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Today’s smart devices are equipped with powerful integrated chips and built-in
heterogeneous sensors that can leverage their potential to execute heavy compu-
tation and produce a large amount of sensor data. For instance, modern smart
cameras integrate artificial intelligence to capture images that detect any objects
in the scene and change parameters, such as contrast and color based on envi-
ronmental conditions. The accuracy of the object recognition and classification
achieved by intelligent applications has improved due to recent advancements in
artificial intelligence (AI) and machine learning (ML), particularly, deep neural
networks (DNNs).

Despite the capability to carry out some AI/ML computation, smart devices have
limited battery power and computing resources. Therefore, DNN computation is
generally offloaded to powerful computing nodes such as cloud servers. However,
it is challenging to satisfy latency, reliability, and bandwidth constraints in cloud-
based AI. Thus, in recent years, AI services and tasks have been pushed closer
to the end-users by taking advantage of the fog computing paradigm to meet
these requirements. Generally, the trained DNN models are offloaded to the fog
devices for DNN inference. This is accomplished by partitioning the DNN and
distributing the computation in fog networks.

This thesis addresses offloading DNN inference by dividing and distributing a
pre-trained network onto heterogeneous embedded devices. Specifically, it im-
plements the adaptive partitioning and offloading algorithm based on matching
theory proposed in an article by Mohammed et al. [25]. The implementation was
evaluated in a fog testbed, including Nvidia Jetson nano devices. The obtained
results show that the adaptive solution outperforms other schemes (Random and
Greedy) with respect to computation time and communication latency.
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algorithm, DNN frameworks and architectures
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Abbreviations and Acronyms

DNN Deep Neural Network
AI Artificial Intelligence
ML Machine Learning
RBM Restricted Boltzmann Machine
DBN Deep Belief Network
GAN Generative Adversarial Network
RNN Recurrent/Recursive Neural Network
LSTM Long Short Term Memory
GRU Gated Recurrent Unit
CNN Convolutional Neural Network
NiN Network in Network
ReLU Rectified Linear Unit
DDNN Distributed Deep Neural Network
DINA Distributed INference Acceleration
DINA-P Distributed INference Acceleration-Partitioning
DINA-O Distributed INference Acceleration-Offloading
gRPC gRPC Remote Procedure Call
MQTT Message Queuing Telemetry Transport
BDD100k Berkeley Deep Drive dataset
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Chapter 1

Introduction

In recent years, the development of high-performance computing is steadily
increasing. In particular, the computing capability of modern computers and
embedded devices has increased due to the improvement of central process-
ing unit and graphics processing unit architectures. As a result, these devices
are capable of computing complex functions of artificial intelligence (AI) and
machine learning (ML) for different applications, such as image and natu-
ral language processing, speech recognition, augmented reality, and cogni-
tive assistance. Moreover, embedded devices equipped with sensors for data
collection are mostly targeted for applications leveraging machine learning.
According to Cisco, the number of smart devices connected via the inter-
net will grow more than 12 billion by 2022 [5]. Therefore, the scope of data
generation will increase for machine learning-based applications. In addition,
the availability and the maintenance cost of cloud infrastructures have de-
creased in recent times, inspiring AI/ML-based applications to execute heavy
computation in the cloud.

Generally, most of the machine learning applications are computed at
smart devices, and sometimes the heavy computations are offloaded to the
cloud. Smart devices are unable to execute heavy computation of AI/ML-
based applications due to a lack of computing power and limited resources.
Instead, they offload the computation to the cloud or employ a simple ma-
chine learning model, such as Support Vector Machines. However, offloading
computation to the cloud adds extra costs due to communication: a high
response time and a low throughput; moreover, the simpler machine learning
models provide results with reduced accuracy. Fog computing has emerged to
address these problems. In fact, fog computing provides decentralized com-
puting infrastructure that brings the benefits and computing power of the
cloud closer to the source of data [1].

Deep Neural Networks (DNNs) have recently been used in a variety of
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CHAPTER 1. INTRODUCTION 8

intelligent applications. DNNs require heavy computing power and resources,
significantly increase the computation burden at the end devices. Moreover,
DNNs are progressing towards deeper structures to provide more system
accuracy and precision [14, 32, 36]. Researches in deep neural networks have
proposed different techniques that involve partitioning and offloading the
DNN structure (model) into a distributed computing hierarchy [16, 18, 23,
38]. A distributed computing hierarchy consists of the local network, the fog,
and the cloud. This process distributes the computation costs and parallelizes
the computation to adopt scalability and efficiency.

1.1 Problem statement

Despite their growth, AI/ML-based applications encounter important key
challenges. Smart (embedded) devices have lower energy and computing re-
sources, whereas intelligent applications (e.g., image recognition, natural lan-
guage processing, and speech detection) require high processing power. More-
over, some of these applications are latency-sensitive and safety-critical, such
as augmented reality and cooperative autonomous driving. Dynamic network
conditions also affect collaborative partitioning and distribution of compu-
tation [16, 18]. Considering the challenges, this thesis aims to answer the
following questions:

• Which approach is appropriate to address the challenges imposed by
AI/ML-based applications?

• Are solutions for addressing the challenges proposed in the literature
practical for use at resource-constrained embedded devices?

This thesis addresses offloading DNN inference by dividing and distributing
a pre-trained network onto heterogeneous embedded devices. In particular,
it implements an adaptive partitioning and a distributed offloading algo-
rithms based on matching theory introduced in the work by Mohammed et
al. [25]. DNN inference refers to the technique of predicting the results of a
DNN process while encountering new data. The implementation was evalu-
ated in a testbed consists of heterogeneous fog devices (Nvidia Jetson Nano
devices).

The main contributions of this thesis are as follows. First, it implements
an adaptive partitioning scheme based on the computing capability and the
utilities of the fog nodes. Utility is used to express association preference
among the end devices and the fog nodes. The source DNN is divided into
sublayers by the adaptive partitioning algorithm in order to offload to fog
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networks. Second, this thesis implements a distributed algorithm based on
swap matching for offloading the sublayers of DNN from end devices to the fog
networks. Finally, experiments are carried out by considering three different
schemes: Adaptive, Random, and Greedy. The obtained results based on a
large dataset and four state-of-the-art DNN architectures demonstrate that
the adaptive solution outperforms other schemes (Random and Greedy) in
terms of computation time and communication latency.

1.2 Structure of the thesis

The rest of the thesis is organized as follows. Chapter 2 overviews artificial
intelligence and machine learning, then presents different DNN architectures
in some detail. Chapter 3 discusses the most important research targeting
DNN inference acceleration. Chapter 4 details the implementation of the
offloading framework based on matching theory proposed by Mohammed
et al. [25]. Chapter 5 evaluates the related adaptive partitioning approach
against the other two strategies, namely, random partitioning and greedy
offloading. Finally, Chapter 6 concludes the thesis and describes possible
future research.



Chapter 2

Deep neural networks (DNNs)

A deep neural network (DNN) is a member of a broad family in artificial
intelligence; especially, it is considered a sub-field of machine learning. It is
a computational model inspired by the biological structure of the brain cells,
which consists of interconnected nodes (neurons) that can learn from experi-
ence by modifying their connections and parameters. DNN is massively used
in different application areas, such as speech recognition, natural language
processing, computer vision, image, and video surveillance. With the help of
DNN, AI can be trained by using supervised and unsupervised learning data
and predict results.

The rest of this chapter describes the overview, the DNN architectural
components, and the categories of DNN architectures in general.

2.1 Overview

Since an early age, computer scientists have been deriving their thoughts to
design and build such a machine that would act identical to humans. Alan
Turing, the father of theoretical computer science, developed a Turing test,
which could evaluate the intelligent behavior of a machine in comparison to
humans. In 1956, for the first time, the term Artificial Intelligence (AI) was
introduced by John McCarthy.

Artificial intelligence refers to such a computer system that can perceive
and learn knowledge, make reasoning and decisions based on the acquired
knowledge, and act accordingly in an uncertain and complicated environ-
ment. There are two categories of AI in the modern era: the Narrow AI/Weak
AI and the General AI/Strong AI. The narrow AI has the ability to handle
only one sophisticated task. In contrast, several narrow AI can be combined
to achieve a wide range of goals in the general AI. For example, in a self-
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CHAPTER 2. DEEP NEURAL NETWORKS (DNNS) 11

driving car, a trained object recognition system can only classify classes of
objects based on the observation which refers to narrow AI approach, in
contrast, if the system can detect an object with the best accuracy, process
voice commands and adopt in any complicated situations at the same time
indicates as general AI.

The first intelligent machine-building approach is known as symbolic AI.
This approach works manually based on human-readable symbols and a set
of rules for manipulating the symbols. A symbol may represent in a character
string to describe the task in words. For example, a symbolic representation
of a “Wooden chair” is given in Figure 2.1, inspired by [24].

Wooden Chair

Origin Structure Kind

Furniture shop FurnitureFrame

Material Color Shape

Wood Metal Screw Dining chair

Figure 2.1: The symbolic representation of a wooden chair.

The manual input process of symbolic AI system is inappropriate for
handling real-life problems. It also imposes a significant challenge to declare
all the symbols and the rules to fit with real-world applications. To alle-
viate the problems, researches apply machine learning approach. Machine
Learning (ML) is a statistical method that provides the system ability to
learn directly from the data and improve from experience without human
intervention. As the example mentioned earlier in the symbolic approach,
if different categories of chair images are fed into the machine learning al-
gorithm, the algorithm will be able to detect the chair and its category by
learning features, such as edges, patterns, and textures.

The domain of machine learning can be divided into two major areas.
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Supervised learning: In supervised learning, the training input data
and the target output are known. The supervised learning algorithm learns
from the input data by comparing the generated prediction result with the
target output. It is an iterative learning process and achieves an acceptable
level of performance after a certain iterations. Linear regression, Random
forest, and Support vector are some popular supervised learning algorithms.

Unsupervised learning: In unsupervised learning, only the training
data is available. The unsupervised learning algorithm learns by discovering
the features of the input data and accumulates the learning into its knowledge
domain. This method generates new input data based on the observation of
the same set of data. K-means and Apriori are some practiced unsupervised
learning algorithms.

With the advancement of computing capabilities and big data technolo-
gies, machine learning introduces a system architecture known as Artificial
Neural Network (ANN). ANN was introduced in the late ’40s, requiring a
high computational power and access to a large dataset. In recent times,
the powerful CPU and GPU, and the cloud infrastructures revive the ANN
technology to take care of the complex AI tasks proficiently. A deep neural
network is one of the kinds of artificial neural networks.

2.2 DNN architectures

The architectural components of a neural network are layers, parameters, hy-
perparameters, activation functions, loss functions, and optimization meth-
ods. The layers are constructed by neurons, which are known as units [29].
Units are a symbolic representation of biological neurons. Figure 2.2 illus-
trates a basic structure of a neural network.

Layers: A layer represents a collection of units that operates together at a
specific depth of the neural network. There are two types of layers in a neural
network, such as the input layer and the hidden layers. The output layer is
categorized under the hidden layers. The input layer represents the input
features that go through the units of hidden layers to generate prediction
in the output layer. The hidden layers learn different aspects of the input
data by breaking it down into different levels of abstraction. To understand
the hidden layer’s concept, let us consider an image recognition example of
a four-wheel vehicle. In abstract terms, the first hidden layer is responsible
for identifying pixels of light and dark, and the second hidden layer detects
edges and simple shapes. Primarily, the hidden layers at the beginning of the
DNN identify simple structural components, but the deeper hidden layers
detect more complex structure of the image.
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Figure 2.2: A basic structure of a neural network.

Parameters: Parameters in neural networks are configuration variables.
They are subjective to the model and may vary based on different neural
network architecture. The weights and the biases are such parameters which
are used to form the network connection.

Hyperparameters: Hyperparameters are used to tune the neural net-
work and configure settings to achieve effective performance. The size of the
layer, learning rate, dropout, mini-batch size, number of epochs, and nor-
malization of input data are included in the hyperparameters.

• Layer size: The layer size defines the number of units in a layer.

• Learning rate: The learning rate governs how much to adjust in the
model based on the estimated error calculated during model training.
A high learning rate may cause the convergence to sub-optimal solu-
tions, whereas a low learning rate takes a more prolonged period for
the training process to complete.

