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Abstract

Pattern sampling has been proposed as a potential solution to the infamous pat-
tern explosion. Instead of enumerating all patterns that satisfy the constraints,
individual patterns are sampled proportional to a given quality measure. Several
sampling algorithms have been proposed, but each of them has its limitations
when it comes to 1) flexibility in terms of quality measures and constraints that
can be used, and/or 2) guarantees with respect to sampling accuracy.

We therefore present Flexics, the first flexible pattern sampler that sup-
ports a broad class of quality measures and constraints, while providing strong
guarantees regarding sampling accuracy. To achieve this, we leverage the per-
spective on pattern mining as a constraint satisfaction problem and build upon
the latest advances in sampling solutions in SAT as well as existing pattern min-
ing algorithms. Furthermore, the proposed algorithm is applicable to a variety
of pattern languages, which allows us to introduce and tackle the novel task of
sampling sets of patterns.

We introduce and empirically evaluate two variants of Flexics: 1) a generic
variant that addresses the well-known itemset sampling task and the novel pat-
tern set sampling task as well as a wide range of expressive constraints within
these tasks, and 2) a specialized variant that exploits existing frequent itemset
techniques to achieve substantial speed-ups. Experiments show that Flexics
is both accurate and efficient, making it a useful tool for pattern-based data
exploration.

1 Introduction

Pattern mining [1] is an important and well-studied task in data mining. Infor-
mally, a pattern is a statement in a formal language that concisely describes a
subset of a given dataset. Pattern mining techniques aim at providing compre-
hensible descriptions of coherent regions in the data. Many variations of pattern
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mining have been proposed in the literature, together with even more algorithms
to efficiently mine the corresponding patterns. Best known is frequent pattern
mining [2], which includes frequent itemset mining and its extensions.

Traditional pattern mining methods enumerate all frequent patterns, though
it is well-known that this usually results in humongous amounts of patterns
(the infamous pattern explosion). To make pattern mining more useful for
exploratory purposes, different solutions to this problem have been proposed.
Each of these solutions has its own advantages and disadvantages. Condensed
representations [3] can often be efficiently mined, but generally still result in
large numbers of patterns. Top-k mining [4] is efficient but results in strongly
related, redundant patterns showing a lack of diversity. Constrained mining
[5] may result in too few or too many patterns, depending on the user-chosen
constraints. Pattern set mining [6] takes into account the relationships between
the patterns, which can result in small solution sets, but is computationally
intensive.

In this paper, we study pattern sampling, another approach that has been
proposed recently: instead of enumerating all patterns, patterns are sampled
one by one, according to a probability distribution that is proportional to a
given quality measure. The promised benefits include: 1) flexibility in that
potentially a broad range of quality measures and constraints can be used; 2)
‘anytime’ data exploration, where a growing representative set of patterns can
be generated and inspected at any time; 3) diversity in that the generated sets of
patterns are independently sampled from different regions in the solution space.
To be reliable, pattern samplers should provide theoretical guarantees regarding
the sampling accuracy, i.e., the difference between the empirical probability of
sampling a pattern and the (generally unknown) target probability determined
by its quality. These properties are essential for pattern mining applications
ranging from showing patterns directly to the user, where flexibility and the
anytime property enable experimenting with and fine-tuning mining task for-
mulations, to candidate generation for building pattern-based models, for which
the approximation guarantees can be derived from those of the sampler.

While a number of pattern sampling approaches have been developed over
the past years, they are either inflexible (as they only support a limited number
of quality measures and constraints), or do not provide theoretical guarantees
concerning the sampling accuracy. At the algorithmic level, they follow standard
sampling approaches such as Markov Chain Monte Carlo random walks over the
pattern lattice [7, 8, 9], or a special purpose sampling procedure tailored for a
restricted set of itemset mining tasks [10, 11]. Although MCMC approaches
are in principle applicable to a broad range of tasks, they often converge only
slowly to the desired target distribution and require the selection of the “right”
proposal distributions.

To the best of our knowledge, none of the existing approaches to pattern
sampling takes advantage of the latest developments in sampling technology
from the SAT-solving community, where a number of powerful samplers based
on random hash functions and XOR-sampling have been developed [12, 13, 14,
15]. WeightGen [16], one of the recent approaches, possesses the benefits
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Table 1: Our method is the first pattern sampler that combines flexibility
with respect to the choice of constraints and sampling distributions with strong
theoretical guarantees.

Sampler
Arbitrary Arbitrary Strong

Efficiency
Pattern set

constraints distributions guarantees sampling

ACFI [7]
Minimal

- - X -
frequency

LRW [8] X X -
Implementation-

-
specific

FCA [9]
Anti-/

X - X -
monotonic

TS (Two-step)
- - X X -

[10, 11]

Flexics
GFlexics X X EFlexics X

This paper

mentioned above: it is an anytime algorithm, it is flexible as it works with any
distribution, it generates diverse solutions, and provides strong performance
guarantees under reasonable assumptions.

In this paper, we show that the latest developments in sampling solutions
in SAT are also relevant to pattern sampling and essentially offer the same
advantages. Our results build upon the view of pattern mining as constraint
satisfaction, which is now commonly accepted in the data mining community
[17].

Approach and contributions More specifically, we introduce Flexics: a flexible
pattern sampler that samples from distributions induced by a variety of pattern
quality measures and allows for a broad range of constraints while still providing
strong theoretical guarantees. Notably, Flexics is, in principle, agnostic of
the quality measure, as the sampler treats it as a black box. (However, its
properties affect the efficiency of the algorithm.) The other building block is
a constraint oracle that enumerates all patterns that satisfy the constraints,
i.e., a mining algorithm. The proposed approach allows converting an existing
pattern mining algorithm into a sampler with guarantees. Thus, its flexibility is
not limited by the choice of constraints and quality measures, but even allows
tackling richer pattern languages, which we demonstrate by tackling the novel
task of sampling sets of patterns. Table 1 compares the proposed approach to
alternative samplers; see Section 3 for a more detailed discussion.

The main technical contribution of this paper consists of two variants of
the Flexics sampler, which are based on different constraint oracles. First,
we introduce a generic variant, dubbed GFlexics, that supports a wide range
of pattern constraints, such as syntactic or redundancy-eliminating constraints.
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GFlexics uses cp4im [17], a declarative constraint programming-based mining
system, as its oracle. Any constraint supported by cp4im can be used with-
out interfering with the umbrella procedure that performs the actual sampling
task. Unlike the original version of WeightGen that is geared towards SAT,
GFlexics can handle cardinality constraints that are ubiquitous in pattern
mining. Furthermore, we identify (based on previous research) the properties
of the constraint satisfaction-based formalization of pattern mining that further
improve the efficiency of the sampling procedure without affecting its guarantees
and thus make it applicable to practical problems. We use GFlexics to tackle
a wide range of well-known itemset sampling tasks as well as the novel pattern
set sampling task. Second, as it is well-known that generic solvers impose an
overhead on runtime, we introduce a variant specialized towards frequent item-
sets, dubbed EFlexics, which has an extended version of Eclat [18] at its
core as oracle.

Experiments show that Flexics’ sampling accuracy is impressively high: in
a variety of settings supported by the sampler, empirical frequencies are within
a small factor of the target distribution induced by various quality measures.
Furthermore, practical accuracy is substantially higher than theory guarantees.
EFlexics is shown to be faster than its generic cousin, demonstrating that
developing specialized solvers for specific tasks is beneficial when runtime is
an issue. Finally, the flexibility of the sampler allows us to use the same ap-
proach to successfully tackle the novel problem of sampling pattern sets. This
demonstrates that Flexics is a useful tool for pattern-based data exploration.

