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Abstract 

The Internet of Things (IoT) is utilizing Deep Learning (DL) for applications such as voice or 

image recognition. Processing data for DL directly on IoT edge devices reduces latency and 

increases privacy. To overcome the resource constraints of IoT edge devices, the computation for 

DL inference is distributed between a cluster of several devices. This paper explores DL, IoT 

networks, and a novel framework for distributed processing of DL in IoT clusters. The aim is to 

facilitate and simplify deployment, testing, and study of a distributed DL system, even without 

physical devices. The contributions of this paper are a deployment of the framework to an 

Ubuntu virtual machine testbed and a repackaging of the framework as a Docker image for 

portability and fast future deployment.  
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On Studying Distributed Machine Learning 

Introduction 

 Internet of Things (IoT) applications aim to increase control and understanding of 

physical environments by collecting data with a variety of sensors and processing and 

exchanging this data over the internet. As these devices produce massive quantities of complex 

data, processing and analyzing the data is one of the biggest hurdles for development of effective 

IoT solutions. Deep Learning (DL), a subset of Machine Learning (ML) and Artificial 

Intelligence (AI), is proving to be very useful for Internet of Things applications, because it 

produces some of the most accurate classifications [1]. Deep Learning could be the key to 

enabling applications like voice recognition in small smart speakers or image recognition in 

cameras. 

 The challenge to enabling Machine Learning on IoT edge devices is that these devices are 

very constrained, both in memory and computational power. To overcome these constraints, the 

computation is distributed between a cluster of several devices, which is a complex task. In [1], 

DeepThings is proposed as a framework to distribute Convolutional Neural Network (CNN) 

inference tasks between edge devices, enabling IoT clusters to perform DL processing that would 

not otherwise be possible. 

The motivation of this work is twofold: to gain a better understanding of how to design 

an efficient distributed ML network, and to extend the usefulness of the DeepThings framework 

proposed in [1] by making it more portable to other devices. This work seeks to facilitate use and 

deployment distributed ML systems for future use and study. While the DeepThings paper only 

implemented and tested DeepThings on a Raspberry Pi 3 testbed, IoT networks are commonly 
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composed of other devices, such as STM32 microcontrollers or Arduino. Study and testing of the 

framework will be even simpler if physical devices are not needed. The contributions of this 

paper are as follows. 

1) A distributed ML environment based on virtual machines, without the need for 

physical devices.  

2) A packaging of the C implementation developed in [1] so that it can run on any Linux 

device without extra configuration or be run and tested in Docker right out of the box. 

The rest of this paper provides background on IoT, Machine Learning, and Deep 

Learning, highlighting both the benefit and the complexity of processing data for Deep Learning 

algorithms near the edge of IoT, looks at the inner workings of the DeepThings framework and 

how it effectively breaks Convolutional Neural Networks into distributed tasks, and finally 

presents a testing of the framework in virtual machines and Docker. 

Background 

IoT Networks and Edge Devices 

 In the four decades of its lifetime, the Internet has evolved in purpose and involvement in 

human life. The primary purpose of the Internet has always been to share data and processing 

power. In past stages of the internet's evolution, this communication has been between a static 

web page and a researcher, or between two social media users. Today, the world is in the era of 

the Internet of Things. The Internet of Things, abbreviated IoT, refers to the Internet as it is 

connected to physical devices, often low cost, power efficient sensing devices designed to 

measure and increase insight into physical environments. These sensor devices are the “things” 

in “Internet of Things.” These devices are able to exchange information directly with each other 
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and with servers or users. By connecting the devices to the network, data collection, storage, and 

analysis can be done in a separate, centralized location. This means the devices can be smaller, 

cheaper, and use less power, which makes the devices more accessible to consumers, or allows 

more devices and sensors to be used in larger deployment situations.  

The general idea of the Internet of Things is captured in a basic three-layer protocol 

architecture [2]. The first layer is the perception layer. The perception layer includes the parts of 

IoT devices that sense or interact with the physical world. The second layer is the network layer, 

which includes connection with other devices and servers, transmission of data, and processing 

sensor data.  The third layer is the application layer. It encompasses all specific applications that 

the Internet things enables, like smart homes or smart cities [2]. While this three-layer 

architecture gives a general idea of IoT, for modern research more complex architectures have 

been proposed, like a five layer architecture that adds a transport layer, a processing layer, and a 

business layer [2]. 