• Dropout: The dropout mechanism discards units from the hidden
layers to improve the neural network training and to overcome the
over-fitting problem. The over-fitting problem occurs when the trained
model works efficiently with the training data (seen data) but works
poorly with the testing data (unseen data).

• Mini-batch size: The mini-batch size refers to how many samples
will propagate through the network at a time. The network trains
faster with mini-batches as the model parameters are updated after
each propagation. For example, let us assume the total sample size is
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1280, and the mini-batch size is 128. The model parameters will be
updated 10× for each propagation.

• Number of epochs: The number of epochs defines the number of
times the complete data set propagates through the learning algorithm.

• Normalization: In vector representation of the input data, the data
are scaled to a specified range, such as [0,1], [-1,1], which affects the
activation in the neural network.

Activation functions: An activation function is used to restrict the out-
put of a layer to a specific limit and add non-linearity in the neural network.
The activation function helps the network to learn the complex pattern in
the data set. Some commonly used activation functions are sigmoid, tanh
and Rectified Linear Unit (ReLU).

Loss functions: Loss functions assess the compliance between the pre-
dicted output and the supervised learning output. The loss functions deter-
mine the misclassification cost. Based on the calculated loss, model param-
eters are updated accordingly through the backward propagation method.
Some commonly used loss functions are Mean Squared Error (Regression
problem) and Cross-Entropy Loss (binary and multi-class classification
problem).

Optimization methods: Optimization methods help to minimize loss
functions by updating the parameter values through optimization algorithms.
These methods aim to find the best set of parameter values, in other words,
a trained model that gives minimal loss. The optimization algorithms are
categorized into two types, such as first-order optimization algorithms (e.g.,
Gradient Descent, Stochastic Gradient Descent) and second-order op-
timization algorithms (e.g., Newton method, Conjugate Gradient). The most
widely used first-order optimization algorithm is Adam, which computes the
adaptive learning rate for each parameter [19].

A historical evolution of DNN architectures is shown in Figure 2.3. Ac-
cording to Patterson et al. [29], there are four major DNN architectures in
practice.

1. Unsupervised Pretrained Networks (UPNs)

2. Convolutional Neural Networks (CNNs)

3. Recurrent Neural Networks (RNNs)

4. Recursive Neural Networks (RNNs)
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1990 1995 2000 2005 2010 2015

RNN LSTM
CNN

DBN GRU

Figure 2.3: The Evolution of DNN architectures.

2.3 Unsupervised Pretrained Networks (UPNs)

Unsupervised pretraining helps to extract features from an unlabeled data
set. There are many architectures used for unsupervised pretraining, and the
followings are the most popular neural networks.

1. Restricted Boltzmann Machines (RBMs)

2. Autoencoders

3. Deep Belief Networks (DBNs)

4. Generative Adversarial Networks (GANs)

2.3.1 Restricted Boltzmann Machines (RBMs)

Restricted Boltzmann Machines (RBMs) are two-layered neural networks
widely used for dimensionality reduction (feature selection and extraction),
classification, regression, collaborative filtering, and topic modeling. They
can learn a probability distribution over its input dataset. A fully bipartite
graph connects both layers (visible and hidden layer) of RBMs. Units of the
same layer are not connected, that makes them restricted and different from
Boltzmann Machine.

In RBMs, there are two additional bias layers (visible bias and hidden
bias), which makes it different than Autoencoders. The hidden and the visi-
ble bias layers are used in the forward pass and reconstruction phase, respec-
tively. Figure 2.4 illustrates the forward pass and the reconstruction phase of
RBMs. The RBMs construct error by subtracting the inputs from the recon-
structed inputs and tune the model parameters (e.g., weights) accordingly.
Due to the behavior of the RBMs, they are known as generative models as
they generate new samples of data from the same distribution.
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Figure 2.4: RBMs forward pass and reconstruction phase.

2.3.2 Autoencoders

Autoencoders are used to learn an efficient way of compressing and encoding
data to construct new data, closer to the original input. They reduce data
dimensions by ignoring noise in the data. Autoencoders are constructed by
four significant parts: encoder, bottleneck (hidden layers), decoder, and re-
construction loss. Figure 2.5 shows a basic structure of autoencoders. The
bottlenecks are the autoencoders’ key feature, which constrains a compressed
knowledge representation of the input.

Autoencoders are almost similar to multi-layer perceptron with some dif-
ferences. One of the differences is that both the input and the output layers
of autoencoders have the same number of units. Autoencoders use unla-
beled data in unsupervised learning and build a compressed representation
of inputs with bottlenecks. Variational autoencoders, sparse autoencoders,
denoising autoencoders, and contractive autoencoders are some autoencoder
variants widely used in practice. The application areas of autoencoders are
anomaly detection and image denoising.

2.3.3 Deep Belief Networks (DBNs)

Deep Belief Networks (DBNs) are probabilistic unsupervised learning algo-
rithms. They are constructed by the stack of Restricted Boltzmann Machines
(RBMs), consisting of multiple hidden and visible layers of stochastic and la-
tent variables. Unlike other models, each layer of DBNs knows the entire
input data. The process through which DBNs learn is a greedy approach.
In a greedy learning algorithm, the optimal choice is made at each step of
the process, which leads to the global optimum. Figure 2.6 shows a basic
architecture of DBNs.
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Figure 2.5: A basic structure of autoencoders.

The DBN’s overall process can be categorized into two phases, such as the
pre-train phase and the fine-tuning phase. Learning features in an unsuper-
vised fashion is considered as the pre-train phase. The RBMs learn higher-
level features from the distribution of data through each layer progressively,
which eventually use the learned features as input to the higher level. When
the learned features are used as initial model parameters in a feed-forward
network; this phase is called the fine-tuning phase. In the feed-forward net-
works, backpropagation is the key for tuning the model parameters. Normal
backpropagation is used with a low learning rate to find the best value for
model parameters.

2.3.4 Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) [9] are a combination of generative
and discriminative learning algorithms. The generative algorithm tries to
generate sample inputs for the discriminative algorithm to classify whether
the data is populated from the generator or the training data set. GANs
are used to build efficient classifiers by generating sample images and videos.
Moreover, they are also used to create fake media content, such as Deepfakes.
Figure 2.7 illustrates a visual overview of the GANs architecture.

The GANs are formed by two neural networks, such as a generator and
a discriminator, and simultaneously train two models. The generator pro-
duces synthetic sample data from a random noise and trains the model to
provide more realistic sample data, which are fed through the discrimina-
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Figure 2.6: A basic architecture of DBNs.

tor to determine whether the data is real or synthetic. The discriminators
are usually standard Convolutional Neural Networks (CNNs). The genera-
tors use deconvolutional networks to generate synthetic sample images. The
gradient of the output of discriminators helps the generator to produce more
realistic data by making small changes. In both networks, backpropagation
is used to train the model efficiently. GAN is considered a recursive process
of generating more realistic data and a useful classifier that can detect the
difference between synthetic and training data.

2.4 Convolutional Neural Networks (CNNs)

Convolutional Neural Network (CNN), also known as ConvNet, is a class of
neural networks where a linear convolution operates instead of matrix mul-
tiplication in network layers. This architecture has taken inspiration from
biological processes, especially the connectivity pattern of the visual cortex
neurons. Some regions of visual cortex cells trigger to a specific pattern of



CHAPTER 2. DEEP NEURAL NETWORKS (DNNS) 19

Figure 2.7: A visual overview of GANs architecture.

visual fields such as edges, color, and curves. All the sensitive neurons are
organized in a columnar fashion to produce visual perception and try to lo-
cate specific characteristics of the observed object [17]. The basic progression
of the CNN is similar to the visual cortex working process. The CNN learns
higher-order features of data through convolution operation. First, it starts
by classifying the lower-level features, and more sophisticated features are
analyzed as the network progresses. Such architecture is useful for object
recognition in images and videos, translating natural language and senti-
ments.

The goal of CNN is to transform input data starting from the input layer
through intermediate connected layers into a set of classes. The output layer
shows the difference of the input images. The high-level overview of the CNN
architecture is as follows.

• Input layer

• Learning layer (feature extraction)

• Classification layers (fully-connected)
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The learning layer or the feature extraction layer executes a repetitive
pattern of sequence:

• Convolution layer (linear operation)

• Activation function (e.g. ReLU, sigmoid, tanh)

• Pooling layer

The first layer in the CNN is always a convolutional layer. The input is
a tensor of shape [number of images/batch] × [width of image] × [height of
image] × [depth of image (channels)]. A feature identifier, known as a filter/a
kernel, convolves over the receptive field from left to right through the input
images to extract lower-level features and generate an activation map or a
feature map. The receptive field refers to a region in the input data that
stimulates when the filter/the kernel is applied to extract features, and the
feature map represents the result of the extraction. The depth of the kernel
must be kept the same as the depth of input. A visual illustration is given in
Figure 2.8. In the series of the feature-extraction layers, the output of one
convolutional layer interprets as the input to the next convolutional layer. As
it progresses, more complex features are extracted. Zeiler et al. [40] represents
a visualization of intermediate features and the classifier’s operation in a
CNN. The following formula provides the output size of a given convolutional
layer. Here, W = input volume size, K = kernel size, P = padding and S =
stride.

output =
W −K − 2P

S
+ 1

During the design consideration of CNN, some of the hyperparameters
need to be considered, such as the filter/kernel size, the stride, and the
padding. The stride represents the number of shifts while the kernel is slid-
ing through the input images. It controls the sliding movement of the kernel
over input volume. The spatial dimension decreases as the convolution op-
eration progresses. Zero padding is added to the image’s border to preserve
more information of the original input volume to detect lower-level features.
The choice of an appropriate hyperparameter largely depends on the type
of training dataset. Figure 2.9 visualizes the stride and the padding of the
convolution layer.

After each convolution layer, the activation function is applied to in-
troduce non-linearity. In recent years, the Rectified Linear Unit (ReLU)

becomes very popular due to its faster training efficiency and capability to
alleviate the vanishing gradient decent problem. The vanishing gradient prob-
lem occurs during back-propagation phase of network training. In the back-
propagation algorithm, the gradient is calculated based on the loss function
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Figure 2.8: A visual illustration of CNN convolution operation.

Figure 2.9: A visual illustration of stride and padding in CNN convolution
operation.

and it becomes infinitely smaller in a deep network. Thus, the performance
gets saturated and degrades rapidly. The ReLU also improves the perfor-
mance of neural network [26]. It applies the function f(x) = max(0, x) to
all the values of the convolution layer output. Some other non-linear acti-
vation functions, such as sigmoid (σ(x) = 1/(1 − e−x)), tanh (tanh(x) =
(ex − e−x)/(ex + e−x)) are popular as well in neural network.

Depending on the structure and the type of dataset, after the activa-
tion layer, the pooling layer is applied. It is also known as non-linear down-
sampling. The purpose of pooling layer is two-fold. First, reducing the compu-
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tation cost by compressing the number of model parameters, such as weights
and second, controlling overfitting problem. In the overfitting problem, the
model is trained in such a way that it learns the details and the noise of the
training data, which impacts negatively on the performance of the model on
new data. There are different options for pooling to choose, such as max
pooling, average pooling, L2-norm pooling. Figure 2.10 shows how max-
pooling works in convolution neural network. Dropout [35] is another way
to reduce overfitting. Units of CNN layers deactivate randomly in dropout
phase. Dropout is applied mostly in fully connected layers of CNNs.

Figure 2.10: Example of max-pooling in CNN.

After several convolutional and pooling layers, the network introduces
fully-connected layers to co-relate the higher-level features to a particular
class, which provides the outcome of the network. Fully-connected layers
take the output of the last convolutional or the pooling layer as input and
output N-dimensional vectors. N-dimensional vector represents the number
of classes/categories that can be identified from the data. Figure 2.11 illus-
trates a complete overview of CNN.

Many state-of-the-art convolutional neural networks are introduced by
AI researchers, which can classify and predict objects from a set of images
and video streaming. For DNN inference, data are trained by different image
classification architectures, such as AlexNet [20], ResNet [14], VGG [32], and
NiN [22] in this thesis. These architectures are also used for predictions
and classifications. This section will briefly explain the benchmark CNNs for
object recognition and image classification tasks.
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Figure 2.11: A complete overview of convolutional neural network.

