1,217 research outputs found

    Colouring set families without monochromatic k-chains

    Full text link
    A coloured version of classic extremal problems dates back to Erd\H{o}s and Rothschild, who in 1974 asked which nn-vertex graph has the maximum number of 2-edge-colourings without monochromatic triangles. They conjectured that the answer is simply given by the largest triangle-free graph. Since then, this new class of coloured extremal problems has been extensively studied by various researchers. In this paper we pursue the Erd\H{o}s--Rothschild versions of Sperner's Theorem, the classic result in extremal set theory on the size of the largest antichain in the Boolean lattice, and Erd\H{o}s' extension to kk-chain-free families. Given a family F\mathcal{F} of subsets of [n][n], we define an (r,k)(r,k)-colouring of F\mathcal{F} to be an rr-colouring of the sets without any monochromatic kk-chains F1F2FkF_1 \subset F_2 \subset \dots \subset F_k. We prove that for nn sufficiently large in terms of kk, the largest kk-chain-free families also maximise the number of (2,k)(2,k)-colourings. We also show that the middle level, ([n]n/2)\binom{[n]}{\lfloor n/2 \rfloor}, maximises the number of (3,2)(3,2)-colourings, and give asymptotic results on the maximum possible number of (r,k)(r,k)-colourings whenever r(k1)r(k-1) is divisible by three.Comment: 30 pages, final versio

    The identification of cellular automata

    Get PDF
    Although cellular automata have been widely studied as a class of the spatio temporal systems, very few investigators have studied how to identify the CA rules given observations of the patterns. A solution using a polynomial realization to describe the CA rule is reviewed in the present study based on the application of an orthogonal least squares algorithm. Three new neighbourhood detection methods are then reviewed as important preliminary analysis procedures to reduce the complexity of the estimation. The identification of excitable media is discussed using simulation examples and real data sets and a new method for the identification of hybrid CA is introduced

    Flexible constrained sampling with guarantees for pattern mining

    Get PDF
    Pattern sampling has been proposed as a potential solution to the infamous pattern explosion. Instead of enumerating all patterns that satisfy the constraints, individual patterns are sampled proportional to a given quality measure. Several sampling algorithms have been proposed, but each of them has its limitations when it comes to 1) flexibility in terms of quality measures and constraints that can be used, and/or 2) guarantees with respect to sampling accuracy. We therefore present Flexics, the first flexible pattern sampler that supports a broad class of quality measures and constraints, while providing strong guarantees regarding sampling accuracy. To achieve this, we leverage the perspective on pattern mining as a constraint satisfaction problem and build upon the latest advances in sampling solutions in SAT as well as existing pattern mining algorithms. Furthermore, the proposed algorithm is applicable to a variety of pattern languages, which allows us to introduce and tackle the novel task of sampling sets of patterns. We introduce and empirically evaluate two variants of Flexics: 1) a generic variant that addresses the well-known itemset sampling task and the novel pattern set sampling task as well as a wide range of expressive constraints within these tasks, and 2) a specialized variant that exploits existing frequent itemset techniques to achieve substantial speed-ups. Experiments show that Flexics is both accurate and efficient, making it a useful tool for pattern-based data exploration.Comment: Accepted for publication in Data Mining & Knowledge Discovery journal (ECML/PKDD 2017 journal track

    Simon-Ando decomposability and fitness landscapes

    Get PDF
    In this paper, we investigate fitness landscapes (under point mutation and recombination) from the standpoint of whether the induced evolutionary dynamics have a “fast-slow” time scale associated with the differences in relaxation time between local quasi-equilibria and the global equilibrium. This dynamical hevavior has been formally described in the econometrics literature in terms of the spectral properties of the appropriate operator matrices by Simon and Ando (Econometrica 29 (1961) 111), and we use the relations they derive to ask which fitness functions and mutation/recombination operators satisfy these properties. It turns out that quite a wide range of landscapes satisfy the condition (at least trivially) under point mutation given a sufficiently low mutation rate, while the property appears to be difficult to satisfy under genetic recombination. In spite of the fact that Simon-Ando decomposability can be realized over fairly wide range of parameters, it imposes a number of restriction on which landscape partitionings are possible. For these reasons, the Simon-Ando formalism does not appear to be applicable to other forms of decomposition and aggregation of variables that are important in evolutionary systems

    Universality of cutoff for the Ising model

    Full text link
    On any locally-finite geometry, the stochastic Ising model is known to be contractive when the inverse-temperature β\beta is small enough, via classical results of Dobrushin and of Holley in the 1970's. By a general principle proposed by Peres, the dynamics is then expected to exhibit cutoff. However, so far cutoff for the Ising model has been confirmed mainly for lattices, heavily relying on amenability and log Sobolev inequalities. Without these, cutoff was unknown at any fixed β>0\beta>0, no matter how small, even in basic examples such as the Ising model on a binary tree or a random regular graph. We use the new framework of information percolation to show that, in any geometry, there is cutoff for the Ising model at high enough temperatures. Precisely, on any sequence of graphs with maximum degree dd, the Ising model has cutoff provided that β<κ/d\beta<\kappa/d for some absolute constant κ\kappa (a result which, up to the value of κ\kappa, is best possible). Moreover, the cutoff location is established as the time at which the sum of squared magnetizations drops to 1, and the cutoff window is O(1)O(1), just as when β=0\beta=0. Finally, the mixing time from almost every initial state is not more than a factor of 1+ϵβ1+\epsilon_\beta faster then the worst one (with ϵβ0\epsilon_\beta\to0 as β0\beta\to 0), whereas the uniform starting state is at least 2ϵβ2-\epsilon_\beta times faster.Comment: 26 pages, 2 figures. Companion paper to arXiv:1401.606
    corecore