An important facet of IoT architecture is the distinction between cloud and fog 

computing system architectures. Cloud computing refers to a system architecture in which data 

processing is done on cloud computers, away from the sensor devices. Fog computing, on the 

other hand, also called edge computing, is a system architecture in which sensors and network 

gateways do some of the data processing [2].  

To appreciate the resource constraints of IoT edge devices, consider smart assistant 

devices. Smart assistants are often designed for consumer use, especially in homes, like the 

Google Home or Amazon Echo. Both these devices feature hands-free control using a 

microphone and speech recognition, a speaker, and an AI voice assistant such as Google 
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Assistant or Alexa. These devices are used to answer questions using internet sources, stream 

music, or perform simple functions like setting timers. Both devices are designed to be small and 

inexpensive. The Google Home has measures less than 4 inches wide and 6 inches tall, and 

currently costs about $100 [3]. It is equipped with an ARM Cortex-A7 media processor and only 

512MB of memory [3]. The Amazon echo measures just over 3 inches wide and about 10 inches 

tall, with a similar price point [4]. It has an Arm Cortex-A8 CPU, 256 MB RAM, and 4 GB flash 

memory.  

The main barrier to using Deep Learning in IoT is the memory, computation, and energy 

requirements of Deep Learning algorithms. Deep Learning examples in IoT and mobile devices, 

like speech or facial recognition, are becoming increasingly prominent, but they mostly require 

cloud computing to execute [5]. This has two large drawbacks: first, sensitive data must be 

uploaded and processed off-device, exposing users to privacy dangers; and second, potentially 

unreliable network quality strongly influences inference execution time [5]. Privacy issues are 

one of the primary ethical concerns in IoT applications. Data collected in smart home 

applications, for example, collect data that can be used to reveal deeply personal information 

about its users. If this data is sent off-device, the user is forced to trust the application supplier to 

protect and not misuse their data. While travelling over the network, this data may be in danger 

of exposure to third parties. Executing Deep Learning algorithms on or nearer to IoT devices will 

increase individual privacy and reduce latency in the process. 

Machine Learning and Neural Networks 

 Machine Learning is a field in which computers are equipped to learn from data without 

explicit programming. Rather than being programmed to complete a task, the computers perform 
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analysis on large amounts of input data to uncover patterns and insights, which they can then use 

to form a model for the task [6]. In supervised learning, the machine learns from labeled inputs 

and outputs to predict the correct output for new inputs. In unsupervised learning, the machine 

identifies patterns in and clusters input without any labeled output. The algorithms produced by 

Machine Learning are able to emulate human reasoning in tasks like image or speech 

recognition. This is why advancements in Machine Learning are considered a step towards 

“artificial intelligence.” Unlike humans, however, computers can be better equipped to analyze 

huge quantities of numerical data, allowing them to sometimes detect patterns in big data that a 

person cannot. 

Deep Learning 

Deep Learning is a subset of Machine Learning. It is the state-of-the-art method of 

handling and extracting useful insights from complex, noisy date. Deep Learning, in particular, 

relies on great amounts of data for accurate results. The recent availability of powerful computer 

chips explains why there have been significant advances in Deep Learning only recently. Deep 

Learning is named such because it is based on algorithms that “learn from multiple of levels in 

order to provide a model that represents complex relations among data. A hierarchy of features is 

present such that high level features are defined in terms of lower level features” [6].  

 

Fig. 1: fully-connected feed-forward layers in DNN 
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Deep Neural Networks. Neural networks are designed to mimic neurons in the brain, 

hence the name. Also called feed-forward neural networks, a deep neural network (DNN) 

contains layers of fully-connected nodes. The values of the first layer are initialized from input, 

then each layer transforms the output of the layer before it, and the final layer corresponds to 

output values, or inference classes. Deep Learning approaches can handle inference tasks that 

existing signal processing techniques cannot. For example, the conventional approach to solving 

speech recognition problems is to represent the speech signals with Gaussian Mixture Models 

based on hidden Markov models [6]. While still used today, these models are significantly 

improved when combined with Deep Learning. A deep neural network-based approach released 

by Microsoft in 2012 showed 30% word error rate reduction compared to the best models based 

on Gaussian mixtures [6]. 

