
Citation: Rodriguez-Conde, I.;

Campos, C.; Fdez-Riverola, F.

Horizontally Distributed Inference

of Deep Neural Networks for

AI-Enabled IoT. Sensors 2023, 23, 1911.

https://doi.org/10.3390/s23041911

Academic Editors: Antonio

Fernández-Caballero

and Juan M. Corchado

Received: 31 December 2022

Revised: 2 February 2023

Accepted: 5 February 2023

Published: 8 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Review

Horizontally Distributed Inference of Deep Neural Networks
for AI-Enabled IoT
Ivan Rodriguez-Conde 1,* , Celso Campos 2 and Florentino Fdez-Riverola 3,4

1 Department of Computer Science, University of Arkansas at Little Rock, 2801 South University Avenue,
Little Rock, AR 72204, USA

2 Department of Computer Science, ESEI—Escuela Superior de Ingeniería Informática, Universidade de Vigo,
32004 Ourense, Spain

3 CINBIO, Department of Computer Science, ESEI—Escuela Superior de Ingeniería Informática,
Universidade de Vigo, 32004 Ourense, Spain

4 SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO,
36213 Vigo, Spain

* Correspondence: irconde@ualr.edu; Tel.: +1-501-442-4859

Abstract: Motivated by the pervasiveness of artificial intelligence (AI) and the Internet of Things
(IoT) in the current “smart everything” scenario, this article provides a comprehensive overview of
the most recent research at the intersection of both domains, focusing on the design and development
of specific mechanisms for enabling a collaborative inference across edge devices towards the in situ
execution of highly complex state-of-the-art deep neural networks (DNNs), despite the resource-
constrained nature of such infrastructures. In particular, the review discusses the most salient
approaches conceived along those lines, elaborating on the specificities of the partitioning schemes
and the parallelism paradigms explored, providing an organized and schematic discussion of the
underlying workflows and associated communication patterns, as well as the architectural aspects
of the DNNs that have driven the design of such techniques, while also highlighting both the
primary challenges encountered at the design and operational levels and the specific adjustments or
enhancements explored in response to them.

Keywords: IoT; collaborative inference; deep neural networks; distributed computing; DNN splitting;
task offloading; mobile edge computing

1. Introduction

As a result of a steady synergy still currently in place, IoT and AI have almost simulta-
neously experienced outstanding progress in the past two decades, leading to the so-called
AI-enabled IoT and thus achieving the vision of a pervasive intelligence [1]. Methods and
technologies developed under the IoT paradigm facilitate the connection of the different
devices that comprise such intelligent environments and the exchange of data between
them [2], enabling the creation and proper exploitation of new network architectures con-
sisting of connected ambient sensing instruments and resource-constrained energy-efficient
end devices (i.e., embedded devices and mobile devices), commonly referred to as user
equipment (UE) in the related literature. Efforts in this regard have been primarily aimed
at designing and deploying faster and more efficient network infrastructures, as well as
developing more accurate sensing platforms. This has dramatically increased the capability
of those systems to sense data from the physical world, thus enabling the collection and
storage of large volumes of data and consequently supporting increasingly sophisticated AI
techniques—from traditional machine learning (ML) methods to more recent deep learning
(DL) approaches—ultimately creating enormous opportunities for a “smart” life.

Deep neural networks (DNNs) have driven the evolution and subsequent consolidation
of “intelligent” computing systems among the general public beyond research forums,

Sensors 2023, 23, 1911. https://doi.org/10.3390/s23041911 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23041911
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9619-4852
https://orcid.org/0000-0001-8849-4989
https://orcid.org/0000-0002-3943-8013
https://doi.org/10.3390/s23041911
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23041911?type=check_update&version=1


Sensors 2023, 23, 1911 2 of 31

proving their undeniable power and achieving great success in a number of application
domains, such as smart transportation [3], smart farming [4], smart manufacturing [5], and
smart healthcare [6]. Exploiting the sensors embedded in these systems has enabled massive
data collection, nurturing deep learning algorithms and thus contributing to achieving new
levels of accuracy in the delivered results. However, this accuracy has come at the cost of an
increase in computational and memory resource consumption [7], both in terms of training
the networks as well as making inferences. Moreover, in the particular case of inference,
it entails more than just numerous complex computations and memory expansion of the
processed DNN model, which are already relevant challenges for IoT devices; for most of
the use cases found in the typical application domains of IoT systems mentioned above,
time is a critical factor, and real-time prediction performance is expected from them.

Even though today there are hardware solutions specifically for AI acceleration in
embedded and mobile devices that could be considered, to some extent, as a possible
answer to the above needs, they have been shown to be insufficient to efficiently address
the execution of today’s more sophisticated DL models. As a result, GPU cluster-powered
cloud-based configurations are still the standard DL research-support infrastructure used
today. Nonetheless, the reliance on remote data centers—i.e., geographically located
far away from the users or the data sources—for DNN execution may incur prohibitive
latency delays, thereby failing to meet the minimum latency goal pursued. In this context,
new computing paradigms, namely Mobile Cloud Computing (MCC) and Mobile Edge
Computing (MEC) [8], have emerged over the last few years as alternatives to classic
cloud computing (CC). These have also impacted the AI domain, enabling the progressive
abandonment of the latter’s fully cloud-delegated processing model towards a vertically
distributed computation across the EU–edge–cloud continuum, bringing part of the DNN
inference to computing tiers closer to end users, and thereby resulting in the so-called
collaborative inference [9].

Specifically, this collaborative intelligence has been materialized at a practical level,
essentially in the form of a pipeline for the execution of DNNs on multiple entities dis-
tributed across the different levels of computation considered, although subjected to the
structural properties of the models utilized. In this sense, although it is an approach that
succeeds in generating segments of reduced size and complexity through the partitioning
of deep networks, allowing devices with limited capabilities to take on some of the load
and offload the heavier subtasks to nodes at higher layers of the hierarchy [10,11], its
effectiveness is to some extent undermined or constrained by the challenging issues that
remain, such as the significant distance between nodes, the adoption of the layer as the
minimum partitioning unit, and the inter-layer data dependency inherent to DNN models.
Hence, such an approach results in end-to-end latency numbers that, dominated by data
communication times, fail to achieve the real-time goal [9]; it also allows the generation of
partitions that, even in their minimum expression, may result in a memory footprint and
computational load excessive for IoT devices; and, last but not least, it further penalizes
the overall co-inference performance by preventing the processing of DNN partitions to be
handled concurrently.

Given these limitations, recent studies have explored other alternatives of computa-
tion at the edge, introducing novel methods and strategies aimed at better leveraging the
distributed resources within the same computing tier towards a future vision of extremely
interoperable and flexible AI-capable IoT systems. Specifically, in this context, such re-
search has pursued the design of cooperative inference mechanisms [12] that, unlike those
mentioned above, demonstrate the capability to speed up the execution of DL tasks by
partitioning the workload and distributing the resulting DNN segments horizontally across
the devices within an edge cluster, whether this is referred to as a mini-cloud (i.e., a cluster
of computers within the same LAN [13]), a micro-cloud (i.e., an infrastructure-independent
and easily portable assembly of small computers [14]), an ad hoc cloudlet [10] (a cluster con-
sisting of mobile devices interconnected via short-range radio communication technologies),
or a fog network [15] (perhaps the most representative term, referring to an architecture



Sensors 2023, 23, 1911 3 of 31

consisting of end-user clients or near-user edge devices that can alternatively cooperate and
support machine-to-machine-based service provisioning in a distributed manner).

In such a context, determining how to efficiently partition, distribute, and schedule
DNN inference within such an environment, considering the significant heterogeneity of
devices regarding their capability, including edge servers equipped with GPUs, low-power
single-board computers such as the Raspberry Pi, and smartphones with multi-purpose
Systems of a Chip (SoCs), and the dynamic network conditions, continues to pose major
challenges that make the edge-based efficient AI service provisioning an open and still
relevant research problem. For this reason, in the present work, we conduct an in-depth
study of the most relevant aspects of this edge intelligence (EI). This research, far from being
an exhaustive or systematic review of the related literature, aims to be a comprehensive and
gentle introductory guide to those techniques and methods that have proven to be highly
successful in exploiting the aggregated computational and memory resources of in-cluster
IoT nodes to address highly complex DNN tasks in a timely manner and to ultimately
deliver a desirable quality of service (QoS) despite the acute resource limitations of the
interconnected devices.

It should be noted, however, that, while computation offloading at the edge and the
distribution and deployment of deep learning solutions on such computing environments
are still emerging topics that have gained momentum over the past five years, both have
already given rise to a vast corpus of scientific articles, leading to a fairly important number of
surveys, as illustrated in Table 1. Specifically, we found sixteen papers [11,12,16–29] focused
on EI that provide an extensive overview of the current state of the art in the topic space. They
guide the reader through a comprehensive collection of methods and technologies designed
to better leverage edge infrastructures for DNN training [11,12,16,17,21,22,29] but primarily
for the execution of such DL models [11,12,16,17,19–27,29].

Regarding inference, an extended trend is particularly noticeable among the authors
on providing an overview of architectures and workflows for enabling DNN processing at
the edge, giving particular attention to (i) techniques that make DL models applicable for
direct deployment and local execution on resource edge devices by creating lightweight
architectures from scratch [11,12,16,23], i.e., naturally suitable for edge environments, or
by adjusting existing DNNs to reduce their complexity and size [12,16,17,21–23]; and
(ii) strategies pursuing the realization of an offloading-based collaborative inference across
multiples devices located either at the same tier or in different computing levels
[20,22–25]. Moreover, most authors extend (i) and (ii) by introducing core concepts [18,24]
and providing extensive background on other EI-specific matters such as (i) the most
representative application scenarios [12,18,21,27], (ii) the software [21,29] and hardware
infrastructure [16,20] for facilitating EI, and (iii) the most relevant challenges that need to
be faced for its realization, i.e., model partitioning [11,17,19,22], communication [11,26],
edge coordination [20,27], and more AI-related challenges [20].

Although the studies cited cover a wide range of relevant topics at the intersection
of edge computing and AI, and may serve as a good starting point for gaining an under-
standing of the distributed execution of DL algorithmic solutions and for establishing a
foundation for the knowledge that will be progressively solidified throughout the rest of
this paper, they go beyond the scope of the studies cited, providing a higher-level overview
of edge-based AI and, as a result, differing in the thematic core and the level of detail
embraced. Overall, the narrative style used adeptly guides the reader through the various
approaches conceived, introducing the related concepts pertinent in each case without
delving too deeply, omitting a significant number of the underlying design considerations,
and thus falling short when it comes to discussing the techniques and methods presented.
To fill this gap, our work supplements the existing body of literature and provides a com-
prehensive and in-depth review of the most salient studies published that have led to the
emergence of cooperative intelligence solutions in IoT environments, discussing the specific
approaches and strategies conceived for partitioning and parallelizing DNNs, providing
an in-depth treatment of the decision-making process required, and, finally, giving details



Sensors 2023, 23, 1911 4 of 31

on both the different challenges or issues that have emerged in this domain and the specific
solutions conceived in response.

Table 1. Summary of the review papers pertinent to this work that exist in the literature.

Work Year Domain Focus Scope

[12] 2019 EC ∩ AI Methods for fast inference LTWT DNN, MOD ADPT, INF ACC, DIST INF,
INF PRIV, DIST TRAIN, APPS

[27] 2019 EC Computation offloading CORE, APP PART, TSK ALLOC, DIST TSK, APPS

[20] 2019 EC ∩ AI Operational challenges HW, APPS, MULTI TEN, SCHED, MOB, SCAL, PRV,
AI LC

[11] 2019 EC ∩ AI - CORE, DIST TRAIN, METR, MOD PART, MOD ADPT, MOD SEL, CACHE

[28] 2019 EC ∩ AI Specialized hardware HW

[22] 2019 EC ∩ AI - CORE, DIST TRAIN, MOD PART, MOD ADPT,
INF ACC

[25] 2019 ECC Computation offloading MULTI TEN, WKLD BAL, MOB, PART TYPES

[26] 2020 EC ∩ AI Communication challenges COMM CHLG, COMM-EFF TRAIN, COMM-EFF INF

[24] 2020 DIST ML - CORE, ML WF, TOPO, DIST FMW, DIST ML TRAIN

[18] 2020 EC ∩ AI - CORE, HW, DL FWK, DIST TRAIN, CACHE,
MOD ADPT, MOD SEL, MOD PART, OFLD TYPES, APPS

[23] 2020 EC ∩ AI - DIST TRAIN, LTWT DNN, MOD ADPT, INF ACC, OFLD TYPES, APPS

[21] 2021 EC ∩ AI - DIST TRAIN, LTWT DNN, MOD ADPT, DIST INF,
DL FWK, HW, APPS

[17] 2022 EC ∩ AI Training techniques DIST TRAIN, MOD PART, MOD ADPT, PRETRAIN, EDG PREPROC, BC,
LTWT DNN, APPS

[19] 2022 EC ∩ AI - CORE, LTWT DNN, MOD ADPT, MOD PART

[29] 2022 ECC ∩ AI ML-based analytics DT ANAL, DIST TRAIN, MOD PART, PARAL, TSTB

[16] 2022 ECC ∩ AI Architectures for
collaborative learning

CORE, DIST TRAIN, INF OFLD, BI COLLAB,
LTWT DNN, MOD ADPT, RL, APPS

Abbreviations: EC, edge computing; ECC, edge–cloud computing; EC ∩ AI, edge intelligence; ECC ∩ AI, intel-
ligence through the edge–cloud continuum; DIST ML, distributed machine learning; LTWT DNN, lightweight
deep neural networks; MOD ADPT, model adaptation; METR, performance metrics; MOD PART, model
partitioning; MOD SEL, model selection; INF ACC, inference acceleration; DIST INF, distributed inference;
INF PRIV, privacy preservation for inference; DIST TRAIN, distributed training; APPS, application scenarios;
CORE, core concepts; APP PART, application partitioning; TSK ALLOC, task allocation; DIST TSK, distributed
task execution; HW, specialized hardware; MULTI TEN, multi tenancy; SCHED, scheduling; MOB, mobility
awareness; SCAL, Scalability; PRV, privacy and trust; AI LC, AI lifecycle; CACHE, edge caching; RL, reinforcement
learning; DL FWK, DL frameworks; OFLD TYPES, offloading modalities; PART TYPES, partitioning modali-
ties; WKLD BAL, workload balancing; TSTB, testbeds; PARAL, parallelism schemes; DT ANAL, data analytics;
INF OFLD, inference offloading; BI COLLAB, bidirectional collaboration; COMM CHLG, communication chal-
lenges; COMM-EFF TRAIN, communication-efficient training; COMM-EFF INF, communication-efficient infer-
ence; ML WF, machine learning workflow; TOPO, cluster topologies; DIST ML TRAIN, distributed machine
learning training; DIST FMW, distributed computing frameworks; BC, blockchain; EDG PREPROC, edge pre-
processing; PRETRAIN, cloud pre-training.

