𝑜𝑖𝑛𝑡𝑆𝑝𝑒𝑒𝑑 = 33.618 𝑟𝑝𝑚      (9) 

The motor size was limited by the area that it needed to fit in. The most powerful 

motor and gearbox combination that would fit in the limited space and still meet the speed 

requirements were selected. The final motor requirements and the chosen motor 

specifications can be seen in Table 3. The motor selection process was iterative and worked 

closely with the mechanical design because the size of the pulleys used directly affected the 

required torque from the motor. The required torque in table reflects the required motors 

torque and not the calculated joint torque.  

The Maxon brushless 4 pole DCX series motors were selected because of their high 

torque, high acceleration response, and high power density. The biggest advantage to the 

DCX series is that it delivers customized, high precision motors in only a few days. The 

selected motors have a max power output of 24W, a nominal torque 1500 mNm, a no load 

speed of 12400 rpm, and a maximum efficiency of 85.9%. To keep the motor operating in 

the peak range for this application, the motor was paired with a 243:1 gearbox. 

 

Table 3: Selected Motors for the Wrist 

Joint  Required Actual Safety 
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Torque(Nm) Speed(rpm) Torque(Nm) Speed(rpm) Factor 

WristX 1.06 16.809 1.5 38.03 1.42 

WristY 1.06 16.809 1.5 38.03 1.42 

  

2.3.7 Series Elastic Actuators 

The third style of series elastics discussed in Section 1.2.3 Compression Springs and 

Rotation of the Background was used in this joint, which relies on terminating the cable in a 

spring directly connected to the joint. Because the joint needs to move in both directions, 

two different cables are used which ground into two different spring boxes. These spring 

boxes consist of a bronze stopper that that the cable is locked into, the spring and the 

threaded case. The threading in the spring box is used during the cabling process to half 

compress the springs in order to position them for cabling. This spring box is broken down 

in Figure 23. 
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Figure 26 Exploded view of one spring box 
 

2.3.8 Spring Selection 

Based on the torques calculated earlier, the necessary spring constants to 

minimized deflection during dynamic motion could be calculated for the wrist. As seen in 

the equations below an equation of the spring constraint can be derived from the original 

F=K dx. Since 10 degrees of motion is equivalent to 0.065 inches of travel for the spring, the 

torque at the joint could be deviated by two times this displacement to calculate the spring 

constant as seen in Equation  (16), where k is the spring constant, F is the force adding on 

the spring, and Δx is the displacement of the spring.  
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𝐹 = 𝑘 ∗ ∆𝑥             (10) 

𝐹 = 𝑘 ∗ (𝑥0 + ∆𝑥) − 𝑘 ∗ �𝐿 − (𝑥0 + ∆𝑥)�       (11) 

𝐹 = 𝑘 ∗ 𝑥0 + 𝑘 ∗ ∆𝑥 − 𝑘 ∗ 𝐿 + 𝑘 ∗ 𝑥0 + 𝑘 ∗ ∆𝑥       (12) 

𝑥0 = 𝐿
2
            (13) 

𝐹 = 2 ∗ 𝑘 ∗ 𝐿
2
− 𝑘 ∗ 𝐿 + 2 ∗ 𝑘 ∗ ∆𝑥        (14) 

𝐹 = 2 ∗ 𝑘 ∗ ∆𝑥          (15) 

𝑘 = 𝐹
2∗∆𝑥

           (16) 

 

However since there are two springs compressed to half compression that keep tension in 

the cable in both direction of motion.  The final equation is instead bellow. The final 

displacement must then be divided by two for the two different springs. 

 

𝑘 = 𝐹𝑐𝑎𝑏𝑙𝑒
2∗∆𝑥

           (17) 

Wave springs are used in these spring boxes because of the high spring constants 

that can be achieved in a small package. As seen in the equations above, a spring constant 

of 44.912 lbf/in is required in order to have a maximum of 8 degrees of deflection during 

maximum dynamic torque. If compression springs were used, they would need to be eight 

times longer than the wave springs selected and would complicate the mechanical design 

significantly. 

 2.3.9 Assembly and Tensioning  

An important design consideration is the assembly and tensioning process. Having 

fewer pieces in this module simplifies the assembly process. The first step in the assembly 
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process was to mount the center pivot into the middle pivot ring with the pulleys and D-

shaft. Next, the small shafts on the sides of the middle ring pivot are added along with the 

pulleys. The two pivot pieces are then clamped between the two support base pieces and 

the bases of the support pieces are screwed into the motor mount module. Finally the three 

Delerin director pieces are attached to the pivots.  

Having a well thought out and planned cable routing and tensioning system is an 

important part of making this a functional platform, since all of the joints rely on cables to 

transfer the motion and torque from the motor.  The two most important things to consider 

when planning the cable routing and tensioning are the 3 percent stretch in the cable that 

will need to be accounted for and the Capstan equation effect. The capstan equation effect 

is Equation (18), where Tload is the applies tension, Thold is the resulting force at the other 

side, and μ is the coefficient of friction between the rope and capstan materials and φ is the 

total angle swept by all the turns of the rope, measured in radians. 

𝑇𝑙𝑜𝑎𝑑 = 𝑇ℎ𝑜𝑙𝑑 ∗ 𝑒𝜇𝜑          (18) 
 

 
Before cabling can begin, all of the springs need to be half compressed. If the springs 

are not at half compression, during maximum torque one of the sides of the cable will have 

no tension in it. When the spring has no tension, it has the potential to jump off of one of 

the pulleys. All of the spring boxes in the wrist are threaded so that a bolt can pre-

compression the springs to half compression before cabling starts.  

        When cabling the joints, first one side is cabled as tightly as possible, then the motor 

is turned in that direction putting the full load and tension on the cable and spring. The 

other cable for the joint is then routed and attached as tightly as possible. Finally the cable 

tensioners are tightened and any additional slack that was in the cable is removed. 
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Since the cable is capable of stretching 3%, it is important that the tensioning 

mechanism is able to either elongate the path of the cable by that much or reduce its total 

length by an equivalent amount. Since the stretching is a plastic deformation, it does not 

add any compliance to the system. For the wrist joint, this extra tension was removed by 

shortening the cable. In the space between the motors in the upper arm four, 3-piece cable 

tensioners were added as seen in Figure 26. 

  

 

Figure 27: In line three piece Wrist tensioners 

These cable tensioners are tightened by removing the wrist motors then pulling a 

cable around them while holding onto the screw component. The friction between the cable 

and the steel threaded piece is large enough that pulling the cable rotates the piece as seen 

in Figure 27.  
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Figure 28 Tensioning method for Wrist 

By screwing the two components together, the distance between them is reduced. The 

third component is a sleeve that locks the two pieces together and prevents them from 

untwisting during operation. Each of these tensioners can reduce the length of the cable by 

10 mm. Their locations in the final assembly can be seen in Figure 28. 
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Figure 29: Wrist tensioner location 

Capstan equation calculates the reduction in force on a cable bending around a 

curve. This means that three turns around a pulley will halve the amount of force output. 

While keeping this principle in mind, I focused on limiting the number of turns around idler 

pulleys in routing the cable. In most locations the cable only makes a maximum of one turn. 

Table 4 below shows how many extra turns the cable makes before reaching its final 

destination. 

Table 4: Additional turns around idler pulleys 

Joint Additional 
turns (rad) 

 Positive First Wrist Pitch 5.75 
Negative First Wrist Pitch 8.90 

Positive Second Wrist Pitch 10.47 
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Negative Second Wrist Pitch 13.61 
 

 

 

 

2.3.10 Evolution of Designs 

This module went through several design revisions before reaching the final design 

discussed above. Each of the major revisions and reasons for the revision to this module 

are discussed in the sections below. All of the designs discussed are in-line joints consisting 

of three primary pieces; a base support skeleton, a middle rotation piece, and a final 

rotation piece.  

Original Design 

The original design for the wrist was similar to a typical Universal Joint with an ‘X’ 

shaped center. This design did not have series elastic joints. Instead, it had springs that 

applied forces to center the joints. Since it was a gravity compensation to make it more 

efficient, it did not give any direct information about the joint torque. It was decided that 

series elastics would be better mainly for this reason. Also, in this design the first joint was 

independent and the second joint was dependent. The dependency of the second joint 

meant a longer cable path which would increase the stretching distance. Another issue with 

this configuration, the second joint would move with the first, increasing the power 

demand and decreasing the efficiency of the system. The cables from the motors directly 

grounded into the pulleys at the joints and separate cables connected each joint to its 
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corresponding centering joint.  

 

 

Figure 30: Self Centering Original Design without Series Elastics 

Second Design 

This design incorporates series elastics in the design. Instead of being an ‘X’ the first 

pivot became a cage around the second pivot, with the springs being stored under the cage 

show in Figure 30. The second pivot then was moved inside this cage and its springs were 

also placed underneath the pivot axial. Both of the pivots have the cables entering the 

spring box from the same side. A simple pulley is used to redirect the cables from around 

the first axis to the second. The major issue with this design was that it was extremely 

expensive to machine.  
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Figure 31: Second Wrist Design, incorporated SEA's 

Third Design 

In this design, the fingers are moved further apart so that they hover above the 

edges of the cage instead of directly above the pivot as seen in the figure below. This 

change was due to the fact that having the base of the fingers so close together limited the 

variety of the objects that could be grasped. Limiting the variety of objects it was capable of 

grasping would limits its usefulness as a research platform.  
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Figure 32: Third Design with separated Fingers 

Forth Design 

This design exchanged the large compressions springs for much smaller wave 

springs. By moving to smaller springs, the large and expensive to machine cage was 

removed and the springs are instead mounted directly below the pulley in a removable 

spring box. This removable spring box could be assembled separately from the wrist and 

then attached after it had been compressed. The center pivot was also simplified by moving 

the wave springs vertically on the inside. Two small pulleys were then used to redirect the 
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cable from the pivot pulley into the springs. Like the previous design the first pivot had one 

pulley on each side; one side for controlling its motion and the other for directing the 

cables for the inside yaw joint.  