2.4.1 AlexNet

One of the most notable publications in the field of computer vision is “Ima-
geNet Classification with Deep Convolutional Networks” [20]. Authors have
proposed a deep convolutional neural network that can classify images with
the top-5 test error rate of 15.3%. AlexNet can classify images in 1,000 classes.

AlexNet has eight learned layers composed of five convolutional layers
and three fully-connected layers.

• The first convolutional layer takes 224 × 224 × 3 as input where 224
represents the dimension of the image, and three represents the channel
(e.g., RGB). The input is filtered with 96 kernels of size 11 × 11 × 3
with a stride of 4 pixels. The following convolutional layer filters the
output of the former convolutional layer. The second convolutional
layer filters with 256 kernels of size 5 × 5 × 48.

• The last three convolutional layers do not have any pooling or normal-
ization layers in between and are connected.

• The third, fourth, and the last convolutional layers filters with 384
kernels of size 3 × 3 × 256, 384 kernels of size 3 × 3 × 192 and 256
kernels of size 3 × 3 × 192, respectively.

• Each fully-connected layer has 4096 neurons.

Instead of sigmoid and tanh activation functions, AlexNet uses the ReLU.
The ReLU provides several times faster training time compare to sigmoid and
tanh activation function [26]. Krizhevsky et al. [20] have used two Nvidia
GTX 580 GPUs to train the model. One of the advantages of modern GPU
is cross-parallelism. GPU can read and write each other’s memory directly
without going through the host memory. With the help of cross-parallelism,
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the authors have put half of the kernels to each GPU, and it has been pro-
grammed in such a way that the layer n will take input from the layer n− 1,
which resides in the same GPU. AlexNet has also introduced the local re-
sponse normalization technique, which has reduced top-1 and top-5 error
rates by 1.4% and 1.2%, respectively. Dropout helps to avoid overfitting
while training. Figure 2.12 illustrates the AlexNet architecture.
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Figure 2.12: The AlexNet architecture.

2.4.2 VGG

Imagenet Large Scale Visual Recognition Challenge (ILSVRC) [31] intro-
duces many state-of-the-art deep neural network architectures that have
specific characteristics of their own to improve recognition task and result
more accurately than the past achievements. After the immense success of
AlexNet, many enthusiastic people have attempted to enhance the original
architecture. VGG [32] is one of the improved architectures. The work has
concentrated more on the depth of CNN architecture and increased the depth
by adding more convolutional layers. A small convolution filter of 3 × 3 is
used in all layers.

VGG has five CNN configurations that follow the generic design con-
cept, only differs in-depth (number of layers). Table 2.1 illustrates different
configuration strategies of VGG.

• A fixed-size 224 × 224 RGB image is fed through the VGG network.
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CNN Configurations
A B C D E
11 weight
layers

13 weight
layers

16 weight
layers

16 weight
layers

19 weight
layers

Input (224 × 224 RGB image)
conv3-64 conv3-64

conv3-64
conv3-64
conv3-64

conv3-64
conv3-64

conv3-64
conv3-64

maxpool
conv3-128 conv3-128

conv3-128
conv3-128
conv3-128

conv3-128
conv3-128

conv3-128
conv3-128

maxpool
conv3-256
conv3-256

conv3-256
conv3-256

conv3-256
conv3-256
conv1-256

conv3-256
conv3-256
conv3-256

conv3-256
conv3-256
conv3-256
conv3-256

maxpool
conv3-512
conv3-512

conv3-512
conv3-512

conv3-512
conv3-512
conv1-512

conv3-512
conv3-512
conv3-512

conv3-512
conv3-512
conv3-512
conv3-512

maxpool
conv3-512
conv3-512

conv3-512
conv3-512

conv3-512
conv3-512
conv1-512

conv3-512
conv3-512
conv3-512

conv3-512
conv3-512
conv3-512
conv3-512

maxpool
FC-4096
FC-4096
FC-1000
soft-max

Table 2.1: The VGG CNN configurations. Source: [32]

• A filter size of 3 × 3 is used throughout the network except for one
configuration where 1 × 1 filter size is used for linear transformation
of the input channel. The padding and stride are considered as 1 pixel
for all the convolutional layers.

• Five max-pooling layers are applied after the convolutional layers. Each
max-pooling is performed over a filter of 2 × 2 and a stride of 2.
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• After the pile of convolutional layers, three fully-connected layers are
applied. The first two layers have 4096 channels, and the last layer has
1000 channels, representing 1000 classes for recognition.

• After each convolution layer, non-linearity (e.g., ReLU) is applied.

It is worth noting that a stack of two and three convolution layers produce
an effective receptive field of 5 × 5 and 7 × 7, respectively. This design choice
has some benefits. First, the VGG approach has made the decision function
more discriminative by applying more non-linearity. For instance, the first
convolutional layer has a filter-size of 7 × 7, followed by a non-linearity in
AlexNet. In contrast, a stack of three convolutional layers followed by non-
linearity after each layer is applied in VGG to achieve the same receptive
field. Second, the number of model parameters is decreased by 44%. The
convention of using a small-size filter to do classification tasks is used previ-
ously, but due to less depth, the result is not efficient for large scale image
datasets. Goodfellow et al. [10] have applied a deep CNNs to recognize street
numbers and showed that depth has a real effect on efficiency and accuracy,
and increased depth led to significant performance. Figure 2.13 illustrates
the VGG16 architecture.
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Figure 2.13: The VGG16 architecture.

2.4.3 ResNet

As the neural network goes in-depth, the network training becomes prob-
lematic. This is due to the vanishing gradient problem. Moreover, the model
parameters increase in deep networks. Tuning a higher number of model pa-
rameters may forge the network to train with a higher error rate. Microsoft
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Residual Network (ResNet) [14] has addressed these problems and presents
a residual learning framework. It is a deep neural network consisting of 152
layers, which is eight times larger than VGG [32]. It has won the first prize
in ILSVRC with a 3.57% error rate on the imagenet data set.

The authors have introduced a residual mapping technique to overcome
the vanishing gradient problem. Figure 2.14 illustrates residual learning
building blocks.

• In traditional convention, input x goes through a stack of convolutional
layers and output a function H(x). In ResNet, the original input x is
added with the output function’s result denoted as F (x) instead of
the straight transformation. The way the original input is carried to
the output is called an identity shortcut connection. Identity short-
cut connection does not affect on the network by adding extra model
parameters and computational complexity.

H(x) = F (x) + x

• The identity shortcut connection has been used in two different ways. If
the input and the output are of the same dimension, the input is added
directly with the output. When the dimension increases, authors have
considered two options, i.e., identity mapping with extra zero entries
padded for increasing dimensions and a 1 × 1 convolutional layer. In
both cases, the stride of 2 is used due to the dissimilarity of dimensions.

Residual learning eases the training process during the backward pass of
backpropagation, which helps the gradient flow easily through the graphs by
distributing it. According to the authors, optimizing the residual mapping is
more relaxed than the unreferenced mapping [14].
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3x3, n
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+ + +
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ReLU ReLU ReLU

n channels n channels n channels

Figure 2.14: ResNet residual learning building block.
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2.4.4 Network-in-Network

Network-in-Network (NiN) [22] is a novel deep network structure that re-
places the conventional generalized linear model (GLM) by a universal func-
tion approximator to enhance the model segregation for local patches within
the receptive field. In the standard convolutional network, the feature map
is produced by the execution of linear layers followed by a non-linear acti-
vation function. The convolution filter used in CNN is a generalized linear
model (GLM) with a lower abstraction level. Replacing GLM by non-linear
function approximator can enhance the level of abstraction.

In NiN, a multilayer perceptron (MLP) is used as a non-linear function
approximator. The decision is made based on two reasons. First, the MLP
is compatible with a convolutional neural network which is trained by back-
propagation techniques. Second, the MLP itself is considered as a deep model.

NiN is organized by several stacks of MLP convolutional layers followed
by a global average pooling layers. It does not have any fully-connected layer
at the end of the convolution layers. Instead, the spatial average of the feature
map results in the confidence of categories . The global average pooling does
the process. A softmax function is applied to the resulting vector after the
pooling. Figure 2.15 represents a micro-network (MLP) based NiN structure,
which has three MLP convolutional layers and one global average pooling
layer.

Figure 2.15: The overall structure of Network-in-Network. Source: [22]

2.5 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks are considered a class of neural networks which
process data in a sequential order. The word recurrent means the same pro-
cess is executed for each element of a sequence, and the output depends on
the previous computation. Some researchers interpret the dependency pro-
cess of RNNs as memory where information from the previous calculation



CHAPTER 2. DEEP NEURAL NETWORKS (DNNS) 29

is captured for further processing. A general architecture of the recurrent
neural network is given in Figure 2.16.

H H(0) H(1) H(t-1) H(t)

W1

W3
W2

W1 W1 W1 W1

W2 W2 W2 W2

W3 W3 W3 W3

X X(0) X(1) X(t-1) X(t)

.... ....

Figure 2.16: A general architecture of recurrent neural network. Source: [21]

Figure 2.16 represents an unrolled/unfolded recurrent neural network. For
example, if the data represents a sentence and the sentence has five words,
then the network will be unrolled into 5-layers, one layer for each word. The
internal computation of the recurrent neural network works as follows:

• W1, W2, and W3 represent the model parameters or weights of the
network. An interesting factor to notice is that all the layers share the
same parameters across all steps that reduce the total number of model
parameters to be learned.

• X(t) is the input at time step t. H(t) is the hidden state at time step
t. H(t) is calculated based the following formula H(t) = f(X(t) ∗W1 +
H(t−1) ∗W2). Here, function represents the activation function (i.e.,
sigmoid, tanh and ReLU). The hidden state interprets as the memory
of the network. The first hidden state H(−1) is set to all zeros.

• Y (t) is the output of corresponding input X(t) at time step t. The output
at each time step depends on the application domain. It is not manda-
tory to calculate output at each time step. For instance, predicting
sentiments of a sentence.

The training process of recurrent neural networks is almost similar to
the neural network with a slight difference. The backpropagation is called
Backpropagation Through Time (BPTT) in RNNs as the gradient at each
output depends not only on the calculations of t time step but also on the
t− 1 time step.
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The general recurrent neural networks, which are also known as vanilla
recurrent neural networks, face the vanishing gradient problem. The gradient
is used to adjust the weights of the network. The adjustment depends on
how the value of the gradient evolves. If the amount of the gradient is large,
the impact of the weight adjustment is also significant, and if the value
of the gradient decreases, it affects the weight adjustment. As the BPTT
progresses, the gradient drastically shrinks, and the layers at the beginning
of the network fail to learn as the weights are slightly adjusted due to a
small gradient. This problem is called the vanishing gradient problem, and
the network suffers from short-term memory.

There are two particular kinds of recurrent neural networks in practice,
such as Long Short Term Memory networks [15] and Gated Recurrent Units
[4] to mitigate the short-term memory of recurrent neural networks.

2.5.1 Long Short Term Memory (LSTM)

Long Short Term Memory (LSTM) is a special kind of recurrent neural net-
work capable of learning long term dependencies. It has control flow like
vanilla recurrent neural network with some additional functionalities, which
helps to keep and remove information from the sequence data. LSTM also
forms the chain of repeating modules similar to the vanilla recurrent neural
networks. The illustration of LSTM building module is shown in Figure 2.17

• The horizontal line at the top of the figure is known as the cell state,
which is the core component for ensuring long-term memory. LSTM
can add new information and remove unnecessary old information in
the cell state through the regulation of some gates.

• There are three gates responsible for protecting and controlling the
cell state. The sigmoid function governs all the gates. The sigmoid

function provides output between 0 and 1. If the output of the sigmoid
function is close to zero, the information can be forgotten or removed.
If the output is nearly 1, the information should be kept.

• The first gate is a forget gate. This gate decides what information
should be kept or removed. The red color circle indicates the forget
gate. The input of the current state Xt at time step t, and information
from the previous hidden state Ht−1 are merged and fed through the
forget gate. The output of the forget gate multiplies with the cell state
to preserve valid information.
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• The second gate is an input gate, which stores new information in the
cell state. The input gate decides which value to update. The green
color circle represents the input gate. Ht−1 + Xt are passed through
a tanh function, which squishes the value between -1 to 1 to regulate
the network. The input gate decides which information should be kept
from the tanh function output and added to the cell state. Thus, the
new information is added in the cell state.

