534 research outputs found

    Distributed deep learning inference in fog networks

    Get PDF
    Today's smart devices are equipped with powerful integrated chips and built-in heterogeneous sensors that can leverage their potential to execute heavy computation and produce a large amount of sensor data. For instance, modern smart cameras integrate artificial intelligence to capture images that detect any objects in the scene and change parameters, such as contrast and color based on environmental conditions. The accuracy of the object recognition and classification achieved by intelligent applications has improved due to recent advancements in artificial intelligence (AI) and machine learning (ML), particularly, deep neural networks (DNNs). Despite the capability to carry out some AI/ML computation, smart devices have limited battery power and computing resources. Therefore, DNN computation is generally offloaded to powerful computing nodes such as cloud servers. However, it is challenging to satisfy latency, reliability, and bandwidth constraints in cloud-based AI. Thus, in recent years, AI services and tasks have been pushed closer to the end-users by taking advantage of the fog computing paradigm to meet these requirements. Generally, the trained DNN models are offloaded to the fog devices for DNN inference. This is accomplished by partitioning the DNN and distributing the computation in fog networks. This thesis addresses offloading DNN inference by dividing and distributing a pre-trained network onto heterogeneous embedded devices. Specifically, it implements the adaptive partitioning and offloading algorithm based on matching theory proposed in an article, titled "Distributed inference acceleration with adaptive dnn partitioning and offloading". The implementation was evaluated in a fog testbed, including Nvidia Jetson nano devices. The obtained results show that the adaptive solution outperforms other schemes (Random and Greedy) with respect to computation time and communication latency

    Compact optimized deep learning model for edge: a review

    Get PDF
    Most real-time computer vision applications, such as pedestrian detection, augmented reality, and virtual reality, heavily rely on convolutional neural networks (CNN) for real-time decision support. In addition, edge intelligence is becoming necessary for low-latency real-time applications to process the data at the source device. Therefore, processing massive amounts of data impact memory footprint, prediction time, and energy consumption, essential performance metrics in machine learning based internet of things (IoT) edge clusters. However, deploying deeper, dense, and hefty weighted CNN models on resource-constraint embedded systems and limited edge computing resources, such as memory, and battery constraints, poses significant challenges in developing the compact optimized model. Reducing the energy consumption in edge IoT networks is possible by reducing the computation and data transmission between IoT devices and gateway devices. Hence there is a high demand for making energy-efficient deep learning models for deploying on edge devices. Furthermore, recent studies show that smaller compressed models achieve significant performance compared to larger deep-learning models. This review article focuses on state-of-the-art techniques of edge intelligence, and we propose a new research framework for designing a compact optimized deep learning (DL) model deployment on edge devices

    Horizontally distributed inference of deep neural networks for AI-enabled IoT

    Get PDF
    Motivated by the pervasiveness of artificial intelligence (AI) and the Internet of Things (IoT) in the current “smart everything” scenario, this article provides a comprehensive overview of the most recent research at the intersection of both domains, focusing on the design and development of specific mechanisms for enabling a collaborative inference across edge devices towards the in situ execution of highly complex state-of-the-art deep neural networks (DNNs), despite the resource-constrained nature of such infrastructures. In particular, the review discusses the most salient approaches conceived along those lines, elaborating on the specificities of the partitioning schemes and the parallelism paradigms explored, providing an organized and schematic discussion of the underlying workflows and associated communication patterns, as well as the architectural aspects of the DNNs that have driven the design of such techniques, while also highlighting both the primary challenges encountered at the design and operational levels and the specific adjustments or enhancements explored in response to them.Agencia Estatal de Investigación | Ref. DPI2017-87494-RMinisterio de Ciencia e Innovación | Ref. PDC2021-121644-I00Xunta de Galicia | Ref. ED431C 2022/03-GR

    On Studying Distributed Machine Learning

    Get PDF
    The Internet of Things (IoT) is utilizing Deep Learning (DL) for applications such as voice or image recognition. Processing data for DL directly on IoT edge devices reduces latency and increases privacy. To overcome the resource constraints of IoT edge devices, the computation for DL inference is distributed between a cluster of several devices. This paper explores DL, IoT networks, and a novel framework for distributed processing of DL in IoT clusters. The aim is to facilitate and simplify deployment, testing, and study of a distributed DL system, even without physical devices. The contributions of this paper are a deployment of the framework to an Ubuntu virtual machine testbed and a repackaging of the framework as a Docker image for portability and fast future deployment

    Serving Graph Neural Networks With Distributed Fog Servers For Smart IoT Services

    Full text link
    Graph Neural Networks (GNNs) have gained growing interest in miscellaneous applications owing to their outstanding ability in extracting latent representation on graph structures. To render GNN-based service for IoT-driven smart applications, traditional model serving paradigms usually resort to the cloud by fully uploading geo-distributed input data to remote datacenters. However, our empirical measurements reveal the significant communication overhead of such cloud-based serving and highlight the profound potential in applying the emerging fog computing. To maximize the architectural benefits brought by fog computing, in this paper, we present Fograph, a novel distributed real-time GNN inference framework that leverages diverse and dynamic resources of multiple fog nodes in proximity to IoT data sources. By introducing heterogeneity-aware execution planning and GNN-specific compression techniques, Fograph tailors its design to well accommodate the unique characteristics of GNN serving in fog environments. Prototype-based evaluation and case study demonstrate that Fograph significantly outperforms the state-of-the-art cloud serving and fog deployment by up to 5.39x execution speedup and 6.84x throughput improvement.Comment: Accepted by IEEE/ACM Transactions on Networkin

    Edge AI for Internet of Energy: Challenges and Perspectives

    Full text link
    The digital landscape of the Internet of Energy (IoE) is on the brink of a revolutionary transformation with the integration of edge Artificial Intelligence (AI). This comprehensive review elucidates the promise and potential that edge AI holds for reshaping the IoE ecosystem. Commencing with a meticulously curated research methodology, the article delves into the myriad of edge AI techniques specifically tailored for IoE. The myriad benefits, spanning from reduced latency and real-time analytics to the pivotal aspects of information security, scalability, and cost-efficiency, underscore the indispensability of edge AI in modern IoE frameworks. As the narrative progresses, readers are acquainted with pragmatic applications and techniques, highlighting on-device computation, secure private inference methods, and the avant-garde paradigms of AI training on the edge. A critical analysis follows, offering a deep dive into the present challenges including security concerns, computational hurdles, and standardization issues. However, as the horizon of technology ever expands, the review culminates in a forward-looking perspective, envisaging the future symbiosis of 5G networks, federated edge AI, deep reinforcement learning, and more, painting a vibrant panorama of what the future beholds. For anyone vested in the domains of IoE and AI, this review offers both a foundation and a visionary lens, bridging the present realities with future possibilities
    corecore