This paper is organized as follows. We formally define the problem of pattern
sampling in Section 2. After reviewing related research in Section 3, we present
the two key ingredients of the proposed approach in Section 4: 1) the perspec-
tive on pattern mining as a constraint satisfaction problem and 2) hashing-
based sampling with WeightGen. In Section 5, we present Flexics, a flexible
pattern sampler with guarantees. In particular, we outline the modifications
required to adapt WeightGen to pattern sampling and describe the proce-
dure to convert two existing mining algorithms into oracles suitable for use with
WeightGen, which yields two variants of Flexics. In Section 6, we introduce
the pattern set sampling task and describe how it can be tackled with Flex-
ics. We also outline sampling non-overlapping tilings, an example of pattern
set sampling that is studied in the experiments. The experimental evaluation
in Section 7 investigates the accuracy, scalability, and flexibility of the proposed
sampler. We discuss its potential applications, advantages, and limitations in
Section 8. Finally, we present our conclusions in Section 9.

2 Problem definition

Here we present a high-level definition of the task that we consider in this
paper; for concrete instances and examples, see Sections 4 and 6. The pattern
sampling problem is formally defined as follows: given a dataset D, a pattern
language L, a set of constraints C, and a quality measure ϕ : L → R+, generate

4



random patterns that satisfy constraints in C with probability proportional to
their qualities:

Pϕ (p) =

{
ϕ (p) /Zϕ if p ∈ L satisfies C
0 otherwise

where Zϕ is an (often unknown) normalization constant.
A quality measure quantifies the domain-specific interestingness of a pattern.

The choice of a quality measure and constraints allows a user to express her
analysis requirements. The sampling procedure meets these requirements by
satisfying the constraints and generating high-quality patterns more frequently.
Thus, sampled patterns are a representative subset of all interesting regularities
in the dataset.

Pattern set mining is an extension of pattern mining, which considers sets
of patterns rather than individual patterns. Despite its popularity, we are not
aware of the existence of pattern set samplers. The task of pattern set sampling
can easily be formalized as an extension of pattern sampling, where we sample
sets of patterns s ⊂ L, and the constraints C as well as the quality measure
ϕ are specified over sets of patterns (from 2L) rather than individual patterns
(from L).

3 Related work

We here focus on two classes of related work, i.e., 1) pattern mining as constraint
satisfaction and 2) pattern sampling.

Constrained pattern mining The study of constraints has been a prominent
subfield of pattern mining. A wide range of constraint classes were investigated,
including anti-monotonic constraints [1], convertible constraints [19], and others.
Another development of these ideas led to the introduction of global constraints
that concern multiple patterns and to the emergence of pattern set mining [20,
21]. Furtheremore, generic mining systems that could freely combine various
constraints were proposed [22, 23].

These insights allowed to draw a connection between pattern mining and
constraint satisfaction in AI, e.g., SAT or constraint programming (CP). As a
result, declarative mining systems, which use generic constraint solvers to mine
patterns according to a declarative specification of the mining task, were pro-
posed. For example, CP was used to develop first declarative systems for itemset
mining [17] and pattern set mining [24, 25]. Recently, declarative approaches
have been extended to support sequence mining [26] and graph mining [27].

Constraint-based systems allow a user to specify a wide range of pattern
constraints and thus provide tools to alleviate the pattern explosion. However,
the underlying solvers use systematic search, which affects the order of pattern
generation and thus prevents them from being used in a truly anytime manner
due to low diversity of consecutive solutions. Similarly, pattern set miners that
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directly aim at obtaining diverse result sets typically incur prohibitive compu-
tational costs as the size of the pattern space grows.

Pattern sampling In this paper we focus on the approaches that directly aim at
generating random pattern collections rather than the methods whose goal is to
estimate dataset or pattern language statistics; cf. Shervashidze et al. [28].

Table 1 compares our method with the approaches described in Section 1,
namely MCMC and two-step samplers [10, 11]. We further break down MCMC
samplers into three groups: ACFI, the very first uniform sampler developed
for approximate counting of frequent itemsets [7]; LRW, a generic approach
based on random walks over pattern lattice [8]; and FCA, a sampler, which uses
Markov chains based on insights from formal concept analysis [9].

Although MCMC samplers provide theoretical guarantees, in practice, their
convergence is often slow and hard to diagnose. Solutions such as long burn-in or
heuristic adaptations either increase the runtime or weaken the guarantees. Fur-
thermore, ACFI is tailored for a single task; FCA only supports anti-/monotone
constraints; and LRW checks constraints locally, while building the neighbor-
hood of a state, which might require advanced reasoning and extensive caching.
Two-step samplers, while provably accurate and efficient, only support a limited
number of weight functions and do not support constraints.

4 Preliminaries

We first outline itemset mining, a prototypical pattern mining task, and for-
malize it as a CSP and then describe WeightGen, a hashing-based sampling
algorithm.

4.1 Itemset mining

Itemset mining is an instance of pattern mining specialized for binary data. Let
I = {1 . . .M} denote a set of items. A dataset D is a bag of transactions over
I, where each transaction t is a subset of I, i.e., t ⊆ I; T = {1 . . . N} is a set of
transaction indices. The pattern language L also consists of sets of items, i.e.,
L = 2I . An itemset p occurs in a transaction t, iff p ⊆ t. The frequency of p
is the number of transactions in which it occurs: freq (p) = |{t ∈ D | p ⊆ t}|.
In labeled datasets, a transaction has a label from {−,+}; freq−,+ are defined
accordingly.

We first give a brief overview of the general approach to solving CSPs and
then present a formalization of itemset mining as a CSP, following that of cp4im
[17]. Formally, a CSP is comprised of variables along with their domains and
constraints over these variables. The goal is to find a solution, i.e., an assign-
ment of values to all variables that satisfies all constraints. Every constraint
is implemented by a propagator, i.e., an algorithm that takes domains as input
and removes values that do not satisfy the constraint. Propagators are activated
when variable domains change, e.g., by the search mechanism or other propa-
gators. A CSP solver is typically based on depth-first search. After a variable
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Table 2: Constraint programming formulations of common itemset mining con-
straints. Ii = 1 implies that item i is included in the current (partial) solution,
whereas Tt = 1 implies that it covers transaction t.

Constraint Parameters CP formulation

coverage ∀t ∈ T Tt = 1 ⇔
∑
i∈I Ii (1−Dti) = 0

minfreq (θ) θ ∈ (0, 1] ∀i ∈ I Ii = 1 ⇒
∑
t∈T TtDti ≥ θ × |D|

closed ∀i ∈ I Ii = 1 ⇔
∑
t∈T Tt (1−Dti) = 0

minlen (λ) λ ∈ [1, M ] ∀t ∈ T Tt = 1 ⇒
∑
i∈I IiDti ≥ λ

is assigned a value, propagators are run until domains cannot be reduced any
further. At this point, three cases are possible: 1) a variable has an empty
domain, i.e., the current search branch has failed and backtracking is necessary,
2) there are unassigned variables, i.e., further branching is necessary, or 3) all
variables are assigned a value, i.e., a solution is found.

Let Ii denote a variable corresponding to each item; Tt a variable correspond-
ing to each transaction; and Dti a constant that is equal to 1, if item i occurs in
transaction t, and 0 otherwise. Variables Ii and Tt are binary, i.e., their domain
is {0, 1}. Each CSP solution corresponds to a single itemset. Thus, for example,
Ii = 1 implies that item i is included in the current (partial) solution, whereas
Tt = 0 implies that transaction t is not covered by it. Table 2 lists some of the
most common constraints. The coverage constraint essentially models a dataset
query and ensures that if the item variable assignment corresponds to an item-
set p, only those transaction variables that correspond to indices of transactions
where p occurs, are assigned value 1. Other constraints allow users to remove
uninteresting solutions, e.g., redundant non-closed itemsets. Most solvers pro-
vide facilities for enumerating all solutions in sequence, i.e., to enumerate all
patterns.

In contrast to hard constraints, quality measures are used to describe soft
user preferences with respect to interestingness of patterns. Common qual-
ity measures concern frequency, e.g., ϕ ≡ freq, discriminativity in a labeled
dataset, e.g., purity ϕ (p) = max {freq+ (p) , freq− (p)}/freq (p) , etc.