 

Figure 33: Forth Design incorporating Wave Springs 

Fifth Design 

The fifth design separated the cables for the inside yaw joint and moved one to each 

side of the center yaw pivot piece making the part more symmetrical and less complicated. 

This design also flipped the orientation of the springs so that the cable went straight down 

into the spring from the pivot pulley. Instead of using pulleys to redirect the cables to the 

second joint from the first, a Delrin director was used instead. This design also moved the 

springs on the first pitch pivot joint so that they are positioned further out horizontally as 

seen in the final configuration. Having the springs out to the sides reduces the pieces 

needed and the weight of the assembly. The springs also serve as mechanical stops for that 

axis. 
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Figure 34 Fifth Design incorporating the wave springs into the pieces and rotating them 

Transition to the Final Design  
The primary differences between the fifth design and the final design are that the 

two pulleys on the sides of the first joint were replaced with four pulleys so that each cable 

has its own free spinning pulley and that the springs in the second yaw joint where rotated 

horizontally instead of vertically. Replacing the pulleys prevents the cables from sliding 

along the pulleys instead of spinning the pulleys, which reduces the inefficiencies in the 

system caused by friction. Rotating the springs in the second yaw joint makes the inner 

assembly smaller which increases the joint’s range of motion. The major issue with this 

system was its limited range of motion. 

2.4 Finger Modules 
The finger modules are composed of the two unique links of the finger. This section 

begins with an overview of the design requirements for this module. After this, there is a 
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discussion of material and cable selection, module design, and cable support structure 

design methodologies. This section continues with the system modeling and motor 

selection, accompanied by discussions on the design of the series elastic actuators used in 

this section of the manipulator. The section concludes with a discussion on the final 

assembly of the fingers and the evolution of the design of the finger modules during the 

project. 

 

Figure 35:Two Link Finger Module 

2.4.1 Design Requirements  

Based on the design requirements, each module needed to be of comparable size to 

a human finger, incorporate series elastics, be easy to mount of the wrist, have two links 

and be dependent from the motion of the Wrist. The two-finger design was chosen because 

it is a simple system that still allows for up to 5 points of contact for large object, a 
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comfortable number of contact points for controlling most generic objects found in human 

environments. It also allows for two parallel contact lines for pinch grips to balance the 

forces.  The fingers also need to be able to deflect easily on contact but be strong enough to 

grasp and hold a 1kg payload. Finally, the finger modules must be adequately covered in 

tactile sensors. Like the wrist, the motors for these modules are also located in the arm and 

cables are used to transfer the motion for the motor to the joint in the fingers. Additionally, 

because the motion of the fingers needs to be independent from the motion of the wrist, 

Bowden tubes are used to isolate the motion. A Bowden cable is a flexible hollow tube used 

to transfer the mechanical motion of an inner cable. Bowden cables are commonly used in 

bicycle brakes, cars, old remote camera shutter controls and aircraft. Based on the 

requirements, two of these finger modules are required in the final assembly. To satisfy the 

range of motion requirements, the first link is capable of moving 175 degrees, which is 

more than the minimum requirement of the motion of a human finger, relative to the base 

and the second link is capable of moving 90 degrees relative to the first link. 

 

2.4.2 Material Selection and Manufacturing 

The structural components in the finger modules are primarily made from 3D 

printed Polylactic Acid (PLA) plastic. PLA was used because it met the force requirement 

for the finite lement analysis for a safety factor of two for the expected loads and is readily 

available. The transition piece between the fingers and wrist, the slider, and finger spring 

box caps are all made from 6062 Aluminum. The majority of the fingers is 3D printed to 

reduce weight, cost and allow for future modifications. The three different parts are metal 
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because the forces and stresses that they experience during normal operation would break 

a 3D printed equivalent. This was confirmed through FEA’s of the CAD model an example of 

which is in Figure 35. The Bowden Tubes are made from extension springs surrounded by 

a flexible plastic tube. The springs provide the rigidity that the Bowden needs and the 

tubing prevents the spring from kinking under maximum tension.  

 
Figure 36 FEA of the first link of the finger 

 
 

The spring boxes are attached to the fingers off center to increase the contact 

surface area of the fingers. The finger spring boxes are above the axles so that when the 

finger is folded at a 90 degree angle the contact area where the tactile sensors are is 

increased to help meet the requirement of having adequate sensor coverage as seen in 

Figure 36. 
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Figure 37: Tactile Sensor Coverage Area 

 

2.4.3 Cable Routing 

The cables for all of the joints in the fingers come from the four motors facing 

towards the wrist and finger modules. These cables are attached to four 0.4 inch diameter 

pulleys on the motors and are then routed from the motors to the tensioning blocks on the 

outside of the Wrist with Bowden cables. From the tensioning blocks the cables are then 

routed through the Bowden cables to the metal transition pieces where they are routed 

into the base of the fingers. Each joint has two cables controlling it, one for each direction of 

motion. One of the cables enters the finger link at the bottom and the other enters the at the 

top. From the metal cable routing piece, the first cable makes one turn around the base 

pulley then enters the spring box on the first link. Then it goes through the metal slider and 

attaches on the opposite side. The second cable makes one turn in the opposite direction 
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around the base pulley then it is pulled around the curve on the top edge of the link into the 

top of the spring box. From there it goes through the slider and attaches on the side of the 

slider closest to the wrist.  

The next two cables control the second link in the finger module. Because these 

cables first wrap around the pulley for the first link, their motion is dependent on the first 

link of the fingers. After wrapping around the first pulley in opposite directions from each 

other, the cables then are routed up to the second pulley. When they make their turn 

around the first pulley, both cables rotate towards the center of the pulley so that they are 

lined up with the smaller second pulley. The first of these two cables makes half a turn 

around the second pulley and then enters the bottom of the second link. From there it goes 

into the metal slider and attaches to the far side. The last cable makes a full turn around the 

second pulley then enters the top of the spring box on the second link.   

 

2.4.4 Finger Joints Knot Selection 

The best method for attaching the cable to the slider is with a compressed knot and 

the best class of knots for this application is stopper knots. This type of knot is design to be 

tied in the middle or end of a cable and not move. By incorporating the opposite cable for 

that joint into the knot, it becomes more balanced and more secure around the slider. 

Ashley’s Stopper Knot, Double Overhand Stopper Knot, and the Figure Eight knot where all 

tested before the Ashley’s Stopper knot was selected. It was difficult to incorporate the 

middle of the other cable into the double overhand stopper knot in a secure way. The figure 

eight knot pulled through with very little resistance. The oysterman’s knot was difficult to 

leave a reliably short teal that wouldn’t get in the way of the springs in the spring box.  
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Figure 38 Ashley Stopper knot (30) 

 

The Ashley’s Stopper knot as seen in Figure 37 had several advantages over the 

other options. First, the harder the cable pulls on the knot, the more it clamped its own end 

against the metal. It was also easy to incorporate the middle of the other end into the cable, 

as seen in Figure 38. 

 

Figure 39 Stopper knot location in the fingers 

 

2.4.5 Cable Selection 
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The tension requirements on the fingers are significantly smaller than the wrist. 

Additionally the space requirements in the finger require a thinner cable. For the Bowden 

tube to work correctly the difference between the inside diameter of the tube and the 

diameter of the cable need to be as close as possible. Due to the size limitation of the 

Bowden tubes available, 1mm was the smallest size of cable that could be used. For these 

reasons, a 1 mm 12 strand braided Dyneema cable was sought after. Dyneema was selected 

because of its small turning radius, low sliding friction, and low stretch. A more thorough 

discussion of Dyneema’s material advantages is in the Cable selection section for the Wrist, 

2.3.4 Cable Selection. A cable with 12 strands was desired because it would work with the 

Igus clamping method, which relies on a dense braid. Having a cable with less strands in 

the braid would prevent it from claiming properly because the braid would not have 

enough surface area in contact with the cone, an important components of the Igus 

clamping method.  

Table 5 Cables tested 

Cable  material lbs Diamete
r 

Strain
s  

Major Fault 

FSE Robline Dinghy Control Dyneem/Nylon 150 1.7mm 0 Unbraded Dynema 
Atlandtic Braids Fling-it Dynema/Polyurethance 300 1.4mm 8 Not shock resistant 

Power Pro Braided Fishing Line Spectra 80 .7mm 12 Too thin 

Sporasub Dyneema Braid Dynema 330 1mm 4 too few braids 

Dynema Brain Yu Wei Dynema 250 1mm 8 Couldn't find a supplier 

 

        In addition to being used in robotics applications, Dyneema cable is also used in 

fishing, parasailing, sailing, towing, and gliders. After extensive research, five different 

cables were ordered that had diameters ranged from 0.68 mm to 1.3 mm. All of these 

cables were braided and were made from Dyneema. Some of the other samples ordered 

claimed to be braided Dyneema surrounded by a Polyester double braided covering, 
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however upon delivery it was discovered that the interior Dyneema was simply stranded 

and not braided. Only one of the cables ordered had the desired 1mm diameter. While all of 

the ordered cables meet the strength requirement, many of them didn’t have 12 braided 

stands. For example, the .68mm cable had 10 stands and the 1mm cable only had four. 

Because of size restriction, the 4 strand 1mm braided was selected despite the clamping 

issues. 