• The third and the last gate is output gate, which generates the next
hidden state information. The blue color circle denotes the output
gate. Similar to the input gate, Ht−1+Xt are passed through an output
gate, and the newly modified cell state is passed through a tanh func-
tion. Both outputs are multiplied to decide which information should
be carried through the hidden state.

Sigmoid Sigmoid Tanh Sigmoid

X +

X

X

Tanh

Ht-1

Xt

Ct-1 Ct

Ht

Figure 2.17: Building module of LSTM.

2.5.2 Gated Recurrent Units (GRUs)

Gated Recurrent Unit (GRU) aims to solve the vanishing gradient prob-
lem and work almost similar to the LSTM. GRU also has two gates that
help coordinating the relevant information to pass through the chain of the
GRU modules. The illustration of the GRU building module is shown in
Figure 2.18.
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• GRU has two gates, such as an update gate and a reset gate. The up-
date gate helps to keep relevant information to pass through the GRU
module, and the reset gate forgets irrelevant information to improve the
prediction result. In Figure 2.18, green and red color circles indicate
the update and the reset gate, respectively.

• The update gate uses the sigmoid function, which produces an output
result between 0 and 1. Close to 0 means forget the information, and
close to 1 indicates to keep the information. The output of the update
gate is denoted as ut. Here, W1u and W2u represents the weights of the
input xt and the weights of the previous module’s information ht−1,
respectively. The equation of the update gate is given below.

ut = σ(W1u.xt +W2u.ht−1)

• The reset gate works similar to the update gate as it also has the
same activation function. The output of the reset gate is denoted as
rt. Only the difference between the gates is corresponding weights and
usages. The equation of the reset gate is given below.

rt = σ(W1r.xt +W2r.ht−1)

• The output of the reset gate introduces a candidate content that stores
as relevant information from the previous hidden unit. The output
of the reset (rt) and the product of the previous hidden unit (ht−1)
and its weights (W2) are element-wise multiplied to determine what
to remove from the previous time step. The tanh function is used to
generate the output of current memory content. For instance, consider
a smartphone review sentiment analysis problem. Some reviewer wrote,
“The X phone has all the common features. . . . But the camera does not
perform well, which I need most.” Here, the most relevant part of the
review is in the last sentence, which means the previous information are
not relevant to determine the reviewer’s satisfactory level. The general
formula is given below.

h
′

t = tanh (W1.xt + rt ∗W2.ht−1)

• In the final step, the result of the update gate is used to determine
what information should be kept from the candidate contents and the
previous hidden unit. Let us consider the previous example. The last
sentence holds the relevant information. At this time step, the most
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relevant information is positioned at the beginning of the statement. So,
the majority portions of the previous information should be kept and
the candidate content should be ignored. The update gate helps to
determine this by generating results close to 0 and 1. The formula for
the hidden unit at time step t is given below.

ht = ut ∗ ht−1 + (1− ut) ∗ h
′

t

Sigmoid

Sigmoid

tanh

+

+ X

+
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Figure 2.18: Building module of GRUs.

2.6 Recursive Neural Networks (RNNs)

Recursive neural networks are non-linear adaptive models, which learn and
predict based on the deep structured data. In the early ’90s, the neural net-
works were successful while processing fixed-length data and variable-length
sequences. Still, they cannot apply efficiently on structured data, such as the
logical terms, trees, and graphs. Christoph Goller et al. [8] first presented
a novel approach that was capable of solving inductive inference problems
on complex symbolic structures of variable size. Since then, the researchers



CHAPTER 2. DEEP NEURAL NETWORKS (DNNS) 34

are working to represent and classify structured data with the help of neu-
ral networks. Sperduti et al. [34] have proposed an approach of generalized
recursive neurons, where all the supervised sequence classification networks
can be generalized into structures. The authors have presented a framework
to solve the problem of processing structured information [6].

The principle motivation behind the recursive neural networks is to work
with the information of different sizes and topologies. In contrast, the feature-
based approach works with a fixed-size data. A backpropagation technique
is used, known as Backpropagation Through Structure (BPTS) to train a
recursive neural network. Recursive structures are found in natural scenes
and natural language sentences [33]. The authors have proposed a structure
predicting algorithm based on a recursive neural network that parses natural
scenes, natural language sentences and predicts with appropriate class labels.
Figure 2.19 illustrates the parsing process of natural scene and sentence in
RNNs.

Figure 2.19: Parsing natural scene and sentence in RNNs. Source: [33]

Advantages of recursive neural networks

• Robust against the vanishing gradient problem.

• Efficiently learn hierarchical, structured and variable length data.

Disadvantages of recursive neural networks

• The hierarchical structure of every input data must be known while
training.

• Difficult to work in mini-batches as the hierarchical structure changes
for every training data.
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Distributed DNN inference

Intelligent applications enable by advanced artificial intelligence solutions
have been deployed in places ranging from homes to far away satellites. In
fact, machine learning techniques allow to obtain high accuracy and reli-
ability in several tasks, especially deep neural networks, natural language
processing, image and voice recognition, and computer vision. Self-driving
vehicles, smart assistant applications are some of the contributions of ad-
vanced machine learning technologies. Deep neural networks (DNNs) require
high computational resources to train and predict models. Today’s cloud
technologies provide extensive resources for running DNN tasks. Heavy com-
putation of intelligent applications are taking advantage of this cloud facili-
ties. The main disadvantage of the cloud-only approach lies in transmitting a
significant amount of data through the wireless communication channel with
high latency. With the advancement of the powerful System on Chip, the
end devices are becoming resourceful and capable of executing a DNN task.
Moreover, researchers are also focusing on offloading the DNN tasks or parti-
tioning DNNs to the neighboring edge/fog devices, which are relatively more
potent than the end devices for accelerating DNN computation by alleviating
device-level computing cost and memory usage. Generally, DNN inference
is offloaded to the edge. A trained network (model) is used to predict/infer
the test samples to predict the output in DNN inference. The rest of this
chapter reviews research works in DNN inference acceleration that are more
relevant.

3.1 Distributed mobile computing system

Most DNN applications are performed on client-server architecture due to
adequate computing capability required for executing DNN tasks. Mao et

35
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al. [23] have proposed a local distributed mobile computing system for DNN
(MoDNN). This first work has considered heterogeneous mobile devices in a
local cluster communicating over Wi-Fi.

The article has described the methodologies as follows. First, the authors
have built a heterogeneous mobile computing cluster, connecting through
Wi-Fi direct, a standard for peer-to-peer wireless communication, which has
a high transfer rate (∼ 250 Mbps) compared to a cellular network. Second,
two layer-aware partitioning schemes have been proposed. Most state-of-the-
art DNN architectures are designed by the convolutional layers, followed by
the fully-connected layers. The convolutional layers are computing-intensive,
whereas the fully-connected layers consume excessive memory. Based on ex-
periments, authors have observed that the convolutional layer’s computing
cost depends on the size of the input, and the number of weights affects the
memory usages in case of the fully connected layers. They have proposed
a Biased One-Dimensional Partition (BODP) based on computing capabil-
ities of mobile devices for partitioning the convolutional layers. A weight
partitioning algorithm is introduced to partition the fully-connected layers
inspired by the spectral clustering techniques which cluster the network using
the eigenvalues of the similarity matrix of the data. Finally, the authors have
implemented a scheduler for each mobile device as a middleware to plan the
overall execution process.

The implementation is accomplished on the MXNet deep learning frame-
work. The authors have used the VGG16 pre-trained DNN model, which is a
very popular image recognition algorithm. The evaluation report of MoDNN
suggests that the execution time decreases significantly based on the increas-
ing number of worker nodes (mobile devices). The execution time improves
by 2.17–4.28 times when the number of worker nodes increases from two to
four. Figure 3.1 overviews the distributed mobile computing system.

3.2 Neurosurgeon

Kang et al. [18] have investigated both cloud-only execution and computa-
tion partitioning methodology between the end devices and the cloud infras-
tructure. They have experimented with eight intelligent applications in the
domain of computer vision and natural language processing. They have also
designed a scheduler that automatically partitions the DNN computation to
find the best computation time and communication latency.

In the cloud-only approach, the authors have offloaded DNN computa-
tion to the cloud infrastructure through a wireless communication medium.
The Jetson TK1 mobile platform is used as an end device, and a powerful
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Figure 3.1: An overview of distributed mobile computing system.

computer equipped with a high performing GPU is used as a server. They
have also experimented with DNN task execution in the mobile/end devices.
The cloud processing has a higher computation impact than the mobile/end
devices, but the communication latency is significantly high. Communica-
tion latency varies based on transmitted data size. As the end devices are
getting smarter and resourceful every day, DNN task execution achieves sig-
nificant improvement, but often leads to extreme energy consumption. The
cloud-only processing provides significant computation efficiency over mo-
bile processing and achieves better performance with a fast communication
medium.

Fine-grained computation partitioning is another approach proposed by
the authors. The DNN computation is partitioned between the end/mo-
bile device and the cloud. They have analyzed the computation behavior
of popular DNN architectures at the layer granularity. Most state-of-the-
art DNN architectures are formed based on conventional layers, such as fully
connected, convolutional and pooling. Some additional computations are per-
formed to provide more accuracy, such as normalization, softmax, argmax,
and dropout. Authors have partitioned the DNN architectures to execute
some of the layers on the end/mobile platform and the rest on the cloud in-
frastructure. Based on the observations, the fully-connected layers are most
costly with respect to computation time than other layers. It is also observed
that the best partition point depends on the DNN architectures and appli-
cation areas. For instance, a computer vision application provides the best
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efficiency if the partitioning point is in the middle of the DNN, but in the
case of speech recognition and natural language processing, partitioning at
the beginning or the end is more suitable.

The best efficient point of partition depends mostly on the topology of the
architecture. However, some other factors also affect the partitioning point,
such as the state of the wireless medium and the cloud infrastructure load
factor. The wireless medium has a variance, which affects the transmission
latency. Therefore, the query service time gets increased due to the load pat-
tern of the data center. Considering the above aspect, authors have proposed
an intelligent DNN partitioning engine called Neurosurgeon, which selects the
best partitioning point to optimize computation, communication latency, and
energy consumption. Neurosurgeon consists of two phases, such as deploy-
ment phase and runtime phase. The deployment phase generates a prediction
model by profiling the end/mobile devices and the server. The information
is stored in the mobile devices for future prediction of latency and energy
cost of each layer. In the runtime phase, four steps are performed. First,
analyzing and extracting the DNN layer configurations. Second, predicting
layer performance from the layer prediction model. Third, evaluating the
partition point considering the wireless bandwidth and the server load, and
finally, executing the DNN partition between the end/mobile platform and
the server/cloud. Figure 3.2 illustrates the overview of the Neurosurgeon.

Figure 3.2: An overview of the Neurosurgeon. Source: [18]

3.3 DNN Surgery

Hu et al. [16] have proposed a framework, Dynamic Adaptive DNN Surgery
(DADS), that supports partitioning the DNN architectures between the edge
and the cloud.

While designing the DNN Surgery, authors have given importance to two
aspects. First, the dynamic behavior of communication networks, and sec-
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ond, the structural behavior of the DNN architecture. The partition decision
depends on the network conditions. During peak hours, the throughput de-
creases due to the massive amount of traffic in the LTE (4G) network. On
the contrary, the computation latency increases under high throughput condi-
tions. The best possible cut decision needs to be ensured considering both the
scenarios. In the case of peak hours, the layer with a smaller data size than the
input is considered as partition point. The DNN computation is partitioned
at the input layer during the higher network capacity period. Another con-
cerning issue is that recent DNN architectures are based on directed acyclic
graphs (DAGs) topology instead of chain topology. Partitioning the DAG
topology needs more graph-theoretic analysis than the chain topology lead-
ing to the NP-hard problem. To mitigate both the network and the topology
problem, authors have proposed two adaptive dynamic schemes, such as DNN
Surgery Light (DSL) and DNN Surgery Heavy (DSH). The proposed DADS
continuously monitors the network condition and decides which scheme is ap-
propriate for the current state. If the network is in a lightly loaded condition,
the DSL is applied; otherwise, the DHL is suitable for heavily loaded condi-
tions. The DSL’s primary goal is to minimize the overall delay to process one
frame, and the DHL aims to maximize the throughput. To reduce the overall
delay, the problem is converted into a min-cut problem to find the globally
optimal solution. Figure 3.3 shows the conversion of the min-cut problem. An
approximation approach is applied to solve the NP-hard problem, which is
not solvable in polynomial computational complexity.