 

Fig. 2: convolutional and feed-forward layers in CNN 

Convolutional Neural Networks. Another class of neural networks is the Convolutional 

Neural Network (CNN). Convolutional networks are composed of a series of convolution layers, 

pooling layers, and fully connected layers. Convolution layers work by convoluting a two-

dimensional filter with the two-dimensional input. Pooling layers follow convolutional layers 

and serve to reduce the complexity of the convolutional output, which reduces the amount of 

computation performed, and makes the model more flexible and robust, as it is less sensitive to 

small variances in the input data. Feed-forward layers work like traditional DNNs [7]. 
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“The aim of these layers is to extract simple representations at high resolution from the 

input data, and then converting these into more complex representations, but at much coarser 

resolutions within subsequent layers” [5]. This paradigm makes CNNs especially effective for 

computer vision, as they can extract simple features in early layers, like an eye or nose, and build 

these up into more complex representations in later layers, like a face. “CNNs have been 

extremely successful in computer vision applications, such as face recognition, object detection, 

powering vision in robotics, and self-driving cars” [8]. As discussed later in this paper, this work 

uses the You Only Live Once, version 2 (YOLOv2) algorithm to test distributed ML, which is a 

CNN-based computer vision algorithm. 

Related Work 

Large-scale distributed ML 

 While the simplest option for handling the data that Deep Learning algorithms process is 

to keep it in main memory, this is sometimes inefficient or unfeasible even for high-powered 

workstations. Other times, the data is naturally distributed, and moving it between systems is not 

permitted. Usually, this data is split “horizontally,” where data instances, with all attributes, are 

stored in different locations, rather than being split across different attributes. At a large scale, 

distributed ML is motivated by overcoming algorithm complexity and memory limitations. Most 

distributed ML algorithms achieve distributed work by combining predictions from separately 

run classifiers. This allows for more flexibility in information representation or which classifier 

is used [9]. 

 In contrast to the multi-core processors or interconnected workstations in larger 

distributed systems, IoT devices are connected by relatively unstable wireless connections, 
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because they are designed to communicate via small data packets [10]. Distributed ML 

computation produces large data packets. A ML task may not produce the desired result if some 

of these packets are late or missing [11]. Therefore, the challenge is receiving and processing 

large amounts of data in a tight time frame on small, resource-constrained computing devices. 

 Works such as [12], [13] have looked at ways to perform distributed ML on mobile 

devices. [12] discusses performing computation on local training data in mobile devices, then 

using that computation result to update a global model. It presents an algorithm called Federated 

Stochastic Variance Reduced Gradient (FSVRG), which is better suited for this situation because 

it is “adaptive to different local data sizes, general sparsity patterns and significant differences in 

patterns in data available locally, and those present in the entire data set” [12]. [13] proposes an 

algorithm specifically for partitioning pre-trained DNNs onto several mobile devices, called 

MoDNN. “MoDNN uses a Biased One Dimensional Partition (BODP) approach with a 

MapReduce style (MR) task model and a work sharing (WSH) distribution method in which 

processing tasks in each layer are first collected by a coordination device and then equally 

distributed to existing edge nodes” [1]. 

DeepThings 

The DeepThings framework is proposed in [1] to improve the performance of 

Convolutional Neural Network inference on an IoT edge cluster. Three main techniques are 

used: Fused Tile Partitioning (FTP), Distributed Work Stealing, and optimized work scheduling 

and distribution. This section will give an overview of these techniques. 

Because the convolutional chains in DNNs can be very deep, layer-based partitioning 

methods result in very large memory footprints and communication overhead. FTP takes 



ON STUDYING DISTRIBUTED MACHINE LEARNING  
 

12

advantage of the fact that “each output data element only depends on a local region in the input 

feature maps” [1]. The convolution layers can be divided into a grid, forming smaller 

independently executable tasks, hence the “tile” part of the partitioning. To reduce 

communication overhead, “regions that are connected across layers can be fused into a larger 

task” [1]. This means that intermediate feature maps stay on the edge assigned to process that 

partition and only output feature maps are transmitted to the gateway [1]. 