 

2.4.6 Bowden Selection 

A Bowden cable is a type of flexible tubing that is capable of transmitting linear mechanical 

energy across a distance. In this project, Bowden cables are used to decouple the fingers 

from the wrist joints. The Bowden cable begins at the upper arm, bypasses the wrist joints, 

and grounds again at the base of the finger. Bowden cables have many practical 

applications and can be commonly found on bicycle brakes and shifters, old camera 

shutters, personal gliders, and cars. Since it had been predetermined that the maximum 

cable that could be used in the fingers was 1.3mm, all of the tubes ordered and tested had 

an ID of at least 1.3mm. 

2.4.7 Tested Bowden Tubes 

The first Bowden tubes tested where the bike brake cable, shifter cable, and camera 

cable. Bike brake cable consists of three different layers. The outer is a thin plastic shell 

that holds the layer below it together. The next layer is a flat piece of metal that has been 

spiraled around the inner plastic tube. This metal support layer provides most of the 

support to the tube. The final layer is a smooth plastic tube that the cable slides inside. The 
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shifter cable has a similar structure however instead of having a coiled metal layer, there 

was a ring of metal rods forming the support layer. The camera shutter cable was the 

thinnest but still too stiff for this application. It was quickly determined that all of these 

tubes were too stiff to make the tight turn radiuses required because of the metal layer. 

However, the metal inserts made them easily meet the tension requirements. 

 

 

Figure 40 Bicycle break and shifter Bowden cables (31) 

It was then determined that a simple smooth plastic tube may be sufficient for this 

application. Because of the low tension requirements for the fingers, in theory there would 

not be enough tension on the cable for a metal layer to be necessary. Smooth plastic tubes 

that were both considered both firm and flexible where acquired. The following tubes were 

all selected because they meet this requirement. 

Once the tubes arrived, it was easy to eliminate most of them with simple tests. 

Tubes that were too rubbery were easily compressed under tension, and had a large 

friction coefficient that added to the torque requirements in the system. Tubes that were 

too soft were immediately eliminated because they compressed around the inner cable 

when bent. This compression adds extra, unpredictable friction in the tube. Tubes that 

were stiff and had memory were also eliminated. Memory means that the tube will hold the 

position it is moved to. Having memory increases wear on the tube and reduces the 
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number of life cycles of the system before failure. The following chart summarizes the 

tubes that were immediately eliminated and the reason. Quantitative assessment of 

internal friction was not include due to its difficulty to measure.  

 

McMaster Part flexibility turn diameter interior compressibility  memory stretchy  

52355K41  Durable White Tubing Made with Teflon® ® FEP 1/16" ID, 1/8" OD, 1/32" Wall  

 
very 1 average  average low average 

2129T11  Clear FEP Tubing 1/16" ID, 1/8" OD, .030" Wall Thickness 

 
stiff 1.125 smooth resistant high Not 

9685T1  High-Pressure White Nylon Tubing .073" ID, 1/8" OD, .026" Wall Thickness 

 
very 0.5 

 
average low Very 

5583K43  Abrasion-Resistant White ETFE Tubing .062" ID, 1/8" OD, .031" Wall, Semi-Clear White 

 
average 1 smooth average average average 

1883T4  Miniature Clear EVA Tubing .05" ID, .09" OD, .02" Wall Thickness 

 
very 0.5 

 
very low Very 

5173K39  Vacuum-Rated Nylon Tubing .078" ID, 1/8" OD, .024" Wall Thk, Semi-Clear White 

 
stiff 2.5 rough resistant high Not 

5181K31  Crack-Resistant Polyethylene Tubing 1/8" ID, 3/8" OD, 1/8" Wall Thickness, White 

 
stiff 6 rough no high Not 

51085K49  High-Pressure PEEK Tubing .062" ID, 1/8" OD, .031" Wall Thickness, Tan 

 
stiff 3 rough no high Not 

9446K11  Choose-A-Color PVC Tubing, Blue, 1/16" ID, 1/8" OD, 1/32" Wall Thickness 

 
average 0.75 

 
very slight slightly 

5119K78  High-Temperature Viton® Fluoroelastomer Tubing, Firm, 1/16" ID, 1/8" OD, 1/32" Wall 

 
very 0.5 very sticky very low Very 

5006K61 High- Strength Clear PVC Tubing, 1/16” ID, ⅛” OD, 1/32” Wall Thickness 

 
very 0.5 smooth very low Very 

51245K21 Durable Santoprene Rubber/Plastic Tubing, Food & Beverage 1/16” ID, 3/16” OD 

 
very 1 

 
easily none Very 

 

The final two tubes that were selected where Durable White Tubing made with 

Teflon and Abrasion-Resistant White ETFE Tubing. Both of these tubes were installed in 

the assembly and tested there. The first tube was capable of making the required turns. 

However, because of its stiffness it was applying a force onto the finger modules that was 

http://www.mcmaster.com/
http://www.mcmaster.com/
http://www.mcmaster.com/
http://www.mcmaster.com/
http://www.mcmaster.com/
http://www.mcmaster.com/
http://www.mcmaster.com/
http://www.mcmaster.com/
http://www.mcmaster.com/
http://www.mcmaster.com/
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effecting the motion of the Wrist. Because of this, it was replaced with the Abrasion-

Resistant White ETFE Tubing. When on the assembly, this tubing compressed under the 

tension making its length variable and unreliable. A new Bowden Cable was needed.  

 Next, extension springs were selected and ordered for testing. Extension springs are 

extremely flexible while still having a rigid frame, making them a good option for this 

application. Three different spring constant values were tested; 7.6, 1.4, and 1.2. The 

smallest extension springs that were able to be acquire had an OD of ⅛ inches. When the 

springs were placed in the assembly, the weakest spring had the tightest bend radius and 

put very little force on the wrist assembly when under tension. Unfortunately, under 

maximum tension the spring loop would form a 90 degree angle and kink out of place. Near 

the clamps, it also would kink under maximum tension. By kinking, the length of the spring 

was reduced which added random and unpredictable slack to the cabling. To prevent the 

spring from kinking, a flexible plastic tube, Laboratory Clear Tygon PVC Tubing, was added 

to the outside of the springs. This tube was flexible enough that it didn’t impede the cables 

path or apply a force on the wrist assembly during tension, while still holding the spring in 

place.  

2.4.8 Kinematic Modeling 

The kinematics calculations for the Fingers were done in Mathcad. The goal of these 

equations was to determine the required joint torques for use in motor selection. Unlike for 

the calculations for the wrist, dynamic models were not created for the fingers and only the 

static equations were considered. This is because the dynamic forces on all of the other 

joints were consistently two times larger than the static values.  
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𝐿𝑒𝑛𝑔𝑡ℎ = 1.2 𝑖𝑛𝑐ℎ𝑒𝑠         (19) 

𝑃𝑢𝑙𝑙𝑒𝑦𝐹𝑖𝑛𝑔𝑒𝑟 = 7𝑚𝑚         (20) 

𝑃𝑢𝑙𝑙𝑒𝑦𝑀𝑜𝑡𝑜𝑟 = .5𝑖𝑛𝑐ℎ𝑒𝑠         (21) 

𝐹𝐽1𝑡𝑜𝑟𝑞𝑢𝑒 = 𝐿𝑒𝑛𝑔𝑡ℎ∗𝑔∗𝑙𝑜𝑎𝑑
𝑃𝑢𝑙𝑙𝑒𝑦𝐹𝑖𝑛𝑔𝑒𝑟

= 99.636 𝑁       (22) 

𝐹𝐽1𝑚𝑜𝑡𝑜𝑟 = 𝐹𝐽1𝑡𝑜𝑟𝑞𝑢𝑒 ∗ 𝑃𝑢𝑙𝑙𝑒𝑦𝑚𝑜𝑡𝑜𝑟 = 0.633 𝑁 ∗ 𝑚     (23) 

𝐿𝑒𝑛𝑔𝑡ℎ = 2.4 𝑖𝑛𝑐ℎ𝑒𝑠         (24) 

𝐹𝐽2𝑡𝑜𝑟𝑞𝑢𝑒 = 𝐿𝑒𝑛𝑔𝑡ℎ∗𝑔∗𝑙𝑜𝑎𝑑
𝑃𝑢𝑙𝑙𝑒𝑦𝐹𝑖𝑛𝑔𝑒𝑟

= 170.804 𝑁       (25) 

𝐹𝐽2𝑚𝑜𝑡𝑜𝑟 = 𝐹𝐽2 ∗  𝑃𝑢𝑙𝑙𝑒𝑦𝑚𝑜𝑡𝑜𝑟 = 1.08 𝑁 ∗ 𝑚      (26) 

The final Equations  (23) and (26) show a maximum static torque for the fingers of 

1.08 Nm. This number was considered when selecting the motors and springs for the 

fingers. 

2.4.9 Motor Selection 

Similar to the motors for the wrist, the motors for the fingers were selected based 

on the maximum static torques determined in the section above. The maximum torques 

were then converted to the tension in the cable, then back to the required torque from the 

motor. The motor speed was calculated based on desired speeds of the fingers. The biggest 

limiting factor on the selected motor was the size. All six of the motors for the wrist and 

fingers need to fit in the upper arm.  The final motor requirements and the chosen motor 

specifications can be seen in Table 1. To simplify the motor procurement and mounting 

design, all of the motors ordered meet the requirements for all six joints and can be used 

interchangeably. The selected motors all have a maximum power output of 24W, a nominal 

torque 1500 mNm, a no load speed of 12400 rpm, and a maximum efficiency of 85.9%. To 
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keep the motor operating in the peak range for this application, the motor was paired with 

a 243:1 gearbox. 

Table 6: Selected Motors for the Fingers. 