Input

3 x 3 
Conv

3 x 3 
Conv

Avg 
Pooling V1

V2

V3

V4 V'1

V2

V3

V4V1

Edge

Cloud

Cut

Layer representation Graph representation

Conversion to minimum s-t cut problem

Figure 3.3: The conversion to the min-cut problem. Source: [16]

Authors use Raspberry pi 3 model B as the edge device and Cloud Ali
as the cloud. The client-server interface is implemented using the gRPC pro-
tocol. The edge device extracts the sample frame from the self-driving car
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video data set. The edge also makes the partition decision based on the net-
work condition and accordingly processes the allocated layers. The partition
decision and the intermediate results are transmitted to the cloud after the
execution phase at the edge. The cloud receives the partition decision and
executes the rest of the computation. The DNN surgery is compared with
the edge-only and the cloud-only approaches. This technique has a com-
putation latency speedup of 6 and 8 times (approx.) compared with the
edge-only and the cloud-only approaches, respectively. In terms of through-
put gain, it has a speedup of 8 and 11 times (approx.) compared with the
other two approaches. The work also compares with Neurosurgeon [18]. The
DNN surgery and the Neurosurgeon perform equally in the chain topology,
but the DNN surgery outperforms the Neurosurgeon in heavy workload con-
dition. The overall argument of this research suggests that if the network
provides a high bandwidth and a high data rate, it is advisable to offload the
large portion of the DNN computation to the cloud for better performance.
The edge-only approach is feasible only in low data rate conditions.

3.4 Distributed deep neural network

Distributed Deep Neural Network (DDNN) [38] is a framework over dis-
tributed computing hierarchy, which consists of the distributed end devices
(local network), the edge, and the cloud. A single end-to-end DNN model
is jointly trained by the framework over three-tier (i.e., a local network, the
edge, and the cloud) for fast and efficient localized inference with better
prediction confidence.

In conventional distributed DNN computation, a small neural network
(NN) model is executed in the end devices for initial feature extraction, and
a large NN model is executed in the cloud for more robust feature extraction
and classification. These approaches need to encounter some challenges, such
as limited computation capability of resource-constrained devices due to in-
sufficient memory and low battery power, aggregation of sensor data from
multiple end devices for a single DNN task execution, and joint training of
the models on the end devices, the edge, and the cloud. Teerapittayanon et
al. [38] have proposed a framework that is capable of mapping sections of a
DNN over distributed computing hierarchy, training a DNN model in a dis-
tributed manner, and allowing automatic sensor fusion through aggregation
schemes. The DDNN framework has exit points defining the sample classifi-
cation at earlier points in a NN. In the distributed environment, the DDNN
framework has three exit points, e.g., local exit, edge exit, and cloud exit.
When a classification task achieves a certain level of prediction confidence on
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the end devices, the process exits from the local exit point without proceed-
ing to the edge or the cloud (see Figure 3.4). This application also works
with multiple geographically distributed end devices, and edge networks,
which are aggregated together for performing classification tasks. Authors
have presented three approaches for aggregating the output of the end de-
vices or the edge networks: Max pooling (MP), Average pooling (AP), and
Concatenation (CC). The joint training follows the GoogleNet [37] training
process. During the back-propagation phase, the calculated loss from each
exit point is accumulated together to train the entire network jointly.

The DDNN reduces communication cost 20× compared to offloading raw
sensor data from the end devices to the cloud.

Figure 3.4: An overview of distributed deep neural network framework.
Source: [38]

3.5 Distributed inference acceleration (DINA)

This thesis has implemented a DNN adaptive task partitioning and offload-
ing approach based on the research paper by Mohammed et al. [25], which
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is inspired by the recent contributions in the DNN inference acceleration
mentioned above.

Most of recent approaches split the DNN into two parts: one part ex-
ecutes on the end or edge device, and the other part on the cloud. These
approaches have some trade-off between computation time and transmission
time. Mohammed et al. [25] have proposed a technique to split the DNN
computation into multiple partitions that can be processed locally on end
devices or distributed the partitions across one or multiple fog nodes in a
network. Authors have introduced two schemes: an adaptive DNN partition
and a distributed algorithm based on matching theory to offload the DNN.
Figure 3.5 overviews the underlying model. In Figure 3.5 (a), the DNN in-
ference task di divides into sub-tasks (i.e., v0, v1, . . . , vn). The sub-tasks are
the DNN layers in the context of the DNN inference. Moreover, the sub-task
can be partitioned into more smaller tasks (i.e., vi = vi0, vi1, . . . , vin). These
sub-divided tasks are then offloaded to the neighboring fog nodes selected
based on the utilities shown in Figure 3.5 (b).
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Figure 3.5: An overview of the DINA. Source: [25]

Mohammed et al. [25] have presented Distributed INference Acceleration
(DINA), which is based on a matching game approach. The matching game
theory, also known as search and matching theory, is an arithmetical frame-
work introduced in economics. This theory describes the relational behavior
between two sets of entities with preferences on each other [30]. It has been
applied in wireless networking for resource allocation [13]. The significant
contribution of this work is given below. All the notations are summarized
in Table 3.1.
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Symbol Description

U Set of user nodes
F Set of fog nodes
A Set of DNN layers/partitions
ϕfa Service utility of fog node f
ϕuf Service utility of user node u
�u Preference relation of user node u
�f Preference relation of fog node f
µu Preference list of user node u
ruf Data rate of user node u towards fog node f
xfa Binary variable denoting task a assigned to fog node f
τa Delay threshold for task a
δ Edge delay
θ Maximum fog nodes for offloading
Γ Target transmission rate threshold
Tfa Total execution time for task a at fog node f
T tr
fa Transmission time for task a to fog node f
T exe
fa Execution time for task a at fog node f
T que
fa Queuing time for task a at fog node f

T
que

fa Average queuing time for task a at fog node f

Table 3.1: Summary of notations.

3.5.1 Fine-grained adaptive partitioning (DINA-P)

The DNN task is divided into multiple fragments that are smaller than a
single layer. The partitioning scheme considers the specific characteristics of
layer types in different DNN architectures and represents the partition into
a matrix to reduce communication overhead.

The partitioning algorithm is called DINA-P and relies on utility functions
for both user nodes and fog nodes. The utility of a fog node denoted as f for
executing a task denoted as a of a user node denoted as u is:

ϕfa = xfa(t)(τa − T tr
fa − T exe

fa − T
que

fa ) (3.1)

where τa represents the delay threshold for task a. T tr
fa is the transmission

time for task a to fog node f and T exe
fa is the execution time for task a at fog

node f. T
que

fa denotes the average queuing latency. xfa ∈ {0, 1} is a binary
variable defines the offloading problem.

The utility of the user node u for a matching fog node f is defined as:
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ϕuf =
1

Tfa
(3.2)

Tfa = T tr
fa + T exe

fa + T que
fa + δ (3.3)

where Tfa denotes total execution time for task a at fog node f and δ is
the edge delay. Table 3.1 summarizes the notations.

Algorithm 1: Adaptive DNN partitioning (DINA-P)

Input : p: convolution kernel size; ϕfa: utility of f ; |fn|: number of fog
neighbors f of u ∈ U ; G: DAG for DNN inference task d;
Rm×n

a: matrix associated with subtask a, ∀a ∈ A; c: compute
power of f .

Output : DNN partitions P ={P1, P2, P3, . . .}
Init : P ← ∅, c0 = 0, w ← max(m,n)

1 forall a belonging to parallel paths in G
2 for i ∈ [1, |fn|+ 1]

3 ρi ←
∑i−1

j=0 (cj/ϕfa)∑|fn|
j=0 (cj/ϕfa)

4 if convolutional layer
5 ωi ← bρi · (w − (p− 1))c
6 Pi ← Pi ∪Ra[ωi−1][ωi + (p− 1)]

7 else // fully-connected layer

8 ωi ← bρi · wc
9 P̂ = Ra[ωi−1][ωi]

10 Pi ← Pi ∪ P̂
11 P ← P ∪ Pi

Algorithm 1 describes the adaptive partitioning algorithm. Input, out-
put, and init sections initialize all the variables. All the parallel paths in the
DNN inference task are considered (line 1). For each neighboring fog f, the
user node calculates the partition ratio ρi based on the computing capabili-
ties and the utilities of the fog nodes (line 2). This partitioning ratio is used
to divide the input task into the sub-task depending on the type of layers,
such as the convolution layers (lines 4-6) and the fully-connected layers (lines
7-10). The convolution layers need redundant information (i.e., pixels) for
computing convolution operation that makes the partitioning ratio different
from the fully-connected layers. The adaptive partition depends on the net-
work condition to provide maximum utilities for both the user nodes and the
fog nodes.
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3.5.2 Distributed DNN offloading (DINA-O)

This section describes a distributed algorithm for offloading the DNN task
to preferable fog nodes based on computation time, communication latency,
and queuing time.

After the partition, the sub-tasks are offloaded to the fog nodes. A single
DNN task d can be offloaded to multiple fog nodes; moreover, a single fog
node can be associated with multiple use nodes, which leads to a many-to-
many matching. The matching is obtained based on preference relations. The
association between a user and a fog node depends on the association of other
users to the same fog node. This kind of dependency is known as externality
in matching theory. Due to dynamic preference, stability is not guaranteed
with standard matching algorithms (e.g., Gale-Shapley [7]) under external-
ity [2]. Two-side exchange stability [3] addresses the problem where no user
remains unmatched. The offloading algorithm (DINA-O) adopts the concept
of two-sided exchange stability and addresses the optimization problem with
the help of swap matching. Algorithm 2 describes the offloading algorithm.

The distributed swap matching algorithm has two phases: initialization
and swap matching. Lines 1-6 describe the algorithm’s initialization, starting
with discovering the neighboring fog nodes. User nodes then calculate the
data rate toward the fog nodes. On this occasion, both the fog nodes and the
user nodes calculate their utilities based on the Eq (3.1) and the Eq (3.2),
and create a preference list. Before executing Algorithm 1 to partition the
DNN tasks, an initial random assignment between the user nodes and the
fog nodes is performed by satisfying the following constraints : a DNN task
should offload to at most θ fog nodes at a given time, the transmission rate
should not be lower than a threshold Γ and the total time to execute the task
should not be more than the time τa for executing the same task locally.

In the swap matching phase (lines 7-27), the randomly matched pair exe-
cutes the swap matching if there is a swap-blocking pair. The swap blocking
pair satisfies the following conditions: the utilities should not decrease for
both the user nodes and the fog nodes after the swap, and the utilities of at
least one node should improve following the swap. Each user node sends a
request to its first preference fog node if the fog node is not associated with
it already. At this point, the fog node f calculates the utilities based on the
DNN sub-task a from the node u. If the utilities improve after the swap,
the fog node accepts the request. If the request is instead rejected, the user
node considers the second fog node from the preference list for swap. The
iteration comes to an end if all the user nodes attach with their preferred fog
nodes, and no more swaps are possible; thus, stable matching is obtained,
and sub-tasks are offloaded to the fog nodes.
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Algorithm 2: DNN Inference Offloading (DINA-O)

Input : A set of FNs f, f ′ ∈ F and UNs u, u′ ∈ U
Output : A two-sided exchange-stable matching µ
// Phase 1: Initialization

1 Each u ∈ U discover its neighboring fog nodes f ∈ F
2 All nodes ∀u ∈ U ,∀f ∈ F calculate ruf
3 ∀f ∈ F creates a preference list with Eq. (3.1)
4 ∀u ∈ U creates a preference list with Eq. (3.2)
5 Randomly match (u, f),∀f ∈ F , u ∈ U such that the constraints are

satisfied
6 Execute Algorithm 1 to partition DNN tasks d ∈ D
// Phase 2: Swap matching

7 while ∃µu′,f ′

u,f : (f ′, µu
′,f ′

u,f ) �u (f, µ), (u′, µu
′,f ′

u,f ) �f (u, µ), (f, µu
′,f ′

u,f ) �u′

(f ′, µ), (u, µu
′,f ′

u,f ) �f ′ (u′, µ)

8 Update ϕfu and ϕfu based on µ
9 Sort fog nodes f ∈ F based on preference �u

10 Sort user nodes u ∈ U based on preference �f

11 if µu,f = ∅ // There is an unmatched item o
12 u sends proposal to most preferred f

13 f computes ϕfu

(
µo,fu,o

)
14 if (u, µo,fu,o) �f (u, µ) and constraints hold

15 Accept proposal, µ← µu
′,f ′

u,f

16 Λf ← Λf ∪ {u}, Λu ← Λu ∪ {f}
17 else Reject proposal and keep matching µ

18 if (f ′, µu
′,f ′

u,f ) �u (f, µ) and (f, µu
′,f ′

u,f ) �u′ (f ′, µ)

19 u sends proposal to f ′ and u′ to f

20 f , f ′ compute ϕf ′u(µu
′,f ′

u,f ), ϕfu′(µu
′,f ′

u,f )

21 if (u′, µu
′f ′

u,f ) �f ′ (u, µ) and constraints hold

22 Accept proposal, µ← µu
′,f ′

u,f

23 Λf ′ ,Λu ← Λf ′ \ {u′} ∪ {u},Λu \ {f} ∪ {f ′}
24 else if (u, µu

′f ′

u,f ) �f (u′, µ) and constraints hold

25 Accept proposal, µ← µu
′,f ′

u,f

26 Λf ,Λu′ ← Λf \ {u} ∪ {u′}, Λu′ \ {f ′} ∪ {f}
27 else Reject proposal and keep matching µ

The notation µu′,f ′

u,f indicates the swap matching.