 

Fig. 3: Fused Tile Partitioning for CNN  

Distributed Work Stealing is a technique used to deal with the dynamically shifting 

workloads in IoT clusters. An edge device with items in its CNN inference task queue will 

register itself with the gateway device, while an edge device with an empty queue will request 

the IP of a busy device and attempt to steal work from that device. The gateway keeps the IP 

addresses of busy nodes in a ring buffer and uses a round-robin approach to distribute an IP 
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address to a stealing request. Meanwhile, the gateway handles “collection, merging and further 

processing of results from edge nodes” [1]. 

An improved work scheduling and distribution method is added to deal with the 

overlapped data and redundant computation of the FTP scheme. As seen in Figure 3, the early 

convolutional layers are divided into overlapping tiles, as the lower layer tiles depend on the 

results of a wider partition. To reduce transmission and computation redundancy, the overlapping 

data from one partition can be reused by an adjacent partition. However, this creates some 

dependency between adjacent partitions and inhibits parallelism. To enable data reuse while 

maintaining parallel execution, tasks are distributed first by even grid rows and columns and 

least amount of overlap. This means that “adjacent partitions can have a higher probability to be 

executed when their predecessors have finished and overlapped intermediate results are 

available” [1]. The gateway collects and manages all overlapping intermediate data and serves 

the appropriate overlapped data to edge nodes along with the other input data for a partition 

when the edge node requests a task. 

 

Fig. 4: Improved Work Scheduling and Distribution for Overlapped Data  

These three methods – FTP, Work Stealing, and improved work scheduling and 

distribution – are combined in the DeepThings framework to provide “CNN inference speedups 

of 1.7×–3.5× on 2–6 edge devices with less than 23 MB memory each” [1]. “Overall, 
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DeepThings has similar scalability but more redundant communication and computation as 

compared to MoDNN” [1]. Results from the paper show that DeepThings also can reduce the 

memory footprint by 68%, using Fused Tile Partitioning (FTP) on the convolutional layer. The 

paper implements the DeepThings framework in the C programming language, but only uses 

Raspberry Pi single board computers to test it. In its published state, the framework cannot run 

directly on networks built from other devices.  

The structure of the DeepThings C implementation produced by the author of [1] 

includes the C files shown in Figures 5 and 6. Corresponding header files are not shown in the 

Figures for brevity. The “top.c” file contains the main function of the program, and utilizes 

functions from the “cmd_line_parser.c” file to parse command line arguments and pass them 

down to the appropriate functions. The top level folder also includes the highest-level functions 

for edges and the gateway, in “deepthings_edge.c” and “deepthings_gateway.c,” and the 

functions necessary for FTP. The file “ftp.c” includes the functions to control partitioning, 

traversal, removing and reusing overlapped data. Functions for partitioning, merging, and queue 

management are in the file “frame_partitioner.c.” Both “adjacent_reuse_data_serialization.c” and 

“self_reuse_data_serialization.c” contain methods for serializing data for later reuse.  

The files in Figure 6 are contained in the “distiot” folder. These files handle the 

distributed work stealing runtime for the cluster. As mentioned in [1], the work stealing runtime 

runs as a separate thread. The files “gateway.c” and “client.c” hold the top-level functions for the 

gateway and client work stealing threads, respectively. The file “network_util.c” has functions to 

handle IPv4 or IPv6 connections and sending data. Helper functions for managing blob data used 

by the devices are in “data_blob.c.” Unsurprisingly, “thread_util.c” contains utility functions for 
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handling system threads, while “thread_safe_queue.c” contains functions to access a blob queue 

from a work stealing thread. The gateway device uses three queues: for the results, ready tasks, 

and registered tasks. Each edge device uses one queue for tasks and one for results. 

 

Fig. 5: Top level files in the C implementation of 
DeepThings 

 

 

Fig. 6: C files in the /distiot folder 

Docker  

Docker Images 

Docker is an open-source tool that aims to address the challenge of computation 

reproducibility [14]. Docker makes it easier for users to run software developed on other 

machines on their device by providing a binary image, which works similarly to a virtual 

machine (VM) image. This Docker image contains all the dependencies and configurations 

necessary to run a piece of software. Docker images are much more lightweight when run than 

complete virtual machines because they share the Linux kernel with the host machine. This 

feature is often useful in business applications where multiple copies of the software need to be 

run on a single machine. It may be possible to run a Docker image on a device that is too 
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resource constrained to run a full VM. Since Docker works with all Linux distributions, it 

provides a convenient way to move software to a different type of device device or multiple 

devices without using a VM or spending time configuring each machine [15]. 