Joint  
Required Actual 

Safety 
Factor 

Torque(Nm) Speed(rpm) Torque(Nm) Speed(rpm) 

Finger joint 1 0.633 16.809 1.5 38.03 2.37 
Finger Joint2 1.08 16.809 1.5 38.03 1.39 

 

2.4.10 Series Elastic Actuators 

The majority of each of the finger links is a spring box. These spring boxes are 

inspired by the spring boxes found in traditional linear based series elastic modules like 

seen in Obrero. This styles was also used in the elbow and upper arm rotation of the 

Sensitive manipulation Platform seen in Figure 34. 

 

Figure 41 Elbow Pivot Joint SEA from the Sensitive Manipulation platform  (11) 

Unlike these modules which contain four springs, each spring box contains 8 

springs. These springs apply a force to the spring case and the slider. The slider is attached 
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to the cables and its motion compresses half the springs and releases tension from the 

other half. Because the springs all start at half compression, no pre-compression is 

necessary. Unlike the spring boxes used in lower half of the Sensitive Manipulation 

platform the spring boxes in the fingers use eight springs instead of four. Four of the 

springs are weak springs and the other four are slightly stiffer springs. This creates two 

different ranges of stiffness in the joint. The first range is very sensitive and can be used to 

detect very light contacts, like when the manipulator is grasping a tube of paper. The 

second range allows it to still have compliance when lifting heavy objects. If only the weak 

spring was used it would quickly over saturate when lifting heavy objects or need to be 

extremely long. Using only a single spring constant wouldn’t provide the sensitivity that 

this kind of research requires. The disadvantage of using two different springs is that when 

the weaker spring over saturates, a nonlinear range occurs. Together, the force 

displacement chart would look similar to the one show in Figure 34. 

 

Figure 42: Force displacement chart for the Spring boxes 
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To avoid having two linear ranges with a non-linear range in the middle, a nonlinear 

spring could be used with a force displacement chart that would look similar to the one 

show in Figure 35. However, this type of spring would be extremely expensive to have 

made custom for this project in such a low quantity.  

 

Figure 43: Force displacement curve for a non linear spring 

 
2.4.11 Spring Selection 

Two different springs were used in the fingers. A very weak spring was selected to detect 

delicate objects more accurately. A stiffer spring was selected to help sense heavier objects 

and larger contact forces. Unlike the other springs in the wrist, the math to calculate the 

spring constants for these two different spring constants is in the equations below. The two 

springs are in series with each other.  

The calculations for the spring constant for the fingers were less straightforward. 

The fingers required a spring constant that would allow a high level of sensitivity and 

deformation for sensing very delicate objects. The fingers also need to be able to have an 

elastic element when grasping heavier objects. To satisfy both of these requirements, two 
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springs in series where selected. This creates two different linear ranges of sensitivity with 

a nonlinear range in the middle when the weaker spring becomes over saturated, and the 

entire spring assembly takes on the spring constant of the stiffer spring. The equation for 

springs in Series is Equation (27). 

𝑘𝑛𝑒𝑡 = 1
1
𝑘1
+ 1
𝑘2

           (27) 

Given that the heaviest pay load the fingers will try to grasp is 1kg. It is important 

that the heavy springs doesn’t over saturate. This week spring was chosen experimentally 

to be 13.3 lbf/in with a free length of .25 inches and a solid length of .073. Given that the 

links of the finger are comparable to the links of Go-bot and the total length of a human 

finger the heavy spring needs to have free length around .35 inches and a solid length 

around .13 inches. In order to meet the requirement Equation (28) was used. Force is 

divided by four because of the four springs of this type in the spring box. 

𝑘 = 𝐹
4∗∆𝑥

           (28) 

 This equation was used to solve for a 40 lbf/in spring constant. The final 

spring used was .313 inches long with a solid length of .125, and a spring rate of 39.2 lbf/in. 

The differences between the desired spring and used spring were compensated by 

modifying the size of the inside of the spring box in the link. 

2.4.12 Assembly and Tensioning 

One of the most important and frequently overlooked parts of the design process is 

engineering the assembly and tensioning strategy. The advantage to the spring box based 

fingers used in this project is that the series elastic elements themselves are pre-assembled 

independently of the arm and then assembled together. Because of this pre-assembly 
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process, the actually assembly of the module, once that step has been completed, is 

relatively easy. Another key aspect of the assembly process is the tensioning system.  

Having an intelligent cable routing path was especially important for this model to 

keep the motion of the fingers independent from the wrist while still having the motors 

located in the arm. The routing of the cables also needed to allow for a tensioning system 

that can take up the three percent stretch that occurs in the cable during normal operation.  

The assembly process for the spring box is as outlined in the following steps. First 

the cable is measured out then inserted into sliders and tied off with the Ashley’s Stopper 

knot on each side. Then the cables are threaded through the bottom of the spring box link 

and through the metal cap. The springs are then inserted into the spring boxes. Two of each 

kind of spring are put on each side of the slider within the spring box. Having springs on 

both sides of the slider helps balance the force. Once the springs are in place, the top of the 

spring box is installed, pre-compressing the springs halfway, and the two locking screws 

are put in. Because the springs all start at half compression, no additional compression is 

necessary during the rest of the cabling process. The finally assembled box is seen in Figure 

42. 
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Figure 44 Finger Spring assembly 

The tensioning system for the wrist relies on shortening the cable to the joint. The 

tensioning system for the Finger module does the opposite and lengthens the path the 

cable needs to travel. The flexible region of the Bowden cables works best over shorter 

distances, because it is easier to control the required turning radii and the motions the 

cable moves through. To reduce the region the cable must pass through, the Bowden cable 

is secured to the top of the support piece on the wrist. The tensioning system is then 

mounted to the back side of the wrist support piece above the potentiometer. There are 

three components to the tensioning system. Two 3D printed grounding parts and a hollow 

screw. The two grounding parts are spaced with a 1 inch gap between them. The hollow 

screw is then threaded all the way in to fill the gap. This assembly can be seen in Figure 43.  
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Figure 45 Finger tensioners 

The cable loop is then completed after it has been attached to the motor are tightly 

as possible. The screw is unscrewed, lengthening the path of the cable and taking up the 

slack. This tensioning mechanism is only located on one of the cables in each joint and is 

responsible for taking up to tension in both cables caused by the 3% stretch. The unit at full 

extension can be seen in Figure 44.  
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Figure 46 Finger tensioners fully extended 

2.4.13 Evolution of Design 

Like the wrist module, this module also went through several design revisions. The 

fingers themselves were originally going to be very similar to the fingers used in Go-bot 

seen in Figure 45. The fingers in Go-bot were designed to manipulate small, lightweight Go 

pieces. These fingers are made from 3D printed material and use the simplified series 

elastic modules defined in the background section as the third hybrid approach. The goal of 

this platform is the manipulate 1kg objects. The thin plastic pieces and delicate design of 

the Go-fingers were unsuited for use in this project without modification.  
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Figure 47 GoBot fingers 

First design 

The first design was inspired robotiQ robotics hand (31). This hand uses linkages to 

translate the motion of the motors to the finger links. A 3D printed prototype was created 

to test the mechanics of this concept. This design was quickly eliminated because it added 

an unnecessary level of complexity. The best way to translate the motion from the motor 

module to the fingers is with Bowden cables. Having the cables actuate a linkage makes the 

system unnecessarily complex. 

 

Figure 48: First Design of the Finger (31) 
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Second Design  

The second design for the finger module was an upgrade on the original Go-bot finger. This 

upgrade increased the size the springs and moved them to the center of the finger as seen 

in Figure 47. By moving them to the center, the width of the link was reduced, making them 

more comparable to the size of a human finger. The joints were also thickened to support 

the additional stress caused by the heavier payload.  

 

 

Figure 49: Second Design of Finger smaller version of the Go-bot fingers 
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Third Design 

Having one spring on each side of the joint makes the fingers very thick and reduced the 

potential contact area for the tactile sensors. For the third design, the springs were both 

moved to the top of the joint. This thickened the joint slightly but significantly increased 

the contact surface area, which was more important dimension. This design was 

prototyped on the laser cutter and heavily influenced the final design.  

 

Figure 50 Third Finger design, CAD and laser cut concept 

Transition to the Final Design  

Instead of using only two springs like in the third Design, the final design incorporates 

eight springs. Having eight springs in a contained spring box makes it easy to assemble 

because the springs are already pre-compressed. By using two different springs, a larger 

range of forces can be measured by the series elastic element. Having a spring box instead 

of using two parallel springs means that the two different cables enter the spring assembly 

from different ends instead of the same end, which affects the cable routing.  
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Figure 51: Concept exploration for final design 

 

2.5 Motor Module  
The motor module section supports the six motors that drive the six degrees of freedom of 

the arm. It is clamped into position by the final joint of the Sensitive Manipulation platform. 

The primary goals of this module are to intelligently position the motors so that the cables 

from their pulleys can be easily tensioned and routed to their corresponding joints.  

2.5.1 Motor Module Requirements 

To reduce the torque requirements on the shoulder, elbow, and wrist, all of the motors for 

the wrist and fingers were placed in the upper arm. To aesthetically match the lower arm, 
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all of the motors need to fit in a 3-inch diameter 4.5 inch long shell. The complete motor 

assembly can be seen in Figure 51. The primary goal of this module is to hold the motors, 

motors pulleys, and direct the cable routing towards the joints. Another requirement is that 

this module be easy to assemble and that the tensioning pieces in the middle of the module 

be assessable. To make the assembly process easier, all of the motors are designed to be 

removable without effecting the tension on the cable. This is especially important when 

tensioning the wrist cables. It must be able to interface with the Sensitive manipulation 

platform, as seen in Figure 50. 