This analysis relies on a corpus that was meticulously and systematically chosen
through a comprehensive and extensive process of incremental discovery, where the con-
cerns of interest outlined in the previous paragraph, as well as the nature of the supporting
infrastructure and the operational constraints adopted, i.e., tagging inference-related com-
putations at the same tier within the underlying architecture, guided the search and filtering
of the various sources finally used as a reference. Notably, keywords were carefully selected
to be in line with the objectives of the research, aiming primarily to obtain relevant articles
while ensuring that none were left out of the search results. Accordingly, employing Google
Scholar as the main search engine, the initial screening of the literature was carried out us-
ing the following terms: “collaborative intelligence”, “collaborative inference”, “distributed
inference”, “split computing”, “DNN partitioning”, “DNN splitting”, “DNN parallelism”,
“in-cluster co-inference”, “DNN co-inference scheme”, “DNN offloading”, “joint model
split”, “model partitioning”, “model slicing”, “DNN task distribution”, “distributed deep



Sensors 2023, 23, 1911 5 of 31

neural networks”, “split machine learning design”, and “hybrid DNN computation”. The
list of 132 entries obtained from the first cursory reading of the abstract and the conclusions
of each paper was then refined by an in-depth reading and thorough analysis of these
research efforts of potential interest, assessing their quality and excluding those considered
outside the domain of study, either due to having no place in the IoT paradigm—belonging
instead to other closely related fields, such as the already mentioned MCC, MEC, or CC—or
because, like [30–32], despite being under the IoT umbrella and being also related to the
distributed computation model, they were oriented instead to locally distributed solutions
relying on modern SoCs for parallelization.

The methodology for examining and selecting the literature just outlined resulted
in a body of work that, albeit small, made it possible to clearly outline the most relevant
aspects of cooperative intelligence in IoT contexts. More specifically, all these aspects are
developed throughout this document according to the following structure. The second
section puts the study in context by briefly presenting some of the most relevant milestones
in the evolution of both AI and computing platforms towards deep learning at the edge.
Specifically, and with regard to this last point, Section 3 examines the various research
efforts on the distribution of DL workloads within IoT clusters, establishing a taxonomy
of the primary parallelism strategies and partitioning schemes proposed, and elaborating
on their most pertinent aspects at the practical level, the pillars of the decision making
required for their proper configuration, as well as the specific challenges that arise when
addressing the setup and the effective exploitation of such mechanisms. Section 4 shares
the observations drawn from the state of the art and highlights the still open research
challenges to be addressed in future work, while Section 5 brings the survey to a close by
presenting the conclusions.

2. Background: Towards Deep Learning at the Edge

The synergy between the IoT and AI has been, without a doubt, a driving force behind
the remarkable growth experienced by both realms almost simultaneously over the past
two decades, leading to the so-called “smart” environments and “smart” things. Such an
interaction, which is still in place today, although accelerated by the recent thrust of deep
learning (DL), has been, to a large extent, a natural evolution of methods and technologies
strictly conceived under the umbrella of the IoT paradigm toward the creation and proper
exploitation of network-based architectures consisting of interconnected ambient sensing
instruments and resource-constrained yet energy-efficient devices, e.g., embedded and mo-
bile devices, with the capability of gathering and exchanging data. In that sense, research
and engineering efforts that were originally conceived for the design and deployment of
faster and more efficient network infrastructures, as well as the development of more accu-
rate sensing platforms and capable computing hardware, have also enabled the collection
and storage of large volumes of data, thereby supporting increasingly sophisticated AI
techniques, from traditional ML to DL.

Advances in DNNs envisioned in AI fields as diverse as computer vision, natural
language processing, and automated speech recognition, have shown an unprecedented
ability to learn abstract representations and extract high-level features from sensed data, de-
livering, as a result, highly accurate and robust predictions [33,34] from the input provided.
A clear example of that is convolutional neural networks (CNNs), which have emerged
over the last decade as the state of the art for vision tasks, constituting an information
extraction method superior to more traditional approaches [35] and capable of generating
higher-resolution semantically richer representations from imaging data. However, this
progress, not only regarding accuracy but also in terms of the precision of the output
produced, has been accompanied by an increase in computational and memory needs [7],
especially for the training phase, but also for the exploitation of the various resulting
models during the inference process. DNNs have evolved towards more profound and
complex network designs, often comprising a massive collection of parameters, in many
cases numbering in the millions, e.g., VGG-16 [36] has 138 M parameters and AlexNet [35]



Sensors 2023, 23, 1911 6 of 31

has 61 M parameters. This has had a direct effect on training, which iteratively refines
a large number of parameters over multiple periods, resulting in higher memory and
computational costs, and on inference, which is also computationally expensive, due not
only to a large number of parameters but also to the potentially high dimensionality of the
input data (for instance, a high-resolution image), the millions of computations that must
be performed on them, and the very complexity of some of the operations involved, such
as multiply-accumulate operations [37].

Modern smart IoT devices are equipped with powerful integrated chips that can be
utilized for in situ data processing. AI-specific capabilities of novel hardware solutions
—including embedded devices and accessories for accelerating ML tasks, such as application-
specific integrated circuits (ASICs) [38,39], GPUs [40,41], and FPGAs [42,43]—have emerged
as the infrastructure cornerstone of the recent AI trend known as on-device ML, underpin-
ning an intense and still ongoing research activity that has eventually led to a plethora of
methods and techniques that enable the deployment and execution of DL solutions directly
aimed at UEs. More specifically, in that respect, scientists and experienced practitioners
have explored not only how to better leverage such AI-optimized highly efficient devices,
but also how to conceive more compact and lightweight DNNs, which is in turn pursued
through the compression and simplification of existing networks, e.g., quantization [44],
sparsification [45,46], and pruning [44], as well as the creation from the ground up of
more efficient architectures [47,48]. Both lines of research have proven to be beneficial,
reducing the memory footprint of DNNs and accelerating the execution of the underlying
computations [49].

In most cases, however, that performance upgrade has been achieved at the expense of
high energy consumption, totally at odds with the very nature of IoT devices commonly de-
ployed in the wild and, as such, with no access to a long-standing and steady power supply.
Moreover, and more importantly, both the accuracy delivered and the latency reduction
achieved as a result of the research undertaken along those lines have been shown to be still
insufficient to implement intelligent systems on IoT computing platforms. Accuracy and,
especially, latency make it difficult for such resource-constrained devices to provide users
with a more fluid and better-tailored experience [50] without compromising data integrity,
and are reported to be far from the optimum required to support some latency-sensitive
and safety-critical applications such as augmented reality [51] and cooperative autonomous
driving [52], which have been traditionally associated with, and actually emerged under,
the umbrella of this type of computing entity.

Thus, although the solutions outlined above, conceived following a mobile comput-
ing model, have become leading facilitators for large-scale data collection, they still fall
short when it comes to dealing efficiently with the compute-intensive tasks in the DL
workflow. In this regard, cloud platforms, consisting of highly scalable configurations
backed by virtually unlimited computational and memory resources, remain the standard
infrastructure for accelerating DL tasks today. Particularly in this respect, CC has played
a crucial role at the operational level in DL, not only enabling DNN architectures to be
trained in a relatively reasonable amount of time and the resulting highly complex mod-
els to be executed in a timely manner [53,54], but also hosting and making such models
available as remotely accessible services, making them exploitable by other online devices
regardless of their system resources settings or current burden. In that context, one of the
traditional methods used to solve the challenges posed by DL on IoT and overcome the
limitations of the commonly exploited embedded and mobile devices has been to transfer
the computation-intensive tasks and service data from UEs to the more powerful remote
cloud infrastructure [55,56].

That cloud-based DNN computation was a prominent trend during the past decades,
dramatically pushing forward DL-specific research through a computation offloading
strategy conceived as a cloud-only scheme. In such an offloading strategy, the cloud takes
on the entire operating load acting as a surrogate, relegating UEs to a secondary role
in which their only responsibilities are (i) capturing the user interaction or sensing the



Sensors 2023, 23, 1911 7 of 31

environment, (ii) making a request to the server for each and every DL job, and, finally,
(iii) presenting or exploiting the received results [57]. This UE–cloud dialogue typically
entails the transmission of a substantial amount of data via a wireless medium between
geographically distant nodes. This necessary vertical communication poses major issues in
terms of response time [58], availability [59], robustness [60], and security [61], constituting
these especially significant hurdles in IoT contexts. In that sense, incorporating DNN
capabilities into IoT devices further increases their dependency on the availability of data
centers with high quality of service and network resources while, at the same time, the
rapidly rising number of devices and quantity of data traffic in the current IoT era pose
significant burdens on capacity-limited networking infrastructures and an unmanageable
service latency, hindering the possibility of meeting the delay-sensitive and context-aware
service requirements of a great deal of the IoT applications listed in the previous section by
merely leveraging CC.

Such a classic vision of the cloud, similar to the more traditional client–server model
consisting of a thin client requiring services from a powerful server, has given way in
recent years to new computing paradigms that have progressively sought to alleviate the
workload on the cloud, and bring more capable server entities closer to either end users or
the data collection infrastructure deployed, i.e., the MCC and MEC paradigms. In particular,
MCC, unlike the more traditional CC paradigm, represents a computational augmentation
approach that advocates for the partial offload of UE’s burden on the cloud as a method
for reducing the processing and storage needs of terminal devices, as well as increasing
their battery life. With specific regard to DL tasks, such an approach and its underlying
philosophy have already reflected on how DNNs are executed in such constrained contexts,
constituting the groundwork for processing the exploited models through a cooperative
intelligence strategy. This strategy, realized in the form of a collaborative inference—also
referred to in the related literature as co-inference—has emerged in the past few years as
a natural evolution of the on-device and cloud-centric ML approaches mentioned above,
pursuing the joint utilization of the cloud and the UEs through a vertical distribution of the
inference, partitioning the DNN used, and then deploying the resulting segments on the
computing tiers involved.

Although it traditionally refers to a flexible server platform with vast computing
power, high memory resources, and a stable and sustained power supply [62], the cloud
term is expanded in the MCC paradigm beyond the model inherited from CC, including
any remotely accessible infrastructure within the boundaries of the system regardless of
the type of hardware configuration used and the number and combination of nodes that
comprise it [63]. That revised formulation of the concept encompasses solutions that, while
representing a slight step back in terms of power, bring the cloud closer to user-level
devices, thus mitigating the limitations of classic cloud systems, accessible only over wide
area networks and blurring the lines between MCC and MEC. In that sense, although MEC
systems have recently emerged as a complement to CC for performing computations on
the network edge [8], creating a great buzz in both academia and industry due to their
promise of maintaining closer proximity to the user, in their simplest form they repeat a
formula similar to the one described for MCC, relying on cloudlets [64]—described, in the
authors’ own words, as a “data centre in a box”—to also enable “server-class” applications.
Cloudlets, while a server infrastructure less capable than the elastic cloud, constitute a more
cost-effective alternative. They feature physical and network specifics that facilitate their
deployment in strategic locations, e.g., public installations and private servers, operating as
a server entity of terminal devices, supercharging them with nearby extra processing power
and storage space, and even serving in some scenarios as an intermediate computing tier
between the latter and the cloud.

Therefore, MCC and cloudlet-based MEC can be viewed as being operationally very
similar approaches, sharing, as such, the previously noted co-inference realization. Along
these lines, AI researchers have already proposed a good number of techniques [9] that
have proven to be successful at distributing the execution of a given DNN across the



Sensors 2023, 23, 1911 8 of 31

UE–edge–cloud continuum in the form of a pipeline, partitioning the DNN structure in
the origin and offloading part of it—typically partitions with the highest complexity—
into the more capable computing tiers. Such a strategy socializes the computation costs,
enables scaling the inference on DNNs vertically through the collaboration of nodes located
at different computing levels, and facilitates exploiting the hardware capabilities in the
support infrastructure in a more rational manner, particularly in MEC systems where,
in addition to UEs, edge devices can be leveraged to alleviate and even, in some cases,
eliminate the dependency on the cloud to ultimately reduce the end-to-end latency and
thus improve the quality of service provided.

That said, pipeline processing, having been recognized as a promising way to augment
resource-constrained devices and, at the same time, reduce the computational load and
memory consumption per entity involved, has been shown to be a solution that falls short
when it comes to actually getting such computing entities engaged in the co-inference
process, achieving a reduction in the indicated demands commonly unsatisfactory to
accommodate the execution of DNNs, and a decrease in the level of latency not substantial
enough to ensure the performance required for time-critical applications [9]. Specifically,
while MCC still suffers from significant communication latency and limited backhaul
bandwidth, MEC has been able to mitigate such transmission costs by primarily pushing
computing tasks to small, nearby cloudlets, thereby avoiding time- and energy-intensive
long-distance transmission [65]. Moreover, with regard purely to the computations involved
in DNN inference, both MCC and MEC systems rely on the aforementioned vertically
distributed scheme, which, overall, resorts to inter-layer partitioning methods that (i) result
in partitions that might lead to a memory footprint and computational burden not low
enough for IoT devices, and, more importantly, (ii) are subject to data dependency between
partitions, which prevents actual parallelism and thus undermines concurrent exploitation
of multiple devices. Finally, it should also be noted that privacy remains a challenge: even
though MEC inherently benefits privacy by keeping local data at the edge of the network,
there is often a need to exchange some data between edge devices and the cloud.

Therefore, while today’s IoT systems can recognize and monitor their surroundings,
collecting data in the form of still images, video, or data streams, and modern advanced DL
solutions are able to process those sensed data and derive high-level knowledge, enabling
intelligent computational systems to extract context-specific knowledge and, as a result,
provide more effective assistance, there are still important privacy, latency, and performance
issues in the current “smart everything” scenario, tightly coupled to highly capable remote
server entities located either on the cloud or at the edge. Such challenges not only remain
pertinent but have particularly piqued the interest of the AI and IoT communities in
recent years, paradoxically due to the relevance that mobile-based intelligent systems have
acquired in today’s technological landscape beyond research forums.

3. In Situ Distributed Intelligence

The necessary shift towards a more rational close-to-data-source computing pattern
has led to the consolidation of computing paradigms far removed from the previously
mentioned server-centric approach, leading to distributed DL processing patterns within
AI, i.e., collaborative inference, enabling a genuine workload sharing among the UE–edge–
cloud continuum, and thus partially alleviating the burden of the edge and the cloud
through effective exploitation of the resources available on the terminal devices. Seminal
studies along these lines, e.g., Neurosurgeon [66], IONN [67], DADS [68], and QDMP [69],
while still far from being sufficient approaches to achieving the objective stated above,
have been instrumental in laying the foundations of DNN task partitioning and offloading,
identifying key concepts and resulting in techniques that have had an organic translation
to the edge, fog, and local environments, and paving the way for an in situ distributed
intelligence model in those contexts.

With regard to the resulting techniques, following the topic identified by the research
referred to in the previous paragraph, there is already an important body of work that



Sensors 2023, 23, 1911 9 of 31

has contributed to the widespread adoption of DL techniques in application domains
where lightweight sensing solutions are explored and leveraged for building intelligent
IoT systems. The information presented in Table 2 provides context and presents a chrono-
logical overview of the various research efforts that have driven the emergence of novel
co-inference schemes articulated on the cooperation among the computing entities scattered
all over the exploited hardware infrastructure to overcome their individual resource limita-
tions, and thus support computationally demanding and memory-intensive DL workloads.
As we can see, over the last five years, a fairly large number of authors have worked
towards an in-cluster collaborative execution of the DNN models, designing partitioning
and task allocation strategies that, to a greater or lesser extent, have been shown to be
successful at distributing the required computations across the nodes within the same
computing tier, keeping that processing near to the service requester.