It is also worth noting that many Docker images are available in online Docker registries, 

including Docker hub, a public registry with many freely available images. Once a Docker image 

is developed it can be made available to other users by pushing to a registry. 

 

Fig. 7: Docker’s Client-Server Architecture 

Docker Network 

 Another feature of Docker that is useful to distributed Machine Learning research is 

Docker network. When a Docker image is run, it becomes a container. Using Docker network, 

Docker containers and services can be connected to each other or to other workloads, without 

even the awareness that they are deployed on Docker [16]. Docker handles routing, packet 

encapsulation, and encryption. If connected to the network outside the host machine, containers 
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do not use their own IP but connect through a port on the host. However, user-defined bridge 

networks allow multiple containers to appear as independently connected devices as they 

communicate with each other on the host. This bridge network setup can be used to simulate a 

network cluster. 

Raspberry Pi Testbed 

 This section will discuss the original testbed setup used in [1], which is composed of 

Raspberry Pi 3 Model B devices (RPi3). The RPi3 is used for both the gateway device and each 

of the 1-6 edge devices. Each RPi3 contains a quadcore 1.2 GHz ARM Cortex-A53 processor 

with 1GB RAM. These devices are rather high-powered compared to many IoT edge nodes, such 

as the Google Home and Amazon Echo devices mentioned earlier. To create a realistic 

simulation of lower-powered IoT edge device clusters, each RPi3 used as an edge device was 

limited to a single processor core. These devices were connected over wireless local area 

network (WLAN) using TCP/IP protocols and socket API.  

 The pretrained CNN-based object detection model You Only Look Once, version 2 

(YOLOv2) [16] was used to evaluate the C implementation of DeepThings on this testbed, 

because it is lightweight and widely used in embedded devices. The first 16 layers of YOLOv2 

were partitioned and distributed. These layers make up nearly half of the inference computation 

and most of the memory footprint. The C-based Darknet neural network library is used as the 

external CNN inference engine and NNPACK is used as the backend acceleration kernel. 

 When compared with the approaches used in MoDNN, the methods in DeepThings 

require extra memory, slightly better communication overhead with a higher numbers of devices, 

a 41% latency reduction and an 80% throughput improvement. Overall, “scalable CNN inference 
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performance is significantly improved compared to existing distributed inference methods under 

varying static or dynamic application scenarios” [1]. 

VirtualBox Testing 

 To gain a better understanding of how to use and run DeepThings, as well as prepare 

dependencies and configuration for creating a Docker image, the author first setup and ran 

DeepThings framework on a set of virtual machines (VM). Using fresh VMs with clean Linux 

installations also makes it much easier to track and reproduce the dependencies and work 

necessary for the Docker image, as will be seen in the next section. 

 Oracle VM VirtualBox was used to create and manage the VMs. VirtualBox is free and 

open-source, and contains the VM and network configuration tools needed to setup a testbed. It 

also makes cloning VMs simple. An initial VM was created and conFigured in VMware 

Workstation 16 Player, but the free version of this software does not contain the necessary 

network configuration utilities, so this VM was imported into VirtualBox and then cloned to 

create the other devices. 

 Three types of devices must contain a similarly conFigured DeepThings executable: a 

host device, a gateway device, and one or more edge devices. These devices are distinguished 

when the executable file is run on each individual machine, but the creation of executable from 

the C implementation is the same for each machine. Like in [1], this system will also use 

YOLOv2 as the CNN model for evaluating the framework. 

Downloading and Configuring DeepThings Implementation 

 Ubuntu 20.10 server, a Linux distribution based on Debian, is used for the operating 

system on the VMs. The VMs are limited to a single processor and 1 GB RAM. The DeepThings 
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implementation is publicly available on GitHub at [17], and is pulled recursively to the VM, so 

that the darknet submodule is included. A few dependencies are not pre-installed in Ubuntu 

server, like GCC and make, and are installed using apt-get. The implementation is set to not use 

NNPACK or ARM Neon by disabling options in the Makefile, since the VM is not running as an 

ARM device.  