 

Figure 52: Wrist and Motor Module created in thesis as attached to the Sensitive Arm Platform 
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Figure 53: Complete motor module 

 

2.5.2 Primary Components 

The structural components for this module are made from two half inch diameter 

carbon fiber tubes and three 6062 Aluminum support pieces. The lower half of the 

Sensitive Manipulation platform is supported by two carbon fiber tubes with the other 

elements clamped on to them. To make the two links of the arm both interface correctly 

and look like they aesthetically were designed for each other, a similar structure was used 

in the new section of the arm. The far end of the carbon fiber tube is clamped into the wrist 

rotation joint on Sensitive Manipulation Platform and the near end is clamped onto a plate 

that attaches to the wrist module. The two support pieces on the wrist that support the 

pivots screw into this final piece. 

2.5.3 Motor Attachment and Cable Routing 

Each of the motors is a cylinder 0.87 inches diameter by 3 inches in length.  The 

configuration, which allowed for the largest and most powerful motors, was in a circle as 
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seen in the Figure 52. Other configurations, such as mounting the motors perpendicularly 

in the slot between the carbon fiber tubes were also considered, but proved to be less space 

efficient and heavier than the circular configuration. 

 

Figure 54: Circulate orientation of the motors 

Igus developed a terminating method of Dyneema that works by inserting a cone 

into the center of the Dyneema braid, then compressing the braid between the cone and the 

walls of a conical hole. However, the outer Igus brass piece was too large to fit in the small 

pulleys of the motor. So instead a conical hole was added to all of the motor pulleys using a 

5 degree 1/16 end mill, so this same technique could still be used. A cross section of the 

motor pulley can be seen in Figure 53. This method of combining the conical hole into the 

pulley was first used in the biped robot Caminante (10).  
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Figure 55 Cross section of motor pulley 

 

2.5.4 Wrist motors 

        To make room for the motor pulleys that control the cables, the two motors for the 

wrist were oriented facing down the arm and the four motors for the fingers were oriented 

facing up the arm.  This means that the cables from the wrist are sent through the center of 

the motor module. The metal clamp that holds the rear two motors also hold the 

corresponding cable rerouting pulleys.  The two-motor-clamps can be seen in Figure 54 

with the four rerouting pulleys. The most important consideration was that the cables 

exited the motor module in the correct position for them to be wrapped around the 0.75 

inch diameter pulleys at the wrist. 
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Figure 56 Two motor rear clamp 

 

2.5.5 Finger Motors 

        The four motor clamps can be seen in Figure 55. Instead of having rerouting pulleys 

like for the Wrist, these cables are instead directed to the Bowden cable starting clamps. 

The piece supporting the finger motors also needed to allow the cables from the wrist 

motors to safety pass through to the wrist joint. 
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Figure 57 four motor forward clamp 

2.4.6 Assembly 

 This entire module is largely assembled by clamping the different components 

together. Clamping instead of screwing the components together makes the assembly 

easier because it reduced the amount of required precision. The primary reason the pieces 

are clamped together is because the carbon fiber tubes could not have screws driven into 

them. Having the motors clamped as well allows them to be easily removable. Clamping the 

motors at the gearboxes has the added benefit of supporting them better than simply 

bolting into on one face. The pulleys are held into place by two bearing surfaces. 
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Chapter 3 Electronics  
 The electronics used in this project measure the position of the joints, springs, and 

tactile sensor deformation. This thesis’s contribution to the electronics were the system 

architecture and linear potentiometer sensor selection. This information is then used in 

closed loop controllers and as feedback in the navigation and grasping algorithms. The 

following two sections outline the electrical architecture and the selection of the linear 

potentiometers to measure the spring displacement. 

3.1 Electrical Architecture 
A block diagram of the electrical architecture of the system can be seen in Figure 56. 

This architecture was designed in conjunction with an electrical engineering student in the 

lab. This electrical system was developed to be both space efficient and be able to quickly 

respond to sensor readings. Instead of having a few critical boards with more functionality, 

several small boards were developed instead. Having many smaller boards allows the final 

assembly to be more compact, instead of having large surface areas for the electrical 

boards. An external PC handles all of the higher level processing, navigation, and controls. 



 97 

 

Figure 58: Electrical Diagram 

The electrical engineering student Ennio Claretti also designed all of the boards 

themselves, including custom motor controllers and drivers. Custom motor were used 

because of both the space limitations and for their built in capacity to read for all from the 

potentiometers and motor encoders.  Each of these motor controllers has a LPC2148 

microcontroller capable of sending a PWM signal to the motor drivers based on either a 

position PD controller based on the potentiometer readings from the joint positions and/or 

encoders from the motors or a force based PD controller based on readings from the linear 

potentiometers measuring the spring deflection. Both of these PD controllers run at 1kHz. 

Each of the motors controllers is capable of controlling three of the six motors. These 

controllers send a PWM control signal to the custom motor driver.  A custom motor driver 
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was used because of space limitations. Each motor driver is capable of running three 24V 

brushed DC motors. 

All of the sensor information from the tactile sensors is sent directly to the PC 

computer over USB. USB was selected because of its ability to reduce the number of cables 

to the PC and because of its high transmission rate. A high transmission rate is important 

for quickly transmitting tactile information from the fingers and shell each of which 

sampled at 100 Hz. 

3.2 Linear Potentiometer Sensor selection  
The small size of the springs used in both the fingers and wrist and the small size of 

the components themselves made finding small sensors with high resolutions a 

requirement for the success of the platform. Not having reliable sensors or  a high 

resolution would significantly limit the capabilities of the system and would affect the 

accuracy of the controllers. Inexact readings would produce imprecise results.  

A variety of different sensors were tested for their sensitivity to small motions. The 

springs on the wrist compress 3mm under maximum load. All of the sensors discussed 

below had their resolution tested over a range of 2mms.  

Table 7 Sensors Tested 

Sensor Type counts noise 
Linear potentiometer 30 8 
IR photo transistor 50 10 
photo transistor 20 6 
QRE1113 line sensor 32 3 
NSE5310 and AS5311 Magnetic Linear Sensor NA NA 
The first sensor tested was an IR photo transistor with an IR LED.  It produced a 50 

count range over the 2 mm of travel at close range with a noise level of 10 counts on a 10 
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bit ADC. Two different photo resistors were tested with a red LED light. Both of them 

produced a 20 count range over the 2mm traveled at close range with a noise level of 6 

counts on a 10 bit ADC. The QRE1113 analog board produced a 32 count range over the 2 

mm travel at close range with a noise level of 3 counts on a 10 bit ADC. All of these values 

were gathered over multiple tests with a cover to reduce the ambient noise and on a laser 

cut test rig to ensure measureable linear motion.  

Two different linear magnetic Hall Effect sensors were also tested, the NSE5310 and 

AS5311 from ams.com. The output duty cycle of the sensor related to the positioning of the 

magnet. With the magnets available in lab and without a linear guide system to guarantee 

linear motion, about 1500 counts were measured for the 2mm traveled (total 12 bits over 6 

mm). Based on the data sheet, these chips will produce 2 um of resolution with a small 

magnet and PCB. The hall effect sensor with the smaller package size (AS5510) was chosen 

for measuring the displacement on all of the springs seen in Figure 58.  

 

Figure 59 Magnetic Sensor Board Ready to be calibrated on the Manual Mill 

The final magnetic boards where calibrated using on a manual Mill. Because of the 

rang of motion of the spring in the fingers four sensors in a line are used to detect the 
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position of the magnet. At any point along its path the magnet is in the linear range of at 

least one magnetic sensor. The linearized graph of the sensor readings over a 12 mm 

displacement can be seen in Figure 57. 

 

Figure 60 Linear Sensor Calibration Data  
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Chapter 4 Tactile Sensor Integration 
One of the most important requirements for the system to have is adequate sensor 

coverage. The research that this platform is being developed for is based on tactile 

feedback and sensitivity. The eventual goal of this research is to eventually have sensitivity 

equivalent or better than that of humans. Fingers have the finest resolution on the body, 

with less than 5 mm of resolution, because they are used for tasks that require dexterity 

and fine manipulation. Large extremities like the thigh, back, legs, or arm have a much 

lower resolution of around 40mm. These resolutions were determined by pricking the skin 

with two needles and determining what the minimum distance apart they need to be for 

the brain to distinguish them as being two separate points. Adequate sensor coverage is 

defined for this project as having coverage that maximizes the surface area with sensor 

coverage without interfering with any of the joints range of motion and having a tactile 

sensor resolution that is either comparable to a human’s or as dense as the current sensor 

technology allows. The contributions of this thesis are mold creation and placement of the 

tactile sensors.  

4.1 Fingers 
To satisfy the requirement of being adequately covered, the fingers will have 

deformable tactile sensors as described in section 1.3.2 on five of the sides: front, back, 

both sides, and the top. Unfortunately, the size of the surface mount components prevents 

the inside of the dome from being less than 6mm in diameter. The molds for the rubber 

dome are also 3D printed on a printer that requires the distance between each dome to be 

1 mm. Based on these restrictions and the available surface area, the highest density of 
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domes possible on the front and back of the fingers is a grid of three by four domes. The 

sides can have a strip of four domes each. The top of the fingers are triangles with 45 

degree slopes, each of these slopes has a row of the domes. The fingers with maximum 

coverage of domes can be seen in Figure 58. 

 

Figure 61 Fingers cover in tactile sensors 

This scope of this project does not include the production of the actual sensors 

themselves, but does include the molds for the rubber domes as they relate to the 

mechanical design of the manipulator. The domes on the fingers are located on all of the 

large sides of the fingers. This makes the mold complex to both design and assemble. The 

after the rubber has been poured the inside the mold, support for the domes needs to be 

slide located perpendicular to outside wall of the mold. This means that each side of the 

final rubber piece needs to have its own mold, which can be connected together around a 

central core, which provides the required support.  
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The mold for the lower link is composed of five different pieces. To assemble them, a 

combination of dipping the center pieces, and pouring into the outer pieces was used. This 

process is extremely messy and difficult to assemble, however only two of each type of 

mold is needed, one for each of the fingers. If these were going to be made in larger 

quantities, an injection molding system would be used to fill a sealed mold, reducing waste 

material. Using injection molding would reduce the number of necessary pieces in each 

mold. The material used is too viscous to be injected by hand, so the manual assembly 

process is the only one available for the limited production quantities required by this 

project. 

