
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 13, No. 6, December 2023, pp. 6904~6912

ISSN: 2088-8708, DOI: 10.11591/ijece.v13i6.pp6904-6912 6904

Journal homepage: http://ijece.iaescore.com

Compact optimized deep learning model for edge: a review

Soumyalatha Naveen1, Manjunath R. Kounte2
1School of Computer Science and Engineering, REVA University, Bangalore, India

2School of Electronics and Communication Engineering, REVA University, Bangalore, India

Article Info ABSTRACT

Article history:

Received Jan 7, 2023

Revised Apr 23, 2023

Accepted Apr 24, 2023

 Most real-time computer vision applications, such as pedestrian detection,

augmented reality, and virtual reality, heavily rely on convolutional neural

networks (CNN) for real-time decision support. In addition, edge

intelligence is becoming necessary for low-latency real-time applications to

process the data at the source device. Therefore, processing massive amounts

of data impact memory footprint, prediction time, and energy consumption,

essential performance metrics in machine learning based internet of things

(IoT) edge clusters. However, deploying deeper, dense, and hefty weighted

CNN models on resource-constraint embedded systems and limited edge

computing resources, such as memory, and battery constraints, poses

significant challenges in developing the compact optimized model. Reducing

the energy consumption in edge IoT networks is possible by reducing the

computation and data transmission between IoT devices and gateway

devices. Hence there is a high demand for making energy-efficient deep

learning models for deploying on edge devices. Furthermore, recent studies

show that smaller compressed models achieve significant performance

compared to larger deep-learning models. This review article focuses on

state-of-the-art techniques of edge intelligence, and we propose a new

research framework for designing a compact optimized deep learning (DL)

model deployment on edge devices.

Keywords:

Deep learning

Edge

Energy efficient

Pruning

Quantization

This is an open access article under the CC BY-SA license.

Corresponding Author:

Soumyalatha Naveen

School of Computer Science and Engineering, REVA University

Bangalore, India

Email: soumyanaveen.u@gmail.com

1. INTRODUCTION

Edge intelligence [1], [2] pushes intelligence from the cloud to edge devices for faster results

prediction for many real-time applications such as self-driving, augmented reality, and intelligent

surveillance systems. Due to the minimum latency requirement of real-time applications, there is a shift from

an artificial intelligent (AI)-based cloud computing approach to edge/fog [3] devices. Hence edge intelligence

[4] reduces the response time and network bandwidth required for data movement from the device to the

cloud infrastructure for processing and getting back the result. In our daily lives, more applications [5], [6]

based on smart devices for home automation, smart healthcare through wearables devices, intruder detection

through the smart camera and smart mobiles, smart parking, and smart factory applications improved

people’s daily life.

Though intelligent internet of things (IoT) edge computing [7] benefitted from various applications,

resource constraint in terms of memory, processing capability, and energy efficiency incredibly imposes

challenges in embedding intelligence through deep learning model into IoT devices. Deep learning models

continue to grow in their size with an increasing number of layers and nodes, making it difficult to deploy on

portable resource constrained (such as memory, central processing unit (CPU), energy, and bandwidth)

https://creativecommons.org/licenses/by-sa/4.0/

Int J Elec & Comp Eng ISSN: 2088-8708

Compact optimized deep learning model for edge: a review (Soumyalatha Naveen)

6905

devices. Convolutional neural network (CNN) is suitable for computer vision tasks like categorization, object

identification, speech recognition, machine translation, augmented reality, picture annotation, autonomous

driving, object tracking, unmanned aerial vehicles (UAV) obstacle avoidance, segmentation, robot vision and

activity recognition. However, real-time embedded system-based applications or smart devices cannot use

CNN-based models due to their high computational and storage requirements. Due to privacy, security,

latency, communication bandwidth and memory requirements, processing the data through AI-enabled

embedded devices supports processing locally [8] close to the sensor. Although a lot of work focuses on

developing edge intelligence; still, the adoption of CNN on embedded devices is challenging due to the high

computing resource requirements.

Figure 1 depicts the ultra-low latency real-time interactive surveillance systems consisting of drones

or UAV equipped with intelligent cameras for surveillance, aerial photography, or infrastructure assessment.

The surveillance system should identify various threats by capturing and analyzing images of surroundings

and respond appropriately to make the decision. Identifying, categorizing, and visual object recognition from

the pictures and getting quick insights is a fascinating field and a vital task for UAV applications.