In total, Table 2 collects details on twenty-two pieces of research reporting solutions for
both the decision making and runtime required for the horizontally distributed execution of
DNNs in IoT environments. The table provides an at-a-glance view of the major milestones
within the context of interest, presenting the most significant aspects and issues addressed
in the various studies analyzed, thereby establishing the basis for the discussion that
will be developed throughout the rest of the paper. Specifically, the table in question
not only provides background-related information such as the year of publication or the
design objectives pursued in each case, it also constitutes a shallow taxonomy of the
multiple approaches conceived, categorizing the latter according to its very nature, the
application areas targeted, and the specific tasks supported. This also details the most
relevant defining factors both at the architecture (as pertaining to infrastructure) and the
operational (workflow-specific) levels.

In particular, regarding applications and tasks, the research conducted in this vein
is still in its infancy and, in general, has not been specifically contextualized inside any
particular scenario or application, with the exception of three studies. We mainly observe,
therefore, general-purpose efforts conforming to a body of research that, far from being
domain-specific, explores wide-scope approaches when it comes to the application targeted
in order to meet the requirements that the deployment and execution of state-of-the-art DL
tasks inevitably impose on resource-constrained physical devices, even when distributed
among multiple devices. Practically, the discussion of potential use cases is put on the back
burner to the extent that, even in those studies that make explicit reference to any of the
use cases, the authors do so only to enrich the narrative and better illustrate the framework
or purpose of the technique analyzed.

Regarding these tasks relying on artificial visual perception, image classification and
object detection methods have emerged as two of the most important enabling factors of
this “nearby” intelligence, providing a better understanding of the environment and the
entities in it, and constituting a fundamental pillar for resolving relevant vision tasks such
as human activity recognition in killer AI-backed IoT applications such as surveillance and
analytics on data from wearable sensors. Moreover, beyond the significance of the tasks for
evaluating and assessing the approaches developed, their selection has been an almost self-
imposed obligation rather than a decision-making exercise, being fundamentally marked
by the network architectures and, more specifically, by the types of layers adopted as the
object of interest. Their analysis stands out in the scientific corpus examined almost as an
imperative at the early stages of the research, allowing the authors to gain the knowledge
necessary to properly marry the characteristics of the DNN models used and the specificities
of the different elements or components that make up the supporting infrastructure.



Sensors 2023, 23, 1911 10 of 31

Table 2. Recent research efforts that study the distribution of DL workloads within an IoT cluster.

Architecture Workflow

Work Year Approach Objectives DL Tasks Applications Communication Tier Offline Setup Runtime

MoDNN
[70] 2017 FWK Lower OVR LAT IMG CLASS GEN Centralized LAN PART CO-INF

MeDNN
[71] 2017 FWK Lower OVR LAT

Lower TX OVHD IMG CLASS GEN Centralized LAN PART
TSK ASSG CO-INF

Musical Chair
[72] 2018 FWK Real-time DNN CMPT IMG CLASS

AR GEN Centralized LAN PART
TSK ASSG

TSK ASSG
CO-INF

DeepThings
[73] 2018 FWK Lower MEM FP OBJ DET GEN Centralized Edge PART

TSK ASSG
TSK ASSG

CO-INF

[74] 2020 FWK High ACC IMG CLASS GEN - LAN
DNN TWK

PART
TSK ASSG

CO-INF

LCP
[75] 2020 DNN SPT Lower TX OVHD IMG CLASS GEN Decentralized Edge - -

[76] 2020 DNN DIST Higher TPUT
Lower OVR LAT

IMG CLASS
VID CLASS GEN - Edge PART

TASK ASSG TSK ASSG

[77] 2020 FWK Higher TPUT
Lower OVR LAT

IMG CLASS
IMG ST ANAL GEN Pipelined Edge

PART
TSK ASSG
DNN TWK

DNN TWK
CO-INF

[78] 2020 TSK ASSG Lower OVR LAT IMG CLASS GEN Centralized Edge TSK ASSG TSK ASSG

DeepWear
[79] 2020 FWK No ACC loss

IMG CLASS
AR

DOC CLASS
EMO RECOG

SP RECOG

WEAR ANAL Pipelined LAN -
PART

TSK ASSG
CO-INF

EdgeLD
[80] 2020 FWK Lower OVR LAT IMG CLASS GEN Centralized LAN -

PART
TSK ASSG

CO-INF

ADCNN
[81] 2020 FWK ACC-LAT TO IMG CLASS GEN Centralized Edge DNN TWK

PART
TSK ASSG

CO-INF

[82] 2021 TSK ASSG Lower DM LAT IMG CLASS UAV SV - Edge - TSK ASSG



Sensors 2023, 23, 1911 11 of 31

Table 2. Cont.

Architecture Workflow

Work Year Approach Objectives DL Tasks Applications Communication Tier Offline Setup Runtime

DeCNN
[83] 2021 FWK Lower OVR LAT IMG CLASS GEN - LAN DNN TWK

PART
TSK ASSG

CO-INF

[84] 2021 FWK Lower OVR LAT
Lower TX OVHD

IMG CLASS
OBJ DET GEN Centralized Edge DNN TWK

PART
TSK ASSG

CO-INF

PICO
[85] 2021 FWK Lower OVR LAT IMG CLASS

OBJ DET GEN Pipelined LAN -
PART

TSK ASSG
CO-INF

CoEdge
[86] 2021 FWK Lower OVR LAT

Lower POW IMG CLASS GEN Centralized Edge -
PART

TSK ASSG
CO-INF

DeepSlicing
[87] 2021 FWK Lower OVR LAT IMG CLASS GEN - Edge USER-DEF

PART
TSK ASSG

CO-INF

[88] 2022 DNN DIST Higher TPUT - GEN - Edge - -

EdgeFlow
[89] 2022 FWK Lower OVR LAT IMG CLASS

OBJ DET GEN Decentralized Edge PART TSK ASSG
CO-INF

[90] 2022 TSK ASSG Lower OVR LAT
No ACC loss IMG CLASS UAV SV - Edge - TSK ASSG

DEFER
[91] 2022 FWK Higher TPUT IMG CLASS GEN Pipelined Edge -

PART
TSK ASSG

CO-INF

Abbreviations: FWK, framework; DNN SPT, DNN splitting; DNN DIST, DNN distribution; TSK ASSG, task assignment; OVR LAT, end-to-end inference latency; TX OVHD, communication
overhead; DNN CMPT, DNN computations; MEM FP, memory footprint; ACC, accuracy; TPUT, inference throughput; ACC-LAT TO, accuracy-latency trade-off; DM LAT, decision-making
latency; POW, energy consumption; IMG CLASS, image classification; AR, activity recognition; OBJ DET, object detection; VID CLASS, video classification; IMG ST ANAL, image data
stream analysis; DOC CLASS, document classification; EMO RECOG, emotion recognition; SP RECOG, speech recognition; GEN, generic; WEAR ANAL, wearable device analysis;
UAV SV, unmanned aerial vehicles surveillance; TIME CRIT, time-critical; LAN, local area network; PART, partitioning; CO-INF, co-inference; DNN TWK, DNN tweaking;
USER-DEF PART, user-defined partition scheme.



Sensors 2023, 23, 1911 12 of 31

Notably, CNNs, i.e., DNNs with at least one convolutional layer within their inner
structure, have been reported as the sole architecture under consideration in the studies
reviewed. First introduced by LeCun et al. [7] in 1989, CNNs have emerged as a major driver
of progress in image analysis and computer vision over the past decade, producing accurate
results at the cutting edge of the field. Despite their complexity, they have become one
of the most paradigmatic DL models due to their structural characteristics, inspiring and
spawning a multitude of research efforts that have proven to be successful at parallelizing
the operations involved not only in the training process, but also in the execution of
such models on MCC and MEC systems. In this regard, the studies presented in Table 2,
heirs to those efforts, have explored and provided evidence of the pertinence of the CNN
architecture to distributed computation techniques. The former not only poses a pipeline-
like topology at the macro-architecture level, but also consists of highly parallelizable
operations at the intra-layer, thus making it possible to apply methods, such as DNN
partitioning and the allocation of the resulting subtasks, on the operations in the pursuit of
a more efficient inference process.

While the evolution of the computing paradigms, specifically from CC to hybrid
edge-cloud MCC and MEC computing paradigms, has been spurred by the emergence
of latency-sensitive applications, both latency cost reduction and accuracy preservation
have emerged as a major focus of interest among computer vision experts and, as such,
have guided the search for solutions of this nature within the specific context of the present
review. Quality of experience stays at the top of the roadmap, with its realization being
pursued through the improvement in parameters primarily pertaining to the performance
and, to a lesser extent, the cost of the distributed AI solutions proposed. In particular,
performance refers to the efficiency of the systems or methods conceived, and the quality
of the predictions produced by the DNN models used, whereas cost reflects the demand
for resources entailed by the tasks involved.

Regarding performance, although the horizontally distributed synergistic computation
scenario differs at the operational and infrastructure level from CC, MCC, and the more
classic vertically distributed MEC contexts, most of the studies surveyed have focused
on typical requirements of user-centric intelligent systems, seeking to develop methods
and techniques for streamlining and accelerating the execution of DNNs to ultimately
achieve a performance as close to real time as possible while maximizing accuracy or, at
least, mitigating the accuracy loss so as to obtain an adequate latency–accuracy trade-off
as a result. End-to-end latency, which refers to the time required to provide the user
with a response to a requested DNN task, stands out as the most considered performance
metric. As we shall see later, the process of addressing a DNN task in a distributed context
extends far beyond computation, strictly speaking, to encompass the communication
of intermediate results between the devices involved as well as the decision making to
distribute and parallelize the workload.

On another front, cost objectives reflect the demand for hardware-dependent resources,
referring to factors that arise from the execution of heavy DL tasks on devices with limited
computation, memory, and energy budgets, which are themselves exacerbated in distributed
IoT environments due to their need for pervasiveness, context awareness, and shared process-
ing close to end users. Particularly in this respect, the data in Table 2 evidence an existing
concern among the authors to reduce the memory footprint and the energy consumption to
accommodate the utilized DNN models to such constrained computing entities.

Memory constraints in UEs and edge devices have been shown to stymie DNN ex-
ecution in cloud-only and pipelined computing schemes. Inference, whether performed
as an end-to-end non-divisible process in cloud platforms or distributed across multiple
computing entities in MCC or MEC environments, embraces individual layers as the mini-
mum structural unit of DNN architectures, and, consequently, even in a best-case scenario,
i.e., a single layer executed on a single device, it may still be too demanding for some of
the specialized hardware architectures that, as mentioned in the previous section, have
been designed for accelerating AI computations. Additionally, when it comes to energy



Sensors 2023, 23, 1911 13 of 31

consumption, although not unique to IoT solutions, it is indeed especially problematic in
such contexts [92]. In contrast to edge and cloud platforms, which are typically powered
by a stable energy supply and mainly aimed at providing support to not-so-capable pieces
of equipment—subordinating, therefore, energy consumption to computing power—IoT
systems are conceived as pervasive ecosystems comprising small-form-factor devices em-
bedded in the environment and, because of that, do not commonly have access to a steady
power source, being powered by relatively short-life batteries instead.

To overcome the limitations described, the explored approaches have followed the line
laid down by the research efforts on collaborative inference referred to at the beginning of
the section, taking steps towards a finer-grained partitioning and actual parallelism of the
required computations. Except for a few cases that have focused on a specific aspect or have
been circumscribed to a specific type of method, the authors have approached both lines of
work in a comprehensive manner, resulting in frameworks that, designed as a distributed
software infrastructure, integrate the algorithms necessary to break down DL requests into
less costly DNN partitions that are transferred to and run on different computing entities
belonging to the same computing tier while being located either physically close to each
other or, on the contrary, more geographically scattered. To be even more precise, these
frameworks have a three-fold purpose, typically serving at the same time as (i) a decision-
making engine necessary for configuring and synthesizing either a partitioning plan or
even a more sophisticated co-inference scheme, i.e., an execution plan that defines how to
coordinate the devices involved properly; (ii) a scheduler, governing resource allocation
and the distribution of DNN partitions; and (iii) a production environment or runtime,
enabling the latter to be executed in a distributed yet cooperative way by exploiting the
capabilities of the supporting hardware infrastructure.

Even though configuration—“partitioning” (PART) in Table 2 -, distribution—“task
assignment” (TSK ASSG) in the same table -, and inference have different requirements
and involve different tasks, they are all connected in some way and happen in a certain
order, being considered part of the same workflow. It is for this reason that co-inference
frameworks, at the operational level, are typically modeled as a pipeline consisting of
two distinct stages that ultimately lead to the practical implementation of the co-inference
scheme. Far from common task grouping factors—usually, the scope of the task or its
object of interest—their breakdown into distinct stages follows time-based criteria and has
nothing to do with the specific nature or purpose of each task. The first stage, represented
in Table 2 by the “Offline setup” column, encompasses tasks commonly executed one time
only at the initial configuration of the framework, while the second stage, referred to as
“Runtime”, involves tasks executed once the system is deployed, typically upon request.

Taking a deeper look at the data collected in both columns, the analysis reveals a domi-
nant scheme or baseline that, with minor exceptions, has stayed relatively consistent across
the multiple frameworks devised to date since the publication of MoDNN in 2017 [70]. The
decision-making engine stands as the primary responder in the initial system configuration
stage, setting both the parameters that govern how to perform the partitioning of the DNN
used and, to a lesser extent, the target nodes of the resulting partitions. Task assignment
is, however, a job usually performed at runtime in response to each incoming DNN query,
and, as we will see below, it may vary depending on the underlying communications
architecture. The framework runtime, which is instantiated on each node that integrates the
hardware infrastructure, is responsible for partition allocation and cooperative inference.
Each computing entity is responsible for performing the computations required for the
execution of a given partition, transmitting, once finished, the intermediate results obtained
to the entity pertinent in each case—depending once again on the communication pattern
used by the framework—for the progressive construction of the final output.