4.2 WeightGen

WeightGen [16] is an algorithm for approximate weighted sampling of satisfy-
ing assignments (solutions) of a Boolean formula that only requires access to an
efficient constraint oracle that enumerates the solutions, e.g., a SAT solver. The
core idea consists in partitioning the solution space into a number of “cells” and
sampling a solution from a random cell. Partitioning with desired properties is
obtained via augmenting the original problem with random XOR constraints.
Theoretical guarantees stem from the properties of uniformly random XOR con-
straints. The sequel follows Sections 3-4 in Chakraborty et al. [16].

Problem statement and guarantees Formally, let F denote a Boolean formula; F
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a satisfying variable assignment of F; M the total number of variables; w (·) a
black-box weight function that for each F returns a number in (0, 1]; and wmin
(resp. wmax) the minimal (resp. maximal) weight over all satisfying assignments
of F. The weight function induces the probability distribution over satisfying
assignments of F, where Pw (F ) = w (F )/

∑
w (F ′) . Quantity r = wmax/wmin

is the (possibly unknown) tilt of the distribution Pw.
Given a user-provided upper bound on tilt r̂ ≥ r and a desired sampling error

tolerance κ ∈ (0, 1) (the lower κ, the tighter the bounds on the sampling error),
WeightGen generates a random solution F . Performance guarantees concern
both accuracy and efficiency of the algorithm and depend on the parameters
and the number of variables M ; see Section 5 for details.

Algorithm Recall that the core idea that underlies sampling with guarantees is
partitioning the overall solution space into a number of random cells by adding
random XOR constraints. WeightGen proceeds in two phases: 1) the esti-
mation phase and 2) the sampling phase. The goal of the estimation phase
is to estimate the number of XOR constraints necessary to obtain a “small”
cell, where the required cell weight is determined by the desired sampling error
tolerance.

The sampling phase starts with applying the estimated number of XOR
constraints. If it obtains a cell whose total weight lies within a certain range,
which depends on κ, a solution is sampled exactly from all solutions in the cell;
otherwise, it adds a new random XOR constraint. However, the number of
XOR constraints that can be added is limited. If the algorithm cannot obtain
a suitable cell, it indicates failure and returns no sample.

Both phases make use of a bounded oracle that terminates as soon as the to-
tal weight of enumerated solutions exceeds a predefined number. It enumerates
solutions of the original problem F augmented with the XOR constraints. An
individual XOR constraint over variables X has the form

⊗
bi ·Xi = b0, where

b0|i ∈ {0, 1}. The coefficients bi determine the variables involved in the con-
straint, whereas the parity bit b0 determines whether an even or an odd number
of variables must be set to 1. Together, m XOR constraints identify one cell
belonging to a partitioning of the overall solution space into 2m cells.

The core operation of WeightGen involves drawing coefficients uniformly
at random, which induces a random partitioning of the solution space that
satisfies the 3-wise independence property, i.e., knowing the cells for two arbi-
trary assignments does not provide any information about the cell for a third
assignment [12]. This ensures desired statistical properties of random parti-
tions, required for the theoretical guarantees. The reader interested in further
technical details should consult Appendix A and Chakraborty et al. [16].
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5 Flexics: Flexible pattern sampler with guar-
antees

In this paper, we propose Flexics, a pattern sampler that uses WeightGen
as the umbrella sampling procedure. To this end, we 1) extend it to CSPs with
binary variables, a class of problems that is more general than SAT and that
includes pattern mining as described in Section 4; 2) augment existing pattern
mining algorithms for use with WeightGen; and 3) investigate the properties
of pattern quality measures in the context of WeightGen’s requirements.

WeightGen was originally presented as an algorithm to sample solutions
of the SAT problem. Pattern mining problems cannot be efficiently tackled
by pure Boolean solvers due to the prominence of cardinality constraints (e.g.,
minfreq). However, we observe that the core sampling procedure is applicable
to any CSP with binary variables, as its solution space can be partitioned with
XOR constraints in the required manner.

Based on this insight, we present two variants of Flexics that differ in
their oracles. Each oracle is essentially a pattern mining algorithm extended
to support XOR constraints along with common constraints on patterns. The
first one, dubbed GFlexics, builds upon the generic formalization and solving
techniques described in Section 4 and thus supports a wide range of constraints.
Owing to the properties of the coverage constraint, XOR constraints only need
to involve item variables1, which makes them relatively short, mitigating the
computational overhead. Moreover, this perspective helps us design the second
approach, dubbed EFlexics, which uses an extension of Eclat [18], a well-
known mining algorithm, as an oracle. It is tailored for a single task (frequent
itemset mining, i.e., it only supports the minfreq constraint), but is capable
of handling larger datasets. We describe each oracle in detail in the following
subsections.

Given a datasetD, constraints C, a quality measure ϕ, and the error tolerance
parameter κ ∈ (0, 1), Flexics first constructs a CSP corresponding to the task
of mining patterns satisfying C from D. It then determines parameters for
the sampling procedure, including the appropriate number of XOR constraints,
and starts generating samples. To this end, it uses one of the two proposed
oracles to enumerate patterns that satisfy C and random XOR constraints. Both
variants of Flexics support sampling from black-box distributions derived from
quality measures and, most importantly, preserve the theoretical guarantees of
WeightGen2:

Theorem 1. The probability that Flexics samples a random pattern p that
satisfies constraints C from a dataset D, lies within a bounded range determined
by the quality of the pattern ϕ (p) and κ:

ϕ (p)

Zϕ
× 1

1 + ε (κ)
≤ P (Flexics (D, C, ϕ;κ) = p) ≤ ϕ (p)

Zϕ
× (1 + ε (κ))

1In other words, item variables I are the independent support of a pattern mining CSP.
2Theorem 1 corresponds to and follows from Theorem 3 of Chakraborty et al. [16].
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Proof. Theorem 3 of Chakraborty et al. [16] states:

Pw (F )/(1 + ε (κ)) ≤ P̂F ≤ Pw (F )× (1 + ε (κ))

where P̂F denotes the probability that WeightGen called with parameters r̂
and κ samples the solution F , Pw (F ) ∝ w (F ) denotes the target probability

of F , and ε (κ) = (1 + κ)
(

2.36 + 0.51/ (1− κ)
2
)
− 1 denotes sampling error

derived from κ.
For technical purposes, we introduce the notion of the weight of a pattern

as its quality scaled to the range (0, 1], i.e., wϕ (p) = ϕ (p) /C, where C is
an arbitrary constant such that C ≥ max

p∈L
ϕ (p). The proof follows from Theo-

rem 3 of Chakraborty et al. [16] and the observation that Flexics (D, C, ϕ;κ)
is equivalent to WeightGen (CSP (D, C) , wϕ;κ). The estimation phase effec-
tively corrects for potential discrepancy between C and Zϕ.

Furthermore, Theorem 4 of Chakraborty et al. [16], provides efficiency guar-
antees: the number of calls to the oracle is linear in r̂ and polynomial in M and
1/ε (κ). The assumption that the tilt is bounded from above by a reasonably
low number is the only assumption regarding a (black-box) weight function.
Moreover, it only affects the efficiency of the algorithm, but not its accuracy.

Thus, using a quality measure with Flexics requires knowledge of two prop-
erties: scaling constant C and tilt bound r̂. In practice, both are fairly easy
to come up with for a variety of measures. For example, for freq and purity,
C = |D|, r̂ = θ−1 and C = 1, r̂ = 2 respectively; see Section 6 for another
example.

5.1 GFlexics: Generic pattern sampler

The first variant relies on cp4im [17], a constraint programming-based mining
system. A wide range of constraints supported by cp4im are automatically
supported by the sampler and can be freely combined with various quality mea-
sures.