Figure 1. Ultra-low latency real time surveillance system

Our motivation for writing this review article is to exploit the potential of optimized compact deep

learning model design for resource-constraint IoT gadgets like smartphones, cameras, and other devices for

real-time uses, including intelligent healthcare, precision farming, and surveillance detection. The primary

focus of this article is to explore the strategies for creating an optimized energy-efficient deep learning model

to deploy on-edge devices with limited resources. These models offer advantages, including decreased

latency, greater privacy, increased reliability, and energy efficiency. We have divided the remaining article

into the following sections: section 2 provides a quick summary of edge computing and a fair analysis of the

research on leveraging different deep learning frameworks for real-time object detection. Then, enabling

technologies for edge intelligence are presented in section 3, a novel research methodology for creating a

compact model is shown in section 4, and the conclusion is presented in section 5.

2. RELATED WORK

Optimized energy-efficient deep learning models [9]–[11] on edge are possible through model

compression. Model compression refers to techniques for reducing the size of a trained model without

significantly degrading it is performance. As shown in Table 1 (in Appendix), recent efforts towards reducing

computation and parameter storage cost through model pruning, quantization, and knowledge distillation are

the most used compression approaches to compress the model without hurting original accuracy.

Pruning [11]–[15] removes redundant or unnecessary connections in a neural network. Pruning

involves removing individual weights or removing entire neurons or layers. Pruning can be done either

during training or after the model training. Other than pruning, eliminating the network redundancy without

retraining [16], low rank approximation [17]–[21], fast Fourier transform (FFT) based convolutions [22],

[23], quantization [24], binarization [25], [26], pruning [27], [28], sparsity regularization [29], [30], pruning

low magnitude weights [31]–[33] are the common approaches. Knowledge distillation [34] refers to the

process of training a smaller model to replicate the behavior of a larger, pre-trained model. Quantization

[35]–[42] reduces the precision of the weights and activations of a neural network. In addition, quantization

dramatically reduces the size of a model. It enhances performance by mapping the values to a smaller range

of discrete values, such as 8-bit integers rather than 32-bit floating point values.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 6, December 2023: 6904-6912

6906

According to Liu et al. [43], pruning and fine-tuning the pre-trained model increased accuracy by

2.7% and decreased Floating point operations (FLOPs) by 20%. Furthermore, Zhang et al. [44] lowered

inference latency and memory footprint by up to 5.79X and 14.72X, respectively, by dividing the model and

the data and developing a scheduler. According to Stahl et al. [45], layer partitioning without fusing resulted

in a 1.52X improvement in the inference task. However, much research is going on, on distributing and

running a large amount of CNN on devices with limited resources. In this article, we improved the pre-

trained model and created an effective inference model by splitting both the model and the data.

The current approach reduces the amount of processing and data on each edge device by partitioning

and distributing layer information across numerous edge devices. Zhao et al. [46] suggests a system for

allocating the CNN-based inference task execution among various IoT devices for concurrent task execution

to reduce reaction time. They also added a workload distribution module, scheduling, and work stealing to

minimize latency and memory footprint. Model compression techniques such as weight and filter pruning

also perform better than uncompressed models. Although the large model structure has significant

redundancy, the model’s prediction accuracy is relatively unaffected after removing many model parameters.

However, a recent study [47] understands that significant reduction in parameters with magnitude-based

pruning significantly from the fully connected layers in the pruned networks. Model compression can help

deploy machine learning models to devices with limited resources, such as mobile phones or embedded

devices.

From the literature, we identify the following research gaps in deep learning at edge devices: i) there

is a need for a quicker inference method for distributed heterogeneous IoT devices; ii) the deep learning

model deployment on edge mobile and IoT devices consumes significant computational power and leaves a

significant memory footprint; iii) more studies on inferencing methods for classification or prediction in

distributed heterogeneous IoT clusters are required; iv) current methods completely ignore the possibilities of

compression techniques and are limited to layer-based partitioning (to speed up inference); and v) use

compression techniques and present existing methods to optimize and make the best use of the resources

available to successfully implement edge intelligent systems.

3. MODEL COMPRESSION TECHNIQUES

Deep learning-based intelligent services are helpful for quick data analysis due to the gradual

growth of computing methods, storage devices, IoT devices, and smartphone technology. Edge computing

and artificial intelligence are combined to create edge intelligence, often called intelligent edge, to offer

superior services. To accelerate the deep learning model many model compression techniques, exist.

3.1. Pruning

Pruning the convolutional layers with an equal percentage of pruning rate and retraining shows the

FLOP reduction without significant loss in original accuracy. Reduce computation costs of CNNs by pruning

filters with relatively small weight magnitudes without adding erratic sparsity. Pruning the fully connected

layer having few parameters is challenging as it also removes weights of batch normalization subsequently.