In practice, beyond the mere deviations from the baseline referring to the point in time
at which the stages pointed out occur, the communication architecture employed largely
conditions both how the different tasks addressed are performed, and the roles or respon-
sibilities of the nodes that make up the underlying hardware infrastructure. Specifically,



Sensors 2023, 23, 1911 14 of 31

when analyzing and comparing the communication behavior of the frameworks studied,
three distinct mainstream communication patterns for dealing with node synchronization
can be observed: (i) centralized, (ii) pipelined, and (iii) decentralized.

i. The centralized architecture [70–72,78,80,81,84,86] stands out as the most imple-
mented communication pattern for in-cluster co-inference. A MapReduce-like
distributed programming model is used to provide a synchronized coordination
of CNN inference computations across a given number of mobile and embedded
devices. It has been found that using a distributed architecture such as MapReduce
makes parallel data processing easier during DNN execution [76]. Its effectiveness
has been proven in many ML applications on mobile platforms [77,78], maximizing
the usage of computing resources of the nodes in a computing cluster [77]. To facili-
tate parallel processing, the Map procedure breaks down a job into smaller, more
manageable chunks that can be executed in parallel, while the Reduce procedure
brings together the data collected during the Map procedure’s intermediate stages.
Regarding infrastructure, the model is implemented over a distributed network
cluster formed by a central node, commonly referred to as the master node in the
studies analyzed, but also as the group owner, gateway device, host device, and
group leader, and multiple supplementary worker nodes, also known as slave
devices, assisting devices, and follower nodes. A single device takes on the role
of the central node and is responsible for coordinating the partitioning [80] and
co-inference [72,86], which, according to the frameworks analyzed, may entail a
broad spectrum of tasks: analyzing, splitting, and distributing input data [70]; reg-
istering participating devices and setting up the communications with them [86];
and managing the mechanisms underneath the data structures utilized for node
coordination [73] such as IP address tables [72]. Worker nodes assist the master
device by performing some of the computations required. During inference, each
IoT device produces its own partial results, which are then aggregated to produce
the final output of the system. Each worker node is mapped with only some of the
partitions, which are processed and then reduced back to the central node, thus
generating the input for the next layer considered in the Map procedure.

ii. The pipelined architecture [77,79,85,91] conceives the workflow as a sequence of n
computation stages—corresponding to the n nodes in the hardware infrastructure
—and n-1 communication steps for transferring intermediate results between adja-
cent devices [77]. Both the computation nodes and the execution flow are typically
predetermined at configuration time, thereby simplifying task assignment into a
mere sequential ordering, circumscribing the pursued objectives to find the split
points that optimize the performance of the exploited CNN deployed. In this regard,
whereas in [85], for example, each stage refers to the processing of a group of DNN
layers on a subcluster, i.e., a subset of the devices constituting the overall system,
in [79], partitioning is reduced to its minimal expression on a setup consisting of
two devices, requiring a decision as to which portion of the DNN model should be
executed locally and which should be offloaded to a second paired device. Finally,
as far as node roles are concerned, generally speaking, and contrary to centralized
architectures, there is not such an explicit distinction except for the fact that the first
stage typically receives the input data, and the final stage is the one that generates
the inference result [85].

iii. The decentralized architecture [74,89], as its name suggests, represents an even
larger stepped divergence from the centralized communication pattern. In a cen-
tralized framework, as described above, worker nodes commonly need to register
only with the central node, and the communication between them is typically
bidirectional. Although bidirectional communication remains pertinent for the
decentralized pattern, the latter requires much communication between each pair
of nodes, thereby dramatically increasing the number of communications almost
two-fold. Moreover, as there is no central node coordinating the other devices,



Sensors 2023, 23, 1911 15 of 31

each one must register with every other device, making that management far more
complicated [74]. As made explicit in [89], each node holds information about
how to coordinate itself with the rest of the computing entities in compliance with
the intricate DNN layer dependencies, and, accordingly, each one is ultimately
responsible not only for calculating the corresponding intermediate results, but also
for forwarding them to the next intended device.

4. DNN Partitioning and Parallelism for Collaborative Inference

The analysis of the different mechanisms and techniques conceived to be an integral
part of the software infrastructure underlying collaborative inference frameworks reveals
a solid commitment to generating pertinent co-inference schemes towards enabling dis-
tributed DNN inference while adhering to the computational and economic profile of edge
devices. In this context, partitioning and parallelism stand out as core elements of the
collaborative inference paradigm in IoT systems, being the focus of interest and, thus,
the primary direction of the related research efforts. Supported by the data collected in
Tables 3 and 4, we flesh out the analysis carried out throughout the previous section by
further elaborating on the different parallelism and partitioning strategies exploited, as well
as the different algorithmic solutions devised in the studies examined for implementing
such strategies, thereby providing the reader with a comprehensive background of the
practicalities of the built-in decision-making approaches in the co-inference frameworks,
including those approaches that were specifically conceived for the various challenges that
have arisen along those lines.

4.1. Taxonomy of Parallelism Strategies and Partitioning Schemes

Generally speaking, we identify in the body of literature surveyed two distinct yet
complementary ways of parallelizing DNN tasks: applying the same DNN task on multiple
inputs., i.e., data parallelism, and splitting down and distributing among multiple devices
the computations required, i.e., pipeline parallelism and model parallelism. Thus, while
data parallelism relies on the presence of multiple data inputs to parallelize computations,
accomplishments and progress made on pipeline parallelism and model parallelism have
been closely related to DNN architecture, the CNN architecture in particular. Their inner
structure serves as a facilitating element for DNN partitioning and parallelism, making it an
unavoidable point of analysis and an unquestionable reference in the effort to parallelize the
involved calculus and successfully adjust the granularity to the capabilities and resources of
the supporting infrastructure for an eventual improvement in model execution performance.

Data parallelism is a straightforward method that allows independent data to be
processed concurrently by duplicating devices that perform the same task or, in other
words, that utilize the same DNN model. This could facilitate the reusability of data and
increase the inference throughput [75]—the number of inferences per unit of time—nearly
two-fold in the best-case scenario. Nonetheless, as evidenced by its single occurrence in
the corpus analyzed [72]—shown in the “Parallelism” column in Table 3—implementing
and applying such a parallelism scheme may not be effective for devices with limited
resources or scenarios involving IoT devices because it does not change the computation
and memory footprint per node [75,76] and it lacks the flexibility required to adjust the
amount of computation on each node [76].

The two other DNN-structure-based parallelism strategies, pipeline parallelism and
model parallelism, may supplement data parallelism—as reported in [72]—by dividing
the DNN task of interest (instead of the input data) in each case, and then distributing the
resulting subtasks to the various computing entities participating in the inference process.
More specifically, and depending on the arrangement of the layers within the DNN model
employed, the distributed DNN workload can be addressed either sequentially, i.e., pipeline
parallelism, by atomically assigning the layers of the model to the different devices for
computation, or in parallel, i.e., model parallelism, by processing layers concurrently to
fully exploit the computing and memory resources of such devices.



Sensors 2023, 23, 1911 16 of 31

Table 3. Overview of the more relevant aspects of parallelism and partitioning for collaborative
inference across IoT devices.

Decision-Making

Work Parallelism Partitioning Problem Model Objectives Constraints Solution

[70] Model PAR 1D input PART for CL WKLD BAL MIN LAT DEV CMPT -

[71] Model PAR 2D grid input PART for CL WKLD BAL MIN LAT DEV CMPT Greedy algorithm

[72] Data PAR
Model PAR Output-based PART for FL WKLD BAL MAX TPUT DEV MEM SZ

LAT Exhaustive search

[73] Model PAR 2D grid input PART for CL - - - -

[74] Model PAR Group-wise PART for CL
Input-based PART for FL WKLD BAL - - -

[75] Model PAR Inter-branch PART WKLD BAL MIN LAT DEV MEM SZ
DEV CMPT Exhaustive search

[76] Model PAR - WKLD BAL MAX TPUT DEV MEM SZ Heuristic algorithm

[77] Pipeline
PAR Layer-wise PART WKLD BAL MAX TPUT - Dynamic programming

[78] Model PAR Inter-branch PART WKLD BAL MIN LAT - Greedy algorithm

[79] Pipeline
PAR Layer-wise PART DAG SPLIT MIN POW

MIN LAT - Heuristic algorithm

[80] Model PAR 1D input PART for CL WKLD BAL MIN LAT - Greedy algorithm

[81] Model PAR 2D grid input PART for CL SCHED MIN LAT DEV STOR Greedy algorithm

[82] Pipeline
PAR Layer-wise PART ILP MIN LAT

MAX MEM
MAX WKLD

Layer per node
Binary control

Greedy algorithm

[83] Model PAR Inter-channel PART for CL
Input-based PART for FL - - - -

[84] Model PAR 2D grid input PART for CL - - - -

[85] Pipeline
PAR Layer-wise PART SCHED MAX TPUT - Dynamic programming

Greedy algorithm

[86] Model PAR 1D input PART INLP MIN POW LAT Primal simplex
algorithm

[87] Model PAR 1D input PART WKLD BAL MIN LAT - -

[88] Pipelining Layer-wise PART WKLD BAL MIN LAT - Exhaustive search
Heuristic algorithm

[89] Model PAR 1D input PART ILP MIN LAT No overlapping -

[90] Pipeline
PAR Layer-wise PART NLP MIN LAT DEV MEM SZ

DEV CMPT -

[91] Pipeline
PAR Layer-wise PART - - - -

Abbreviations: PAR, parallelism; CL, convolutional layer; PART, partitioning; WKLD BAL, workload balancing;
DAG SPLIT, direct cyclic graph splitting; SCHED, scheduling; ILP, integer linear programming; INLP, integer
non-linear programming; NLP, non-linear programming; MIN LAT, minimizing inference latency; MAX TPUT,
maximizing inference throughput; MIN POW, minimizing energy consumption; DEV MEM SZ, device memory
size; LAT, inference latency; DEV CMPT, device computing capacity; DEV STOR, device storage capacity; MAX
MEM, maximum memory usage; MAX WKLD, maximum tolerated computational load.

Backed, in terms of the communication, by the pipelined architecture introduced in the
previous section, pipeline parallelism [77,79,82,85,88,90,91] constitutes the simplest way to
distribute the inference workload. It is a parallelism modality inherent to the traditional
chain-like architecture of DNNs, which typically consists of a sequence of layers in which
each layer’s output is dependent on the output provided by its previous layers. Similar to
MCC and MEC solutions, the layer is assumed to be a DNN minimum operator, and it is
consequently adopted as the partitioning unit for realizing a type of granularity that results
in multiple groups or blocks of layers that can be spread across multiple compute nodes,



Sensors 2023, 23, 1911 17 of 31

reducing the burden on each of them and even increasing the end-to-end throughput. That
being said, this layer-wise partitioning does not enable actual parallel processing of the
partitions due to the noted data dependency between layers, also raising, as a consequence,
significant design challenges. In this regard, adopting such granularity does not only make
it possible for DNN partitions to be concurrently processed, but it also makes the memory
footprint and complexity stemming from the partitions intractable for resource-constrained
devices, in most cases.

Table 4. Summary of the challenges and approaches conceived in the reviewed studies.

Memory
Footprint

Communication
Overhead

Computational
Burden

Inference
Accuracy

Inference
Efficiency

System
Variability

Decision-
Making

Scheduling strategies [87] [73,74,83] [73] - - [73,77,87] -

Partitioning strategies [80] [73,74,80,81,83,
84,86] [81] - [84] - -

DNN structure tailoring [75,83,84] [71,74,75,77,83] [71,75,83] [74,75,83] [71] - -

DNN retraining - - - [71,81] - - -

Compression methods - [81,91] - - - - -

Profiling - - - - - [72,78–
81,86,87,90] -

Problem reformulation - - - - - [71,85] [82,86,89,90]

Model parallelism [70–76,78,80,81,83,84,86,87,89] attempts to address both issues by
employing partitioning strategies with a finer granularity to produce less expensive DNN
subtasks, i.e., partitions with fewer parameters and fewer computation requirements than
a layer, and foster more adaptable co-inference schemes. The computations required for a
single input are distributed across multiple computing entities, reducing the time needed
to process the shared input [76] but delivering a performance that, as opposed to what has
been indicated for pipeline parallelism, is highly dependent on the distribution of such
computations across devices. Table 3 provides valuable insights regarding model parallelism,
clearly linking it to intra-layer partitioning. Only two research efforts [75,78] propose an
approach halfway between model parallelism and pipeline parallelism, in the sense that,
like pipeline parallelism, the approach relies on inter-layer partitioning, generating, in this
case, branches that only communicate for input and pre-final activation, and can therefore
be executed simultaneously on different devices, as model parallelism advocates.

Intra-layer partitioning techniques break down computations within layers while
preserving dependencies according to DNN layer-specific aspects at the micro-architecture
level. More specifically, intra-layer partitioning and the resulting model parallelism rely on
the independence of the calculus within each layer. In that sense, their proper exploitation
requires a careful understanding of DNN layer performance characteristics, prior knowl-
edge of how DNN-task computations are performed, and an in-depth examination of the
potential impact of both approaches on the computations and data communication among
the computing units involved. Through a thorough analysis of the papers cited as a refer-
ence for this second partitioning and offloading approach, it is possible to provide a greater
level of detail on the types of layers considered, how the various conceived partitioning
schemes operate on them, and how these affect the parallelism ultimately achieved.

Although a CNN model consists of different kinds of layers, such as fully connected
layers (also known as dense layers), convolutional layers, pooling layers, and activation func-
tions, research on model parallelism (see Table 3 “Partitioning” column) has been primarily
focused on conceiving intra-layer partitioning techniques and methods on convolutional
and dense layers, resulting in novel vertical partitioning strategies of diverse natures and
dedicated to different interests. This has been mainly motivated by the very nature and
the subsequent memory and computing demands of the different layer types considered.
Analyses carried out in this context [70,76,83] have confirmed that, while convolutional and



Sensors 2023, 23, 1911 18 of 31

fully connected layers account for the majority of the memory footprint and computational
complexity of CNN models, the effect of non-parametric layers, i.e., pooling layers and
activation functions, in this regard and, therefore, their contribution to the overall computa-
tional cost of the network, can be considered negligible [71]. Thus, when partitioned, the
non-parametric layers are typically grouped with their corresponding parent layer, i.e., the
layer that generated their input, instead of receiving explicit treatment [76].

Regarding the fully connected layers, the partitioning methods found in the analyzed
literature fall into two distinct categories: input-based partitioning and output-based
partitioning. Dense layers exhibit a simple inner structure in which all the input neurons
are connected to all the output neurons, i.e., all the activations in the preceding layer,
and each connection represents a weight, which is a multiplication operation [83]. As
each input and output neuron is associated with multiple connections, each output of the
preceding layer must have data dependencies on every output of the succeeding layer,
necessitating communication when distributing their computation [74]. As the calculus for
each activation is independent of that required to calculate other activations, it is possible
to parallelize the computations of a dense layer, splitting the memory footprint, i.e., the
saved weights, and the number of multiplications accordingly [76].

Output-based partitioning parallelizes the generation of each activation by distributing
the computation of each output across multiple target devices [75] while copying all
input values to each [76]. Weights sharing the same output neurons are assigned to the
same computing entity, whereas intermediate results generated by preceding layers are
distributed across all devices [83]. Once a device receives the input data, it initiates the
computation necessary to generate these intermediate results, which are then merged to
enable the consumption of the subsequent layer. Using an accumulative operation, the
resultant values are concatenated in the proper order [76]. Input-based partitioning, in turn,
splits the input across devices, resulting in lower communication overhead compared to the
output-based approach. Each node calculates activations only partially, computing merely
those portions of the output that are dependent on the received input [75]. Part of the
input is transmitted to each device, which holds the weights corresponding to the specific
input partition to be processed. Exploiting those values, the node performs the necessary
computations and merges the intermediate results obtained with those transmitted from
the previous layer by accumulation. Finally, once all the computing entities have completed
their processing, the results are merged by summation, adding all the corresponding partial
sums, an extra gather operation not required for the output-based alternative.

