125 research outputs found

    Mobility-awareness in complex event processing systems

    Get PDF
    The proliferation and vast deployment of mobile devices and sensors over the last couple of years enables a huge number of Mobile Situation Awareness (MSA) applications. These applications need to react in near real-time to situations in the environment of mobile objects like vehicles, pedestrians, or cargo. To this end, Complex Event Processing (CEP) is becoming increasingly important as it allows to scalably detect situations “on-the-fly” by continously processing distributed sensor data streams. Furthermore, recent trends in communication networks promise high real-time conformance to CEP systems by processing sensor data streams on distributed computing resources at the edge of the network, where low network latencies can be achieved. Yet, supporting MSA applications with a CEP middleware that utilizes distributed computing resources proves to be challenging due to the dynamics of mobile devices and sensors. In particular, situations need to be efficiently, scalably, and consistently detected with respect to ever-changing sensors in the environment of a mobile object. Moreover, the computing resources that provide low latencies change with the access points of mobile devices and sensors. The goal of this thesis is to provide concepts and algorithms to i) continuously detect situations that recently occurred close to a mobile object, ii) support bandwidth and computational efficient detections of such situations on distributed computing resources, and iii) support consistent, low latency, and high quality detections of such situations. To this end, we introduce the distributed Mobile CEP (MCEP) system which automatically adapts the processing of sensor data streams according to a mobile object’s location. MCEP provides an expressive, location-aware query model for situations that recently occurred at a location close to a mobile object. MCEP significantly reduces latency, bandwidth, and processing overhead by providing on-demand and opportunistic adaptation algorithms to dynamically assign event streams to queries of the MCEP system. Moreover, MCEP incorporates algorithms to adapt the deployment of MCEP queries in a network of computing resources. This way, MCEP supports latency-sensitive, large-scale deployments of MSA applications and ensures a low network utilization while mobile objects change their access points to the system. MCEP also provides methods to increase the scalability in terms of deployed MCEP queries by reusing event streams and computations for detecting common situations for several mobile objects

    Cloud Computing cost and energy optimization through Federated Cloud SoS

    Get PDF
    2017 Fall.Includes bibliographical references.The two most significant differentiators amongst contemporary Cloud Computing service providers have increased green energy use and datacenter resource utilization. This work addresses these two issues from a system's architectural optimization viewpoint. The proposed approach herein, allows multiple cloud providers to utilize their individual computing resources in three ways by: (1) cutting the number of datacenters needed, (2) scheduling available datacenter grid energy via aggregators to reduce costs and power outages, and lastly by (3) utilizing, where appropriate, more renewable and carbon-free energy sources. Altogether our proposed approach creates an alternative paradigm for a Federated Cloud SoS approach. The proposed paradigm employs a novel control methodology that is tuned to obtain both financial and environmental advantages. It also supports dynamic expansion and contraction of computing capabilities for handling sudden variations in service demand as well as for maximizing usage of time varying green energy supplies. Herein we analyze the core SoS requirements, concept synthesis, and functional architecture with an eye on avoiding inadvertent cascading conditions. We suggest a physical architecture that diminishes unwanted outcomes while encouraging desirable results. Finally, in our approach, the constituent cloud services retain their independent ownership, objectives, funding, and sustainability means. This work analyzes the core SoS requirements, concept synthesis, and functional architecture. It suggests a physical structure that simulates the primary SoS emergent behavior to diminish unwanted outcomes while encouraging desirable results. The report will analyze optimal computing generation methods, optimal energy utilization for computing generation as well as a procedure for building optimal datacenters using a unique hardware computing system design based on the openCompute community as an illustrative collaboration platform. Finally, the research concludes with security features cloud federation requires to support to protect its constituents, its constituents tenants and itself from security risks

    Doctor of Philosophy

    Get PDF
    dissertationDataflow pipeline models are widely used in visualization systems. Despite recent advancements in parallel architecture, most systems still support only a single CPU or a small collection of CPUs such as a SMP workstation. Even for systems that are specifically tuned towards parallel visualization, their execution models only provide support for data-parallelism while ignoring taskparallelism and pipeline-parallelism. With the recent popularization of machines equipped with multicore CPUs and multi-GPU units, these visualization systems are undoubtedly falling further behind in reaching maximum efficiency. On the other hand, there exist several libraries that can schedule program executions on multiple CPUs and/or multiple GPUs. However, due to differences in executing a task graph and a pipeline along with their APIs being considerably low-level, it still remains a challenge to integrate these run-time libraries into current visualization systems. Thus, there is a need for a redesigned dataflow architecture to fully support and exploit the power of highly parallel machines in large-scale visualization. The new design must be able to schedule executions on heterogeneous platforms while at the same time supporting arbitrarily large datasets through the use of streaming data structures. The primary goal of this dissertation work is to develop a parallel dataflow architecture for streaming large-scale visualizations. The framework includes supports for platforms ranging from multicore processors to clusters consisting of thousands CPUs and GPUs. We achieve this in our system by introducing the notion of Virtual Processing Elements and Task-Oriented Modules along with a highly customizable scheduler that controls the assignment of tasks to elements dynamically. This creates an intuitive way to maintain multiple CPU/GPU kernels yet still provide coherency and synchronization across module executions. We have implemented these techniques into HyperFlow which is made of an API with all basic dataflow constructs described in the dissertation, and a distributed run-time library that can be used to deploy those pipelines on multicore, multi-GPU and cluster-based platforms

    Parallel and Distributed Computing

    Get PDF
    The 14 chapters presented in this book cover a wide variety of representative works ranging from hardware design to application development. Particularly, the topics that are addressed are programmable and reconfigurable devices and systems, dependability of GPUs (General Purpose Units), network topologies, cache coherence protocols, resource allocation, scheduling algorithms, peertopeer networks, largescale network simulation, and parallel routines and algorithms. In this way, the articles included in this book constitute an excellent reference for engineers and researchers who have particular interests in each of these topics in parallel and distributed computing

