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 Most real-time computer vision applications, such as pedestrian detection, 

augmented reality, and virtual reality, heavily rely on convolutional neural 

networks (CNN) for real-time decision support. In addition, edge 

intelligence is becoming necessary for low-latency real-time applications to 

process the data at the source device. Therefore, processing massive amounts 

of data impact memory footprint, prediction time, and energy consumption, 

essential performance metrics in machine learning based internet of things 

(IoT) edge clusters. However, deploying deeper, dense, and hefty weighted 

CNN models on resource-constraint embedded systems and limited edge 

computing resources, such as memory, and battery constraints, poses 

significant challenges in developing the compact optimized model. Reducing 

the energy consumption in edge IoT networks is possible by reducing the 

computation and data transmission between IoT devices and gateway 

devices. Hence there is a high demand for making energy-efficient deep 

learning models for deploying on edge devices. Furthermore, recent studies 

show that smaller compressed models achieve significant performance 

compared to larger deep-learning models. This review article focuses on 

state-of-the-art techniques of edge intelligence, and we propose a new 

research framework for designing a compact optimized deep learning (DL) 

model deployment on edge devices. 
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1. INTRODUCTION 

Edge intelligence [1], [2] pushes intelligence from the cloud to edge devices for faster results 

prediction for many real-time applications such as self-driving, augmented reality, and intelligent 

surveillance systems. Due to the minimum latency requirement of real-time applications, there is a shift from 

an artificial intelligent (AI)-based cloud computing approach to edge/fog [3] devices. Hence edge intelligence 

[4] reduces the response time and network bandwidth required for data movement from the device to the 

cloud infrastructure for processing and getting back the result. In our daily lives, more applications [5], [6] 

based on smart devices for home automation, smart healthcare through wearables devices, intruder detection 

through the smart camera and smart mobiles, smart parking, and smart factory applications improved 

people’s daily life.  

Though intelligent internet of things (IoT) edge computing [7] benefitted from various applications, 

resource constraint in terms of memory, processing capability, and energy efficiency incredibly imposes 

challenges in embedding intelligence through deep learning model into IoT devices. Deep learning models 

continue to grow in their size with an increasing number of layers and nodes, making it difficult to deploy on 

portable resource constrained (such as memory, central processing unit (CPU), energy, and bandwidth) 

https://creativecommons.org/licenses/by-sa/4.0/
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devices. Convolutional neural network (CNN) is suitable for computer vision tasks like categorization, object 

identification, speech recognition, machine translation, augmented reality, picture annotation, autonomous 

driving, object tracking, unmanned aerial vehicles (UAV) obstacle avoidance, segmentation, robot vision and 

activity recognition. However, real-time embedded system-based applications or smart devices cannot use 

CNN-based models due to their high computational and storage requirements. Due to privacy, security, 

latency, communication bandwidth and memory requirements, processing the data through AI-enabled 

embedded devices supports processing locally [8] close to the sensor. Although a lot of work focuses on 

developing edge intelligence; still, the adoption of CNN on embedded devices is challenging due to the high 

computing resource requirements.  

Figure 1 depicts the ultra-low latency real-time interactive surveillance systems consisting of drones 

or UAV equipped with intelligent cameras for surveillance, aerial photography, or infrastructure assessment. 

The surveillance system should identify various threats by capturing and analyzing images of surroundings 

and respond appropriately to make the decision. Identifying, categorizing, and visual object recognition from 

the pictures and getting quick insights is a fascinating field and a vital task for UAV applications.  

 

 

 
 

Figure 1. Ultra-low latency real time surveillance system 

 

 

Our motivation for writing this review article is to exploit the potential of optimized compact deep 

learning model design for resource-constraint IoT gadgets like smartphones, cameras, and other devices for 

real-time uses, including intelligent healthcare, precision farming, and surveillance detection. The primary 

focus of this article is to explore the strategies for creating an optimized energy-efficient deep learning model 

to deploy on-edge devices with limited resources. These models offer advantages, including decreased 

latency, greater privacy, increased reliability, and energy efficiency. We have divided the remaining article 

into the following sections: section 2 provides a quick summary of edge computing and a fair analysis of the 

research on leveraging different deep learning frameworks for real-time object detection. Then, enabling 

technologies for edge intelligence are presented in section 3, a novel research methodology for creating a 

compact model is shown in section 4, and the conclusion is presented in section 5. 