3.1.1. Criteria for pruning

The criteria for choosing deep learning models to deploy in edge computing applications depends on

the application’s specific requirements. Various considerations include the number of available computing

resources at the edge, the size and complexity of the model, and the required latency for model inference.

Several criteria to determine which parameters or connections to prune are listed below.

− Minimum weight: The minimum weight criteria in pruning for CNN refers to the threshold value used to

determine which weights in a neural network should be pruned or removed. This threshold is set based on

the magnitude of the weights, with those that are below the threshold being considered insignificant and

removed from the network. The objective of this criterion is to decrease the number of parameters in the

network while preserving the overall accuracy of the model. Convolutional kernel reduces unimportant

kernel values during training by using l1 and l2 regularization.

− Activation: The ability of the rectified linear unit (ReLU) activation function to introduce non-linearity to

the network enhances the network’s capacity to learn complicated features. Based on the absolute values

of the network’s weights, L1 regularization adds a penalty term to the loss function. This encourages the

network to have fewer non-zero weights, resulting in a sparser network.

− Mutual information: Mutual information (MI) criteria in pruning for CNNs is a method for identifying

and removing redundant or unnecessary connections in a CNN. MI measures the amount of information

exchange between two variables. Mutual information is used to measure the dependence between the

input and output of a CNN.

Int J Elec & Comp Eng ISSN: 2088-8708

Compact optimized deep learning model for edge: a review (Soumyalatha Naveen)

6907

− Validation loss: The validation loss is one of the metrics used to verify the efficacy of the pruning process

for optimization. The validation loss measures the variation between a given dataset’s predicted and

actual values. It helps to assess the network’s accuracy and performance during pruning.

− Dropout: Dropout is a regularization technique [48] to set the percentage of neurons in the neural network

to zero during training. An extensive neural network trained on a small training set leads to overfitting.

Dropout reduces over-fitting during the retraining process by adjusting the dropout ratio. Dropout helps to

prevent overfitting by forcing the network to learn more robust features that are not dependent on any

specific neuron or combination of neurons.

3.2. Quantization

Quantization accelerates the deep neural network (DNN) and enables easy setup of DNN models on

devices with limited resources. Furthermore, combining pruning and quantization reduces the network’s

inference time and space complexity by maintaining significant accuracy. Perform quantization on

convolution layers of the trained model weight; to minimize the memory footprints and speed up the

inference of the model. For example, the k-means clustering algorithm followed by 8-bit quantization, makes

the model compact and speeds up the integer-valued weights.

3.3. Key performance indicator (metrics)

Several criteria are present for measuring the performance of a deep learning model after pruning

and quantization. The commonly used metrics are accuracy, F1 score, confusion matrix, precision, recall,

mean squared error, and mean absolute error. Table 2 describes the performance metrics and definitions.

Table 2. Overview of parameters used to measure performance
Metrics Definitions

Top-1 Error The percentage of times the classifier does not award the best score to the correct class.
Top-5 Error The proportion of times the classifier did not use the correct class in one of its top five guesses.

Parameters of the model Includes the convolutional layer’s weights and bias, quantity, and size of kernel, as well as the

number of channels of input image.
Compression rate Rate of reduction in number of parameters of the model (convolutional layer and fully

connected layer). This reduces the execution time, memory footprint.

Accuracy Accuracy describes the correct prediction of a model across all the classes
Floating point operations

(FLOPs)

Each layer in the CNN requires massive computations on the number and different sizes of

feature maps and convolution kernels. Pruning reduces the least unimportant parameters and

hence reduces the number of operations in the network.
Memory utilization (memory

footprint)

Amount of memory required to store weights, feature maps and gradients

Time (speed up) If reduction in computation by FLOPs indicates the decrease in inference time of the network

due to the removal of the least unimportant parameters. Convolution operation, parallelization

algorithm, hardware, scheduling, and memory transfer, influence the inference time.
Model compression Model compression describes the methods used to reduce a deep learning model’s network’s

inference time and memory footprint.

F1 score This statistic combines precision and recall and is frequently used to assess how well a model
performs on imbalanced datasets.

Confusion matrix Measures the number of accurate predictions the model generates, including true positives, true

negatives, false positives, and false negatives.
Precision This indicator shows what percentage of true positive predictions the model generated were

accurate.

Recall This metric counts the number of actual positive occurrences the model correctly predicted
would be truly positive.