In order to turn cp4im into a suitable bounded oracle, we need to extend
it with an efficient propagator for XOR constraints. This propagator is based
on the process of Gaussian elimination [29], a classical algorithm for solving
systems of linear equations. Each XOR constraint can be viewed as a linear
equality over the field F2 of two elements, 0 and 1, and all coefficients form a
binary matrix (Figure 1.2). At each step, the matrix is updated with the latest
variable assignments and transformed to row echelon form, where all ones are
on or above the main diagonal and all non-zero rows are above any rows of all
zeroes (Figure 1.3). During echelonization, two situations enable propagation.
If a row becomes empty while its right hand side is equal to 1, the system is
unsatisfiable and the current search branch terminates (Figure 1.5). If a row
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↓ ↓
x1⊗x5=1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 → 0 0 0 0 0 1
x2⊗x3⊗x4⊗x5=0 0 1 1 1 1 0 → 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0
x1⊗x2⊗x3⊗x5=0 1 1 1 0 1 0 → 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
x2⊗x4⊗x5=1 0 1 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1) Random
XOR

constraints

2) Initial
con-

straint
matrix

3)
Echelonized

matrix:
assign-
ments

x2 = 0 and
x3 = 1 are

derived

4)
Updated
matrix
(rows 2

and 4 are
swapped)

5) If x1 and
x5 are set to 1

(e.g., by
search), the
system is

unsatisfiable

Figure 1: Propagating XOR constraints using Gaussian elimination in F2.

contains only one free variable, it is assigned the right hand side of the row
(Figure 1.3).

Gaussian elimination in F2 can be performed very efficiently, because no
division is necessary (all coefficients are 1), and subtraction and addition are
equivalent operations. For a system of k XOR constraints over n variables, the
total time complexity of Gaussian elimination is O

(
k2n

)
.

5.2 EFlexics: Efficient pattern sampler

Generic constraint solvers currently cannot compete with the efficiency and
scalability of specialized mining algorithms. In order to develop a less flexible,
yet more efficient version of our sampler, we extend the well-known Eclat
algorithm to handle XOR constraints. Thus, EFlexics is tailored for frequent
itemset sampling and uses EclatXOR (Algorithm 1) as an oracle.

Algorithm 1 shows the pseudocode of the extended Eclat. The algorithm
relies on the vertical data representation, i.e., for each candidate item, it stores
a set of indices of transactions (TIDs), in which this item occurs (Line 4).
Eclat starts with determining frequent items and ordering them, by frequency
ascending. It explores the search space in a depth-first manner, where each
branch corresponds to (ordered) itemsets that share a prefix.

The core operation is referred to as processing an equivalence class of itemsets
(EqClass). For each prefix, Eclat maintains a set of candidate suffixes, i.e.,
items that follow the last item of the prefix in the item order and are frequent.
The frequency of a candidate suffix, given the prefix, is computed by intersecting
its TID with the TID of the prefix (Lines 9, 15, and 22).

We extend Eclat with XOR constraint handling (Lines 16-22). Variable up-
dates stem from Eclat extending the prefix and removing infrequent suffixes
(Line 16). XOR propagation can result in extending the prefix or removing can-
didate suffixes as well (Line 19). Furthermore, if the prefix has been extended,
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Algorithm 1 Eclat augmented with XOR constraint propagation (Lines 16-
22)

Input: Dataset D over items I, min.freq θ, XOR matrix M
Assumes: Item order �I by frequency ascending

1: function EclatXOR(D, θ, M)
. Mine all frequent patterns that satisfy XOR constraints encoded by M

2: Frequent items FI = ∅
3: for item i ∈ I do
4: TIDi = {transaction index t ∈ T | Dti = 1}
5: if |TIDi| ≥ θ then . Item is frequent

6: FI
Add← (i, T IDi)

7: Sort(FI, �I)
8: for i ∈ FI do
9: Candidate suffixes CS = {i′ ∈ FI \ i | i′ >I i}

10: EqClass({i}, CS, M)

11: function EqClass(Prefix P , cand.suffixes CS 6= ∅, M)
. Mine all patterns that start with P

12: if CheckConstraints(P , M) then
13: return P . Return prefix, if it satisfies XORs

14: for candidate suffix s ∈ CS do
15: P ′ = P ∪ s; frequent suffixes FS =
{f ∈ CS \ s | f >I s ∧ |f.T ID ∩ s.T ID| ≥ θ}


. Propagate XOR constraints
16: U1 = {s}, U0 = CS \ FS . Variable updates
17: M ′ = UpdateAndEchelonize(M , U1, U0)
18: (A1, A0) = Propagate(M ′) . Item variables

. that were assigned value 1 or 0 by propagation
19: FS′ = FS \ (A1 ∪A0)
20: if A1 6= ∅ then . If prefix was extended,

. update TIDs and check support
21: P ′ ← P ′ ∪A1, ∆TID =

⋂
f∈A1

f.T ID

22: FS′ ← {f ′ ∈ FS′ : |f ′.T ID ∩∆TID| ≥ θ}

23: if |P ′.T ID| ≥ θ ∧ FS′ 6= ∅ then
24: EqClass(P ′, FS′′, M ′)
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TIDs of candidate suffixes need to be updated, with some of them possibly be-
coming infrequent, leading to further propagation (Lines 19-22). If the prefix
becomes infrequent, the search branch terminates.

Fixed variable-order search, like Eclat, is an advantageous case for Gaus-
sian elimination [30]: non-zero elements are restricted to the right region of the
matrix, hence Gaussian elimination only needs to consider a contiguous, pro-
gressively shrinking subset of columns. Total memory overhead of EclatXOR
compared to plain Eclat is O (d× |F| ×NXOR + pivot× r), where d denotes
maximal search depth, |F| the number of frequent singletons (columns of a ma-
trix), and NXOR the number of XOR constraints (rows of a matrix). The first
term refers to a set of XOR matrices in unexplored search branches, whereas
the second term refers to storing itemsets in a cell (Line 19 in Algorithm 2 in
Appendix A).

6 Pattern set sampling

We highlight the flexibility of Flexics by introducing and tackling the novel
task of sampling sets of patterns. For the purposes of sampling, a set of patterns
is essentially treated as a composite pattern. Typically, constituent patterns are
required to be different from each other. The quality (and hence, the sampling
probability) of a pattern set depends on collective properties of constituent
patterns. These characteristics, coupled with the immense size of the pattern
set search space, make sampling even more challenging.

To develop a sampler, we extend GFlexics with the CSP-formulation of
the k-pattern set mining task [25], which in turn builds upon the formulation of
the itemset mining task described in Section 4. Recall that a CSP is defined by
a set of variables and constraints over these variables. Each constituent pattern
is modeled with distinct item and transaction variables, i.e., Iik and Ttk for the
kth pattern pk. Note that this increases the length of XOR constraints, which
poses an additional challenge from the sampling perspective.

Any single-pattern constraint can be enforced for a constituent pattern, e.g.,
minfreq (θ), closed, or minlen (λ). A common pattern set-specific constraint
is no overlap, which enforces that neither the itemsets (1), nor the sets of
transactions that they cover (2) overlap:

(1) ∀i ∈ I
∑
Iik ≤ 1 (2) ∀t ∈ T

∑
Ttk ≤ 1

Furthermore, there is typically a symmetry-breaking constraint that requires
that the set of transaction indices of pi lexicographically precedes those of
{pj | j > i}. This approach allows modeling a wide range of pattern set sam-
pling tasks, e.g., sampling k-term DNFs, conceptual clusterings, redescriptions,
and others. In this paper, we use the problem of tiling datasets [31] as an
example.

The main aim of tiling is to cover a large number of 1s in a binary 0/1 dataset
with a given number of patterns. Thus, a tiling is essentially a set of itemsets
that together describe as many item occurrences as possible. Without loss of
generality, we describe the task of sampling non-overlapping 2-tilings (k = 2).
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Let p1 and p2 denote the constituent patterns of a 2-tiling. The quality of a
tiling is equal to its area, i.e., the number of 1s that it covers:

area ({p1, p2}) = (freq (p1)× |p1|+ freq (p2)× |p2|)

The scaling constant for area is C =
∑
Dti, i.e., the total number of 1s

in the dataset. The tilt bound is r̂ =
∑
Dti/(2× (|D| × θ)× λ) , where the

denominator is the smallest possible area of a 2-tiling given the constraints.