 

 

2. RELATED WORK 

Optimized energy-efficient deep learning models [9]–[11] on edge are possible through model 

compression. Model compression refers to techniques for reducing the size of a trained model without 

significantly degrading it is performance. As shown in Table 1 (in Appendix), recent efforts towards reducing 

computation and parameter storage cost through model pruning, quantization, and knowledge distillation are 

the most used compression approaches to compress the model without hurting original accuracy. 

Pruning [11]–[15] removes redundant or unnecessary connections in a neural network. Pruning 

involves removing individual weights or removing entire neurons or layers. Pruning can be done either 

during training or after the model training. Other than pruning, eliminating the network redundancy without 

retraining [16], low rank approximation [17]–[21], fast Fourier transform (FFT) based convolutions [22], 

[23], quantization [24], binarization [25], [26], pruning [27], [28], sparsity regularization [29], [30], pruning 

low magnitude weights [31]–[33] are the common approaches. Knowledge distillation [34] refers to the 

process of training a smaller model to replicate the behavior of a larger, pre-trained model. Quantization 

[35]–[42] reduces the precision of the weights and activations of a neural network. In addition, quantization 

dramatically reduces the size of a model. It enhances performance by mapping the values to a smaller range 

of discrete values, such as 8-bit integers rather than 32-bit floating point values. 
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According to Liu et al. [43], pruning and fine-tuning the pre-trained model increased accuracy by 

2.7% and decreased Floating point operations (FLOPs) by 20%. Furthermore, Zhang et al. [44] lowered 

inference latency and memory footprint by up to 5.79X and 14.72X, respectively, by dividing the model and 

the data and developing a scheduler. According to Stahl et al. [45], layer partitioning without fusing resulted 

in a 1.52X improvement in the inference task. However, much research is going on, on distributing and 

running a large amount of CNN on devices with limited resources. In this article, we improved the pre-

trained model and created an effective inference model by splitting both the model and the data. 

The current approach reduces the amount of processing and data on each edge device by partitioning 

and distributing layer information across numerous edge devices. Zhao et al. [46] suggests a system for 

allocating the CNN-based inference task execution among various IoT devices for concurrent task execution 

to reduce reaction time. They also added a workload distribution module, scheduling, and work stealing to 

minimize latency and memory footprint. Model compression techniques such as weight and filter pruning 

also perform better than uncompressed models. Although the large model structure has significant 

redundancy, the model’s prediction accuracy is relatively unaffected after removing many model parameters. 

However, a recent study [47] understands that significant reduction in parameters with magnitude-based 

pruning significantly from the fully connected layers in the pruned networks. Model compression can help 

deploy machine learning models to devices with limited resources, such as mobile phones or embedded 

devices. 

From the literature, we identify the following research gaps in deep learning at edge devices: i) there 

is a need for a quicker inference method for distributed heterogeneous IoT devices; ii) the deep learning 

model deployment on edge mobile and IoT devices consumes significant computational power and leaves a 

significant memory footprint; iii) more studies on inferencing methods for classification or prediction in 

distributed heterogeneous IoT clusters are required; iv) current methods completely ignore the possibilities of 

compression techniques and are limited to layer-based partitioning (to speed up inference); and v) use 

compression techniques and present existing methods to optimize and make the best use of the resources 

available to successfully implement edge intelligent systems. 

 

 

3. MODEL COMPRESSION TECHNIQUES  

Deep learning-based intelligent services are helpful for quick data analysis due to the gradual 

growth of computing methods, storage devices, IoT devices, and smartphone technology. Edge computing 

and artificial intelligence are combined to create edge intelligence, often called intelligent edge, to offer 

superior services. To accelerate the deep learning model many model compression techniques, exist.  