µu′,f ′

u,f = {µ\{(u, µ(u)), (u′, µ(u′))}}∪
{(u, {{µ(u)\f} ∪ f ′}), (u′, {{µ(u′)\f ′} ∪ f})}
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The notation (f ′, µu′,f ′

u,f ) �u (f, µ) indicates that the user node u prefers

the fog node f ′ and the swap matching µu′,f ′

u,f over the fog node f and µ,
respectively. An example with random utilities of the user nodes and the
fog nodes explains the swap matching more clearly as follows. The letters
and the numerical values represent the user nodes and the fog nodes, respec-
tively. Table 3.2 and Table 3.3 depicts the random utilities of the user nodes
and the fog nodes. The preference list of the user nodes and the fog nodes
based on the utilities are illustrated in Table 3.4 and Table 3.5.

Node A Node B Node C

1 : 93 1 : 2 1 : 49
2 : 97 2 : 15 2 : 7
3 : 84 3 : 97 3 : 71
4 : 23 4 : 94 4 : 72

Table 3.2: Utilities of fog nodes calculated by user nodes.

Node 1 Node 2 Node 3 Node 4

A : 70 A : 91 A : 50 A : 22
B : 21 B : 23 B : 92 B : 71
C : 45 C : 20 C : 59 C : 82

Table 3.3: Utilities of user nodes calculated by fog nodes.

Node A Node B Node C

2 > 1 > 3 > 4 3 > 4 > 1 > 2 4 > 3 > 1 > 2

Table 3.4: User node preference list based on the fog node’s utilities.

Node 1 Node 2 Node 3 Node 4

A > C > B A > B > C B > C > A C > B > A

Table 3.5: Fog node preference list based on the user node’s utilities.

Figure 3.6 illustrates simple network considered in this example. The
circles and the triangle represent the user node and the fog node, respectively.
The edge indicates the strength of the communication link. For example, the
user node A prefers to offload the DNN sub-tasks to the fog nodes 1, 2, 3
instead of 4 considering the utilities.
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Figure 3.6: Topological view of user and fog nodes in the considered example.

Let us assume that, after applying the random match (line 5 of Algo-
rithm 2), the pairs are (A, 3), (B, 1), (C, 2). The swap matching applies if
the pairs are swap-blocking pairs and the conditions for swap-blocking pairs
satisfy. Table 3.6 shows a scenario when the swap executes. (A, 3) and (B,
1) are a swap-blocking pair and satisfies the conditions. Thus, a swap occurs
between the pairs resulting in new pairs (A, 1) and (B, 3). The new pair (A,
1) and random match pair (C, 2) are not a swap-blocking pair. They do not
perform a swap. After the swap matching, the stable pairs are (A, 1), (B,
3), (C, 2).

(A, 3) and (B, 1) (A, 1) and (C, 2)

1 �A 3 2 �A 1
3 �B 1 1 �C 2
A �1 B C �1 A ×
B �3 A A �2 C
State: Swap State: No swap

Table 3.6: Swap matching.
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Performance Evaluation: A custom python network simulator has
been employed to evaluate the performance of the research work by simu-
lation. The authors use the Berkeley Deep Drive [39] dataset and experi-
ment on four state-of-the-art DNN architectures, i.e., AlexNet, ResNet32,
VGG16, and NiN. DINA is compared with three schemes: a random of-
floading with DINA partitioning (RANDP), a random offloading without
partitioning (RAND), and a greedy offloading without partitioning (GANC)
and showed an outstanding performance in terms of total execution time
compared to the other three approaches. It indicates approximately 1.7-5.2
times better performance. In the case of transmission time, DINA performs
around 1.7-2.9 times better than the RAND and the RANDP. DINA is also
compared with the DNN Surgery [16] and outperforms by 2.6-4.2 times ap-
proximately in total execution time.



Chapter 4

Implementation

This chapter explains the methodologies used to implement DINA [25] as
a software framework for heterogeneous embedded devices. Two schemes of
DINA: a fine-grained adaptive partitioning and a distributed swap-matching
algorithm-based matching theory are implemented and evaluated in this the-
sis. This chapter focuses on the framework, libraries, tools used, and the
implementation approach of both the schemes.

4.1 Frameworks, libraries and tools

PyTorch [28] is used as the development framework in this thesis. PyTorch
is a free and open-source library for machine learning research based on the
Torch library developed by the Facebook AI research lab. It operates in two
interfaces, such as Python and C++. Python interface is more stable and
used than C++. The reasons to choose PyTorch as a development framework
are listed below.

• Pythonic: Python is a widely-used programming language in the ma-
chine learning research area. Python integration is easier in PyTorch,
and NumPy, one of the most popular Python libraries, is also integrated
with PyTorch. Python makes PyTorch framework easy to learn, code,
and debug.

• Data parallelism: PyTorch can distribute computation among mul-
tiple CPUs or GPUs.

• Dynamic computational graph: PyTorch supports dynamic com-
putation, where every level of computation can be accessed and changed
programmatically at run-time based on the network’s behavior. Whereas

50
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other machine learning frameworks with static graph support work like
a black box.

• Cloud support: PyTorch supports all well-known cloud platforms for
large-scale datasets and deep learning models.

• Community support: PyTorch has small but very efficient commu-
nity support, which is monitored by some incredible, talented, and
focused contributors and developers.

Section 2.4 presented four state-of-the-art CNN architectures: AlexNet,
VGG16, ResNet34, and NiN, which were used to train models for DNN in-
ference. These four architectures are the most popular and widely used for
image recognition in different applications. Moreover, two of them, namely,
AlexNet and ResNet34, follow the Directed Acyclic Graphs (DAGs) topology,
and the other two architectures: VGG16 and NiN, follow the chain topology.
The PyTorch incorporates a subpackage called torchvision.models that
contains the definition of the model architectures and pre-trained models on
ImageNet, such as AlexNet, VGG16, ResNet34 for image classification appli-
cation. This thesis has used the torchvision.models to train the models on
BDD100k dataset [39] except for the Network-In-Network (NiN). The defi-
nition of NiN is written separately and imported for training the model for
DNN inference. The trained models are copied to heterogeneous fog nodes
with the help of gRPC remote procedure call (gRPC) protocol. Figure 4.1
visualizes the topologies of the benchmark DNN architectures.

Figure 4.1: Topologies of the benchmark DNN architectures. Source: [25]

Appendix A.2 describes the gRPC communication protocol, which is used
as the communication protocol in this thesis. The following steps are per-
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formed to incorporate the gRPC protocol in the python programming envi-
ronment.

• Create a remote procedure in the server-side (fog nodes), which exposes
to the client.

• Create a proto file (e.g., message.proto), which contains service meth-
ods and protobuf message type definitions for all requests and response
messages.

• Generate gRPC classes for python, which is handled by special tools.
For python, grpcio and grpcio-tools handle the class generation
functionality.

$ pip install grpcio

$ pip install grpcio-tools

$ python -m grpc_tools.protoc -I. --python_out=.

--grpc_python_out=. message.proto

The above commands generate two python files, e.g., message pb2.py

(message class) and message pb2 grpc.py (server and client classes).

• Create the gRPC server and the client in python programming envi-
ronment.

The client and the server use the classes generated by the gRPC-tools
to establish the gRPC channel, the stub methods, and the gRPC server for
handling the remote procedure calls.

4.2 Implementation details

This section describes the approaches taken to partition a DNN task and
offload the sub-tasks to the fog nodes for DNN computation. The procedure
starts with training the model parameters in four state-of-the-art DNN archi-
tectures and then implementing the DINA-P and the DINA-O algorithm for
partitioning the DNN task and offloading the sub-tasks to the neighboring
fog nodes, respectively for DNN inference.

4.2.1 Training models

The models need to be trained initially to perform DNN inference. The
BDD100k [39] has twelve categories/classes of objects, i.e., rider, traffic light
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(TL), lane, traffic sign (TS), bike, motor, truck, bus, car, drivable area (DA),
person and train that can be classified from the images. Image attributes are
stored in a JavaScript Object Notation (JSON) file format.

In supervised learning, the output of the prediction related to image clas-
sification and speech recognition is compared with the target output to pro-
vide the accuracy of the prediction. Usually, one-hot encoding represents
the target output. One hot encoding is a process that transforms the object
categorical values into binary values for better prediction in machine learning
applications. As mentioned earlier, the BDD100k data set images have differ-
ent attributes, such as weather, scene, timeofday, timestamp, and category.
The categories are extracted from the file for each image and transformed
into one-hot encoding. For example, consider one image from the data set
with the following categories of objects: traffic light, traffic sign, car, drivable
area, and line. Table 4.1 represents the categories as one-hot encoding.

Ride TL lane TS Bike Motor Truck Bus Car DA Person Train

0 1 1 1 0 0 0 0 1 1 0 0

Table 4.1: Example of one-hot encoding.

The following strategies are taken to train a model.

• The categories are represented as one-hot encoding for each image in
the data set.

• Each image needs to be transformed into a suitable format before
training based on the DNN architecture. All the images are resized,
cropped at center, and normalized. The resize and the normalization
values are similar to the Imagenet dataset. As the BDDdataset and
the Imagenet lies in a similar domain, the difference of the mean and
the standard deviation are inferior. This transformation is done using
torchvision.transforms.Compose package. Table 4.2 describes the
transformation parameters used in different DNN architectures.

• All the state-of-the-art DNN architectures are implemented by the Py-
Torch except the NiN architecture. torchvision.models package is
used to load the architecture for training where the model parame-
ters are assigned with random values initially. The NiN architecture is
implemented separately.

• The models are trained in GPU for high efficiency. PyTorch provides
torch.cuda package for CUDA tensor types. PyTorch supports the
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Resize (pixels) 256
Normalization

Mean [0.485, 0.456, 0.406]
Std [0.229, 0.224, 0.225]

Center crop (pixels)
AlexNet 227
VGG16 224
ResNet34 224
NiN 32

Table 4.2: Transformation parameters.

fast transfer of the computational graph generated in CPU to GPU
memory.

• The images from the dataset are trained in mini-batches. The ideal
batch size is between 64 and 256. The batch size has a significant
impact on the test accuracy. If the batch size is kept small, the number
of model parameters update more frequently per epoch.

4.2.2 Implementing DINA-P and DINA-O

Section 3.5 describes the algorithms for partitioning the DNN task and of-
floading the sub-tasks to neighboring fog nodes. The DINA-P partitions the
DNN task, and the DINA-O detects the best match with the swap-matching
phase and then offloads the sub-tasks to the best matching fog nodes. After
executing the DNN computation in the neighboring nodes, the results are
sent back to the user node. The following steps are performed.

• The images of the dataset are used as the DNN tasks. The implemen-
tation approach of this thesis is mostly targeting image classification
application for self-driving cars. The same approach can be used for
other applications as well, such as voice recognition, natural language
processing, which require heavy DNN computation. The main idea is
to offload the DNN computations to the edge devices which have high
hardware configurations than the user devices.