Although fully connected layers account for larger parameter size, both the time
demands and dynamic memory usage of convolutional layers vastly outweigh those of
fully connected layers [71], making them, to a large extent, the key constraining elements
when trying to efficiently deal with the inference of DNNs [85]. In this regard, despite being
considered the common bottleneck for DNN execution [71], convolutional layers have
proven to be more conducive to computational parallelism: the computation of each filter,
which generates each channel comprising the output feature maps, is independent [72],
while, at the same time, parts of the output of the convolutional layer only require a
subset of the input [76]. Accordingly, such intra-layer independency of computations
has been extensively explored and leveraged by the authors, leading to a good number
of partitioning solutions (see Table 3), specifically pursuing parallelism in this type of
layer. Notably, these partitioning strategies fall into two broad categories: spatial and
channel-wise partitioning.

Spatial partitioning stands out as the central strategy to partition feature maps, split-
ting each feature map along the spatial dimensions, i.e., height and width, into smaller
tiles to then distribute their processing across different computing entities [81,85]. As each
output element is only linked to a small part of the input feature maps, each original
convolutional layer can be split into multiple concurrent DNN subtasks with smaller input
and output regions, thereby increasing parallelism and reducing the memory footprint.
Despite keeping all the filters in the memory field [69], each device works only on a subset



Sensors 2023, 23, 1911 19 of 31

of the feature maps that come out of the DNN, generating multiple outputs, which are then
joined together spatially to produce the final result [76].

Partitioning schemes conceived along this line [71] initially tried to maintain a structural
symmetry inspired by Coates et al. [93] by splitting the inputs along the two-dimensional
space in the form of 2D grids [71,73,81,84]. However, the communication overhead caused by
the need to extend each region with elements overlapping adjacent areas to compute convolu-
tion at the edges, aggravated by the synchronization overhead caused by DNN model’s inter-
layer data dependency and the subsequent need to process them layer by layer, prompted
the emergence of new approaches in search of possible solutions to both challenges. As a
result, studies such as [70,80,86,87,91] developed alternative one-dimensional partitioning
methods aimed at reducing the number of neighbors, and thus the overlapped areas, by
splitting the input along a single spatial dimension—typically the longer one [70,80,87]—in
the form of strips. Furthermore, although still based on the same 2D grid-based partitioning,
research specifically focused on the synchronization problem [73,84] opted to fuse multiple
layers, dividing the original DNN into tiled stacks in which most of the computations are
performed locally, i.e., within the fused block, and only communication of the input of the
first layer and the output of the last layer is required between devices.

For its part, channel-wise partitioning splits feature maps along channels and dis-
tributes the resulting segments across different nodes. Broadly speaking, although such a
process requires each node to exchange their partially accumulated output feature maps
to produce the final ones, consequently leading to significant communication overhead,
it entails the computation of only one subset of the convolution filters per computing
entity, thereby producing a set of non-overlapping channels [76]. Motivated by this,
Du et al. [74,83] proposed an inter-channel-partitioning-based inference approach that
leverages group convolutions [94,95] and channel shuffle [96] to decouple the original
DNN structure for more effective model parallelism. Contrary to spatial partitioning,
also known as intra-channel splitting, inter-channel partitioning divides the various input
channels and filters among the multiple devices employed, requiring each of them to retain
only the kernels of the allocated channel group, thereby facilitating an evenly distributed
memory footprint. Moreover, since each filter only works on the feature maps of one
group, there is no data dependence between channel groups. The output feature maps, the
input feature maps, and the filters within the same group are entirely independent of other
groups, thus leading to fewer synchronization points.

4.2. Decision Making for Partitioning Scheme Generation

The search for an optimal partitioning scheme delivering the best performance possi-
ble, subject to the requirements and characteristics of the DNN exploited, as well as the
capabilities of the hardware infrastructure used for deployment, has gone beyond the mere
interest in determining the type of parallelism strategy or the partitioning modality to be
adopted. In general, it has emerged as a complex decision-making exercise in which the
difficulty has stemmed primarily from the broad spectrum of factors involved and the
considerable number of variables to be determined. Ultimately, a partitioning scheme must
reflect the currently available network- and device-specific resources. Furthermore, due to
the large number of computing units and layers with different complexities that typically
comprise DNNs, partitioning and distributing such deep architectures may lead to a great
variety of possible decompositions.

To maximize the performance of the available computing entities, the search for a
suitable partitioning scheme has been modeled as an optimization problem, in which the
exploration of the search space, according to the data collected in Table 3, is governed by
quantitative measurements of the DNN model’s performance when executed across the
system’s multiple nodes. More specifically, the objective of horizontally distributing a DNN
to parallelize the computations required for inference is to improve the performance of the
entire system, mainly in terms of time-specific metrics. Essentially it seeks to minimize
latency [70,71,75,78–82,87–90] or maximize throughput, i.e., the number of performed infer-



Sensors 2023, 23, 1911 20 of 31

ences per second, when dealing with data streams [72,76,77,85], and, to a lesser extent and
in terms of energy efficiency, to minimize power consumption in a few studies [79,85,86]. In
particular, as regards the objective of minimizing latency, in nearly all the studies analyzed,
this refers to the time cost incurred for the end-to-end execution of the exploited DNN
model, being computed as the sum of the computation cost derived from the execution of
the DNN partitions in the different devices involved and the transmission cost reflecting
the time necessary to communicate intermediate results between nodes. Only a few excep-
tions deviate from the above: (i) considering only data delivery time as the time cost [70];
(ii) introducing certain nuances to the definition, e.g., Xu et al. [79] and Dhuheir et al. [82],
which quantify latency as the sum of per-layer estimated execution time and the time elapsed
from capturing an image until making the decision, respectively; or (iii) adopting a different
time-related metric as an object, e.g., Zhang et al. [87], which uses the estimated gap between
the least and most considerable time costs obtained from the computing entities.

Moreover, the complexity and, accordingly, the time required to search for the op-
timum, especially in those cases where optimization is modeled as an NP-hard prob-
lem [82,85,86,89,90], have been further exacerbated due to the urge to reconcile the noted
performance objectives with problem-specific constraints, laying down user-defined re-
quirements that limit the possible range of values the various objective factors and the
variables considered for their calculation may take, delimiting in that manner the potential
feasible regions where the final solution can be found, and ultimately resulting in a more
restricted search space. In lieu of a more traditional classification based on the mathe-
matical relationship represented in each case by the constraints, e.g., linear, non-linear,
convex, it is possible to classify the constraints listed in Table 3 based on their semantics,
identifying three distinct groups: performance constraints, infrastructure constraints, and
policy constraints.

Performance constraints refer to restrictions on objective factors, such as the minimum
end-to-end latency allowed [72,86], established to ensure their value is higher or, at least,
not lower than a given user-defined threshold. On the other hand, infrastructure constraints
are driven by the capabilities and state of the supporting hardware infrastructure, specifi-
cally the memory budget of the devices utilized [72,75,76,82,90], i.e., the maximum memory
usage allowed, their computing power [70,71,75,82,90], which defines the maximum com-
putational load tolerated, and their storage capacity [81]. Lastly, transformation policy
constraints, as their name suggests, serve as directives that govern (i) how DNN layers are
processed, for instance, forcing each layer to be computed by only one device [82,90] and
avoiding overlapping [89]; and (ii) how the costs are calculated, indicating, for example,
whether there is a transmission of intermediate results [82] or if a partition is processed by
a particular device [82,90].

Over and above the specificities highlighted, objectives and constraints are used to
define the partitioning problem formally, this being a key step towards a better understand-
ing of the problem itself and, as a result, an essential task when it comes to developing
optimal or, at the very least, adequate solutions. In this sense, the model constitutes a sim-
plified abstraction of the problem, consisting of mathematical expressions that establish the
relationship at play between the various factors considered, thus formalizing the potential
outcomes of a given policy or scheme. Specifically, by attending to the data collected in this
respect in Table 3, it is possible to further categorize the optimization problems observed in
the literature surveyed into four distinct groups or subcategories: (i) workload balancing;
(ii) direct acyclic graph (DAG) splitting; (iii) scheduling; and (iv) a last type encompassing
classic problems in mathematical optimization.

Workload balancing (i) [70–72,76–78,80,87,88] in particular has emerged as the most
prevalent problem model in the corpus under study. The relationship between performance
and the balance of computation among devices is so strong that a hierarchy partition is
deemed balanced if the ratio of processing times on the most and least loaded devices is
minimized. In a distributed system, load balancing can optimize response time and even
achieve real-time inference by allocating partitions to nodes in such a way that the amount



Sensors 2023, 23, 1911 21 of 31

of computation per node is nearly identical, thereby preventing the uneven overloading of
some computing entities while others are idle. DAG splitting [79] (ii) constitutes a network
optimization problem, which, based on graph theory, models the distributed inference
process as a direct acyclic graph. The graph, laid out according to the configuration of the
DNN being operated, represents the execution flow underlying the standard DL inference,
delineating the existing potential execution paths. Finally, while job scheduling (iii) is
deemed to be a variant of the traditional parallel machine job scheduling [81], targeting task–
device mappings to enable the parallel processing of some given identical tasks on several
processors without additional overhead [85], under the umbrella of classic mathematical
optimization (iv), we find more straightforward equation-based formalizations in the form
of integer linear programming [82,86] and non-linear programming [89,90] problems.

The nature of the problem addressed dictates the type of solution to be adopted in
each case. The model abstracts the problem, providing a framework for either developing
a brand-new algorithm from scratch or, more commonly, reusing and fine-tuning a well-
known algorithm to rationalize the search for potential solutions. All the research efforts
identified can be situated within this last line of work, essentially exploring and exploiting
general problem-solving techniques, namely, (i) greedy algorithms [71,78,80–82,85,89], which
recursively build up the pursued global optimum by picking the best partial solution at each
iteration, for instance, partitions with the least computational complexity [71] or with the
smallest total prediction time consumption [78], and also devices that accomplish the best
latency with the maximum residual computation [82] or produce the slightest increase of
the maximum task completion time [81]; (ii) exhaustive search algorithms [72,75,88], which
sequentially evaluate each potential solution in order to eventually obtain the global final
solution; (iii) heuristic algorithms [76,79], which lay down rules to allow a more efficient
exploration of the search space, e.g., grouping partitions with the same latency [76] and
pruning the DNN’s computationally light nodes [79], yielding a faster solution at the cost of
sacrificing optimality or accuracy; and (iv) classic optimization methods [77,86,89], such as
dynamic programming [77] and linear programming [86,89], which leverage mathematical
models to solve problems directly, deriving solutions by optimizing, i.e., maximizing or
minimizing, depending on the case, the objective function of interest while satisfying the set of
constraints considered, and, in the particular case of dynamic programming, even simplifying
the decision making by breaking it down into a sequence of decision steps over time.

4.3. Major Challenges and Specific Strategies Explored

The complexity of decision making, inter-layer dependency, and data redundancy
resulting from the distributed processing of DNN partitions have subtly emerged in the
two preceding subsections as typical obstacles the authors must overcome when designing
partitioning strategies to maximize the parallelism of DNN tasks, necessitating the devel-
opment of specific approaches. Both the complexity of the partitioning problem itself and
the communication-specific matters noted above may hinder the performance objective
pursued by the vast majority of the studies surveyed, as shown in Section 3. NP-hard
problems, in particular, are inadequate for the online allocation of resources and distribu-
tion of tasks, whereas the synchronization and need for cross-partition data overlapping,
both typical in parallel processing of DNNs with convolutional layers, directly impact, as
mentioned in Section 4.1, the communication overhead between the interconnected IoT
devices used, leading to frequent communications and large data transmissions, thereby
resulting in higher end-to-end inference time.

Moreover, the disparity between these two problems becomes even more pronounced
in terms of proposed solutions. Aside from the specificities of each particular strategy
employed, there is a considerable difference between the two regarding the level of attention
received and the variety of approaches developed to address them. Solving NP-hard
problems (e.g., linear programming [86,89] and non-linear programming [90] problems)
entails only the reformulation of the problem itself, either by adopting heuristics [82] or
relaxing the assumed constraints (e.g., replacing discrete integer variables with continuous



Sensors 2023, 23, 1911 22 of 31

ones [74,86], or adding new decision variables to the formulation to convert a non-convex
problem into a convex one [90]) to derive approximations allowing the desired partitioning
schemes to be obtained more efficiently in the first instance, and ultimately real-time
end-to-end processing.

In contrast, communication overhead arises in the studied corpus as the primary
focus of interest among authors as far as the optimization required to achieve such per-
formance levels is concerned, resulting in a greater variety of methods, as evidenced by
the relatively important number of references collected in Table 4 in this regard. In addi-
tion to the strategies outlined in Section 4.1 for the design of more complex partitioning
schemes—specifically, layer fusion [73,80,84] and inter-channel partitioning [74,83]—these
methods include orthogonal optimization techniques, which are either oriented towards
the improvement in operational aspects of DNN distribution and collaborative inference,
in particular, scheduling strategies [73,74,77,83,87], such as the partitioning schemes just
referred to, or oriented to the tailoring or adjustment of the exploited DNNs themselves,
namely, DNN structure tailoring [71,74,75,77,83,84] and compression methods [81,91].

The work by Zhao et al. from 2020 [74] stands out as the only exponent concerning
scheduling-related improvements in the related literature, reporting specific solutions to
the transmission overhead and the computational redundancy problems resulting from
spatial partitioning, particularly from the need to replicate overlapping input data between
adjacent partitions in the various computational entities involved to produce fragments.
To address both issues, the authors proposed an optimized scheduling process seeking
to foster the reuse of the overlapped data, exploiting a caching mechanism to ultimately
pursue a reduction in the amount of data transmitted. The implemented runtime achieves
such a reduction by caching the overlapped intermediate feature map data produced when
processing a partition, immediately making the data available to other neighboring parti-
tions and rendering the data necessary only for the first layer of each partition to receive and
generate the non-overlapping regions of input and intermediate feature maps. However,
despite this improvement in both computational and data transmission performance, the
reuse scheme resulted in dependencies between partitions that may hinder parallelism,
thus prompting the design of additional scheduling mechanisms to parallelize work while
taking such a dependence into account. To that end, overlapped intermediate data manage-
ment was centralized on a gateway for efficiency, while the other nodes were programmed
to process incoming requests in dependency order—more specifically, beginning with those
with the smallest amount of overlap—thus maintaining the synchronization overhead low.

DNN structure tailoring refers to strategies that tweak factors or aspects regarding the
inner structure of the DNNs to obtain architectures that are more conducive to efficiently
running inherently tightly coupled models on distributed resource-constrained devices,
thereby not only pursuing the minimization of communication costs but also accommo-
dating, in the vast majority of cases, the size of the models of interest to the memory and
computing resource budget of the devices comprising the exploited hardware infrastructure
(see Table 4). In this respect, there is specific research [74,75,78,83] that has already emerged,
as presented in Section 4.1, approaching the transmission overhead challenge by replacing
standard convolutions with group convolutions and channel shuffle operations [74,83], and
transforming a chain-like DNN model into several virtually independent and narrower
branches by removing non-branch connections [75,77], leading in both cases to greater
data independence between the processed units. Furthermore, on a slightly different track,
we may include under the same umbrella techniques, typically employed at design time,
that seek to achieve more efficient data transmission through communication compression:
pruning [71,84], which exploits DNNs’ sparsity to simplify the structure of a given network
by systematically removing redundant connections, for instance, zeroing out shared parts
of the tensors [71], during training, resulting in a considerable decrease in transmission
data size; and the use of encoder–decoder structures [77], which involve modifying the
DNN’s original architecture at potential inter-device communication points by embedding
a pair of symmetric networks, i.e., an encoder and a decoder, that acts as a bottleneck,



Sensors 2023, 23, 1911 23 of 31

compressing data to be transmitted at the origin and decompressing it at the destination
once received.