7 Experiments

The experimental evaluation focuses on accuracy, scalability, and flexibility of
the proposed sampler. The research questions are as follows:

Q1 How close is the empirical sampling distribution to the target distribution?

Q2 How does Flexics compare to the specialized alternatives?

Q3 Does Flexics scale to large datasets?

Q4 How flexible is Flexics, i.e., can it be used for new pattern sampling tasks?

The implementations of GFlexics and EFlexics3 are based on cp4im4

and a custom implementation of Eclat respectively. Both are augmented with
a propagator for a system of XOR constraints based on the implementation of
Gaussian elimination in the m4ri library5 [32]. All experiments were run on a
Linux machine with an Intel Xeon CPU@3.2GHz and 32Gb of RAM.

Q1: Sampling accuracy We study the sampling accuracy of GFlexics in
settings with tight constraints, which yield a relatively low number of solutions.
This allows us to compute the exact statistical distance between the empirical
sampling distribution and the target distribution. We investigate settings with
various quality measures and constraint sets as well as the effect of the tolerance
parameter κ.

We select several datasets from the CP4IM repository6 in the following way.
For each dataset, we construct two constraint sets (see Table 3). We choose a
value of θ such that there are approximately 60 000 frequent patterns. Given θ,
we choose a value of λ ≥ 2 such that there are at least 15 000 closed patterns
that satisfy the minlen constraint. In order to obtain sufficiently challenging
sampling tasks, we omit the datasets where the latter condition does not hold
(i.e., there are too few closed “long” patterns). Combining two constraint sets
with three quality measures yields six experimental settings per dataset. Table 5
shows dataset statistics and parameter values. For each κ ∈ {0.1, 0.5, 0.9}, we
request 900 000 samples.

3Available at https://bitbucket.org/wxd/flexics.
4https://dtai.cs.kuleuven.be/CP4IM
5https://bitbucket.org/malb/m4ri/
6Source: https://dtai.cs.kuleuven.be/CP4IM/datasets/
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Table 3: Combinations of two constraint sets and three quality measures yield
six experimental settings per dataset for sampling accuracy experiments; see
Section 4 for definitions.

Constraints C Itemsets
per dataset

F minFreq (θ) ∼ 60 000

FCL
minFreq (θ)∧ ≥ 15 000

Closed ∧minLen (λ)

Quality Tilt
measure ϕ bound r̂

uniform (ϕ ≡ 1) 1

purity 2

freq θ−1

Let T denote the set of all itemsets that satisfy the constraints, E denote
the multiset of all samples, and 1S its multiplicity function. For a given qual-
ity measure ϕ, target and empirical probabilities of sampling an itemset p are
respectively defined as PT (p) = ϕ (p) /

∑
p′∈T

ϕ (p′) and PE (p) = 1E (p) /|E|.

We use Jensen-Shannon (JS) divergence to quantify the statistical distance be-
tween PT and PE . Let DKL (P1‖P2) denote the well-known Kullback-Leibler
divergence between distributions P1 and P2. JS-divergence DJS is defined as
follows:

DJS (PT ‖PE) = 0.5× (DKL (PT ‖PM ) +DKL (PE‖PM ))

where PM = 0.5× (PT + PE)

JS-divergence ranges from 0 to 1 and, unlike KL-divergence, does not require
that PT (p) > 0⇒ PE (p) > 0, i.e., that each solution is sampled at least once,
which does not always hold in sampling experiments. We compare DJS attained
with our sampler with that of the ideal sampler, which materializes all itemsets
satisfying the constraints, computes their qualities, and uses these to sample
directly from the target distribution.

A characteristic experiment in detail Our experiments show that results are
consistent across various datasets. Therefore, we first study the results on the
vote dataset in detail. Table 4 shows that the theoretical error tolerance pa-
rameter κ has no considerable effect on practical performance of the algorithm,
except for runtime, which we evaluate in subsequent experiments. One possible
explanation is the high quality of the output of the estimation phase, which thus
alleviates theoretical risks that have to be accounted for in the general case (see
below for a numerical characterization). Hence, in the following experiments we
use κ = 0.9 unless noted otherwise.

JS-divergences for different quality measures and constraint sets are im-
pressively low, equivalent to the highest possible sampling accuracy attainable
with the ideal sampler. Figure 2 illustrates this for minfreq (0.09) ∧ closed ∧
minlen (7), ϕ = freq, and κ = 0.9 (DJS = 0.004): the sampling frequency of an
average itemset is close to the target probability. For at least 90% of patterns,
the sampling error does not exceed a factor of 2.
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vote, minfreq (0.09) ∧ closed ∧minlen (7), ϕ = freq
κ = 0.9/ε (κ) = 100.38; DJS = 0.004

8.00 · 10−6

9.20 · 10−5

2.32 · 10−5 8.66 · 10−5

5%

Avg
95%

TargetTarget×2

Target×0.5Empirical
probability

Target
probability

Bounds

(log)

Figure 2: Empirical sampling frequencies of itemsets that share the same target
probability, i.e., have the same quality. On average, frequencies are close to
the target probabilities. 90% of frequencies are well within a factor 2 from
the target, which is considerably lower than the theoretical factor of 100.38.
(The dots show the tails of the empirical probability distribution for a given
target probability. The lower right box shows theoretical bounds and empirical
frequencies on the logscale).

Table 5 shows that similar conclusions hold for several other datasets. Over
all experimental settings, the error of the estimation of the total weight of
all solutions, which is used to derive the number of XOR constraints for the
sampling phase, never exceeds 10%, whereas the bounds assume the error of
45 to 80%. This helps explain why practical errors are considerably lower than
theoretical bounds.

In line with theoretical expectations (see Section 5), the splice dataset
proves the most challenging due to the large number of items (variables in XOR
constraints). As a result, GFlexics does not generate the requested number
of samples within the 24-hour timeout. We study the runtime in the following
experiment.

Q2: Comparison with alternative pattern samplers We compare Flexics to
ACFI [7] and TS [11], alternative samplers7 described in Section 3, in the set-
tings that they are tailored for. ACFI only supports the setting with a single
minfreq (θ) constraint and ϕ = uniform. It is run with a burn-in of 100 000
steps and uses a built-in heuristic to determine the number of steps between
consecutive samples. TS is evaluated in the setting with ϕ = freq and both

7The code was provided by their respective authors. We also obtained the “unmaintained”
code for the uniform LRW sampler (personal communication), but were unable to make it run
on our machines. The code for the FCA sampler was not available (personal communication).
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Table 4: Sampling accuracy of Flexics (here GFlexics) is consistently high
across quality measures, constraint sets (minFreq (0.09) vs. minFreq (0.09) ∧
Closed∧minLen (7)), and error tolerance κ. JS-divergence is impressively low,
equivalent to that of the ideal sampler.

vote dataset, JS-divergence from target

Uniform (r̂ = 1) Purity (r̂ = 2) Frequency (r̂ = 11)
κ F FCL F FCL F FCL

0.9 0.013 0.004 0.013 0.004 0.013 0.004
0.5 0.013 0.004 0.013 0.004 0.013 0.004
0.1 0.013 0.004 0.013 0.004 0.013 0.004

Ideal sampler 0.013 0.004 0.013 0.004 0.013 0.004

constraint sets from the previous experiments. It samples from two of the distri-
butions it supports, freq and freq4; samples that do not satisfy the constraints
are rejected. Both samplers are requested to generate 900 000 samples and are
allowed to run up to 24 hours. Datasets and parameters are identical to the
previous experiments.