Next, a “yolo.cfg” configuration file for Darknet is included in the code files on GitHub, 

but the weights for YOLOv2 must be downloaded and included in the same “models/” folder of 

the project. These weights are taken from [18]. The final step before building the DeepThings 

executable is configuring the gateway and edge device IP addresses. These are specified in a 

configuration header file, “conFigure.h”. This cluster uses the 10.10.10.x subnet. Since VMs can 

be resource intensive to run, the number of edge devices in this test is limited to two. 

The configuration header file also contains settable parameters for the width and height 

of FTP partitions, the maximum number of fused layers, number of threads used, and whether 

overlapped data is reused. The maximum number of edges and the frame number is set in this 

file as well. The final set of options in “conFigure.h” pertain to debugging, with parameters for 

which part of the framework outputs to debugging, the debug timing, and debug communication 

size. 

Once this configuration is complete, use “make” to build the DeepThings executable. 

This same executable will run on each the host, gateway, and edge machines.  

Configuring Network Cluster 

Setting the VMs up to communicate with each other over TCP/IP requires configuration 

inside and outside the VMs. Up to this point, the setup for each device in the testbed is the same 
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and can be done in a single VM which is then cloned to create the separate devices. VirtualBox 

utilities are used to clone the original VM. Using the VirtualBox menus, each device’s network 

adapter is conFigured to attach to the same internal network. Each device uses the Intel 

PRO/1000 MT Server adapter type. Each device is conFigured internally using the Linux 

command line utility Netplan, which allows specification of a configuration file for each device 

setting the static IP of their ethernet to the appropriate IP specified in DeepThings configuration. 

Once these configurations are applied, the VMs should be ready to run DeepThings. 

 

Fig. 8: VM network cluster configuration 

Running DeepThings 

The executable should be run on each edge device and the gateway first, setting the 

parameters for total number of edges, edge id, number of fused layers, and FTP dimensions. 

Once each device has loaded the YOLOv2 model configuration and weights, it waits for a signal 

from the host machine to begin. The data source device has four images for processing, and the 

total execution time for all four across the gateway and two edge devices is about 4 minutes. 
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Figures 9-12 show the output on each device during execution. As described in the background 

section, the edge devices begin execution with even partitions with the least number of adjacent 

partitions to increase reuse of overlapping intermediate results while maintaining parallel 

execution. 

  

Fig. 9: Host device triggers start of execution   Fig. 10 : Gateway device distributing tasks 

  

Fig. 11: Tasks executed by edge 0    Fig. 12 : Tasks executed by edge 1 
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Fig. 13: Output images saved on gateway 

 The final results are output on the gateway device, and the images processed by the 

YOLOv2 algorithm are saved in the base project folder on the gateway. These images are shown 

in Figure 13. 

Porting to Docker 

 To package the DeepThings framework in an easy-to-run Docker image, start with a VM 

conFigured to run the framework. Packaging DeepThings with this current method requires the 

gateway and edge addresses and model used (in this case, YOLOv2) to be predetermined and 

conFigured. The recommended way to build an image from an existing project is to use a 

Dockerfile. A Dockerfile is just a text file that lists the commands necessary to build an image, 

which Docker uses to automatically build that image [19]. Using clean VMs to test the 

framework first makes writing the Dockerfile much easier, because it is easy to keep track of all 

the configuration and dependencies installed before DeepThings could be run. 

Defining Dockerfile and Creating Docker Image 

In this case, the image is defined to build on top of the Ubuntu image. The Ubuntu image 

is available on the Docker Hub, a public registry, and will be pulled from there automatically 
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when the image is built. While the dependencies installed during VM testing, such as GCC and 

Make, are not necessary once the DeepThings executable is built, a few tools are needed from 

Ubuntu-server that are not included in the base Ubuntu Docker image. Ubuntu-server contains 

some utilities that are not needed to run DeepThings, but due to time constraints, it is specified 

that the Docker image should install Ubuntu-server on top of the base Ubuntu Docker image.  

The project folder for DeepThings is copied from the VM to the image, and the image 

work directory is set to that folder on the image. Finally, Docker images require specification of 

a command to run on start, or an “entrypoint” defining the executable to run when the container 

starts [19]. In the future, the DeepThings executable should likely be defined as the entrypoint, 

but due to time constraints, the start command is set to open a bash session in the container, 

where the user can start the DeepThings executable manually for each device. The complete 

Dockerfile is shown in Figure 14. Finally, Docker is used to build and tag the image from this 

Dockerfile.  