4. PROPOSAL FOR COMPACT MODEL DESIGN

The need for optimized energy-efficient deep learning models on edge devices has grown in tandem

with the demand for IoT applications because they provide faster prediction and better privacy because data

are not transmitted over the Internet. As a result, researchers are working on optimizing deep learning models

for edge devices. As shown in Figure 2, we propose a framework for optimizing a pre-trained CNN model for

accelerating the inference to deploy on embedded devices. In our framework, the pre-trained model is

considered, and then pruning is used to reduce the model’s size and complexity by removing any unnecessary

weights or filters. Quantization also speeds up and uses less memory by reducing the precision of the model’s

weights and activations.

Furthermore, since we combine pruning and quantization, it further reduces the model parameters.

To send the task to each IoT device for parallel execution, the fused tile partitioning and distribution module

involves fusing the model layers and dividing fused layers vertically. To deliver the results, the gateway

device will finally combine the output from IoT devices. Hence the proposed work improves the performance

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 6, December 2023: 6904-6912

6908

and reduces the inference latency, memory space, and communication cost. The proposed model designs an

energy-efficient pre-trained CNN model, but they can also potentially impact the model’s accuracy, so it is

essential to evaluate the trade-offs carefully.

The joint potential of pruning and quantization and the essence of fused tile partitioning enable

compact model design. Hence the compact optimized model is suitable for distributed heterogenous

embedded resource constraint edge devices as they enable real-time processing while minimizing resource

usage. Furthermore, adopting federated learning and device fault tolerance mechanisms improves

hardware-software ecosystems’ scalability and reliability.

Figure 2. Proposed model of optimized energy efficient pretrained compact model to deploy on IoT devices

5. CONCLUSION

In convolutional neural networks, fully connected layer parameters highly contribute to the model

size. The DNN-based model requires significantly more computation than the traditional model, which leads

to high energy consumption. Unfortunately, deploying DNNs on resource-constrained devices having limited

resources such as memory, computing power, and energy makes it challenging. There is a growing demand

for energy-efficient deep learning models on edge devices, as these devices often have limited power and

computational resources. One way to optimize the energy efficiency of a deep learning model is through

pruning and quantization. In this review article, an extensive survey is carried out to understand the model

reduction to reduce energy consumption during training and inference. Based on the research gap, we

propose a framework to design an optimized model and work distribution strategy for lowering the energy

consumption, inference time and memory footprint. The joint potential of pruning and quantization

techniques followed by fused tile partitioning can significantly improve the performance of deep learning

models on edge devices, making them more suitable for deployment on distributed heterogenous

resource-constrained IoT devices.

APPPENDIX

Table 1. State of art of CNN based model compression approaches
Papers Year Technique Limitations

 Pruning weights

Murray et al.

[12]

2015 Sparsity-inducing regularizers for pruning neurons

which enables automatic sizing of neural networks.

Focus on pruning neurons via sparsity-inducing

regularizers for small networks rather than parameter

pruning
Srinivas and

Babu [13]

2015 The author removed one redundant neuron at a time

instead of removing individual weights. Applied on
networks with fully connected layers to produce

smaller networks.

Wiring together pairs of neurons with similar input

weights, however this pruning may not reduce
computation.

Naveen et al.
[14], [15]

2021 For distributing the workload to each IoT edge device,
the pre-trained model is pruned to lower the model

parameter, and then fused tail partitioning is

employed.

Hardware-aware hyperparameter tuning is required, along
with fault-tolerant and deep neural network (DNN)

containerization.

 efore runing

 fter runing

Int J Elec & Comp Eng ISSN: 2088-8708

Compact optimized deep learning model for edge: a review (Soumyalatha Naveen)

6909

Table 1. State of art of CNN based model compression approaches (continue)
Papers Year Technique Limitations

 Eliminate the network redundancy without retraining
Mariet and

Sra [16]

2016 Create a sparse network by identifying a subset of

neurons that do not require retraining and reducing

network redundancy while considering the fully
connected layers.

Pruning the fully connected layer may not reduce

computation cost and time.

 Computation cost reduction for convolutional layers

Denil et al.
[17]

2013 Vector quantization is used reduce the redundant
parameters of the model

Complementary to dropout, maxout however cannot be
used for large scale deep networks for industry.

Jaderberg

et al. [18]

2014 Focuses on CNN evaluation speed up by using cross

channel to construct low rank basis filter.

Further investigation on Separable filters in layers and

filter reconstruction, model approximation during training
can be explored.

Denton et al.

[19]

2014 Explored low rank approximation and filter clustering for

weight approximation and achieved speedup with
marginal drop in accuracy.