    QoS framework for video streaming in home networks

    Get PDF
    In this thesis we present a new SNR scalable video coding scheme. An important advantage of the proposed scheme is that it requires just a standard video decoder for processing each layer. The quality of the delivered video depends on the allocation of bit rates to the base and enhancement layers. For a given total bit rate, the combination with a bigger base layer delivers higher quality. The absence of dependencies between frames in enhancement layers makes the system resilient to losses of arbitrary frames from an enhancement layer. Furthermore, that property can be used in a more controlled fashion. An important characteristic of any video streaming scheme is the ability to handle network bandwidth fluctuations. We made a streaming technique that observes the network conditions and based on the observations reconfigures the layer configuration in order to achieve the best possible quality. A change of the network conditions forces a change in the number of layers or the bit rate of these layers. Knowledge of the network conditions allows delivery of a video of higher quality by choosing an optimal layer configuration. When the network degrades, the amount of data transmitted per second is decreased by skipping frames from an enhancement layer on the sender side. The presented video coding scheme allows skipping any frame from an enhancement layer, thus enabling an efficient real-time control over transmission at the network level and fine-grained control over the decoding of video data. The methodology proposed is not MPEG-2 specific and can be applied to other coding standards. We made a terminal resource manager that enables trade-offs between quality and resource consumption due to the use of scalable video coding in combination with scalable video algorithms. The controller developed for the decoding process optimizes the perceived quality with respect to the CPU power available and the amount of input data. The controller does not depend on the type of scalability technique and can therefore be used with any scalable video. The controller uses the strategy that is created offline by means of a Markov Decision Process. During the evaluation it was found that the correctness of the controller behavior depends on the correctness of parameter settings for MDP, so user tests should be employed to find the optimal settings

    High-fidelity graphics using unconventional distributed rendering approaches

    Get PDF
    High-fidelity rendering requires a substantial amount of computational resources to accurately simulate lighting in virtual environments. While desktop computing, with the aid of modern graphics hardware, has shown promise in delivering realistic rendering at interactive rates, real-time rendering of moderately complex scenes is still unachievable on the majority of desktop machines and the vast plethora of mobile computing devices that have recently become commonplace. This work provides a wide range of computing devices with high-fidelity rendering capabilities via oft-unused distributed computing paradigms. It speeds up the rendering process on formerly capable devices and provides full functionality to incapable devices. Novel scheduling and rendering algorithms have been designed to best take advantage of the characteristics of these systems and demonstrate the efficacy of such distributed methods. The first is a novel system that provides multiple clients with parallel resources for rendering a single task, and adapts in real-time to the number of concurrent requests. The second is a distributed algorithm for the remote asynchronous computation of the indirect diffuse component, which is merged with locally-computed direct lighting for a full global illumination solution. The third is a method for precomputing indirect lighting information for dynamically-generated multi-user environments by using the aggregated resources of the clients themselves. The fourth is a novel peer-to-peer system for improving the rendering performance in multi-user environments through the sharing of computation results, propagated via a mechanism based on epidemiology. The results demonstrate that the boundaries of the distributed computing typically used for computer graphics can be significantly and successfully expanded by adapting alternative distributed methods

    Scalable and responsive real time event processing using cloud computing

    Get PDF
    PhD ThesisCloud computing provides the potential for scalability and adaptability in a cost e ective manner. However, when it comes to achieving scalability for real time applications response time cannot be high. Many applications require good performance and low response time, which need to be matched with the dynamic resource allocation. The real time processing requirements can also be characterized by unpredictable rates of incoming data streams and dynamic outbursts of data. This raises the issue of processing the data streams across multiple cloud computing nodes. This research analyzes possible methodologies to process the real time data in which applications can be structured as multiple event processing networks and be partitioned over the set of available cloud nodes. The approach is based on queuing theory principles to encompass the cloud computing. The transformation of the raw data into useful outputs occurs in various stages of processing networks which are distributed across the multiple computing nodes in a cloud. A set of valid options is created to understand the response time requirements for each application. Under a given valid set of conditions to meet the response time criteria, multiple instances of event processing networks are distributed in the cloud nodes. A generic methodology to scale-up and scale-down the event processing networks in accordance to the response time criteria is de ned. The real time applications that support sophisticated decision support mechanisms need to comply with response time criteria consisting of interdependent data ow paradigms making it harder to improve the performance. Consideration is given for ways to reduce the latency,improve response time and throughput of the real time applications by distributing the event processing networks in multiple computing nodes

    Sixth Goddard Conference on Mass Storage Systems and Technologies Held in Cooperation with the Fifteenth IEEE Symposium on Mass Storage Systems

    Get PDF
    This document contains copies of those technical papers received in time for publication prior to the Sixth Goddard Conference on Mass Storage Systems and Technologies which is being held in cooperation with the Fifteenth IEEE Symposium on Mass Storage Systems at the University of Maryland-University College Inn and Conference Center March 23-26, 1998. As one of an ongoing series, this Conference continues to provide a forum for discussion of issues relevant to the management of large volumes of data. The Conference encourages all interested organizations to discuss long term mass storage requirements and experiences in fielding solutions. Emphasis is on current and future practical solutions addressing issues in data management, storage systems and media, data acquisition, long term retention of data, and data distribution. This year's discussion topics include architecture, tape optimization, new technology, performance, standards, site reports, vendor solutions. Tutorials will be available on shared file systems, file system backups, data mining, and the dynamics of obsolescence

    Traffic Optimization in Data Center and Software-Defined Programmable Networks

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    • …
    corecore