 

Fig. 14: Final Dockerfile 
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Running the Docker Containers 

Before running the containers for the IoT devices, a network is created using Docker. The 

network is a bridge type network, used for standalone containers that communicate with each 

other. The same image is used to run containers for the gateway device, each edge node, and a 

host. Each container must be started individually. In the run command both the name of the 

network created earlier and the IP address for the device being run are specified. The IP 

addresses chosen should match those defined for the gateway device and edges in the 

configuration file before the DeepThings executable was created. From inside each container, the 

DeepThings executable is run, using the same commands as when the executable was run on the 

VMs. 

 The created Docker image can be shared or uploaded to Docker hub, a site for sharing 

Docker images, and run on other computers without any extra files. Once this image is copied to 

a device with Docker, the only steps necessary to run a DeepThings IoT cluster is to create the 

Docker network and run the individual containers. Contrast this with starting from the C source 

code for DeepThings, available at [17]. To run DeepThings, the user must install dependencies, 

download and add weights, conFigure IP addresses, and make the executable. If attempting to 

run DeepThings on a testbed, they must also conFigure the network of several VMs or 

computers. 

 This Docker image should also facilitate setting up several real IoT devices with 

DeepThings. If starting from the C source code, configuration and installation must be done 

separately for each device. Using Docker, the configuration can be done once, the Docker image 

would then be shared between devices, and each device runs it. The Linux distribution used on 
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each IoT node does not need to be considered when creating the image. Because Docker runs 

containers on the same Linux kernel as the host, this virtualization should also be lightweight 

enough to run on constrained IoT devices.  

Key Takeaways and Future Work 

  The author gained more insight into Deep Learning in general, and Convolutional Neural 

Networks in specific. How CNN layers function and the purpose they serve has been discussed 

and illustrated. 

 Through research into the DeepThings framework and reproduction of a distributed IoT 

network in virtual machines, the author learned about state-of-the-art methods for distributing a 

CNN inference task over several constrained devices. The methods of Fused Tile Partitioning, 

Work Stealing, and the modified work distribution to support efficient FTP both strengthened 

understanding of CNNs, and how to break Deep Learning work into smaller parallel tasks. 

 The author learned how to use the tool Docker, which has wide applications in program 

development, especially for web services and pages. The author learned how to use Docker to 

package a program into a portable image, how to use Docker network to connect devices running 

on the same computer, and how to simulate an IoT cluster using either VMs or Docker. 

 Future work includes more detailed testing and data collection on running the 

DeepThings Docker containers, streamlining the image, and testing the container on other IoT 

hardware. Further testing using the DeepThings Docker image and Docker network to determine 

the size, memory, and power use of an edge or gateway device running on Docker would offer 

more insight into which IoT devices would be capable of running the DeepThings 

implementation from a Docker container.  
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The author expects that the size of the Docker image and the runtime efficiency of the 

container it produces could be greatly improved by determining all Ubuntu dependences the 

DeepThings framework requires to run. As mentioned before, the Docker image created in this 

work installs Ubuntu-server, which contains software packages in excess of 1GB. Including only 

necessary packages and avoiding a full installation of Ubuntu-server would increase the pool of 

IoT devices capable of running this image. 

Finally, while this work produced a portable Docker image for running DeepThings, it 

did not test the implementation on physical IoT devices. It is expected that this image can run on 

most devices capable of running Linux, but this should be attempted in a real IoT cluster in 

future work. 

Conclusion 

 This paper introduced Internet of Things networks, Machine Learning and neural 

networks, highlighting both the benefit and the complexity of processing data for Deep Learning 

algorithms near the edge of IoT, and explored attempts to process neural network inference on 

IoT devices. It examined the framework developed in [1] more closely, discussed the main 

techniques it employs to effectively break Convolutional Neural Networks into distributed tasks, 

and reproduced the deployment of the framework to a testbed of virtual machines, to reinforce 

understanding of this process with hand-on execution of the algorithms. Finally, this work 

packaged the C implementation in Docker and tested it in a Docker network. The purpose of this 

work was to increase understanding of ML, CNNs, and distributed ML in IoT clusters. 
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