Further work can be explored by considering

regularization during or before training to reduce the
number of parameters.

Zhang et al.

[20]

2015 Accelerates CNN computation considering nonlinear

filters with low-rank decomposition without stochastic

gradient descent (SGD).

Instead of filter weight consideration, channel pruning

results reduces inference time.

Ioannou et

al. [21]

2016 Low rank representation of CNN with weight

initialization novel scheme is used reduce the
computation.

Channel redundancy reduction, low dimensional

embedding further enables the development of
computationally efficient CNN model.

 FFT based convolutions to reduce the convolutional overheads
Mathieu et

al. [22]

2013 FFT based convolutions Need to explore performance for the impact of image and

kernel size. For FFT based implementation input image

should be a power of 2 else padded to next power.
Lavin and

Gray [23]

2016 Winograd algorithm for FFT-based fast convolutions Winograd algorithm needs specialized processing based

on the size of the filter and block

 Techniques for reducing model size and computing overheads
Han et al.

[24]

2016 Quantization erforms quantization, due to libraries can’t access

matrix lookup and may require software and hardware

solution for architectural design.
Rastegari et

al. [25]

2016 Binarization Though developed a small efficient network can focus on

specific resource constraint such as latency, memory for

applications.
Coubariaux

and Bengio

[26]

2016 Binarization reduces the model size and lowers the

computation overhead

Multiplication during training can reduce and computation

and needs to generalize other classification and detection

models for other datasets.
 Removing the feature maps from well-trained network

Anwar et al.

[27]

2015 The candidates’ weights and locations are pruned

three times using particle filtering, which selects the
best combination of many randomly generated

masks.

Knowledge based pruning further may reduce

computational complexity.

Polyak and
Wolf [28]

2015 Detecting less frequently activated feature maps with
sample input data and reduces feature map from

trained network.

Analyzing magnitude-based filter weights and pruning
the filter and feature map reduces the complexity.

 Training CNN with sparse constraints
Lebedev and

Lempitsky

[29]

2016 Group-wise elimination of convolution kernel to

leverage on achieving group-sparsity of the

convolutional filters

Regularizers based normalization to have sparse network

than pruning to accelerate in practice, the actual speed-up

depends on implementation
Zhou et al.

[9]

2016 During the training process, introducing group-sparse

regularization on convolutional filters to reduce the

filters.

Regularization may need a greater number of iterations to

converge

Wen et al.

[31]

2016 To eliminate unnecessary filters, channels, or even

layers, this article adds structured sparsity

regularization to each layer.

Layer wise parameter regularization increases complexity

and can be avoided to speedup computation

 Pruning low magnitude weights

Maxwell et

al. [32]

2014 Using regularizers during training of CNNs to remove

the connections of convolution and the fully
connected layer having non-zero values leading to a

sparse deep network.

The refined sparsity process can further reduce the

parameters of the model to optimize memory
conservation.

Han et al.
[33]

2015 The author performed magnitude-based weight
trimming on filters with weights below the specified

threshold. To create a sparse network, carefully tune

the threshold to determine how many filters must be
pruned.

Parameter pruning and sharing can be applied for various
DNNs, for energy consumption the number of weights

alone cannot considered.

 The knowledge distillation technique

Hinton et al.
[34]

2015 As the deployment of small student models is simple
on resource constrained internet of things hardware

devices, the knowledge distillation technique transfers

knowledge from the large teacher model to the student
model to reduce computing costs.

Lacks knowledge distillation when neural network is very
big.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 6, December 2023: 6904-6912

6910

Table 1. State of art of CNN based model compression approaches (continue)
Papers Year Technique Limitations

 Pruning-Quantization
Benoit et al.

[35]

2017 Proposed integer-only arithmetic based quantization

scheme than floating point inference.

The complete inference task is carried out with integer

arithmetic without considering floating point

dequantization and limited to ReLU activation functions.
Shaokai et al.

[36], [37]

2018,

2019

Developed a framework of DNN performing weight

pruning and clustering/quantization along with

iterative weight clustering training, centroid update,
and weight clustering to enhance the model’s

performance.

Pruning and quantization is considered in optimized

framework, however progressive weight pruning may

yield better results.

Yuan et al.
[38]

2019 A memristor-based framework is proposed that
considers weight quantization and pruning while

training a DNN.

Weight pruning followed by quantization on VGG-16 and
ResNet-18 reduces power reduction, however framework

focuses on classification/detection model ignoring

generative models.
Muhamad

et al. [39]

2020 Used DeepLIFT for pruning DNN to prune filters and the

weights of the fully convolutional layer, followed by

clustering-based quantization of DNN weights. Also,
integer-based mixed-precision quantization for varying

number of integer bits of each layer of DNN.