4.2 Motor Module 
In addition to tactile sensors on the fingers, the motor module and parts of the wrist 

module will be covered in a tactile sensing shell. This shell will be helpful for impact 

detection, during recovery from unintentional collisions and during contact navigation. The 

shell is composed of five separate pieces; two on the lower half of the arm covering the 

wrist rotation, one on top of the elbow joint, and two on the top half of the arm covering the 

motor module and part of the wrist. This can be seen in Figure 59. The shell covers as much 

of the wrist as it can without interfering with its range of motion. 
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Figure 62: Motor Module and Wrist rotation Shells 

 
 

This shell is made of a 3D printed plastic, decagon netting that supports the tactile 

sensing boards, which are covered in the rubber domes. The lower decagon shell is 141.6 

mm long, with an outer diameter of 100 mm, and a side width of 30.5mm. The upper 

decagon shell is 172 mm long with the same diameter and width. The distance between 

each tactile sensing dome is based on the sensitivity of a human arm. As discussed in the 

Chapter introduction different parts of the human body have different levels of sensitivity. 

Each sensor has a diameter of 17mm spaced 19 mm apart, which is a higher density of 

sensors than the approximately 40 mm of resolution in a human arm. The molds for the 

rubber component that goes with these shells are in Figure 60. These molds are 

significantly simpler than the ones for the finger because the domes are only in one 

dimension.  
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Figure 63 Motor Module shell Molds 

 
The upper shells are designed to clamp onto the carbon fiber tubes that form the 

basis of the motor module structure. It is significantly easier to assemble the tactile shell as 

two separate pieces that screw into each other and clamp onto the carbon fiber tubes than 

as a single ring that slides over the other modules. The motor clamp pieces also stick out 

slightly and fit through a gap in the netting, making sliding impossible. The lower shell does 

not have the convenient carbon fiber tube to clamp onto. Instead, this pair of shells screws 

into mounting holes on the metal components themselves. The shells covered in tactile 

sensors can be seen in Figure 61. 

 

Figure 64 Motor Module/ Upper Arm covered in Tactile Sensors 
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Chapter 5 Sensitive Manipulation 
The primary applications for the completed platform will be research in contact 

navigation and manipulation in dynamic environments. It will be used to investigate new 

methods and algorithms that utilize exploration and sensitivity to perform tasks in a 

dynamic environment. This section addresses the potential implementations of software 

for this platform. The types of implementation discussed below will use the sensors to 

control an event driven manipulation. The following section describes a proposed process 

for using the additional sensors for navigation and manipulation. This thesis only coved the 

development of position control and force control.  

Traditional manipulation relies on having an accurate model of the environment 

and mostly pre-computed navigation and grasping strategies. This strategy depends on 

having a static environment, as any changes in the environment void the pre-computed to 

strategy. These changes add computation time and uncertainty. Changes in the 

environment can occur when collisions either move objects or lead to unpredictable torque 

dynamics.  Sensitive manipulation on the other hand has real time reactions. It replaces the 

complex models with reaction based sensor feedback and simple equations. Also it 

embraces contract because instead of adding uncertainty to the system, contacts can 

provide significant amounts of information about the operating environment. Contact can 

give sensitive platforms information about the location, size, friction coefficient, and weight 

of anything they come in contact with. Based on the location of the contact along the arm, 

the skew forces can also be calculated to improve the dynamic model instead of adding 

uncertainty. A sensitive platform can also use the tactile information it gathers to regulate 

the external forces it creates during contact. 
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A generalized procedure for navigating with tactile feedback is shown in Figure 62. 

This procedure was developed based on the research conducted on contact Navigation at 

Georgia Tech. Since this arm will be operating without an exact model of its environment, 

its first action will be to move in the direction it believes the goal is in. This direction can be 

determined by using either vision or some previously known information about its 

environment. If a contract force is encountered on the outside of the fingers or wrist, the 

arm then adjusts its trajectory so that it can use the contact to navigate around the 

obstacle. Different contact profiles give indications of the orientation of the object, which is 

then used to choose the most appropriate response based on this contact during the rest of 

the navigation.  

 

`  

Figure 65: Flow chart for navigation Decisions 
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Once the arm has maneuvered the gripper close to its goal, the tactile sensors on the 

fingers are used to explore the area in search of the object to be grasped. This procedure 

was inspired by the algorithm used for grasping on the robot Obrero. Once the object has 

been located, the fingers are then used to examine the object to find an acceptable grasping 

location. A generalized procedure for this route is outlines in Figure 63.  

 

Figure 66: Flowchart for Grasping Decisions 

At the lower level, a hybrid of closed looped controls are used to regulate the motor 

output. The hybrid is created by a weighted summation of the two controllers throughout 

the workflow. These controllers are weighted differently depending on the phase the arm is 
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in and how the arm needs to respond to the different types of sensor feedback. These 

controllers include position control, velocity control, torque control, contact force control, 

impedance position control, impedance velocity control, and impedance force control.  

5.1 Position Control 
Position control is the most basic controller mode. This controller computes the 

PWM output for the motors using a basic PID (Position Integral Derivative) controller 

based purely on the difference between the desired joint position and the current 

measurement of the joint position. These measurements are gathered from both the 

potentiometers at the joints and the encoders on the motor. The controller also limits the 

maximum output velocity. This is the only type of controller that will be implemented as 

part of this thesis. 

5.2 Velocity Control  
Velocity control is very similar to position control. It also computes the PWM signal 

for the motor based on inputs to a basic PID controller. However, the difference is that 

instead of the difference in desired position and measured position, the desired velocity 

and measured velocity are taking into consideration instead. This type of controller can 

also be implemented based on a desired acceleration.  

5.3 Torque Control  
Torque control directly controls the robot joint torques. This controller uses the 

measured displacement from the series elastic springs to determine this joint torque. Like 
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the position control and the velocity control, the torque control also uses a basic tuned PID 

controller. This controller also imposes a maximum acceleration.   

5.4 Contact Force Control 
The contact force controller uses the input from the tactile feedback for the control 

loop. This controller is more intelligent than the others because it needs to understand the 

location of the contact force vector and treat the contract point as a joint in a closed 

kinematic loop, connecting the arm and obstacle. The contact force between the arm and 

obstacle is regulated by slightly shifting position of the arm perpendicularly in relation to 

the obstacle. 

5.5 Impedance Position Control  
Impedance controllers work by treating the manipulator as if it has impedance and 

the environment as if it has admittance, which is equivalent to have having a virtual spring 

and dampening system that affects the output of the controller. Using this type of 

controller, the equilibrium position and stiffness/damping of a virtual spring can be 

controlled. 

𝜏𝑑 = −𝑘𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠(𝑞 − 𝑞𝑑) − 𝑘𝑑𝑎𝑚𝑝𝑖𝑛𝑔�̇� + 𝜏𝑜𝑓𝑓𝑠𝑒𝑡 

𝑃𝑊𝑀 = 𝑃𝐼𝐷(𝜏 − 𝜏𝑑) + 𝑃𝑊𝑀𝑜𝑓𝑓𝑠𝑒𝑡 

The reference torque is tracked by a PID algorithm and is computed based on 

desired position and the set stiffness/dampening parameters (Hooke’s law). These stiffness 

and dampening parameters can be tuned to make the robot react like a spring while still 

controlling the desired joint position. This controller also considers the arm trajectory 
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vectors. This platform already has springs built into the joints so this type of controller is 

only used when a different amount of stiffness is desired. The force control with the series 

elastic elements creates a very similar behavior to this controller. 

5.6 Impedance Velocity Control 
 The impedance velocity control is equivalent to the impedance position control but 

instead of using the desired position to determine the output, the integrated velocity is 

used.  This controller also takes into consideration the trajectory of the arm’s acceleration. 

Integrating the measurements from the series elastic actuator position can be used to 

generate a similar output as this type of controller. This does not mean that this control 

would never be used in this type of application. There may be scenarios where using it in 

conjunction with one of the other types of controllers could be beneficial for accomplishing 

a specific task.  
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Chapter 6 System Validation 
Throughout both the design and testing process, different components and 

assemblies were constantly being tested to confirm they were capable of meeting their 

corresponding design requirements. This was both an iterative process that was used to 

confirm that the selected components were capable of meeting the requirements and as a 

final confirmation that the final assembly met the design requirements.  

6.1 Design for Sensitive Manipulation 
 This platform was designed for sensitive manipulation research-manipulation and 

path planning with the help of tactile feedback in unstructured environments. The sensors 

and joints were all designed with specific properties to ensure that the arm will behave and 

react in a way best suited for this type of research. The upper arm is covered in 116 tactile 

sensors and the fingers are covered in 70 tactile sensors designed to precisely sense the 

platforms contacts with its environment. Also, all of the joints were designed with built in 

compliance. 

6.2 Mimic Human Ranges and Size 
The arm and fingers were designed to be approximately the size of a small human 

arm with fingers comparable to human fingers. Figure 67 shows the fully assembled 

platform side by side with a human hand for scale. 



 113 

 

Figure 67 Size comparison to a human 

This was achieved by having the motor Module fit in a 5-inch long space, making the 

completed upper link of the arm 0.3 m in length. The joint deflection was also designed to 

replicate that of a human. Table 6 shows the range of motion of each joint and the 

corresponding human joint.  