Table 6 shows the accuracy of the samplers. The performance of Flexics
is on par with specialized samplers. That is, in uniform frequent itemset sam-
pling, the accuracy of both Flexics and ACFI is equivalent to that of the ideal
sampler and can therefore not be improved. When sampling proportional to fre-
quency, it is equivalent to the accuracy of the exact two-step sampler TS ∼ freq.
However, the latter does not directly take constraints into account, which poses
considerable problems on most datasets. For example, for the heart dataset,
TS fails to generate a single accepted sample, despite generating 2 billion un-
constrained candidates. This issue is not solved by increasing the bias towards
more frequent itemsets by sampling proportional to freq4. Furthermore, this
would substantially decrease accuracy, as seen in primary and vote.

Table 7 shows the runtimes for frequent itemset sampling (i.e., only the
minfreq constraint). In most settings, EFlexics provides runtime benefits
over GFlexics. The splice dataset is the most challenging due to the large
number of items; it highlights the importance of an efficient constraint oracle.
Accordingly, the specialized sampler ACFI is from 6 to 22 milliseconds faster
than a faster variant of Flexics in uniform sampling (excluding splice). In
frequency-weighted sampling, Flexics is considerably faster in the settings with
tighter constraints, where the two-step sampler is slow to generate accepted
samples. This illustrates the overhead as well as the benefits of the flexibility of
the proposed approach. Furthermore, in these settings, there are at most 66 000
patterns, which is too low to suggest the need for pattern sampling (recall that
the primary goal of these experiments was to evaluate and compare sampling
accuracy) and does not allow for the overhead amortization. We therefore tackle
settings with a much larger number of patterns in the following experiments.
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Table 5: Dataset statistics and parameter values and results of sampling ac-
curacy experiments. Even with high error tolerance κ = 0.9, JS-divergence of
Flexics (here GFlexics) is consistently low across datasets, quality measures,
and constraint sets. (On the splice dataset, GFlexics generates less than
900 000 samples before the timeout; see also Table 7.)

JS-divergence, κ = 0.9

Uniform Purity Frequency
|D| |I| Density θ λ F FCL F FCL F FCL

german 1000 112 34% 0.35 (349) 2 0.012 0.003 0.013 0.003 0.013 0.003
heart 296 95 47% 0.43 (127) 2 0.012 0.003 0.012 0.003 0.012 0.003
hepatitis 137 68 50% 0.39 (53) 5 0.013 0.004 0.014 0.004 0.013 0.004
kr-vs-kp 3196 74 49% 0.69 (2190) 6 0.013 0.005 0.013 0.005 0.013 0.005
primary 336 31 48% 0.09 (30) 7 0.013 0.004 0.013 0.004 0.013 0.004
splice 3190 287 21% 0.04 (122) 3 − − − − − −
vote 435 48 33% 0.09 (40) 7 0.013 0.004 0.013 0.004 0.013 0.004

Table 6: The accuracy of Flexics (here GFlexics) is consistent across settings.
In uniform frequent itemset sampling, performance of Flexics as well as of
ACFI is equivalent to that of the ideal sampler (not shown). In frequency-
weighted sampling, it is comparable to the exact two-step sampler (TS ∼ freq)
with rejection. However, the latter suffers from low acceptance rates, which, for
settings marked with ‘−’, is not improved by increasing bias (TS ∼ freq4). On
splice, neither TS nor Flexics generate 900 000 samples before the timeout;
see also Table 7.

JS-divergence (for TS, acceptance rate)

Uniform Frequency
F F FCL

GF ACFI GF TS∼freq TS∼freq4 GF TS∼freq TS∼freq4

german 0.01 0.01 0.01 − (9·10
−8) − (0.02) 0.00 − (5·10

−8) − (0.06)
heart 0.01 0.01 0.01 − (4·10

−10) − (0) 0.00 − (0) − (3·10
−3)

hepatitis 0.01 0.01 0.01 − (2·10
−6) − (0.01) 0.00 − (1·10

−6) − (0.01)
kr-vs-kp 0.01 0.01 0.01 − (7·10

−7) − (0.01) 0.01 − (4·10
−7) − (4·10

−3)
primary 0.01 0.01 0.01 0.01 (0.30) 0.40 (0.99) 0.01 0.01 (0.13) 0.27 (0.10)
splice 0.01 − − − (0) − (0) − − (0) − (0)
vote 0.01 0.01 0.01 0.01 (0.13) 0.23 (0.94) 0.00 0.01 (0.05) 0.14 (0.22)
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Table 7: Runtime in milliseconds required to sample a frequent itemset, includ-
ing pre-processing, i.e., estimation or burn-in, amortized over 1000 samples.
Both variants of Flexics are suitable for anytime exploration, although slower
than the specialized samplers. The two-step sampler is the fastest in the task
it is tailored for, but fails in the settings with tighter constraints. EFlexics
provides runtime benefits compared to GFlexics.

ϕ = uniform, C = F ϕ = freq, C = F

GFlexics EFlexics ACFI GFlexics EFlexics TS∼freq
german 110 25 39 133 34 58540
heart 60 45 24 73 44 −
hepatitis 23 33 11 30 45 2632
kr-vs-kp 59 9 6 59 10 8731
primary 10 10 4 27 25 0.10
splice 170360 1376 580 − 1095 −
vote 25 19 8 46 28 0.03

Q3: Scalability To study scalability of the proposed sampler, we compare its
runtime costs with those required to construct an ideal sampler with lcm8, an
efficient frequent itemset miner [33]. To this end, we estimate the costs of com-
pleting the following scenario: pre-processing (estimation or counting), followed
by sampling 100 itemsets in two batches of 50. We use non-synthetic datasets
from the FIMI repository9, which have fewer than one billion transactions and
select θ such that there are more than one billion frequent itemsets (see Table 8).

A characteristic experiment in detail We use the accidents dataset (469 items,
340 183 transactions) and θ = 0.009 (3000 transactions), which results in a
staggering number of 5.37 billion frequent itemsets. We run WeightGen with
values of κ ∈ {0.1, 0.5, 0.9}. (Note that the estimation phase is identical for all
three cases.) The baseline sampler is constructed as follows. lcm is first run
in counting mode, which only returns the total number of itemsets. Then, for
each batch, 50 random line numbers are drawn, and the corresponding item-
sets are printed while lcm is enumerating the solutions10. The latter phase is
implemented with the standard Unix utility ‘awk‘.

Figure 3 illustrates the results. The counting mode of lcm is roughly 4.5
minutes faster than the estimation phase of EFlexics. Generating samples
from the output of lcm, on the other hand, is considerably slower: it takes
approximately 35s to sample one itemset, whereas EFlexics takes from 10s to
27s per sample, depending on error tolerance κ. As a result, EFlexics samples
two batches faster than lcm regardless of its parameter values. Moreover, with
κ = 0.9 it samples all 100 itemsets even before the first batch is returned by lcm.

8http://research.nii.ac.jp/~uno/codes.htm, ver. 3
9http://fimi.ua.ac.be/data/

10Storing all itemsets on disk provides no benefits: it increases the mining runtime to 23
minutes and results in a file of 215Gb; simply counting its lines with ‘wc -l’ takes 25 minutes.
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Figure 3: a) EFlexics generates two batches of 50 samples faster than a sampler
derived from lcm, regardless of error tolerance. b) EFlexics with the uniform
quality converges to a high-quality estimate of the total number of itemsets in
a small number of iterations (three different random seeds shown). Practical
error of the estimation phase is substantially lower than theoretical bounds,
which indirectly signals high sampling accuracy.

Thus, the proposed sampler outperforms a sampler derived from an efficient
itemset miner, even though the experimental setup favors the latter. First, non-
uniform weighted sampling would require more advanced computations with
itemsets, which would increase the costs of both counting and sampling with
lcm. Second, EFlexics could also benefit from the exact count obtained by
lcm and start sampling after 1.5 minutes. Third, the individual itemsets sam-
pled from the output of an algorithm based on deterministic search are not
exchangeable. Figure 4 illustrates this: due to lcm’s search order, certain items
only occur at the beginning of batches, while for EFlexics, the order within a
batch is random.