For pruning and quantization using Explainable Artificial

Intelligence to process the dataset may further improves

the network performance

Hu et al. [40] 2021 Proposed one-shot pruning-quantization, which
compresses through pre-trained wight parameters.

During fine-tuning weight parameters are updated.

Further, channel-wise quantization for each layer
having common codebook still reduces bitrate.

DNN model compression and practical implementation
on custom hardware platforms helps to validate the

inference efficiency.

Zeng et al.

[41]

2022 Proposed 8-bit quantization technique using tanh on

dense layer weights followed by linear quantization on
rest of the network.

Graphics processing unit (GPU) based computation may

further reduce the computation speed and needs to
perform practical hardware implementation.

Ma et al.

[42]

2022 Proposed improved ADMM-NN, a joint weight

pruning and quantization framework.

AI based applications are benefited with network pruning

than block based DNN pruning using regularization.

ACKNOWLEDGEMENTS

The authors are grateful to REVA University for supporting the research facilities.

REFERENCES
[1] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and . Y. Zomaya, “Edge intelligence: the confluence of edge computing and

artificial intelligence,” IEEE Internet of Things Journal, vol. 7, no. 8, pp. 7457–7469, Aug. 2020, doi:

10.1109/JIOT.2020.2984887.

[2] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge intelligence: paving the last mile of artificial intelligence with
edge computing,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1738–1762, Aug. 2019, doi: 10.1109/JPROC.2019.2918951.

[3] S. Naveen and M. R. Kounte, “Distributing the cloud into fog and edge: new weather in IoT based deep learning,” in Proceedings

of the 2nd International Conference on Recent Trends in Machine Learning, {IoT}, Smart Cities and Applications, Springer
Nature Singapore, 2022, pp. 749–758.

[4] Y. Liu, M. eng, G. Shou, Y. Chen, and S. Chen, “Toward edge intelligence: multiaccess edge computing for 5G and internet of

things,” IEEE Internet of Things Journal, vol. 7, no. 8, pp. 6722–6747, Aug. 2020, doi: 10.1109/JIOT.2020.3004500.
[5] . Singh, S. C. Satapathy, . Roy, and . Gutub, “ I-based mobile edge computing for IoT: applications, challenges, and future

scope,” Arabian Journal for Science and Engineering, vol. 47, no. 8, pp. 9801–9831, Aug. 2022, doi: 10.1007/s13369-021-06348-2.

[6] . H. Sodhro, S. irbhulal, and V. H. C. de lbuquerque, “ rtificial intelligence-driven mechanism for edge computing-based
industrial applications,” IEEE Transactions on Industrial Informatics, vol. 15, no. 7, pp. 4235–4243, Jul. 2019, doi:

10.1109/TII.2019.2902878.

[7] X. Chen, Q. Shi, L. Yang, and J. Xu, “ThriftyEdge: resource-efficient edge computing for intelligent IoT applications,” IEEE
Network, vol. 32, no. 1, pp. 61–65, Jan. 2018, doi: 10.1109/MNET.2018.1700145.

[8] S. Naveen and M. R. Kounte, “Machine learning at resource constraint edge device using bonsai algorithm,” in 2020 Third

International Conference on Advances in Electronics, Computers and Communications (ICAECC), Dec. 2020, pp. 1–6, doi:
10.1109/ICAECC50550.2020.9339514.

[9] M. Kumar, X. Zhang, L. Liu, Y. Wang, and W. Shi, “Energy-efficient machine learning on the edges,” in 2020 IEEE

International Parallel and Distributed Processing Symposium Workshops (IPDPSW), May 2020, pp. 912–921, doi:
10.1109/IPDPSW50202.2020.00153.

[10] F. Daghero, D. J. agliari, and M. oncino, “Energy-efficient deep learning inference on edge devices,” in Advances in
Computers, Elsevier, 2021, pp. 247–301.

[11] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient convolutional neural networks using energy-aware pruning,” in

2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jul. 2017, pp. 6071–6079, doi:
10.1109/CVPR.2017.643.

[12] K. Murray and D. Chiang, “ uto-sizing neural networks: with applications to n-gram language models,” arXiv preprint

arXiv:1508.05051, Aug. 2015.
[13] S. Srinivas and R. V. abu, “Data-free parameter pruning for deep neural networks,” arXiv preprint arXiv:1507.06149, Jul. 2015.