These methods involve modifying the structure of the original DNN model by either
reducing the number of connections [71,75,84] or using more efficient operators [74,83]
in their layers. However, as indicated in the previous paragraph, they have a benefit
beyond the reduction in communication overhead, decreasing the number of parameters
and MAC operations and, consequently, the memory and computational demands, in
general [71,74,75,83], which can affect, in turn, the quality of the predictions provided,
causing accuracy loss. In order to mitigate this degradation, the prevailing trend in the
works referring to this particular issue has been to complement or support the optimization
mechanisms with strategies that enable recovering part of the lost accuracy. Specifically,
as shown in Table 4, though the simple re-training of the network has proven to be an
effective solution in studies experimenting with the sparsity of the model structure [71,81],
in those involving adjustments at the architectural level, the accuracy recovery has also
been implemented by means of solutions of this nature [74,75,83], increasing the number of
channels and output features in convolution and fully connected layers [75], and applying
channel shuffling operations after group convolutions to allow the exchange of information
between groups [74,83].

In any case, despite the loss of accuracy noted, additional pure compression methods
were also developed in a similar manner, aiming to also derive lighter DNN models, but
unlike DNN structure tailoring techniques, this development was achieved by reducing the
volume or numerical precision of the parameters comprising a trained DNN. Particularly
in this line, the reviewed literature revealed two distinct approaches: quantization and
more traditional compression methods. Data quantization reduces the number of bits used
to represent the parameters, thereby lowering the size and computational complexity of
the DNN models. In particular, Zhang et al. employ in [81] a scalar quantization approach,
converting non-zero output values represented by 32-bit floating point numbers into lower-
precision integer values. Moreover, when it comes to non-DNN-specific compression
methods, the research of Zhang et al. [81] emerges again in the analysis, supplementing
quantization with the application of a classic compression method, namely, run-length
encoding [97], on intermediate results in an effort to reduce transmission costs even further.
In this regard, it is important to note that, while the pursued goal has definitely been
to reduce the memory size of the data exchanged between nodes, there has also been
an evident concern for avoiding or, at the very least, mitigating information loss in the
compression–decompression process, something that we see in [81] with the use of run-
length encoding, and also in [91], where Parthasarathy et al. apply the LZ4 algorithm [98]
for the same purpose, where both of them are lossless data compression methods.

On a different note, while still in the same context of study, flexibility has emerged as
the other major challenge when developing intelligent IoT systems. Such systems consist
of a number of nodes that might change in time [72,78]. As mentioned at the beginning of
the document, these nodes are devices that do not necessarily have the same computational
capabilities nor the same memory resources [71,78,79,85,86] that are typically scattered in
the wild, where their communication capacity is affected by the changing conditions of the
medium [77–79,86], but in some cases, such as unmanned aerial vehicles, have the ability
to move around, which introduces new factors of variability such as the relative distance
between devices [90], contributing to further dynamism. While in the reviewed papers it is
possible to distinguish scheduling methods, such as the work stealing scheme [73,87] and
the adaptive communication compression strategy [77], to adaptively adjust and distribute
inference tasks to deal with the dynamic nature of workloads in IoT clusters, and while
there are even studies that take device heterogeneity into account when formalizing the
distribution problem, the main goal pursued along those lines has been to take a dynamic
snapshot of the factors mentioned above that constitute the operational context [72,78–80,86],
depicting the actual conditions prevailing at any given time to feed the system’s decision



Sensors 2023, 23, 1911 24 of 31

engine with the most reliable and up-to-date data possible and ultimately produce optimal
action plans to cope with the DNN requests.

That said, the assessment of the system’s performance and the status of the production
environment in real time, which are necessary for better responding to the fluctuation in
available resources, may introduce an extra burden into the collaborative inference workflow,
thereby affecting the system’s response time. Overall, such online monitoring is seen as
an unsustainable solution to the search for an optimal DNN partitioning or distribution
scheme in a timely manner, and, as such, most authors in the field have relegated accurate
measurements of the system performance to a secondary role, relying instead on estimates
or rough assessments based on the offline profiling of the devices and the DNN models
concerned to feed the decision-making engine, thus enabling a more efficient co-inference
generation. Profiling stands out, therefore, as a linchpin for streamlining the configuration
and generation of co-inference plans. The approach encompasses techniques and methods
that, overall, seek to characterize offline both the DNN tasks to be executed [72,78,79,87] and
the infrastructure used to that end [79,81,86,90], resulting in models or data structures ready
to be exploited later, online, to ultimately make the decision making feasible at runtime.

In particular, DNN profiling is typically carried out on each computing entity by first
abstracting the model concerned, e. g., layer types [72,78,87], layer parameters [79,87], and
each layer’s input size [78], and then capturing the characteristics of the hardware exploited
(e.g., the computing capability [79,86], the power parameters [79,86], and the network
status [79]), to derive the models [72,79,80,83] or just the profiled data archives [78,81,86]
leveraged a posteriori to directly obtain the performance statistics (e.g., memory usage [72],
latency [78–80,87], energy consumption [79], throughput [81], and computing intensity [86])
of the system in production from the configuration of the DNN model executed. More
specifically, according to the nature of the assets obtained as a result in each case, it is possi-
ble to categorize the various profiling techniques reported in the surveyed literature into
three distinct groups: (i) application-specific profiling techniques [78,86], which produce
per-DNN-model profiles by running each DNN of interest on every particular device or
hardware configuration comprising the system; (ii) statistical modeling methods [72,79,87],
which commonly create specific profiles for the different types of layers within the DNN
model studied [72,79] in a one-time offline effort resulting in application-independent
predictive models (e.g., regression models [72]) able to estimate the performance of a given
layer merely from aspects of its configuration; and (iii) a hybrid approach of (i) and (ii),
represented by a single work [83] that establishes a linear regression model for each type of
device used.

5. Discussion

Partitioning DNN inference into multiple subtasks and allocating resources to address
them constitutes the core at the operational level of the collaborative intelligence studied
throughout the present work, necessitating the identification of optimal values for the factors
required to perform such partitioning and distribution. In this sense, the architecture of the
DNN models used (predominantly chain-like), the type of DNN layers considered (primarily
convolutional and fully connected layers), the structural characteristics of these layers, and
the granularity of the partitioning emerge as fundamental aspects, governing both the DNN
partitioning and the subsequent offloading and execution of the partitions produced, thereby
dictating their number and complexity in terms of both memory and computation.

Intra-layer granularity has been embraced almost universally in the frameworks ana-
lyzed, with spatial partitioning adopted as the primary partitioning modality employed
in the examined study context, resulting in notable commonalities between the reviewed
studies in terms of both the partitions produced and their processing. With regard to parti-
tioning, the majority of the papers examined report the generation of partitions consisting
of small tiles (i.e., fragments of the feature maps) constituting subtasks that still have some
data dependency but can be addressed concurrently across the system’s nodes. As for
the calculations required to process the partitions, these have been primarily articulated



Sensors 2023, 23, 1911 25 of 31

using a MapReduce-like distributed programming model, coordinating the participation
of the various devices according to a scheme in which a single node is responsible for
managing the partitioning and subsequent co-inference, typically acting as the scheduler of
the remaining worker nodes and an aggregator of the partial results generated by the latter.

Overall, this model parallelism has not been shown to necessarily affect the internal
connections of a DNN. Although it does reduce the computational and memory footprint
per node, the single-chain dependency between successive layers limits the scope of paral-
lelism within a single inference. In addition, the requirement to extend each region with
elements that overlap adjacent regions in order to compute convolution at the edges, along
with the phenomenon just mentioned, results in significant communication overhead. This
communication overhead has emerged, if not as the primary challenge, at least as the
issue that has received the most attention in the corpus studied, resulting in the devel-
opment of a wide range of specific advancements not only pertaining to the partitioning
process itself (e.g., layer fusion and inter-channel partitioning) or the execution of the pro-
duced partitions (e.g., overlapped data reuse), but also with regards to the representation
(e.g., quantization) and inner structure of the DNNs (e.g., pruning, as well as the exploita-
tion of group convolutions and encoder–decoder structures) to ultimately derive lighter
networks or networks with architecture more conducive to partitioning.

Aside from the communication overhead, the changing nature of the environment in
which IoT systems typically operate—in particular, bandwidth variability—and the poten-
tial hardware configuration heterogeneity of devices that are part of them, have emerged
as significant obstacles in the pursuit of optimal performance in terms of inference time.
The trade-off between decision-making efficiency and system adaptability has motivated a
plethora of related research, resulting in a substantial body of strategies and mechanisms
that, on the one hand, have attempted to deftly produce co-inference schemes to ultimately
minimize the impact on inference at runtime, but, on the other hand, have striven to make
these schemes adaptive to the current state of the different components or aspects of both
the exploited co-inference frameworks and their operating environment; ideally, this is
by capturing online the current state of the system, but, in the vast majority of cases, it is
by exploiting predictive models or instead making use of pre-computed profiling data to
alleviate the burden.

A significant number of publications also exhibit a degree of laxity in assessing the
proposed solutions or even present certain omissions in the evaluation report, which
somewhat undermines the robustness of the results. Furthermore, in this respect, regarding
the equipment used in the experimentation, we can see experiments in which controlled
hardware and software configurations are used for this purpose, far from the conditions of a
real-world environment, emulating various wireless network configurations via the use of a
wired connection with a bandwidth limited by software [74,80,83,84], and even functioning
in [89,91] with a fixed bandwidth. The results presented in the text refer in some cases to
relative measures of performance, such as the acceleration obtained by certain methods
relative to other alternatives [76,89], giving the reader an indication of the performance of
the approaches studied instead of a perfectly accurate picture of it.

Beyond these minor flaws, the design of the evaluation protocol presents more profound
challenges that must be addressed in future research. Below we detail the three identified.

i. Regarding the design of the experiment, there is considerable heterogeneity, not only
in terms of the evaluation metrics considered or the hardware and software infras-
tructure used, but also, and most importantly, in terms of the DNN models adopted,
as well as the competing schemes and the specific aspects of analysis considered
when conducting an in-depth study of the proposed solutions or their comparative
analysis with other existing options. In this sense, the development of a common
evaluation benchmark, at least for the most representative frameworks, would
contribute to the creation of a more solid or scientifically rigorous groundwork in
this context of study, enabling a unified comparison of these frameworks and the



Sensors 2023, 23, 1911 26 of 31

eventual abandonment of the current model, which adopts the local execution of
models on a single device as baseline [71,72,79,81,83,86,88,91] for comparison.

ii. In a significant number of studies, certain factors, the majority of which are closely re-
lated to the hardware configuration used in each case, are not adequately evaluated
or analyzed. A third or less of the co-authored papers do not address issues such as
accuracy [71,74,75,77,83] (fundamental in user-centric intelligent systems), memory
footprint [71,73,74,81,87,89], and communication overhead [70,71,73,82,84,90,91]
(prevalent as major challenges in the smart IoT research reviewed), or energy
consumption [72,75,79,81,86,88,91] (not unique to IoT solutions, but particularly
problematic in these contexts). Therefore, it becomes evident that the study of such
factors should be generalized to the extent possible.

iii. Although execution time assessment is discussed in nearly all of the reviewed
studies, with the exception of [77,89], the vast majority of them lack depth or
level of detail. In general, the analysis conducted in this context focuses almost
exclusively on the end-to-end inference latency, omitting its treatment in relation to
aspects or tasks of great importance that have emerged throughout the document,
with detail found in only very few works, such as data transmission [70,71], pre-
communication data transformation [91], and decision making for generation or
updating the partitioning scheme [90].

Setting aside evaluation issues, but still focusing on system performance, the lack
of interest in factors such as energy consumption and the precision mentioned above
in relation to assessment has also been reflected in the design and implementation of
mechanisms and strategies for the appropriate distribution of DL tasks and optimization
of the execution environment, which have, in essence, pursued the viability of these
intelligent services against memory and computational limitations. Having said that, co-
inference frameworks must provide adequate levels of accuracy to ensure operational
robustness without penalizing quality of service, all while taking energy consumption into
consideration in order to, for example, extend device usage time per battery charge. In this
context, whereas incorporating these factors into decision making is clearly a promising
avenue to pursue, it will require potentially significant efforts from the scientific community,
not only for the conception of models that are representative of the new problem posed, but
also for the design or tuning of algorithms capable of achieving an adequate compromise
between the design objectives envisaged.

In any case, it will be necessary to continue to delve into strategies that contribute to
getting the execution time of the co-inference process closer to the real-time objective. In
this context, even better exploitation of the resources available in the mobile and embedded
devices that can be commonly found today in this type of infrastructure constitutes a possible
avenue for improvement towards further reducing the end-to-end latency derived from the
inference of the deployed DNN models. Specifically, the optimal exploitation of modern SoCs
in many of today’s IoT devices will allow making use of the emerging generation of chipsets
and their processing units with ad hoc designs to accelerate AI, i.e., neural processing units or
NPUs, so as to locally parallelize the execution of DNNs [99]. However, the coordination of
this intra-device parallelism with the inter-device strategies studied, as well as the partitioning
and the horizontal and vertical distribution of DNNs, are anticipated to be a major challenge
that must be faced in order to reach such performance levels.

Finally, although the body of work considered in the survey covers a broad spectrum
of solutions that have enabled solid and agile progress on deep learning processing in
IoT contexts, as we pointed out in Section 3, they have generally maintained the focus
on building the foundations of the paradigm and, at a practical level, on the progressive
improvement in the corresponding techniques. Consequently, they have not only disre-
garded an entire strand of work more focused on the design of approaches oriented more to
support the needs derived from use cases or application domains of potential interest, but
they have also adopted conventions for certain aspects to delimit and make the problems
faced more approachable, at least in the current early stages of the analyzed research. In



Sensors 2023, 23, 1911 27 of 31

this sense, future research should expand or refine the techniques and methods developed
to date, conceiving new approaches or adapting existing ones in order to provide an effec-
tive response to the particular challenges of the production context (e.g., adaptability in
response to the changing nature of the operating environment and robustness to adverse
environmental conditions), or to support both factors of greater complexity that had hith-
erto been virtually ignored (for instance, considering more modern yet complex DNNs
with DAG architectures [78,79,87,89,91]) and progressively more sophisticated features
(e.g., data stream processing [72,77,79,86–88]), which are fundamental in IoT environments,
instead of using a static input.

6. Conclusions

Driven by the current momentum of IoT and DL, this paper outlines the most recent
relevant research conducted to enable the processing of advanced tasks based on highly
complex state-of-the-art DNNs in current IoT environments via collaborative intelligence
implemented due to the aggregate power of multiple entities present in the execution
framework. The typical limitations of memory and computing capacity in the involved
devices are circumvented by parallel processing of the employed models, with this par-
allelism implemented at a practical level by partitioning the models and assigning the
resulting partitions to the available or most appropriate nodes at any given time. Thus, it is
possible to make better use of the resources or capabilities of IoT devices, which are typi-
cally insufficient to handle DL tasks, and address the entire end-to-end inference process
at the same level of computation on relatively close entities geographically, bringing data
processing closer to its source or acquisition entity and, most importantly, reducing the cost
of communication between nodes and, thus, the overall inference time.