The accuracy of Flexics in this scenario can be evaluated indirectly, by
comparing the estimate of the total number of itemsets obtained at the estima-
tion phase with the actual number. The error tolerance of the estimation phase
is εest = 0.8 (see Appendix A for details). Figure 3b demonstrates that, in prac-
tice, the error is substantially lower than the theoretical bound. Furthermore,
3 to 9 iterations suffice to obtain an accurate estimate. Similar to previous ex-
periments, accurate input from the estimation phase alleviates theoretical risks
and is expected to enable accurate sampling.

Table 8 summarizes the results. On three out of four datasets, lcm is faster
in counting itemsets, but considerably slower in generating individual samples,
which is even more pronounced on connect and pumsb than on accidents. The
results are opposite on the kosarak dataset, which is in line with the theoretical
expectations (see Section 5): the large number of items and the sparsity of the
dataset sharply increase the costs of XOR constraint propagation. As a result,
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Figure 4: The probability of observing a given item at a certain position in a
batch by EFlexics is close to the expected probability of observing this item
in a random itemset, which indicates high sampling accuracy. The samples
by the lcm-based sampler are not exchangeable, i.e., certain items are under-
or oversampled at certain positions in a batch, depending on their position in
lcm’s search order.

Table 8: EFlexics generates individual samples considerably faster than lcm,
although it is slower in counting. The kosarak dataset poses a significant chal-
lenge to EFlexics due to its number of items and sparsity that complicate the
propagation of XOR constraints.

Itemsets,
Counting, min Sampling, s

|D| |I| Density θ bln. lcm EFlexics lcm EFlexics

accidents 340183 469 7.21% 0.009 5.37 1.55 6.48 33.77 10.30
connect 67557 130 33.08% 0.178 16.88 0.01 0.38 59.00 0.37
kosarak 990002 41271 0.02% 0.042 10.93 4.87 456.30 73.04 294.89
pumsb 49046 7117 1.04% 0.145 1.11 0.09 1.19 18.14 0.75

enumeration with Eclat within EFlexics becomes considerably slower than
with lcm (augmenting lcm to handle XOR constraints might provide a solution,
but is challenging from an implementation perspective).

Q4: Pattern set sampling In order to demonstrate the flexibility of our approach
and the promised benefits of weighted constrained pattern sampling, i.e., 1) di-
versity and quality of results, 2) utility of constraints, and 3) the potential for
anytime exploration, we here address the problem of sampling non-overlapping
2-tilings as introduced in Section 6. We re-use the implementation of GFlexics
from the itemset sampling experiments, only modifying the declarative speci-
fication of the CSP. Likewise, we impose the FCL constraints on constituent
patterns.

Table 9 shows parameters and runtimes for sampling 2-tilings proportional
to area. The time to sample a single 2-tiling is suitable for pattern-based data
exploration, where tilings are inspected by a human user, as it exceeds 5s only on
the german dataset. For several settings, the estimation phase runtime slightly
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Table 9: Time required to sample a 2-tiling is approximately 4s, which is suitable
for anytime exploration. Runtime benefits of the sampling procedure are the
largest for the settings with the largest tiling counts (kr-vs-kp, primary, and
vote).

Sampling with GFlexics

θ λ
Tilt Tilings, Enumeration, Estimation, Per sample,

bound r̂ mln. min min s

german-credit 0.22 3 25.4 11.2 8.2 12.6 15.3
heart 0.30 5 13.3 2.2 1.0 3.3 3.9
hepatitis 0.26 5 12.4 7.2 1.9 2.6 3.6
kr-vs-kp 0.31 4 13.1 20.3 18.5 3.5 5.1
primary 0.03 5 50.3 24.9 5.5 4.0 4.5
vote 0.10 5 15.3 170.1 37.0 2.9 4.4

exceeds the runtime of enumerating all solutions. However, for the settings
with a large number of pattern sets, which are arguably the primary target
of pattern samplers, the opposite is true. For example, in the vote experiment
with 170 million tilings, the estimation phase runtime only amounts to 8% of the
complete enumeration runtime, which demonstrates the benefits of the proposed
approach.

The left part of Figure 5 shows six random 2-tilings sampled from the vote

dataset. Constraints ensure that the individual tiles comprising each 2-tiling do
not overlap, simplifying interpretation. Moreover, the set of tilings is diverse,
i.e., the tilings are dissimilar to each other. They cover different regions in the
data, revealing alternative structural regularities.

The right part of Figure 5 shows the area distribution of all 2-tilings that
satisfy the constraints, obtained by complete enumeration. Qualities of 5 out
of 6 tilings fall in the dense region between the 25th and 75th percentile, indi-
cating high sampling accuracy. This is completely expected from the problem
statement. In practice, pattern quality measures, like area, are only an approx-
imation of application-specific pattern interestingness, thus diversity of results
is a desirable characteristic of a pattern sampler as long as the quality of indi-
vidual patterns is sufficiently high. To sample patterns from the right tail (i.e.,
with exceptionally high qualities) more frequently, the sampling task could be
changed, e.g., either by choosing another sampling distribution or by enforcing
constraints on area.

8 Discussion

The experiments demonstrate that Flexics delivers the promised benefits: 1)
it is flexible in that it supports a wide range of pattern constraints and sampling
distributions in itemset mining as well as the novel pattern set sampling task;
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Figure 5: Left: Six 2-tilings sampled consecutively from the vote dataset. The
tilings are diverse, i.e., cover different regions in the data, a property essential
for pattern-based data exploration. (Note that while the sampled tilings are
fair random draws, the images are not random: the tilings were sorted by area
descending, and items and transactions were re-arranged so that the cells cov-
ered by tilings with larger area are as close to each other as possible.) Right:
Qualities (area) of the samples, indicated by vertical bars, tend towards a dense
region between the 25th and the 75th percentile.

2) it is anytime in that the time it takes to generate random patterns is suitable
for online data exploration, including the settings with large datasets or large
solution spaces; and 3) by virtue of high sampling accuracy in all supported
settings, sampled patterns are diverse, i.e., originate from different regions in
the solution space. The theoretical guarantees ensure that the empirical ob-
servations extend reliably beyond the studied settings. Furthermore, practical
accuracy is substantially higher than theory guarantees. The results confirm
that pattern mining can benefit from the latest advances in AI, particularly in
weighted constrained sampling for SAT. In this section, we discuss potential
applications, advantages, and limitations of the proposed approach.

The primary application of pattern sampling involves showing sampled pat-
terns directly to the user. In exploratory data analysis, the mining task is often
ill-defined, i.e., the quality measure and the constraints reflect the application-
specific pattern interestingness only approximately [34]. Owing to its flexibility,
Flexics allows experimenting with various task formulations using the same
algorithm. Pattern sampling allows obtaining diverse and representative sets
of patterns in an anytime manner. These properties are particularly important
in interactive mining systems, which aim at returning patterns that are subjec-
tively interesting to the current user. Boley et al. [35] used two-step samplers
in such a system, while Dzyuba and van Leeuwen [36] proposed to learn low-tilt
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subjective quality measures specifically for sampling with Flexics.
Furthermore, the theoretical guarantees enable applications beyond display-

ing the sampled patterns: Flexics can be plugged into algorithms that use
patterns as building blocks for pattern-based models, yielding anytime versions
thereof with (ε, δ)-approximation guarantees of their own derived from Flex-
ics’ guarantees. Example approaches include community detection with Eclat
[37] or outlier detection with two-step sampling [38]. The authors note that
the formulation of the mining task has a strong influence on the results in the
respective applications. Flexics allows the algorithm designer to experiment
with these choices and thus to obtain variants of these approaches, perhaps with
better application performance.