• According to the Eq (3.1) and the Eq (3.2), the utilities of the fog
nodes and the user nodes are calculated. At the beginning of the ex-
periment, random utilities are considered for simplicity. After calculat-
ing the transmission time (T tr

fa) and the execution time (T exe
fa ) through

some experiments, the actual utilities are measured for the user nodes
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and the fog nodes. The delay threshold (τa) is chosen based on the size
of the sub-tasks. The queuing time (T que

fa and T
que

fa ) and the edge delay
(δ) are considered zero for the simple network topology. The execution
of the DINA-P algorithm requires the utilities of the fog nodes. The
number of sub-tasks depends on the number of discovered fog nodes.
After the partition, the sub-tasks are offloaded accordingly. For exam-
ple, [1,3,224,224] represents an image tensor where one indicates the
batch-size, three denotes the number of channel in the image (e.g.,
RGB), the rest are width and height of the image. When the image is
fed to the DINA-P algorithm considering the random utilities as 4.0
and 6.0 for the two fog nodes, the algorithm returns [1,3,90,224] and
[1,3,136,224], respectively as the partitioning results. The size of the
sub-tasks depends on the utilities of the fog nodes.

• The DINA-O algorithm decides where to offload the sub-tasks. After
the final matching, the user offloads the sub-tasks to the appropriate
fog nodes for execution.

• A distributed strategy is applied for executing a complete DNN task.
The input image is divided into sub-tasks by the DINA-P algorithm and
offloaded to the matching fog nodes for execution. After the completion
of the execution, the results are sent back to the user device, which are
merged and partitioned again for offloading.

• The fog nodes execute the state-of-the-art DNN architectures layer-
by-layer. Most of the DNN architectures follow a standard structural
convention, a stack of convolutional layers followed by a series of fully-
connected layers. The model parameters are separated for the indi-
vidual layers. The parameters are assigned when that particular layer
is executing. Figure 4.2 illustrates an overview of the distributed ap-
proach.

4.2.3 Implementation approach

The DNN task is partitioned using three different approaches, i.e., adap-
tive partitioning (DINA-P and DINA-O), random partitioning, and greedy
offloading, for the purpose of evaluation.

• Adaptive partitioning: The DINA-P algorithm is applied in this
partitioning approach. After discovering the neighboring fog nodes and
an initial matching satisfying the constraints (see Section 3.5.2), DNN
partitioning is performed with DINA-P (Algorithm 1). The sub-tasks
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Figure 4.2: An overview of the distributed approach.

are offloaded to the fog nodes applying the DINA-O (Algorithm 2)
algorithm after the final matching is obtained.

• Random partitioning: The partition and the offloading are executed
without considering the utilities and the preference list of the user nodes
and fog nodes. The DNN task is divided randomly and offloaded to
randomly assigned fog nodes.

• Greedy offloading: In the greedy offloading, the whole DNN task
offloads to one of the randomly associated fog nodes. The DNN task is
not partitioned in this approach.



Chapter 5

Evaluation

Chapter 4 described the implementation details for partitioning a DNN task
and offloading the sub-tasks to the associated fog nodes. A constrained test
environment is built for evaluating the implementation described in Sec-
tion 5.1. This thesis conducted an experimental research, which is a quan-
titative methodological approach. A quantitative research method defines
a systematic investigation of observable phenomenon with experiments and
statistical, mathematical, or numerical analysis. In this chapter, the exper-
imental results are discussed in detail. Section 5.2 describes the selection of
a quantitative dataset. The topological view of the network is discussed in
Section 5.3.

5.1 Experimental setup

This thesis utilizes a real hardware platform to depict as the fog nodes and
the user nodes. The Nvidia Jetson Nano development kits are small but
very powerful devices, used as the fog nodes. It is equipped with a Quad-
core ARM A57 processor and Nvidia Maxwell GPU micro-architecture, and
is useful for deploying computer vision and deep learning applications. Ta-
ble 5.1 illustrates the server platform specifications.

Hardware Specifications

CPU Quad-core ARM Cortex-A57 1.43 GHz
GPU Nvidia Maxwell architecture with 128 Nvidia CUDA cores
Memory 4 GB 64-bit LPDDR4

Table 5.1: Server platform specifications.

A Dell Latitude, 7400 model notebook, is used as a user device for ex-
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perimental purposes. Compared to modern embedded and portable devices,
a notebook is more powerful, but for simplicity, it is used as a dumb termi-
nal. The user device offloads the heavy DNN computation to the fog devices,
considering the fog devices’ utility values. Table 5.2 illustrates the client plat-
form specifications. A visual illustration of experimental setup consisting of
Nvidia Jetson Nano devices and Dell latitude is shown in Figure 5.1.

Hardware Specifications

Model Dell Latitude 7400
CPU Intel Core i5-8365U 1.60GHz
Memory 15.4 GB 64-bit SODIMM DDR4

Table 5.2: Client platform specifications.

Figure 5.1: An illustration of experimental setup.

5.2 Selection of the dataset

The Berkeley Deep Drive dataset (BDD100k) [39] is the largest driving video
data set where 120M images are extracted from 100K videos collected from
autonomous vehicles. The images are organized and managed, considering
diverse geographical, environmental, and weather data to train the DNN
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model more accurately. Decision made by an autonomous car while driving
depends mostly on how well the model has been trained. To train a model and
inference after training, selecting an appropriate data set is crucial for sen-
sitive application areas. BDD100k provides a wide variety of visual driving
scenes and ten task facilities, such as image tagging, imitation learning, road
object detection, lane detection, semantic segmentation, drivable area seg-
mentation, multi-object detection tracking, instance segmentation, domain
adaptation, and multi-object segmentation tracking.

5.3 Network topology

This thesis uses an elementary network topology. The experiment is done in
a constrained environment containing two fog devices and one user device.
All the devices are connected via the ethernet cables and a switch. Static IP
addresses are used by the devices to communicate. The user device and the
fog devices act as a client and servers, respectively. A switch is used as a
central hub to connect the client and the servers. This simple topology is set
for experimental purposes. The thesis implementation works for multiple het-
erogeneous fog devices and user devices. The network topology is illustrated
in Figure 5.2.

Figure 5.2: A simple network topology.
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The communication is bi-directional such that both the user device and
the fog devices can send messages alternatively. Appendix A has described
two popular communication protocols which provide a bi-directional commu-
nication facility. This thesis has experimented with both the communication
protocols and found that the gRPC provides better performance than the
MQTT with respect to transmission time (see Appendix A.3). The overall
implementation is evaluated, running the gRPC as the communication pro-
tocol.

5.4 Experimental results

Section 4.2.3 described the implementation approach of this thesis. Based
on the network topology, the implementation is evaluated using three ap-
proaches discussed below.

Adaptive partitioning (Adaptive): The DNN partition is executed
with DINA-P (Algorithm 1) and splits the task into at most two sub-tasks
due to the number of fog nodes considered in this experiment. After execut-
ing the swap matching phase of the DINA-O (Algorithm 2), the user node
associates with the best fog node and offloads the significant portion of the
DNN task and the rest is executed in the user node.

Random partitioning (Random): The DNN task is randomly par-
titioned into at most two sub-tasks and offloaded to the fog nodes simul-
taneously. This approach does not execute the DINA-P and the DINA-O
algorithms.

Greedy offloading (Greedy): A whole DNN task is offloaded to one
of the fog nodes without applying the partitioning algorithm.

The evaluation of the implementation is done based on the transmission
and the computation time. The observed results suggest that both the trans-
mission and the computation time vary based on the DNN architectures and
transmitted data size. Throughout the evaluation, four state-of-the-art DNN
architectures (i.e., AlexNet, VGG16, ResNet34, and NiN) are considered.

Total computation time: Figure 5.3 illustrates the comparison of to-
tal computation time (Tfa) of the four state-of-the-art DNN architectures for
three schemes (Adaptive, Random, and Greedy). The adaptive scheme shows
better performance comparing the other two schemes except for the NiN ar-
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chitecture. As the network grows deeper, the computation time increases.
The VGG16 is a very deep neural network which has 16 weighted layers. Thus,
it consumes the most computation time in the comparison graph. ResNet34
is also a deep network, but the residual learning helps to reduce the com-
putation time. The best performance is obtained in the case of AlexNet and
NiN as both have a linear topology and a small number of layers.

AlexNet VGG16 ResNet34 NiN
State of the art DNN architecture
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Figure 5.3: Total computation time of the three schemes on four state-of-
the-art architectures.

Figure 5.4 demonstrates the improvement of the Adaptive scheme over
the Random and Greedy schemes. The figure shows how the adaptive ap-
proach outperforms the other two schemes, with improvement between 1.4
to 2.6 times in three DNN benchmarks (AlexNet, VGG16, and ResNet34).
In case of NiN architecture, the adaptive approach performs better than
the greedy solution but similar to the Random scheme. Appendix B shows
the layer-by-layer computation time comparison of three schemes (Adaptive,
Random, and Greedy) based on the four benchmarks.

Total transmission time: Figure 5.5 illustrates the comparison of total
data transmission time of the four state of the art DNN architectures for three
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Figure 5.4: Improvement (communication) of adaptive-partitioning against
other two schemes.

schemes (Adaptive, Random, and Greedy). In this case also, the adaptive
scheme exhibits the best performance. The transmission time remains below 3
seconds in three state of the art architectures (AlexNet, ResNet34, and NiN).
The transmission time mostly depends on the size of the transmitted data. In
VGG16, the middle layers consist of many input and output channels, which
increase the data size. At the beginning and the end of the network, the data
size remains considerably lower than the middle stage of the network.

Figure 5.6 demonstrates the improvement of the adaptive scheme over
the other two schemes (Random and Greedy). In this case, the adaptive
scheme achieves a performance that is 1.1 to 2.9 times more excelling than
the Random and the Greedy schemes in three state of the art DNN architec-
tures (VGG16, ResNet34, and NiN). In the case of AlexNet, the Adaptive
scheme shows similar performance to the Random scheme but more than two
times better performance than the Greedy solution. Appendix B illustrates
the layer-by-layer transmission time comparison of three schemes (Adaptive,
Random, and Greedy) based on four benchmarks.
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Figure 5.5: Total transmission time of the three schemes based on four state-
of-the-art architectures.
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Figure 5.6: Improvement (transmission) of adaptive-partitioning against
other two schemes.



Chapter 6

Conclusion

This thesis has provided an implementation of the algorithms for distributed
DNN inference acceleration proposed by Mohammed et al. [25]. Specifi-
cally, it includes: a fine-grained adaptive partitioning scheme to divide a
DNN based on the fog networks; and a distributed algorithm based on swap-
matching for offloading DNN inference to fog devices. Partitioning the DNN
task allows to employ pre-trained network without any modification by tailor-
ing partitions based on the computation and storage capabilities of devices.
The offloading algorithm reduces the total computation and communication
time, adapts to the network conditions, and increases the resource utilization
in the network.

The implementation has been evaluated on a fog testbed consisting of
Nvidia Jetson Nano devices. The experimental results show some key obser-
vations. First, communication latency increases in the intermediate layers of
the DNN benchmarks due to a large number of in and out channels. Second,
most DNN benchmarks are designed by the convolutional layers, followed by
the fully-connected layers where the fully-connected layers take more com-
putation time than the convolutional layers. Third, the model loading and
initialization in the GPU are time-consuming processes in a layer-by-layer
implementation of the DNN architectures. Moreover, the processing time in-
creases due to transferring the generated computational graph in CPU to
GPU memory for every layer separately. Finally, both the computation time
and the communication latency increase as the network grows deeper.