In particular, the study provides an exhaustive analysis of the principal approaches
designed along these lines, which have been conceived as comprehensive, collaborative
in-cluster inference solutions or, as the title indicates, methods aimed at enabling the
horizontally distributed execution of DNN models in IoT environments. The analysis has
focused on the most pertinent aspects relating to both the partitioning schemes used and
the parallelism paradigms explored, offering an organized and schematic discussion of the
underlying workflows and associated communication patterns, as well as those aspects or
features at both macro- and micro-architectural levels of the DNNs that have guided the
design of such techniques. Supplementing this core, the document pinpoints and analyzes
the primary challenges encountered at the design and operational levels, e.g., decision
making for the generation of partitioning schemes and the adaptability of the resulting
frameworks to the dynamic nature of the IoT systems, as well as the specific adjustments
explored in response to them, also providing a final discussion of the more salient insights
derived from the research carried out and outlining several directions for future work. In
this sense, the work was conceived as a practical guide that aims to be more than a mere
compendium or summary of techniques, and we hope it will contribute to stimulating
fruitful discussions and inspiring new research ideas to push the field forward.

Author Contributions: Conceptualization, methodology, and investigation, I.R.-C., C.C. and F.F.-R.;
writing—original draft creation—and figure creation, I.R.-C.; writing—review and editing, supervi-
sion and project administration, C.C. and F.F.-R. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was partially supported by: (i) grant PolyDeep (DPI2017-87494-R) funded by
MEIC/AEI/10.13039/501100011033 and by ERDF A way of making Europe; (ii) grant PolyDeepAd-
vance (PDC2021-121644-I00) funded by MCIN/AEI/10.13039/501100011033 and by the European
Union NextGenerationEU/PRTR; (iii) Conselleria de Cultura, Educación e Universidade (Xunta de
Galicia) under the scope of the strategic funding ED431C 2022/03-GRC Competitive Reference Group.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Sensors 2023, 23, 1911 28 of 31

Data Availability Statement: Not applicable.

Acknowledgments: SING group thanks CITI (Centro de Investigación, Transferencia e Innovación)
from the University of Vigo for hosting its IT infrastructure.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zheng, L.-R.; Tenhunen, H.; Zou, Z. Smart Electronic Systems: Heterogeneous Integration of Silicon and Printed Electronicsl; John Wiley

& Sons: Hoboken, NJ, USA, 2018.
2. Nord, J.H.; Koohang, A.; Paliszkiewicz, J. The Internet of Things: Review and theoretical framework. Expert Syst. Appl. 2019, 133,

97–108. [CrossRef]
3. Veres, M.; Moussa, M. Deep Learning for Intelligent Transportation Systems: A Survey of Emerging Trends. IEEE Trans. Intell.

Transp. Syst. 2020, 21, 3152–3168. [CrossRef]
4. Farooq, M.S.; Riaz, S.; Abid, A.; Abid, K.; Naeem, M.A. A Survey on the Role of IoT in Agriculture for the Implementation of

Smart Farming. IEEE Access 2019, 7, 156237–156271. [CrossRef]
5. Lu, Y.; Xu, X.; Wang, L. Smart manufacturing process and system automation—A critical review of the standards and envisioned

scenarios. J. Manuf. Syst. 2020, 56, 312–325. [CrossRef]
6. Baker, S.B.; Xiang, W.; Atkinson, I. Internet of Things for Smart Healthcare: Technologies, Challenges, and Opportunities. IEEE

Access 2017, 5, 26521–26544. [CrossRef]
7. Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A survey of the recent architectures of deep convolutional neural networks. Artif.

Intell. Rev. 2020, 53, 5455–5516. [CrossRef]
8. Abbas, N.; Zhang, Y.; Taherkordi, A.; Skeie, T. Mobile Edge Computing: A Survey. IEEE Internet Things J. 2018, 5, 450–465.

[CrossRef]
9. Rodriguez-Conde, I.; Campos, C.; Fdez-Riverola, F. Cloud-Assisted Collaborative Inference of Convolutional Neural Networks

for Vision Tasks on Resource-Constrained Devices. Neurocomputing, 2022; submitted for publication.
10. Chen, M.; Hao, Y.; Li, Y.; Lai, C.-F.; Wu, D. On the computation offloading at ad hoc cloudlet: Architecture and service modes.

IEEE Commun. Mag. 2015, 53, 18–24. [CrossRef]
11. Zhou, Z.; Chen, X.; Li, E.; Zeng, L.; Luo, K.; Zhang, J. Edge Intelligence: Paving the Last Mile of Artificial Intelligence with Edge

Computing. Proc. IEEE 2019, 107, 1738–1762. [CrossRef]
12. Chen, J.; Ran, X. Deep Learning with Edge Computing: A Review. Proc. IEEE 2019, 107, 1655–1674. [CrossRef]
13. Mejías, B.; Roy, P.V. From Mini-clouds to Cloud Computing. In Proceedings of the 2010 Fourth IEEE International Conference on

Self-Adaptive and Self-Organizing Systems Workshop, Budapest, Hungary, 27–28 September 2010.
14. Elkhatib, Y.; Porter, B.; Ribeiro, H.B.; Zhani, M.F.; Qadir, J.; Riviere, E. On Using Micro-Clouds to Deliver the Fog. IEEE Internet

Comput. 2017, 21, 8–15. [CrossRef]
15. Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog Computing and its Role in the Internet of Things. In Proceedings of the First

Edition of the MCC Workshop on Mobile Cloud Computing, Helsinki, Finland, 17 August 2012.
16. Yao, J.; Zhang, S.; Yao, Y.; Wang, F.; Ma, J.; Zhang, J.; Chu, Y.; Ji, L.; Jia, K.; Shen, T.; et al. Edge-Cloud Polarization and

Collaboration: A Comprehensive Survey for AI. IEEE Trans. Knowl. Data Eng. 2022, 1. [CrossRef]
17. Filho, C.P.; Marques, E.; Chang, V.; dos Santos, L.; Bernardini, F.; Pires, P.F.; Ochi, L.; Delicato, F.C. A Systematic Literature Review

on Distributed Machine Learning in Edge Computing. Sensors 2022, 22, 2665. [CrossRef]
18. Wang, X.; Han, Y.; Leung, V.C.M.; Niyato, D.; Yan, X.; Chen, X. Convergence of Edge Computing and Deep Learning: A

Comprehensive Survey. IEEE Commun. Surv. Tutor. 2020, 22, 869–904. [CrossRef]
19. Matsubara, Y.; Levorato, M.; Restuccia, F. Split computing and early exiting for deep learning applications: Survey and research

challenges. ACM Comput. Surv. 2022, 55, 1–30. [CrossRef]
20. Rausch, T.; Dustdar, S. Edge Intelligence: The Convergence of Humans, Things, and AI. In Proceedings of the 2019 IEEE

International Conference on Cloud Engineering (IC2E), Milan, Italy, 24–27 June 2019.
21. Murshed, M.G.S.; Murphy, C.; Hou, D.; Khan, N.; Ananthanarayanan, G.; Hussain, F. Machine Learning at the Network Edge: A

Survey. ACM Comput. Surv. 2021, 54, 1–37. [CrossRef]
22. Deng, S.; Zhao, H.; Fang, W.; Yin, J.; Dustdar, S.; Zomaya, A.Y. Edge Intelligence: The Confluence of Edge Computing and

Artificial Intelligence. IEEE Internet Things J. 2020, 7, 7457–7469. [CrossRef]
23. Xu, D.; Li, T.; Li, Y.; Su, X.; Tarkoma, S.; Jiang, T. Edge intelligence: Architectures, challenges, and applications. arXiv 2020,

arXiv:2003.12172.
24. Verbraeken, J.; Wolting, M.; Katzy, J.; Kloppenburg, J.; Verbelen, T.; Rellermeyer, J.S. A Survey on Distributed Machine Learning.

ACM Comput. Surv. 2020, 53, 1–33. [CrossRef]
25. Wang, J.; Pan, J.; Esposito, F.; Calyam, P.; Yang, Z.; Mohapatra, P. Edge cloud offloading algorithms: Issues, methods, and

perspectives. ACM Comput. Surv. 2019, 52, 1–23. [CrossRef]
26. Shi, Y.; Yang, K.; Jiang, T.; Zhang, J.; Letaief, K.B. Communication-Efficient Edge AI: Algorithms and Systems. IEEE Commun.

Surv. Tutor. 2020, 22, 2167–2191. [CrossRef]
27. Lin, L.; Liao, X.; Jin, H.; Li, P. Computation Offloading Toward Edge Computing. Proc. IEEE 2019, 107, 1584–1607. [CrossRef]

http://doi.org/10.1016/j.eswa.2019.05.014
http://doi.org/10.1109/TITS.2019.2929020
http://doi.org/10.1109/ACCESS.2019.2949703
http://doi.org/10.1016/j.jmsy.2020.06.010
http://doi.org/10.1109/ACCESS.2017.2775180
http://doi.org/10.1007/s10462-020-09825-6
http://doi.org/10.1109/JIOT.2017.2750180
http://doi.org/10.1109/MCOM.2015.7120041
http://doi.org/10.1109/JPROC.2019.2918951
http://doi.org/10.1109/JPROC.2019.2921977
http://doi.org/10.1109/MIC.2017.35
http://doi.org/10.1109/TKDE.2022.3178211
http://doi.org/10.3390/s22072665
http://doi.org/10.1109/COMST.2020.2970550
http://doi.org/10.1145/3527155
http://doi.org/10.1145/3469029
http://doi.org/10.1109/JIOT.2020.2984887
http://doi.org/10.1145/3377454
http://doi.org/10.1145/3214306
http://doi.org/10.1109/COMST.2020.3007787
http://doi.org/10.1109/JPROC.2019.2922285


Sensors 2023, 23, 1911 29 of 31

28. Zou, Z.; Jin, Y.; Nevalainen, P.; Huan, Y.; Heikkonen, J.; Westerlund, T. Edge and Fog Computing Enabled AI for IoT-An Overview.
In Proceedings of the 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), Hsinchu,
Taiwan, 18–20 March 2019.

29. Rosendo, D.; Costan, A.; Valduriez, P.; Antoniu, G. Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
literature review. J. Parallel Distrib. Comput. 2022, 166, 71–94. [CrossRef]

30. Lane, N.D.; Bhattacharya, S.; Georgiev, P.; Forlivesi, C.; Jiao, L.; Qendro, L.; Kawsar, F. DeepX: A Software Accelerator for
Low-Power Deep Learning Inference on Mobile Devices. In Proceedings of the 2016 15th ACM/IEEE International Conference on
Information Processing in Sensor Networks (IPSN), Vienna, Austria, 11–14 April 2016.

31. Li, H.; Ng, J.K.; Abdelzaher, T. Enabling Real-time AI Inference on Mobile Devices via GPU-CPU Collaborative Execution. In
Proceedings of the 2022 IEEE 28th International Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA), Taipei, Taiwan, 23–25 August 2022.

32. Dagli, I.; Cieslewicz, A.; McClurg, J.; Belviranli, M.E. AxoNN: Energy-aware execution of neural network inference on multi-
accelerator heterogeneous SoCs. In Proceedings of the 59th ACM/IEEE Design Automation Conference, San Francisco, CA, USA,
5–9 December 2021; Association for Computing Machinery: New York, NY, USA, 2021.

33. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

34. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
35. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017,

60, 84–90. [CrossRef]
36. Liu, S.; Deng, W. Very deep convolutional neural network based image classification using small training sample size. In

Proceedings of the 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), Kuala Lumpur, Malaysia, 3–6 November 2015.
37. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D. Going deeper with convolutions. In Proceedings of the 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015.
38. Chen, T.; Du, Z.; Sun, N.; Wang, J.; Wu, C.; Chen, Y.; Temam, O. DianNao: A small-footprint high-throughput accelerator for

ubiquitous ma-chine-learning. In Proceedings of the 19th International Conference on Architectural Support for Programming
Languages and Operating Systems, Salt Lake City, UT, USA, 1–5 March 2014.

39. Chen, Y.-H.; Yang, T.-J.; Emer, J.S.; Sze, V. Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile
Devices. IEEE J. Emerg. Sel. Top. Circuits Syst. 2019, 9, 292–308. [CrossRef]

40. Yin, X.; Chen, L.; Zhang, X.; Gao, Z. Object Detection Implementation and Optimization on Embedded GPU System. In
Proceedings of the 2018 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Valencia,
Spain, 6–8 June 2018.

41. Andargie, F.A.; Rose, J.; Austin, T.; Bertacco, V. Energy efficient object detection on the mobile GP-GPU. IEEE Africon 2017,
945–950. [CrossRef]

42. Zhang, C.; Li, P.; Sun, G.; Guan, Y.; Xiao, B.; Cong, J. Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural
Net-works. In Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey,
CA, USA, 22–24 February 2015; Association for Computing Machinery: New York, NY, USA, 2015.

43. Guo, K.; Zeng, S.; Yu, J.; Wang, Y.; Yang, H. [DL] A Survey of FPGA-based Neural Network Inference Accelerators. ACM Trans.
Reconfigurable Technol. Syst. 2019, 12, 1–26. [CrossRef]

44. Cheng, J.; Wang, P.-S.; Li, G.; Hu, Q.-H.; Lu, H.-Q. Recent advances in efficient computation of deep convolutional neural
networks. Front. Inf. Technol. Electron. Eng. 2018, 19, 64–77. [CrossRef]

45. Deng, B.L.; Li, G.; Han, S.; Shi, L.; Xie, Y. Model Compression and Hardware Acceleration for Neural Networks: A Comprehensive
Survey. Proc. IEEE 2020, 108, 485–532. [CrossRef]

46. Bhattacharya, S.; Lane, N.D. Sparsification and Separation of Deep Learning Layers for Constrained Resource Inference on
Wearables. In Proceedings of the 14th ACM Conference on Embedded Networked Sensor Systems (SenSys), Stanford, CA, USA,
14–16 November 2016; pp. 176–189.

47. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T. MobileNets: Efficient convolutional neural networks
for mobile vision applications. arXiv 2017, arXiv:1704.04861.

48. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

49. Rodriguez-Conde, I.; Campos, C.; Fdez-Riverola, F. Optimized convolutional neural network architectures for efficient on-device
vision-based object detection. Neural Comput. Appl. 2022, 34, 10469–10501. [CrossRef]

50. Rodriguez-Conde, I.; Campos, C.; Fdez-Riverola, F. On-Device Object Detection for More Efficient and Privacy-Compliant Visual
Perception in Context-Aware Systems. Appl. Sci. 2021, 11, 9173. [CrossRef]

51. Norouzi, N.; Bruder, G.; Belna, B.; Mutter, S.; Turgut, D.; Welch, G. A Systematic Review of the Convergence of Augmented
Reality, Intelligent Virtual Agents, and the Internet of Things. In Artificial Intelligence in IoT; Al-Turjman, F., Ed.; Springer:
Berlin/Heidelberg, Germany, 2019; pp. 1–24.