[14] S. Naveen, M. R. Kounte, and M. R. hmed, “Low latency deep learning inference model for distributed intelligent IoT edge

clusters,” IEEE Access, vol. 9, pp. 160607–160621, 2021, doi: 10.1109/ACCESS.2021.3131396.
[15] S. Naveen and M. R. Kounte, “Memory optimization at edge for distributed convolution neural network,” Transactions on

Emerging Telecommunications Technologies, vol. 33, no. 12, Dec. 2022, doi: 10.1002/ett.4648.

Int J Elec & Comp Eng ISSN: 2088-8708

Compact optimized deep learning model for edge: a review (Soumyalatha Naveen)

6911

[16] Z. Mariet and S. Sra, “Diversity networks: neural network compression using determinantal point processes,” arXiv preprint
arXiv:1511.05077, Nov. 2015.

[17] M. Denil, . Shakibi, L. Dinh, M. Ranzato, and N. De Freitas, “ redicting parameters in deep learning,” Advances in neural

information processing systems, vol. 26, 2013.
[18] M. Jaderberg, A. Vedaldi, and . Zisserman, “Speeding up convolutional neural networks with low rank expansions,” arXiv

preprint arXiv:1405.3866, May 2014.

[19] E. L. Denton, W. Zaremba, J. runa, Y. LeCun, and R. Fergus, “Exploiting linear structure within convolutional networks for
efficient evaluation,” Advances in neural information processing systems, vol. 27, 2014.

[20] X. Zhang, J. Zou, K. He, and J. Sun, “ ccelerating very deep convolutional networks for classification and detection,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 38, no. 10, pp. 1943–1955, Oct. 2016, doi:
10.1109/TPAMI.2015.2502579.

[21] Y. Ioannou, D. Robertson, J. Shotton, R. Cipolla, and . Criminisi, “Training CNNs with low-rank filters for efficient image

classification,” arXiv preprint arXiv:1511.06744, Nov. 2015.
[22] M. Mathieu, M. Henaff, and Y. LeCun, “Fast training of convolutional networks through FFTs,” arXiv preprint arXiv:1312.5851,

Dec. 2013.

[23] . Lavin and S. Gray, “Fast algorithms for convolutional neural networks,” in 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Jun. 2016, pp. 4013–4021, doi: 10.1109/CVPR.2016.435.

[24] S. Han, H. Mao, and W. J. Dally, “Deep compression: compressing deep neural networks with pruning, trained quantization and

Huffman coding,” arXiv preprint arXiv:1510.00149, Oct. 2015.
[25] M. Rastegari, V. Ordonez, J. Redmon, and . Farhadi, “XNOR-Net: ImageNet classification using binary convolutional neural

networks,” in Computer Vision ECCV 2016, Springer International Publishing, 2016, pp. 525–542.

[26] M. Courbariaux, Y. Bengio, and J.- . David, “ inaryconnect: Training deep neural networks with binary weights during
propagations,” Advances in neural information processing systems, vol. 28, 2015.

[27] S. Anwar, K. Hwang, and W. Sung, “Structured pruning of deep convolutional neural networks,” ACM Journal on Emerging

Technologies in Computing Systems, vol. 13, no. 3, pp. 1–18, Jul. 2017, doi: 10.1145/3005348.
[28] . olyak and L. Wolf, “Channel-level acceleration of deep face representations,” IEEE Access, vol. 3, pp. 2163–2175, 2015, doi:

10.1109/ACCESS.2015.2494536.

[29] V. Lebedev and V. Lempitsky, “Fast ConvNets using group-wise brain damage,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Jun. 2016, pp. 2554–2564, doi: 10.1109/CVPR.2016.280.

[30] H. Zhou, J. M. lvarez, and F. orikli, “Less is more: towards compact CNNs,” in 2020 IEEE International Parallel and

Distributed Processing Symposium Workshops (IPDPSW), IEEE, 2016, pp. 662–677.
[31] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured sparsity in deep neural networks,” arXiv:1608.03665, Aug.

2016.

[32] M. D. Collins and . Kohli, “Memory bounded deep convolutional networks,” arXiv preprint arXiv:1412.1442, Dec. 2014.
[33] S. Han, J. ool, J. Tran, and W. J. Dally, “Learning both weights and connections for efficient neural networks,” Advances in

Neural Information Processing Systems, pp. 1135–1143, Jun. 2015.

[34] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” arXiv preprint arXiv:1503.02531, Mar. 2015.
[35] B. Jacob et al., “Quantization and training of neural networks for efficient integer-arithmetic-only inference,” in 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Jun. 2018, pp. 2704–2713, doi: 10.1109/CVPR.2018.00286.