Table 8 Joint Range of Motion 

Joint Robotic Arm Human Arm 

First Wrist Pitch 140 to -140 0 to 270 
Second Wrist Yaw 75 to -75 0 to 100 
First Finger Link 140 to -40 0 to 140 

Second Finger Link 105 to -105 0 to 180 
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6.3 Tactile Sensor Coverage 
 The goal of this project is to create a platform for sensitive manipulation research. 

For this platform to perform optimally as a research platform, it is important that it be 

adequately covered with tactile sensors. The upper arm is encompassed by two prototype 

decagon shells, the lower shell has 46 tactile sensors evenly distributed across it. The upper 

shell has 70 tactile sensors. The density of the tactile sensors is 24mm apart, which is 

denser than the 40mm sensory resolution of a human’s arm. The process for determining 

this resolution was discussed in section 1.3.2 Tactile Sensing in Humans .  

 The resolution on human finger is 5 mm. Currently, the smallest size tactile module 

that can be made is 6.5 mm. Because of this, adequate sensor coverage for the fingers is 

simply the highest density of sensors possible on the outside surface, given the 

technological restrictions. The inside of the fingers have 24 tactile sensors. The sides have 

eight sensors each. The back of the fingers have 24 tactile sensors, and the tip has six tactile 

sensors. Since the highest density possible of covering the maximum amount of surface 

area as possible without restricting the motion of the fingers was achieved, this 

requirement is satisfied.  

6.4 Manipulate 1 kg Payload 
 One of the requirements for the system is that is capable of handling a one kilogram 

payload. This was tested by strapping a 1kg payload to the fingers and seeing if the wrist 

was capable of its full range of motion. To test the strength of the fingers weights were 

attached to the finger joints and they were powered through their maximum torque range 

of motion.  
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6.5 Degrees of Freedom 
This system was designed to have a range of motion similar to the motion of a 

human in terms of degrees of freedom in the arm. The manipulator on the other hand was 

only required to consist of two fingers with two links each. All of these degrees of freedom 

allow the system to have high maneuverability and be capable of manipulating most 

objects in a dynamic environment. 

6.7 Integration of Series Elastic Actuators 
 The robot successfully has series elastic actuators integrated into every joint. 

Instead of using the traditional impedance controllers, this system can directly measure the 

torque at each joint instead of interpolating the current from the motor. The compliance in 

the system has also been extensively tested. A large external force on each of the joints 

visually compresses the corresponding spring without effecting the position of the motor, 

demonstrating that the series elastic element is correctly integrated. The displacement of 

the springs could also be measured using the linear magnetic potentiometers mounted 

above them. The springs in the wrist where chosen based on the dynamic forces they will 

experience, while the finger springs were selected for their sensitivity.  

6.8 Confirmation of Finger Material Strength 
 The base structure of the fingers was made from 3D printed material. 3D printed 

material is more fragile than many of the other material choices for this project. The fingers 

built off the work done for Go-bot, which also used 3D printed material. However, Go-bot 

was built to manipulate small, lightweight Go pieces. This platform is designed to maneuver 
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1kg objects and will experience larger strain and stresses. To test the strength of the 3D 

printed fingers, successively larger weights were suspended off the finger module until it 

broke. The largest weight that the finger held successfully was 14 kg. 14 kg is significantly 

larger than the dynamic load that a 1kg payload could produce at the speeds the arm will 

be  moving, so the 3D printed material is sufficient for this application.  

6.7 Overall System Performance  
 The whole system has been tested as individual modules. Each joint has been 

powered multiple times and run through its full range of motion and bottomed out the 

springs without any permanent harm or slack being added to the system. The wrist module 

and finger modules were also tested individually by running both motors at the same time 

and correcting for the dependence of the second joint in the module on the first joint. As a 

whole, the robot has been successfully designed to be robust, reliable, and capable of both 

sensing light contact and surviving unanticipated collisions without breaking key structural 

members.  
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Chapter 7 Conclusion and Future Work 

 

Figure 68: Fully assembled Wrist and Fingers 

The goal of this thesis was to design a state of the art platform, shown in Figure 64, 

specifically developed for sensitive manipulation. This platform contained a two-degree of 

freedom wrist, and two two-degree of freedom fingers, all of which utilized series elastic 

actuators in order to intelligently respond to both intentional and unintentional contact. 

The series elastics add an important level of compliance that is necessary both when 
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working in a human environment alongside humans and for contact based navigation and 

grasping. This platform also utilizes 116 large tactile sensors around the motor module and 

70 small sensors on the fingers. These tactile sensors are capable of detecting both shear 

and normal forces, which is important detecting the difference between sliding contact and 

direct pressure. This differentiation is key for both contact navigation and sensitive 

grasping. 

 In the process of this design, the system was modeled to aid in the selection of 

motors, springs, materials, and other important design decisions. An extensive material 

selection process was undertaken for several of the critical mechanical components, such 

as the Bowden tubes and the cables, which included extensive research and testing on 

samples before a final component set was selected. A similar process was undertaken for 

the electronic components of the system, including the sensors. My major specific 

contributions of this thesis are as follows: a completed 2-degree of freedom wrist/hand 

and finger system with a tension able cabling system and series elastic elements for 

articulation with integrated sensors for position and joint force feedback made with 

inexpensive parts and materials and with ease of assembly in mind. 

 While this system has been fully developed and each individual link tested, there are 

still several tasks remaining to prepare this platform for its role as a research tool. The 

tactile sensors designed as part of this project need to be fabricated and integrated into the 

platform. A more complete flexible tactile shell that covers the wrist without restricting its 

motion also should be developed so that contact at any location on the assembly can be 

detected. The sensors designed into the initial sensitive arm project still need to be 

manufactured and integrated into that system as well.  Manipulation algorithms need to be 
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developed to demonstrate the full capabilities of the manipulator and allow it to begin its 

function as a research platform. The tasks that are left to reach this point are: 

• Develop a tactile sensor mounting shell with more coverage for the motor modules 

• Design tactile sensor boards for the shell and fingers 

• Full integrate all electronics, including the motors controller boards and sensor 

mapping boards.  

• Investigate a simpler method to tension the cables for the fingers. A tensioner that 

can extend the path or decrease the size of the cable to a greater degree than the 

current system would better maintain the tension in the cable. 

• Implement and evaluate manipulation algorithms utilizing the feedback available 

from the tactile sensors and series elastic elements. 

At the conclusion of this thesis, the groundwork for further sensitive manipulation research 

using a platform specifically designed for this purpose will be in place. This groundwork 

encompasses a completed six-degree of freedom arm with a two finger gripper. Work is 

still needed, but once the platform is completed and the tactile sensors are integrated, this 

robot will serve as an important platform for furthering the field of sensitive robotics 

research. 
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Appendix A: Arduino Test code 
Position Control one finger   
 
#include <Wire.h> 
 
int motorSpeed1 = 9; 
int motorSpeed2 = 10; 
int motorDirection1 = 11; 
int motorDirection2 = 12; 
int potPin1 = A1; 
int potPin2 = A2; 
int joint1start; 
int joint2start; 
int pot1start; 
int pot2start; 
int intjoint1error=0; 
int intjoint2error=0; 
 
void setup() { 
  Wire.begin();        // join i2c bus (address optional for master) 
  Serial.begin(115200);  // start serial for output 
  pinMode(motorSpeed1, OUTPUT); 
  pinMode(motorSpeed2, OUTPUT); 
  pinMode(motorDirection1, OUTPUT); 
  pinMode(motorDirection2, OUTPUT); 
  pinMode(potPin1, INPUT); 
  pinMode(potPin2, INPUT); 
  //  setPwmFrequency(motorSpeed1, 2); 
  //  setPwmFrequency(motorSpeed2, 2); 
  //  pot1start = analogRead(potPin1); 
  //  pot2start = analogRead(potPin2); 
 
} 
 
void loop() { 
 
  //clear values to ground 
  Wire.begin(); 
  Wire.beginTransmission(B0101000); 
  Wire.write(B01000000); 
  Wire.endTransmission(true); 
  Wire.begin(); 
  Wire.requestFrom(B0101000, 2); 
  //  while (Wire.available()) { 
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  //    int a = Wire.read(); 
  //  } 
  Wire.endTransmission(true); 
 
 
  //read from port 1 on ADC 
  Wire.begin(); 
  Wire.beginTransmission(B0101000); 
  Wire.write(B00100000); 
  Wire.endTransmission(true); 
  Wire.begin(); 
  Wire.requestFrom(B0101000, 2);    // request 6 bytes from slave device #2 
 
    int flag = 1; 
  char msga, msgb; 
  while (Wire.available())   // slave may send less than requested 
  { 
    if (flag) { 
      flag = 0; 
      msga = Wire.read(); // receive a byte as character 
      //      Serial.print("msga "); 
      //       Serial.println(msga,DEC); 
    } 
    else { 
      msgb = Wire.read(); // receive a byte as character 
      // Serial.print("ch2 "); 
      //Serial.println(ch2,DEC); 
    } 
 
  } 
  Wire.endTransmission(true); 
 
  int c = msga & 0x0F; 
  c = c << 8; 
  c = c + msgb; 
  Serial.print("c "); 
  Serial.print(c);         // print the character 
  Serial.print("\t"); 
 
 
 
  //clear values to ground 
  Wire.begin(); 
  Wire.beginTransmission(B0101000); 
  Wire.write(B01000000); 
  Wire.endTransmission(true); 
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  Wire.begin(); 
  Wire.requestFrom(B0101000, 2);    // request 6 bytes from slave device #2 
  //  while (Wire.available()) { 
  //    int a = Wire.read(); 
  //  } 
  Wire.endTransmission(true); 
 