 

3.1.  Pruning 

Pruning the convolutional layers with an equal percentage of pruning rate and retraining shows the 

FLOP reduction without significant loss in original accuracy. Reduce computation costs of CNNs by pruning 

filters with relatively small weight magnitudes without adding erratic sparsity. Pruning the fully connected 

layer having few parameters is challenging as it also removes weights of batch normalization subsequently. 

 

3.1.1. Criteria for pruning 

The criteria for choosing deep learning models to deploy in edge computing applications depends on 

the application’s specific requirements. Various considerations include the number of available computing 

resources at the edge, the size and complexity of the model, and the required latency for model inference. 

Several criteria to determine which parameters or connections to prune are listed below. 

− Minimum weight: The minimum weight criteria in pruning for CNN refers to the threshold value used to 

determine which weights in a neural network should be pruned or removed. This threshold is set based on 

the magnitude of the weights, with those that are below the threshold being considered insignificant and 

removed from the network. The objective of this criterion is to decrease the number of parameters in the 

network while preserving the overall accuracy of the model. Convolutional kernel reduces unimportant 

kernel values during training by using l1 and l2 regularization. 

− Activation: The ability of the rectified linear unit (ReLU) activation function to introduce non-linearity to 

the network enhances the network’s capacity to learn complicated features. Based on the absolute values 

of the network’s weights, L1 regularization adds a penalty term to the loss function. This encourages the 

network to have fewer non-zero weights, resulting in a sparser network.  

− Mutual information: Mutual information (MI) criteria in pruning for CNNs is a method for identifying 

and removing redundant or unnecessary connections in a CNN. MI measures the amount of information 

exchange between two variables. Mutual information is used to measure the dependence between the 

input and output of a CNN.  
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− Validation loss: The validation loss is one of the metrics used to verify the efficacy of the pruning process 

for optimization. The validation loss measures the variation between a given dataset’s predicted and 

actual values. It helps to assess the network’s accuracy and performance during pruning. 

− Dropout: Dropout is a regularization technique [48] to set the percentage of neurons in the neural network 

to zero during training. An extensive neural network trained on a small training set leads to overfitting. 

Dropout reduces over-fitting during the retraining process by adjusting the dropout ratio. Dropout helps to 

prevent overfitting by forcing the network to learn more robust features that are not dependent on any 

specific neuron or combination of neurons.  

 

3.2.  Quantization 

Quantization accelerates the deep neural network (DNN) and enables easy setup of DNN models on 

devices with limited resources. Furthermore, combining pruning and quantization reduces the network’s 

inference time and space complexity by maintaining significant accuracy. Perform quantization on 

convolution layers of the trained model weight; to minimize the memory footprints and speed up the 

inference of the model. For example, the k-means clustering algorithm followed by 8-bit quantization, makes 

the model compact and speeds up the integer-valued weights. 

 

3.3.  Key performance indicator (metrics) 

Several criteria are present for measuring the performance of a deep learning model after pruning 

and quantization. The commonly used metrics are accuracy, F1 score, confusion matrix, precision, recall, 

mean squared error, and mean absolute error. Table 2 describes the performance metrics and definitions. 

 

 

Table 2. Overview of parameters used to measure performance 
Metrics Definitions 

Top-1 Error The percentage of times the classifier does not award the best score to the correct class. 
Top-5 Error The proportion of times the classifier did not use the correct class in one of its top five guesses. 

Parameters of the model Includes the convolutional layer’s weights and bias, quantity, and size of kernel, as well as the 

number of channels of input image. 
Compression rate Rate of reduction in number of parameters of the model (convolutional layer and fully 

connected layer). This reduces the execution time, memory footprint. 