The evaluation demonstrates that the realized approach of joint parti-
tioning and offloading (i.e., DINA-P and DINA-O) achieves a significant
reduction in total execution time and total transmission time compared to
other schemes. In particular, it performs 1.4 to 2.6 times and 1.1 to 2.9 times
better in terms of computation time and transmission time, respectively.
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The work in this thesis can be extended by considering distributed learn-
ing instead of DNN inference. Federated learning or collaborative learning is
one of the types of distributed learning, where a DNN algorithm is trained
across decentralized heterogeneous fog devices, and each device has its local
data samples. The federated learning addresses some critical issues (e.g., data
privacy, data security, and data access control) as the private sample data of
each fog device are not shared with other fog devices throughout the learn-
ing process. The federated learning is widely adopted in the application areas
where data privacy and security have high priority, such as defense, telecom-
munications, and pharmaceutics. Another possible future work is evaluating
DINA in large-scale networks with several heterogeneous fog nodes and end
devices.
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Appendix A

Communication protocols

This thesis aims to offload the partitioned DNN tasks to the nearest fog
devices following their utilities. This requires to co-ordinate actions over a
network. In this regard, a communication protocol is needed as a set of rules
for sharing information between two or more entities via a physical wired
or wireless medium. Two communication protocols, such as publisher-and-
subscriber protocol (e.g., MQTT [27]) and client-and-server protocol (e.g.,
gRPC), can be considered. A short description of both protocols is provided
next.

A.1 Message Queuing Telemetry Transport

Message Queuing Telemetry Transport (MQTT) is a lightweight publisher-
and-subscriber network protocol. It typically runs over the TCP/IP and
supports other ordered, lossless, and bi-directional connections. This proto-
col has been widely used in the IoT technologies, where small sophisticated
devices need to communicate with low energy usage. Instead of communi-
cating with servers, all the devices (i.e., clients) send messages to an MQTT
broker by publishing and subscribing data on selected topics. MQTT-SN
(sensor network) is a variant of the MQTT used in sensor networks with
some additional functionalities, such as supporting more protocol suits (e.g.,
ZigBee, Z.Wave). Figure A.1 overviews the MQTT protocol.

A.1.1 Protocol operations

In MQTT protocol, there are two entities involved, namely, client and broker.
Broker acts similarly to server in client-server architecture and responsible
for message transmission, filtering between the clients. Clients are devices
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Figure A.1: An overview of MQTT protocol.

that prepare data to send and receive through a physical wired or wireless
medium. Clients do not communicate directly with each other, but instead
publish or subscribe to topics managed by the broker.

The broker plays an important role in the MQTT protocol: it handles
the authentication process of the connected devices on the network, manages
message publication, sessions, and subscription. The primary purpose of the
broker is to collect and queue the messages from the client published on a
topic and deliver the message towards the clients that subscribe to that topic.

Some essential properties are associated with the connection establish-
ment between the client and the broker. To establish a connection, the client
sends a CONNECT message. In response, it will receive a CONNACK mes-
sage from the broker. The clean session property is set to true to start a
new session with no message in the queue. Keep alive property keeps the
connection open for a particular duration. To maintain connection open, the
client periodically sends PINGREQ messages and the broker response with
PINGRESP message until the connection expires. MQTT-SN has a feature
known as sleep, which tells the broker that the client is going to sleep mode
for a certain period by sending a DISCONNECT message specifying the
DURATION parameter.

MQTT messages are published to the broker based on specified topics.
The broker delivers the message to those recipients who subscribe to the
topic. The topic may have different levels that are separated by forward
slash, such as fog1/task/adaptive-partition. The topic is case sensitive
and does not need to be pre-registered at the broker.
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Recipients can use a wild card to subscribe to multiple topics that have
a similar topic level. There are two wild cards for subscribing topics. The
single-level is denoted by a plus sign (+), which replaces one topic level.
For instance, +/task/adaptive-partition covers all the execution results
of the partitioned task by all the fog devices. The multi-level is denoted by a
hash sign (#). It replaces multiple topic levels. For example, fog1/task/#
covers the execution result of adaptive partitioning, random partitioning, and
greedy offloading.

The factor that helps the broker to regulate the message queue is known
as the MQTT Quality of Service (QoS) level. The QoS level defines the
guarantee of message delivery in MQTT. There are four QoS levels.

-1 : QoS -1 refers to fire and forget. It is suitable for non-critical and low
power applications. The broker instantly sends the published message
on a topic to the subscribed devices and removes the message. QoS
-1 does not require establishing an MQTT connection. There is no
acknowledgment processes in QoS -1. The sender does not resend the
message if the broker deletes the message. QoS -1 focuses more on
minimizing message cost and resource usage of constrained devices over
reliability.

0 : QoS 0 stands for at most once. It ensures a message reaches the
destination no more than once, which refers to best-effort delivery.
QoS 0 requires the MQTT connection establishment before sending
and receiving messages. As QoS -1, the recipient does not receive any
acknowledgments, and the sender does not retry sending the message.
Moreover, the broker does not store the published messages.

1 : QoS 1 refers to at least once. QoS 1 guarantees the message is received
at least one time by the recipient. A critical message delivery situa-
tion takes the opportunity of QoS 1. The sender stores the published
message until it receives a PUBACK acknowledgment packet from the
recipient. The sender can send the same message multiple times if the
recipient can handle duplicates. The broker queues the messages for
later delivery if the recipient stays offline.

2 : QoS 2 provides exactly once service, which is best suited for critical
or reliable delivery. In comparison with other QoS levels, it provides
the most reliable communications with higher overhead. The reliable
message delivery only once is ensured by using four request/response
flows between the sender and the receiver, i.e., PUBLISH, PUBACK,
PUBREL, PUBCOMP.
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A.1.2 Evaluation

MQTT has the following advantages.

• Simplified communication: An MQTT payload can transport any
data (binary and text) as long as the recipient can interpret it. Com-
municating parties do not need to stay online to carry on the data
transmission. With the help of the QoS level, any offline client can
receive messages after coming back online. MQTT provides a single
connection to a message topic; the publisher only needs to know the
broker’s IP address, and the subscriber-only needs to know the topic
of the published data.

• Eliminate polling: MQTT supports instantaneous and push-back
delivery process. Therefore, the subscriber clients do not need to poll
for new messages after a specified time interval.

• Reliability and Scalability: The QoS levels provide data transmis-
sion guarantee in different categories. The publisher-and-subscriber
model can be scale up easily in an energy-efficient way. If a broker
publishes a message on a topic, the subscribed clients receive the mes-
sage based on the QoS level.

• Bidirectional messaging: MQTT provides bidirectional communi-
cation facilities. Any client can act as the subscriber and the publisher
at the same time.

However, MQTT also has disadvantages.

• Operation over TCP: MQTT operates on the top of the Transmis-
sion Control Protocol (TCP), which requires more memory and pro-
cessing power as TCP handshaking is needed to set up a connection
between the clients and the broker before exchanging message.

• Centralized broker: The broker works as a communication hub in
the MQTT protocol. It can be a single point of failure in the network:
if it fails due to a shortage of power. The whole communication may
disrupt. Moreover, the use of a centralized (single) broker affects the
scalability due to additional overhead for each client connected to it.

• Security: By default, MQTT does not provide data encryption. Com-
munication can be made secure by implementing Transport Layer Se-
curity (TLS)/Secure Sockets Layer (SSL). If TLS/SSL is implemented,
additional overhead is introduced.
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A.2 gRPC Remote Procedure Calls

gRPC is an open-source Remote Procedure Calls (RPC) framework that
provides high performance, language and platform-independent service, bi-
directional streaming facility, and integrated authentication with HTTP/2
[12]. RPC is a technique where a client calls a procedure, which may exist
in different address spaces (i.e., server), similar to a local procedure calling.
This technique is appropriate in the client-server protocol. The client calls a
remote procedure, resuming the calling environment, to compute an opera-
tion by transferring procedure parameters to the server. After execution, the
server generates results that are transferred back to the calling environment
(i.e., the client’s environment) where the execution resumes. The gRPC fol-
lows the client-server protocol. A client application can call a remote method
on a server application that acts like a local method. The server application
is responsible for handling the client’s call. gRPC uses Protocol Buffers (Pro-
tobuf) [11] for serializing structured data. The protobuf is a language and
platform-independent data interchangeable format. Specifically, a proto file
defines the structure for the data for serializing. gRPC uses a special plugin,
known as protoc, to generate code from the proto file for both the client and
the server. Figure A.2 overviews the gRPC protocol.

gRPC 
server 1

gRPC
Client

gRPC 
server 2Proto Request(s)

Proto Request(s)

Proto Response(s)

Proto Response(s)

Figure A.2: An overview of gRPC protocol.
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A.2.1 Protocol operations

gRPC works similarly to a regular RPC protocol. A service is defined, first
specifying the methods with parameters and return types, which the clients
will call remotely. An example of a proto file is given below.

syntax = "proto3";

message Request {

string message = 1;

}

message Response {

string message = 1;

}

service ServerResponse {

rpc Node(Request) returns (Response) {}

}

There are four different service methods used in gRPC.

Unary RPC:
A client sends a single request to the server and gets a single response.

rpc Node(Request) returns (Response);

When the client calls a remote (stub) method on the server, the server is
notified. The client invokes the remote method with its metadata, method
name, and parameters. The server, in response, sends its metadata to the
client. The client then sends a request message, and the server executes the
defined method and populates a response along with status details to the
client. If the response status is OK, the client will receive the response.

Server streaming RPC:
A client sends a single request to the server and gets a stream of messages as
a response. In the case of streaming methods, gRPC guarantees the ordering
of messages within an individual RPC call.

rpc Node(Request) returns (stream Response);

In this method, instead of a single response, the client receives a stream of
messages. After sending all the messages, the server sends the status details
and optional trailing metadata to the client.
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Client streaming RPC:
A client sends a sequence of messages as a request to the server and gets a
single response.

rpc Node(stream Request) returns (Response);

It works the opposite of server streaming RPC. The client sends a sequence
of messages as request and the server response with a single message and the
status details. Typically the server responds after receiving all the messages
from the client, but it is not mandatory.

Bidirectional streaming RPC:
A client sends a sequence of messages as a request to the server and receives
a sequence of messages as a response.

rpc Node(stream Request) returns (stream Response);

The client and the server stream operate independently in bidirectional stream-
ing RPC. The server can write to received messages one by one, or wait and
write after getting all the messages from the client.

Some additional parameters, along with the message, are sent to the
server, such as deadlines/timeouts. The client can specify how long it will
wait to complete the operation before the RPC is terminated. The client can
assign deadlines, which is a fixed point in time or timeouts, which is duration
in time based on language-specific APIs. Moreover, either the client or the
server can cancel an RPC at any time.

Metadata are sent in key-value pair format where the keys are strings,
and the values are strings or binary data. Access to metadata depends on
the language that is being used.

gRPC channels help the client to connect with the server on a specified
host and port. It is used when creating a client stub. It uses HTTP/2 as a
transport protocol.

A.2.2 Evaluation

gRPC has the following advantages.

• Performance: Protobuf serializes message payload of the client and
the server very efficiently and quickly. It also helps to keep pay-
load small, which is useful for lower bandwidth applications. It uses
HTTP/2, which has significant improvement over HTTP 1.X, with re-
spect to framing and compression, duplex streaming, multiplexing over
a single Transmission Control Protocol (TCP) connection.
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• Automatic code generation: The proto file defines the services and
the messages. Protoc is used to automatically generate a service base
class, messages, and a complete client from the proto file without writ-
ing the client and response parsing code on our own.

• Streaming: gRPC allows bi-directional streaming of messages as part
of the supported service methods discussed above.

• Protocol specification: gRPC follows strict specifications, which
makes it consistent across different languages and platforms.

gRPC uses protobuf for serializing structured data. It encodes the mes-
sage in binary format. Special tools are required to decode the payload,
which is one of the disadvantages of gRPC protocol.

A.3 Protocols comparison

Figure A.3 shows comparison between MQTT and gRPC protocols based on
communication latency. For the experiment, the DINA [25] is applied on the
VGG16 [32] architecture. The transmission time is measured by executing
one complete DNN classification task (image classification). The result de-
picts that the gRPC protocol outperforms the MQTT protocol by 1.5 times
in terms of communication latency.
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Figure A.3: Comparison of MQTT and gRPC protocols.



Appendix B

Time comparison

Appendix B shows the layer-by-layer computation and transmission time
comparison of three schemes (adaptive, random, and greedy) based on four
benchmarks.
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Figure B.1: Comparison of computation time (AlexNet).
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Figure B.2: Comparison of computation time (VGG16).
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Figure B.3: Comparison of computation time (ResNet34).
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Figure B.4: Comparison of computation time (NiN).
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Figure B.5: Comparison of transmission time (AlexNet).
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Figure B.6: Comparison of transmission time (VGG16).
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Figure B.7: Comparison of transmission time (ResNet34).
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Figure B.8: Comparison of transmission time (NiN).
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