52. Lu, H.; Liu, Q.; Tian, D.; Li, Y.; Kim, H.; Serikawa, S. The Cognitive Internet of Vehicles for Autonomous Driving. IEEE Netw.
2019, 33, 65–73. [CrossRef]

http://doi.org/10.1016/j.jpdc.2022.04.004
http://doi.org/10.1145/3065386
http://doi.org/10.1109/JETCAS.2019.2910232
http://doi.org/10.1109/afrcon.2017.8095609
http://doi.org/10.1145/3289185
http://doi.org/10.1631/FITEE.1700789
http://doi.org/10.1109/JPROC.2020.2976475
http://doi.org/10.1007/s00521-021-06830-w
http://doi.org/10.3390/app11199173
http://doi.org/10.1109/MNET.2019.1800339


Sensors 2023, 23, 1911 30 of 31

53. Strom, N. Scalable distributed DNN training using commodity GPU cloud computing. In Proceedings of the Interspeech 2015,
Dresden, Germany, 6–10 September 2015; pp. 1488–1492. [CrossRef]

54. Khan, A.U.R.; Othman, M.; Madani, S.A.; Khan, S.U. A Survey of Mobile Cloud Computing Application Models. IEEE Commun.
Surv. Tutor. 2014, 16, 393–413. [CrossRef]

55. Premsankar, G.; Francesco, M.D.; Taleb, T. Edge Computing for the Internet of Things: A Case Study. IEEE Internet Things J. 2018,
5, 1275–1284. [CrossRef]

56. Meng, N.; Lam, E.Y.; Tsia, K.K.; So, H.K.-H. Large-Scale Multi-Class Image-Based Cell Classification with Deep Learning. IEEE J.
Biomed. Health Inform. 2018, 23, 2091–2098. [CrossRef]

57. Hauswald, J.; Kang, Y.; Laurenzano, M.A.; Chen, Q.; Li, C.; Mudge, T. DjiNN and Tonic: DNN as a service and its implications for
future warehouse scale computers. In Proceedings of the 2015 ACM/IEEE 42nd Annual International Symposium on Computer
Architecture (ISCA), Portland, OR, USA, 13–17 June 2015.

58. Jauro, F.; Chiroma, H.; Gital, A.Y.; Almutairi, M.; Abdulhamid, S.M.; Abawajy, J.H. Deep learning architectures in emerging cloud
computing architectures: Recent development, challenges and next research trend. Appl. Soft Comput. 2020, 96, 106582. [CrossRef]

59. Varghese, B.; Buyya, R. Next generation cloud computing: New trends and research directions. Future Gener. Comput. Syst. 2018,
79, 849–861. [CrossRef]

60. Wu, H.; Zhang, Z.; Guan, C.; Wolter, K.; Xu, M. Collaborate Edge and Cloud Computing with Distributed Deep Learning for
Smart City Internet of Things. IEEE Internet Things J. 2020, 7, 8099–8110. [CrossRef]

61. Qayyum, A.; Ijaz, A.; Usama, M.; Iqbal, W.; Qadir, J.; Elkhatib, Y.; Al-Fuqaha, A. Securing Machine Learning in the Cloud: A
Systematic Review of Cloud Machine Learning Security. Front. Big Data 2020, 3, 587139. [CrossRef] [PubMed]

62. Huang, D.; Wu, H. Chapter 1—Mobile Cloud Computing Taxonomy. In Mobile Cloud Computing; Huang, D., Wu, H., Eds.; Morgan
Kaufmann: Burlington, MA, USA, 2018; pp. 5–29.

63. Fernando, N.; Loke, S.W.; Rahayu, W. Mobile cloud computing: A survey. Future Gener. Comput. Syst. 2013, 29, 84–106. [CrossRef]
64. Satyanarayanan, M.; Bahl, P.; Caceres, R.; Davies, N. The Case for VM-Based Cloudlets in Mobile Computing. IEEE Pervasive

Comput. 2009, 8, 14–23. [CrossRef]
65. Tong, L.; Li, Y.; Gao, W. A Hierarchical Edge Cloud Architecture for Mobile Computing. In Proceedings of the IEEE INFOCOM

2016—The 35th Annual IEEE International Conference on Computer Communications, San Francisco, CA, USA, 10–14 April 2016.
66. Kang, Y.; Hauswald, J.; Gao, C.; Rovinski, A.; Mudge, T.; Mars, J.; Tang, L. Neurosurgeon: Collaborative intelligence between the

cloud and mobile edge. ACM SIGPLAN Not. 2017, 52, 615–629. [CrossRef]
67. Jeong, H.-J.; Lee, H.-J.; Shin, C.H.; Moon, S.-M. IONN: Incremental Offloading of Neural Network Computations from Mobile

Devices to Edge Servers. In Proceedings of the ACM Symposium on Cloud Computing; Association for Computing Machinery:
Carlsbad, CA, USA, 2018; pp. 401–411.

68. Hu, C.; Bao, W.; Wang, D.; Liu, F. Dynamic Adaptive DNN Surgery for Inference Acceleration on the Edge. In Proceedings of the
IEEE INFOCOM 2019—IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019.

69. Zhang, S.; Li, Y.; Liu, X.; Guo, S.; Wang, W.; Wang, J.; Ding, B.; Wu, D. Towards Real-time Cooperative Deep Inference over the
Cloud and Edge End Devices. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2020, 4, 1–24. [CrossRef]

70. Mao, J.; Chen, X.; Nixon, K.W.; Krieger, C. MoDNN: Local distributed mobile computing system for Deep Neural Network. In
Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Lausanne, Switzerland, 27–31 March 2017.
[CrossRef]

71. Mao, J.; Yang, Z.; Wen, W.; Wu, C.; Song, L.; Nixon, K.W.; Chen, X.; Li, H.; Chen, Y. MeDNN: A distributed mobile system with
enhanced partition and deployment for large-scale DNNs. In Proceedings of the 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), Irvine, CA, USA, 13–16 November 2017. [CrossRef]

72. Hadidi, R.; Cao, J.; Woodward, M.; Ryoo, M.S.; Kim, H. Musical chair: Efficient real-time recognition using collaborative iot
devices. arXiv 2018, arXiv:1802.02138.

73. Zhao, Z.; Barijough, K.M.; Gerstlauer, A. DeepThings: Distributed Adaptive Deep Learning Inference on Resource-Constrained
IoT Edge Clusters. IEEE Trans. Comput. Des. Integr. Circuits Syst. 2018, 37, 2348–2359. [CrossRef]

74. Du, J.; Shen, M.; Du, Y. A Distributed In-Situ CNN Inference System for IoT Applications. In Proceedings of the 2020 IEEE 38th
International Conference on Computer Design (ICCD), Hartford, CT, USA, 18–21 October 2020.

75. Hadidi, R.; Asgari, B.; Cao, J.; Bae, Y.; Shim, D.E.; Kim, H. LCP: A low-communication parallelization method for fast neural
network in-ference in image recognition. arXiv 2020, arXiv:2003.06464.

76. Hadidi, R.; Cao, J.; Ryoo, M.S.; Kim, H. Toward Collaborative Inferencing of Deep Neural Networks on Internet-of-Things
Devices. IEEE Internet Things J. 2020, 7, 4950–4960. [CrossRef]

77. Hu, D.; Krishnamachari, B. Fast and Accurate Streaming CNN Inference via Communication Compression on the Edge. In
Proceedings of the 2020 IEEE/ACM Fifth International Conference on Internet-of-Things Design and Implementation (IoTDI),
Sydney, Australia, 21–24 April 2020.

78. Miao, W.; Zeng, Z.; Wei, L.; Li, S.; Jiang, C.; Zhang, Z. Adaptive DNN Partition in Edge Computing Environments. In Proceedings of
the 2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS), Hong Kong, China, 2–4 December 2020.

79. Xu, M.; Qian, F.; Zhu, M.; Huang, F.; Pushp, S.; Liu, X. DeepWear: Adaptive Local Offloading for On-Wearable Deep Learning.
IEEE Trans. Mob. Comput. 2019, 19, 314–330. [CrossRef]

http://doi.org/10.21437/interspeech.2015-354
http://doi.org/10.1109/SURV.2013.062613.00160
http://doi.org/10.1109/JIOT.2018.2805263
http://doi.org/10.1109/JBHI.2018.2878878
http://doi.org/10.1016/j.asoc.2020.106582
http://doi.org/10.1016/j.future.2017.09.020
http://doi.org/10.1109/JIOT.2020.2996784
http://doi.org/10.3389/fdata.2020.587139
http://www.ncbi.nlm.nih.gov/pubmed/33693420
http://doi.org/10.1016/j.future.2012.05.023
http://doi.org/10.1109/MPRV.2009.82
http://doi.org/10.1145/3093336.3037698
http://doi.org/10.1145/3397315
http://doi.org/10.23919/date.2017.7927211
http://doi.org/10.1109/iccad.2017.8203852
http://doi.org/10.1109/TCAD.2018.2858384
http://doi.org/10.1109/JIOT.2020.2972000
http://doi.org/10.1109/TMC.2019.2893250


Sensors 2023, 23, 1911 31 of 31

80. Xue, F.; Fang, W.; Xu, W.; Wang, Q.; Ma, X.; Ding, Y. EdgeLD: Locally Distributed Deep Learning Inference on Edge Device Clusters.
In Proceedings of the 2020 IEEE 22nd International Conference on High Performance Computing and Communications; IEEE 18th
International Conference on Smart City; IEEE 6th International Conference on Data Science and Systems (HPCC/SmartCity/DSS),
Yanuca Island, Cuvu, Fiji, 14–16 December 2020.

81. Zhang, S.Q.; Lin, J.; Zhang, Q. Adaptive distributed convolutional neural network inference at the network edge with ADCNN.
In Proceedings of the 49th International Conference on Parallel Processing-ICPP, Edmonton, AB, Canada, 17–20 August 2020.

82. Dhuheir, M.; Baccour, E.; Erbad, A.; Sabeeh, S.; Hamdi, M. Efficient Real-Time Image Recognition Using Collaborative Swarm of
UAVs and Convolutional Networks. In Proceedings of the 2021 International Wireless Communications and Mobile Computing
(IWCMC), Harbin, China, 28 June–2 July 2021. [CrossRef]

83. Du, J.; Zhu, X.; Shen, M.; Du, Y.; Lu, Y.; Xiao, N.; Liao, X. Model Parallelism Optimization for Distributed Inference via Decoupled
CNN Structure. IEEE Trans. Parallel Distrib. Syst. 2020, 32, 1665–1676. [CrossRef]

84. Naveen, S.; Kounte, M.R.; Ahmed, M.R. Low Latency Deep Learning Inference Model for Distributed Intelligent IoT Edge
Clusters. IEEE Access 2021, 9, 160607–160621. [CrossRef]

85. Yang, X.; Qi, Q.; Wang, J.; Guo, S.; Liao, J. Towards Efficient Inference: Adaptively Cooperate in Heterogeneous IoT Edge Cluster.
In Proceedings of the 2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS), Washington, DC,
USA, 7–10 July 2021. [CrossRef]

86. Zeng, L.; Chen, X.; Zhou, Z.; Yang, L.; Zhang, J. CoEdge: Cooperative DNN Inference with Adaptive Workload Partitioning Over
Heterogeneous Edge Devices. IEEE/ACM Trans. Netw. 2020, 29, 595–608. [CrossRef]

87. Miao, W.; Zeng, Z.; Wei, L.; Li, S.; Jiang, C.; Zhang, Z. DeepSlicing: Collaborative and Adaptive CNN Inference with Low Latency.
IEEE Trans. Parallel Distrib. Syst. 2021, 32, 2175–2187.

88. Goel, A.; Tung, C.; Hu, X.; Thiruvathukal, G.K.; Davis, J.C.; Lu, Y.H. Efficient Computer Vision on Edge Devices with Pipeline-
Parallel Hi-erarchical Neural Networks. In Proceedings of the 2022 27th Asia and South Pacific Design Automation Conference
(ASP-DAC), Taipei, Taiwan, 17–20 January 2022.

89. Hu, C.; Li, B. Distributed Inference with Deep Learning Models across Heterogeneous Edge Devices. In Proceedings of the IEEE
INFOCOM 2022—IEEE Conference on Computer Communications, Virtual, 2–5 May 2022.

90. Jouhari, M.; Al-Ali, A.K.; Baccour, E.; Mohamed, A.; Erbad, A.; Guizani, M.; Hamdi, M. Distributed CNN Inference on Resource-
Constrained UAVs for Surveillance Systems: Design and Optimization. IEEE Internet Things J. 2022, 9, 1227–1242. [CrossRef]

91. Parthasarathy, A.; Krishnamachari, B. DEFER: Distributed Edge Inference for Deep Neural Networks. In Proceedings of the 2022
14th International Conference on COMmunication Systems & NETworkS (COMSNETS), Bengaluru, India, 4–8 January 2022.

92. Reddy, P.K.; Babu, R. An Evolutionary Secure Energy Efficient Routing Protocol in Internet of Things. Int. J. Intell. Eng. Syst. 2017,
10, 337–346. [CrossRef]

93. Coates, A.; Huval, B.; Wang, T.; Wu, D.; Catanzaro, B.; Andrew, N. Deep learning with COTS HPC systems. In Proceedings of the
International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013.

94. He, Y.; Liu, X.; Zhong, H.; Ma, Y. AddressNet: Shift-based primitives for efficient convolutional neural networks. Proceedings—
2019 IEEE Winter Conference on Applications of Computer Vision, WACV 2019, Waikoloa Village, HI, USA, 7–11 January 2019;
pp. 1213–1222.

95. Xie, X.; Zhou, Y.; Kung, S.Y. Exploring Highly Efficient Compact Neural Networks for Image Classification. In Proceedings of the
2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 25–28 October 2020.

96. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. In
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT,
USA, 18–22 June 2018; pp. 6848–6856.

97. Fiergolla, S.; Wolf, P. Improving Run Length Encoding by Preprocessing. In Proceedings of the 2021 Data Compression Conference
(DCC), Virtual, 23–26 March 2021.

98. Gia, T.N.; Qingqing, L.; Queralta, J.P.; Tenhunen, H.; Zou, Z.; Westerlund, T. Lossless Compression Techniques in Edge Computing
for Mis-sion-Critical Applications in the IoT. In Proceedings of the 2019 Twelfth International Conference on Mobile Computing
and Ubiquitous Network (ICMU), Kathmandu, Nepal, 4–6 November 2019.

99. Merenda, M.; Porcaro, C.; Iero, D. Edge Machine Learning for AI-Enabled IoT Devices: A Review. Sensors 2020, 20, 2533.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/iwcmc51323.2021.9498967
http://doi.org/10.1109/TPDS.2020.3041474
http://doi.org/10.1109/ACCESS.2021.3131396
http://doi.org/10.1109/icdcs51616.2021.00011
http://doi.org/10.1109/TNET.2020.3042320
http://doi.org/10.1109/JIOT.2021.3079164
http://doi.org/10.22266/ijies2017.0630.38
http://doi.org/10.3390/s20092533

	Introduction 
	Background: Towards Deep Learning at the Edge 
	In Situ Distributed Intelligence 
	DNN Partitioning and Parallelism for Collaborative Inference 
	Taxonomy of Parallelism Strategies and Partitioning Schemes 
	Decision Making for Partitioning Scheme Generation 
	Major Challenges and Specific Strategies Explored 

	Discussion 
	Conclusions 
	References