Accuracy Accuracy describes the correct prediction of a model across all the classes 
Floating point operations 

(FLOPs) 

Each layer in the CNN requires massive computations on the number and different sizes of 

feature maps and convolution kernels. Pruning reduces the least unimportant parameters and 

hence reduces the number of operations in the network. 
Memory utilization (memory 

footprint) 

Amount of memory required to store weights, feature maps and gradients 

Time (speed up) If reduction in computation by FLOPs indicates the decrease in inference time of the network 

due to the removal of the least unimportant parameters. Convolution operation, parallelization 

algorithm, hardware, scheduling, and memory transfer, influence the inference time. 
Model compression Model compression describes the methods used to reduce a deep learning model’s network’s 

inference time and memory footprint. 

F1 score This statistic combines precision and recall and is frequently used to assess how well a model 
performs on imbalanced datasets. 

Confusion matrix Measures the number of accurate predictions the model generates, including true positives, true 

negatives, false positives, and false negatives. 
Precision This indicator shows what percentage of true positive predictions the model generated were 

accurate. 

Recall This metric counts the number of actual positive occurrences the model correctly predicted 
would be truly positive. 

 

 

4. PROPOSAL FOR COMPACT MODEL DESIGN 

The need for optimized energy-efficient deep learning models on edge devices has grown in tandem 

with the demand for IoT applications because they provide faster prediction and better privacy because data 

are not transmitted over the Internet. As a result, researchers are working on optimizing deep learning models 

for edge devices. As shown in Figure 2, we propose a framework for optimizing a pre-trained CNN model for 

accelerating the inference to deploy on embedded devices. In our framework, the pre-trained model is 

considered, and then pruning is used to reduce the model’s size and complexity by removing any unnecessary 

weights or filters. Quantization also speeds up and uses less memory by reducing the precision of the model’s 

weights and activations. 

Furthermore, since we combine pruning and quantization, it further reduces the model parameters. 

To send the task to each IoT device for parallel execution, the fused tile partitioning and distribution module 

involves fusing the model layers and dividing fused layers vertically. To deliver the results, the gateway 

device will finally combine the output from IoT devices. Hence the proposed work improves the performance 
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and reduces the inference latency, memory space, and communication cost. The proposed model designs an 

energy-efficient pre-trained CNN model, but they can also potentially impact the model’s accuracy, so it is 

essential to evaluate the trade-offs carefully. 

The joint potential of pruning and quantization and the essence of fused tile partitioning enable 

compact model design. Hence the compact optimized model is suitable for distributed heterogenous 

embedded resource constraint edge devices as they enable real-time processing while minimizing resource 

usage. Furthermore, adopting federated learning and device fault tolerance mechanisms improves  

hardware-software ecosystems’ scalability and reliability. 

 

 

 
 

Figure 2. Proposed model of optimized energy efficient pretrained compact model to deploy on IoT devices 

 

 

5. CONCLUSION 

In convolutional neural networks, fully connected layer parameters highly contribute to the model 

size. The DNN-based model requires significantly more computation than the traditional model, which leads 

to high energy consumption. Unfortunately, deploying DNNs on resource-constrained devices having limited 

resources such as memory, computing power, and energy makes it challenging. There is a growing demand 

for energy-efficient deep learning models on edge devices, as these devices often have limited power and 

computational resources. One way to optimize the energy efficiency of a deep learning model is through 

pruning and quantization. In this review article, an extensive survey is carried out to understand the model 

reduction to reduce energy consumption during training and inference. Based on the research gap, we 

propose a framework to design an optimized model and work distribution strategy for lowering the energy 

consumption, inference time and memory footprint. The joint potential of pruning and quantization 

techniques followed by fused tile partitioning can significantly improve the performance of deep learning 

models on edge devices, making them more suitable for deployment on distributed heterogenous  

resource-constrained IoT devices. 

 

 

APPPENDIX 

 

 

Table 1. State of art of CNN based model compression approaches 
Papers Year Technique Limitations 

 Pruning weights 

Murray et al. 