The flexibility also provides algorithmic advantages. In addition to being
agnostic of the quality measure ϕ and the constraint set C, Flexics is also ag-
nostic of the underlying solution space and the oracle, as long as 1) solutions can
be encoded with binary variables and 2) the oracle supports XOR constraints.
Thus, Flexics provides a principled method to convert a pattern enumeration
algorithm into a sampling algorithm, which amounts to implementing the mech-
anism to handle XOR constraints. This allows re-using algorithmic advances in
pattern mining for developing pattern samplers, which we accomplished with
cp4im and Eclat.

Most importantly, Flexics’ black-box nature simplifies extensions to new
pattern languages. For example, possible extensions of GFlexics cover a va-
riety of pattern set languages in Guns et al. [25], e.g., conceptual clustering.
EFlexics can be extended to sample other binary pattern languages, e.g., as-
sociation rules [1] or redescriptions [39]. In contrast, MCMC algorithms, like
LRW, are based on local neighbourhood enumeration, which is uncommon in
traditional pattern mining techniques, and thus require distinctive design and
implementation principles for novel problems.

On the other hand, Flexics only supports pattern languages that can be
compactly represented with binary variables, such as the itemsets and pattern
sets studied in this paper. This essentially limits it to propositional discrete
(binary, categorical, or discretized numeric) data. While in principle structured
pattern languages, e.g., sequences or graphs, could also be modeled using this
framework, the number of variables would rise sharply, which would negatively
affect performance. Devising hashing-based sampling algorithms for non-binary
domains is an open problem. In particular, sequence mining can be encoded
with integer variables [26]; generalized XOR constraints [29] is one possible
research direction. Alternatively, as the m4ri library [32] that we base our im-
plementation on is optimized for dense F2 matrices, certain performance issues
may be addressed with Gaussian elimination algorithms optimized for sparse
matrices [40].

Another limitation concerns the bounded tilt assumption regarding sampling
distributions: many common quality measures, e.g., χ2, information gain [41],
or weighted relative accuracy [42], have high or even effectively infinite tilts
(if ϕ can be arbitrarily close to 0). Such quality measures could be tackled
with divide-and-conquer approaches [16, Section 6] or alternative estimation
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techniques [43]. This requires the capacity to efficiently handle constraints of
the form a ≤ ϕ (p) ≤ b, which is possible for a number of quality measures,
including the ones listed above.

9 Conclusion

We proposed Flexics, a flexible pattern sampler with theoretical guarantees
regarding sampling accuracy. We leveraged the perspective on pattern mining
as a constraint satisfaction problem and developed the first pattern sampling
algorithm that builds upon the latest advances in sampling solutions in SAT.
Experiments show that Flexics delivers the promised benefits regarding flexi-
bility, efficiency, and sampling accuracy in itemset mining as well as in the novel
task of pattern set sampling and that it is competitive with state-of-the-art al-
ternatives.

Directions for future work include extensions to richer pattern languages and
relaxing assumptions regarding sampling distributions (see Section 8 for a dis-
cussion). Specializing the sampling procedure towards typical mining scenarios
may allow for deriving tighter theoretical bounds and improving the practical
performance; examples include specific constraint types (e.g., anti-/monotone),
shapes of sampling distributions (e.g., right-peaked distributions, similar to Fig-
ure 5), and iterative mining. Following the future developments in weighted
constrained sampling in AI may provide insights for improving various aspects
of Flexics or pattern sampling in general.
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A WeightGen

In this section, we present an extended technical description of the WeightGen
algorithm, which closely follows Sections 3 and 4 in [16], whereas the pseudocode
in Algorithm 2 is structured similarly to that of UniGen2, a close cousin of
WeightGen [44]. Lines 1-3 correspond to the estimation phase and Lines 4-8
correspond to the sampling phase. SolveBounded stands for the bounded
enumeration oracle.
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The parameters of the estimation phase are fixed to particular theoretically
motivated values. pivotest denotes the maximal weight of a cell at the estimation
phase; pivotest = 46 corresponds to estimation error tolerance εest = 0.8 (Line
10). If the total weight of solutions in a given cell exceeds pivotest, a new
random XOR constraint is added in order to eliminate a number of solutions.
Repeating the process for a number of iterations increases the confidence of the
estimate, e.g., 17 iterations result in 1−δest = 0.8 (Line 1). Note that Estimate
essentially estimates the total weight of all solutions, from which NXOR, the
initial number of XOR constraints for the sampling phase, is derived (Line 4).

A similar procedure is employed at the sampling phase. It starts with NXOR
constraints and adds at most three extra constraints. The user-chosen error tol-
erance parameter κ determines the range [loThresh, hiThresh], within which
the total weight of a suitable cell should lie (Line 5). For example, κ = 0.9
corresponds to range [6.7, 49.4]. If a suitable cell can be obtained, a solution is
sampled exactly from all solutions in the cell; otherwise, no sample is returned.
Requiring the total cell weight to exceed a particular value ensures the lower
bound on the sampling accuracy.

The preceding presentation makes two simplifying assumptions: (1) all weights
lie in [1/r, 1]; (2) adding XOR constraints never results in unsatisfiable sub-
problems (empty cells). The former is relaxed by multiplying pivots by ŵmax =
ŵmin × r̂ < 1, where ŵmin is the smallest weight observed so far. The latter
is solved by simply restarting an iteration with a newly generated set of con-
straints. See Chakraborty et al. [16] for the full explanation, including the
precise formulae to compute all parameters.

Implementation details Following suggestions of Chakraborty et al. [44], we
implement leapfrogging, a technique that improves the performance of the um-
brella sampling procedure and thus benefits both GFlexics and EFlexics.
First, after three iterations of the estimation phase, we initialize the following
iterations with a number of XOR constraints that is equal to the smallest num-
ber returned in the previous iterations (rather than with zero XORs). Second,
in the sampling phase, we start with one XOR constraint more than the number
suggested by theory. If the cell is too small, we remove one constraint; if it is
too large, we proceed adding (at most two) constraints. Both modifications are
based on the observation that theoretical parameter values address hypothetical
corner cases that rarely occur in practice. Finally, we only run the estimation
phase until the initial number of XOR constraints, which only depends on the
median of total weight estimates, converges. For example, if the estimation
phase is supposed to run for 17 iterations, the convergence can happen as early
as after 9 iterations.
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Algorithm 2 WeightGen [16]

Input: Boolean formula F , weight w, tilt bound r̂, sampling error tolerance
parameter κ

Assumes: w (·) ∈ [1/r̂, 1], bounded enumeration algorithm SolveBounded

1: for 17 iterations do . Corresponds to δest = 0.2

2: WeightEstimates
Add← Estimate(∅)

3: TotalWeight = Median(WeightEstimates)
4: NXOR = O

(
log2 TotalWeight/

(
1 + κ−1

))
5: loThresh ∝ (1 + κ) /κ2, hiThresh ∝ (1 + κ)

3
/κ2

6: for Nsamples times do
7: InitXORs = {RandomXOR() ×NXOR times}
8: Generate(κ, [loThresh, hiThresh], InitXORs, 3)

9: function Estimate(XORs)
. Returns an estimate of the total weight of all solutions

10: pivotest = 46 . Corresponds to εest = 0.8
11: Sols← SolveBounded(F , XORs, pivotest)
12: CellWeight←

∑
s∈Sols w (s)

13: if CellWeight ≤ pivotest then . Cell of the “right” size
14: return CellWeight× 2|XORs|

15: else . Shrink cell by adding XOR constraint
16: Estimate(XORs ∪ RandomXOR())

17: function Generate(κ, [lT, hT ], XORs, i)
. Returns a random solution of F

18: Sols← SolveBounded(F , XORs, hT )
19: CellWeight←

∑
s∈Sols w (s)

20: if CellWeight ∈ [lT, hT ] then . Cell of the “right” size
21: return SampleExactly(Sols, w)
22: else if CellWeight > lT ∧ i > 0 then . Cell is too large
23: Generate(κ, [lT, hT ], XORs ∪RandomXOR(), i− 1)
24: else . Cell is too small
25: return ⊥
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