[36] S. Ye et al., “ unified framework of DNN weight pruning and weight clustering/quantization using DMM,” arXiv preprint
arXiv:1811.01907, Nov. 2018.

[37] S. Ye et al., “ rogressive weight pruning of deep neural networks using DMM,” arXiv preprint arXiv:1810.07378, Oct. 2018.

[38] G. Yuan et al., “ n ultra-efficient memristor-based DNN framework with structured weight pruning and quantization using
 DMM,” in 2019 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), Jul. 2019, pp. 1–6, doi:

10.1109/ISLPED.2019.8824944.

[39] M. Sabih, F. Hannig, and J. Teich, “Utilizing explainable I for quantization and pruning of deep neural networks,” arXiv
preprint arXiv:2008.09072, Aug. 2020.

[40] . Hu, X. eng, H. Zhu, M. M. S. ly, and J. Lin, “O Q: compressing deep neural networks with one-shot pruning-quantization,”
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 9, pp. 7780–7788, May 2021, doi:

10.1609/aaai.v35i9.16950.

[41] L. Zeng et al., “Sub 8-bit quantization of streaming keyword spotting models for embedded chipsets,” in Text, Speech, and
Dialogue, Springer International Publishing, 2022, pp. 364–376.

[42] X. Ma et al., “ LCR: towards real-time DNN execution with block-based reweighted pruning,” in 2022 23rd International

Symposium on Quality Electronic Design (ISQED), Apr. 2022, pp. 1–8, doi: 10.1109/ISQED54688.2022.9806237.

[43] . Liu, Y. Cai, Y. Guo, and X. Chen, “TransTailor: pruning the pre-trained model for improved transfer learning,” Proceedings of

the AAAI Conference on Artificial Intelligence, vol. 35, no. 10, pp. 8627–8634, May 2021, doi: 10.1609/aaai.v35i10.17046.

[44] S. Zhang, S. Zhang, Z. Qian, J. Wu, Y. Jin, and S. Lu, “DeepSlicing: collaborative and adaptive CNN inference with low
latency,” IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 9, pp. 2175–2187, Sep. 2021, doi:

10.1109/TPDS.2021.3058532.

[45] R. Stahl, A. Hoffman, D. Mueller-Gritschneder, . Gerstlauer, and U. Schlichtmann, “DeeperThings: fully distributed CNN
inference on resource-constrained edge devices,” International Journal of Parallel Programming, vol. 49, no. 4, pp. 600–624,

Aug. 2021, doi: 10.1007/s10766-021-00712-3.

[46] Z. Zhao, K. M. arijough, and . Gerstlauer, “DeepThings: distributed adaptive deep learning inference on resource-constrained
IoT edge clusters,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 11,

pp. 2348–2359, Nov. 2018, doi: 10.1109/TCAD.2018.2858384.

[47] H. Li, . Kadav, I. Durdanovic, H. Samet, and H. . Graf, “ runing filters for efficient ConvNets,” arXiv preprint
arXiv:1608.08710, Aug. 2016.

[48] G. E. Hinton, N. Srivastava, . Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, “Improving neural networks by preventing co-

adaptation of feature detectors,” arXiv preprint arXiv:1207.0580, Jul. 2012.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 6, December 2023: 6904-6912

6912

BIOGRAPHIES OF AUTHORS

Soumyalatha Naveen is awarded with the MTech degree from Visvesvaraya

Technological University, India. She is a Research Scholar at School of Computer Science and

Engineering, REVA University, Bengaluru, India. Edge computing, internet of things, deep

learning, and intelligent IoT systems are some of her key research interests. She can be

reached at email: soumyanaveen.u@gmail.com.

Manjunath R. Kounte graduated from VTU in Belagavi, Karnataka, India, with

a Bachelor of Engineering in Electronics and Communication Engineering in 2007, a Master

of Technology in Computer Network Engineering in 2010, and a Ph.D. from JAIN University

in 2017. He is presently employed with REVA University in Bangalore, India, where he serves

as Associate Professor and Head of the Electronics and Computer Engineering Department.

His areas of interest in research include blockchain technologies, internet of vehicles, edge

computing for the internet of things, and machine learning. He can be reached at email:

kounte@reva.edu.in.

https://orcid.org/0000-0001-9552-3047
https://scholar.google.com/citations?user=RGus1ggAAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=55813594800
https://orcid.org/0000-0002-2432-2552
https://scholar.google.com/citations?user=LFvmONIAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=55813154000