[12] 

2015 Sparsity-inducing regularizers for pruning neurons 

which enables automatic sizing of neural networks. 

Focus on pruning neurons via sparsity-inducing 

regularizers for small networks rather than parameter 

pruning 
Srinivas and 

Babu [13] 

2015 The author removed one redundant neuron at a time 

instead of removing individual weights. Applied on 
networks with fully connected layers to produce 

smaller networks. 

Wiring together pairs of neurons with similar input 

weights, however this pruning may not reduce 
computation. 

Naveen et al. 
[14], [15] 

2021 For distributing the workload to each IoT edge device, 
the pre-trained model is pruned to lower the model 

parameter, and then fused tail partitioning is 

employed. 

Hardware-aware hyperparameter tuning is required, along 
with fault-tolerant and deep neural network (DNN) 

containerization. 

 efore  runing

                                     
                          
                        

           
                                

          

               
               

     

 fter  runing
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Table 1. State of art of CNN based model compression approaches (continue) 
Papers Year Technique Limitations 

  Eliminate the network redundancy without retraining 
Mariet and 

Sra [16] 

2016 Create a sparse network by identifying a subset of 

neurons that do not require retraining and reducing 

network redundancy while considering the fully 
connected layers. 

Pruning the fully connected layer may not reduce 

computation cost and time. 

  Computation cost reduction for convolutional layers 

Denil et al. 
[17] 

2013 Vector quantization is used reduce the redundant 
parameters of the model 

Complementary to dropout, maxout however cannot be 
used for large scale deep networks for industry. 

Jaderberg  

et al. [18] 

2014 Focuses on CNN evaluation speed up by using cross 

channel to construct low rank basis filter. 

Further investigation on Separable filters in layers and 

filter reconstruction, model approximation during training 
can be explored. 

Denton et al. 

[19] 

2014 Explored low rank approximation and filter clustering for 

weight approximation and achieved speedup with 
marginal drop in accuracy. 

Further work can be explored by considering 

regularization during or before training to reduce the 
number of parameters. 

Zhang et al. 

[20] 

2015 Accelerates CNN computation considering nonlinear 

filters with low-rank decomposition without stochastic 

gradient descent (SGD). 

Instead of filter weight consideration, channel pruning 

results reduces inference time. 

Ioannou et 

al. [21] 

2016 Low rank representation of CNN with weight 

initialization novel scheme is used reduce the 
computation. 

Channel redundancy reduction, low dimensional 

embedding further enables the development of 
computationally efficient CNN model. 

  FFT based convolutions to reduce the convolutional overheads 
Mathieu et 

al. [22] 

2013 FFT based convolutions Need to explore performance for the impact of image and 

kernel size. For FFT based implementation input image 

should be a power of 2 else padded to next power. 
Lavin and 

Gray [23] 

2016 Winograd algorithm for FFT-based fast convolutions Winograd algorithm needs specialized processing based 

on the size of the filter and block 

  Techniques for reducing model size and computing overheads 
Han et al. 

[24] 

2016 Quantization  erforms quantization, due to libraries can’t access 

matrix lookup and may require software and hardware 

solution for architectural design. 
Rastegari et 

al. [25] 

2016 Binarization Though developed a small efficient network can focus on 

specific resource constraint such as latency, memory for 

applications. 
Coubariaux 

and Bengio 

[26] 

2016 Binarization reduces the model size and lowers the 

computation overhead 

Multiplication during training can reduce and computation 

and needs to generalize other classification and detection 

models for other datasets. 
  Removing the feature maps from well-trained network 

Anwar et al. 

[27] 

2015 The candidates’ weights and locations are pruned 

three times using particle filtering, which selects the 
best combination of many randomly generated 

masks. 

Knowledge based pruning further may reduce 

computational complexity. 

Polyak and 
Wolf [28] 

2015 Detecting less frequently activated feature maps with 
sample input data and reduces feature map from 

trained network. 

Analyzing magnitude-based filter weights and pruning 
the filter and feature map reduces the complexity. 