 
  //read from port 3 on ADC 
  Wire.begin(); 
  Wire.beginTransmission(B0101000); 
  Wire.write(B10000000); 
  Wire.endTransmission(true); 
  Wire.begin(); 
  Wire.requestFrom(B0101000, 2);  // request 6 bytes from slave device #2 
  char msgc, msgd; 
  flag = 1; 
  while (Wire.available())   // slave may send less than requested 
  { 
    if (flag) { 
      flag = 0; 
      msgc = Wire.read(); // receive a byte as character 
    } 
    else { 
      msgd = Wire.read(); // receive a byte as character 
    } 
  } 
  Wire.endTransmission(true); 
 
  int b = msgc & 0x0F; 
  b = b << 8; 
  b = b + msgd; 
  Serial.print("b "); 
  Serial.print(b); 
  Serial.print("\t");  // print the character 
 
  int val1 = analogRead(potPin1); 
  int val2 = analogRead(potPin2); 
 
  val1 = map(val1, 0, 1023, -2048, 2048); 
  val2 = map(val2, 0, 1023, -2048, 2048); 
 
  int jointval1= c-2048; 
  int jointval2= b-2048; 
 
  //  intjoint1error = intjoint1error + (val1 - jointval1)/100; 
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  //  intjoint2error = intjoint2error + (val2 - jointval2)/100; 
  //   
  //  if(intjoint1error> 5000){ 
  //    intjoint1error =5000; 
  //  } 
  //   
  //  if(intjoint2error> 5000){ 
  //    intjoint2error =5000; 
  //  } 
  //   
  //  Serial.print("int J1 "); 
  //  Serial.print(intjoint1error,DEC); 
  //  Serial.print("\t"); 
  //   
  //  Serial.print("int J2 "); 
  //  Serial.print(intjoint2error,DEC); 
  //  Serial.print("\t"); 
 
  int errorJoint1= (val1 - jointval1)/14 + intjoint1error/600; 
  int errorJoint2= (val2 - jointval2)/14 + intjoint2error/600; 
 
  Serial.print("errorJ1 "); 
  Serial.print(errorJoint1,DEC); 
  Serial.print("\t"); 
 
  Serial.print("errorJ2 "); 
  Serial.println(errorJoint2,DEC); 
//  Serial.print("\t"); 
 
  if(errorJoint1 > 255){ 
    errorJoint1 =255; 
  } 
 
  if(errorJoint2 > 255){ 
    errorJoint2 =255; 
  } 
  if(c<2){ 
    analogWrite(motorSpeed1, 0); 
  } 
  else{ 
    analogWrite(motorSpeed1, abs(errorJoint1)); 
  } 
  if(errorJoint1 >= 0){ 
    digitalWrite(motorDirection1, HIGH); 
//    Serial.print("Dir1 HIGH"); 
//    Serial.print("\t"); 
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  } 
  else { 
    digitalWrite(motorDirection1, LOW); 
//    Serial.print("Dir1 LOW"); 
//    Serial.print("\t"); 
  } 
  if(b <2){ 
    analogWrite(motorSpeed2, 0); 
  } 
  else{ 
    analogWrite(motorSpeed2, abs(errorJoint2)); 
  } 
  if(errorJoint2 >= 0){ 
    digitalWrite(motorDirection2, HIGH); 
//    Serial.println("Dir2 HIGH"); 
 
  } 
  else { 
    digitalWrite(motorDirection2, LOW); 
//    Serial.println("Dir2 LOW"); 
 
  } 
 
 
} 
  
 
Position Control two fingers for Grasping 
#include <Wire.h> 
 
int motor1aPWM = 9; 
int motor2aPWM = 10; 
int motor1bPWM = 11; 
int motor2bPWM = 12; 
int motor1aDir = 2; 
int motor2aDir = 3; 
int motor1bDir = 4; 
int motor2bDir = 5; 
int desired1 = 0; 
int desired2 = 0; 
 
int current1a = 0; 
int current1b = 0; 
int current2a = 0; 
int current2b = 0;  
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int desired1aOpen = 3325; 
int desired1bOpen = 2742; 
int desired2aOpen = 2548; 
int desired2bOpen = 2177; 
 
int desired1aClosed = 3034; 
int desired1bClosed = 2282; 
int desired2aClosed = 3060; 
int desired2bClosed = 2914; 
 
char PCA9546 = 0b1110011; 
 
void setup() { 
  Wire.begin();        // join i2c bus (address optional for master) 
  Serial.begin(115200);  // start serial for output 
  pinMode(motor1aPWM, OUTPUT); 
  pinMode(motor2aPWM, OUTPUT); 
  pinMode(motor1bPWM, OUTPUT); 
  pinMode(motor2bPWM, OUTPUT); 
  pinMode(motor1aDir, OUTPUT); 
  pinMode(motor2aDir, OUTPUT); 
  pinMode(motor1bDir, OUTPUT); 
  pinMode(motor2bDir, OUTPUT); 
 
} 
 
 
 
void loop() { 
  I2cChangeCh(PCA9546,1);  
  getPot('a'); 
  I2cChangeCh(PCA9546,0b00001000);  
  getPot('b'); 
  Serial.print("1a = "); 
  Serial.print(current1a,DEC); 
  Serial.print("\t"); 
  Serial.print("2a = "); 
  Serial.print(current2a,DEC); 
  Serial.print("\t"); 
  Serial.print("1b = "); 
  Serial.print(current1b,DEC); 
  Serial.print("\t"); 
  Serial.print("2b = "); 
  Serial.println(current2b,DEC); 
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//  int errorJoint1a= (desired1 - current1a)/12;// + intjoint1error/600; 
//  int errorJoint2a= (desired2 - current2a)/12;// + intjoint2error/600; 
//  int errorJoint1b= (desired1 - current1b)/12;// + intjoint1error/600; 
//  int errorJoint2b= (desired2 - current2b)/12;// + intjoint2error/600; 
// 
//  setMotor(motor1aPWM,motor1aDir,errorJoint1a); 
//  setMotor(motor2aPWM,motor2aDir,errorJoint2a); 
//  setMotor(motor1bPWM,motor1bDir,errorJoint1b); 
//  setMotor(motor2bPWM,motor2bDir,errorJoint2b); 
   
} 
 
int I2cChangeCh(char addrs, char ch){ 
  Wire.beginTransmission(addrs); // transmit to device #4 
  Wire.write(ch);              // sends one byte   
  Wire.endTransmission(true); 
} 
 
void setMotor(int PWMch,int dirCh, int value){ 
   
  if(value > 255){ 
    value =255; 
  } 
 
  if(value > 255){ 
    value =255; 
  } 
  if(value <2){ 
    analogWrite(PWMch, 0); 
  } 
  else{ 
    analogWrite(PWMch, abs(value)); 
  } 
  if(value >= 0){ 
    digitalWrite(dirCh, HIGH); 
//    Serial.println("Dir2 HIGH"); 
 
  } 
  else { 
    digitalWrite(dirCh, LOW); 
//    Serial.println("Dir2 LOW"); 
  } 
} 
 
void getPot(char finger){ 
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  //clear values to ground 
  Wire.begin(); 
  Wire.beginTransmission(B0101000); 
  Wire.write(B01000000); 
  Wire.endTransmission(true); 
  Wire.begin(); 
  Wire.requestFrom(B0101000, 2); 
  //  while (Wire.available()) { 
  //    int a = Wire.read(); 
  //  } 
  Wire.endTransmission(true); 
 
 
  //read from port 1 on ADC 
  Wire.begin(); 
  Wire.beginTransmission(B0101000); 
  Wire.write(B00100000); 
  Wire.endTransmission(true); 
  Wire.begin(); 
  Wire.requestFrom(B0101000, 2);    // request 6 bytes from slave device #2 
 
    int flag = 1; 
  char msga, msgb; 
  while (Wire.available())   // slave may send less than requested 
  { 
    if (flag) { 
      flag = 0; 
      msga = Wire.read(); // receive a byte as character 
//            Serial.print("msga "); 
//             Serial.println(msga,DEC); 
    } 
    else { 
      msgb = Wire.read(); // receive a byte as character 
//       Serial.print("ch2 "); 
//      Serial.println(msgb,DEC); 
    } 
 
  } 
  Wire.endTransmission(true); 
 
  int c = msga & 0x0F; 
  c = c << 8; 
  c = c + msgb; 
   
//  Serial.print("c "); 
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//      Serial.println(c,DEC); 
 
  //clear values to ground 
  Wire.begin(); 
  Wire.beginTransmission(B0101000); 
  Wire.write(B01000000); 
  Wire.endTransmission(true); 
  Wire.begin(); 
  Wire.requestFrom(B0101000, 2);    // request 6 bytes from slave device #2 
  //  while (Wire.available()) { 
  //    int a = Wire.read(); 
  //  } 
  Wire.endTransmission(true); 
 
 
  //read from port 3 on ADC 
  Wire.begin(); 
  Wire.beginTransmission(B0101000); 
  Wire.write(B10000000); 
  Wire.endTransmission(true); 
  Wire.begin(); 
  Wire.requestFrom(B0101000, 2);  // request 6 bytes from slave device #2 
  char msgc, msgd; 
  flag = 1; 
  while (Wire.available())   // slave may send less than requested 
  { 
    if (flag) { 
      flag = 0; 
      msgc = Wire.read(); // receive a byte as character 
    } 
    else { 
      msgd = Wire.read(); // receive a byte as character 
    } 
  } 
  Wire.endTransmission(true); 
 
  int b = msgc & 0x0F; 
  b = b << 8; 
  b = b + msgd; 
   
//  Serial.print("b "); 
//      Serial.println(b,DEC); 
   
  if(finger == 'a'){ 
    current1a = c; 
    current2a = b; 
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  } 
  else{ 
    current1b = c; 
    current2b = b; 
  } 
} 
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Appendix B: Mathcad Spring and Motor 
Selection 
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Appendix C: Magnetic Sensor Data 
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