  Training CNN with sparse constraints 
Lebedev and 

Lempitsky 

[29] 

2016 Group-wise elimination of convolution kernel to 

leverage on achieving group-sparsity of the 

convolutional filters 

Regularizers based normalization to have sparse network 

than pruning to accelerate in practice, the actual speed-up 

depends on implementation 
Zhou et al. 

[9] 

2016 During the training process, introducing group-sparse 

regularization on convolutional filters to reduce the 

filters. 

Regularization may need a greater number of iterations to 

converge 

Wen et al. 

[31] 

2016 To eliminate unnecessary filters, channels, or even 

layers, this article adds structured sparsity 

regularization to each layer. 

Layer wise parameter regularization increases complexity 

and can be avoided to speedup computation 

  Pruning low magnitude weights 

Maxwell et 

al. [32] 

2014 Using regularizers during training of CNNs to remove 

the connections of convolution and the fully 
connected layer having non-zero values leading to a 

sparse deep network. 

The refined sparsity process can further reduce the 

parameters of the model to optimize memory 
conservation. 

Han et al. 
[33] 

2015 The author performed magnitude-based weight 
trimming on filters with weights below the specified 

threshold. To create a sparse network, carefully tune 

the threshold to determine how many filters must be 
pruned. 

Parameter pruning and sharing can be applied for various 
DNNs, for energy consumption the number of weights 

alone cannot considered. 

  The knowledge distillation technique 

Hinton et al. 
[34] 

2015 As the deployment of small student models is simple 
on resource constrained internet of things hardware 

devices, the knowledge distillation technique transfers 

knowledge from the large teacher model to the student 
model to reduce computing costs. 

Lacks knowledge distillation when neural network is very 
big. 
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Table 1. State of art of CNN based model compression approaches (continue) 
Papers Year Technique Limitations 

  Pruning-Quantization 
Benoit et al. 

[35] 

2017 Proposed integer-only arithmetic based quantization 

scheme than floating point inference. 

The complete inference task is carried out with integer 

arithmetic without considering floating point 

dequantization and limited to ReLU activation functions. 
Shaokai et al. 

[36], [37] 

2018, 

2019 

Developed a framework of DNN performing weight 

pruning and clustering/quantization along with 

iterative weight clustering training, centroid update, 
and weight clustering to enhance the model’s 

performance. 

Pruning and quantization is considered in optimized 

framework, however progressive weight pruning may 

yield better results. 

Yuan et al. 
[38] 

2019 A memristor-based framework is proposed that 
considers weight quantization and pruning while 

training a DNN. 

Weight pruning followed by quantization on VGG-16 and 
ResNet-18 reduces power reduction, however framework 

focuses on classification/detection model ignoring 

generative models. 
Muhamad 

et al. [39] 

2020 Used DeepLIFT for pruning DNN to prune filters and the 

weights of the fully convolutional layer, followed by 

clustering-based quantization of DNN weights. Also, 
integer-based mixed-precision quantization for varying 

number of integer bits of each layer of DNN. 

For pruning and quantization using Explainable Artificial 

Intelligence to process the dataset may further improves 

the network performance 

Hu et al. [40] 2021 Proposed one-shot pruning-quantization, which 
compresses through pre-trained wight parameters. 

During fine-tuning weight parameters are updated. 

Further, channel-wise quantization for each layer 
having common codebook still reduces bitrate. 

DNN model compression and practical implementation 
on custom hardware platforms helps to validate the 

inference efficiency. 

Zeng et al. 

[41] 

2022 Proposed 8-bit quantization technique using tanh on 

dense layer weights followed by linear quantization on 
rest of the network. 

Graphics processing unit (GPU) based computation may 

further reduce the computation speed and needs to 
perform practical hardware implementation. 

Ma et al. 

[42] 

2022 Proposed improved ADMM-NN, a joint weight 

pruning and quantization framework. 

AI based applications are benefited with network pruning 

than block based DNN pruning using regularization. 
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