5,999 research outputs found

    Quantum and classical localisation and the Manhattan lattice

    Full text link
    We consider a network model, embedded on the Manhattan lattice, of a quantum localisation problem belonging to symmetry class C. This arises in the context of quasiparticle dynamics in disordered spin-singlet superconductors which are invariant under spin rotations but not under time reversal. A mapping exists between problems belonging to this symmetry class and certain classical random walks which are self-avoiding and have attractive interactions; we exploit this equivalence, using a study of the classical random walks to gain information about the corresponding quantum problem. In a field-theoretic approach, we show that the interactions may flow to one of two possible strong coupling regimes separated by a transition: however, using Monte Carlo simulations we show that the walks are in fact always compact two-dimensional objects with a well-defined one-dimensional surface, indicating that the corresponding quantum system is localised.Comment: 11 pages, 8 figure

    Mathematical Methods for the Quantification of Actin-Filaments in Microscopic Images

    Get PDF
    In cell biology confocal laser scanning microscopic images of the actin filament of human osteoblasts are produced to assess the cell development. This thesis aims at an advanced approach for accurate quantitative measurements about the morphology of the bright-ridge set of these microscopic images and thus about the actin filament. Therefore automatic preprocessing, tagging and quantification interplay to approximate the capabilities of the human observer to intuitively recognize the filaments correctly. Numerical experiments with random models confirm the accuracy of this approach

    A review of Monte Carlo simulations of polymers with PERM

    Full text link
    In this review, we describe applications of the pruned-enriched Rosenbluth method (PERM), a sequential Monte Carlo algorithm with resampling, to various problems in polymer physics. PERM produces samples according to any given prescribed weight distribution, by growing configurations step by step with controlled bias, and correcting "bad" configurations by "population control". The latter is implemented, in contrast to other population based algorithms like e.g. genetic algorithms, by depth-first recursion which avoids storing all members of the population at the same time in computer memory. The problems we discuss all concern single polymers (with one exception), but under various conditions: Homopolymers in good solvents and at the Θ\Theta point, semi-stiff polymers, polymers in confining geometries, stretched polymers undergoing a forced globule-linear transition, star polymers, bottle brushes, lattice animals as a model for randomly branched polymers, DNA melting, and finally -- as the only system at low temperatures, lattice heteropolymers as simple models for protein folding. PERM is for some of these problems the method of choice, but it can also fail. We discuss how to recognize when a result is reliable, and we discuss also some types of bias that can be crucial in guiding the growth into the right directions.Comment: 29 pages, 26 figures, to be published in J. Stat. Phys. (2011

    Improving Trust in Deep Neural Networks with Nearest Neighbors

    Get PDF
    Deep neural networks are used increasingly for perception and decision-making in UAVs. For example, they can be used to recognize objects from images and decide what actions the vehicle should take. While deep neural networks can perform very well at complex tasks, their decisions may be unintuitive to a human operator. When a human disagrees with a neural network prediction, due to the black box nature of deep neural networks, it can be unclear whether the system knows something the human does not or whether the system is malfunctioning. This uncertainty is problematic when it comes to ensuring safety. As a result, it is important to develop technologies for explaining neural network decisions for trust and safety. This paper explores a modification to the deep neural network classification layer to produce both a predicted label and an explanation to support its prediction. Specifically, at test time, we replace the final output layer of the neural network classifier by a k-nearest neighbor classifier. The nearest neighbor classifier produces 1) a predicted label through voting and 2) the nearest neighbors involved in the prediction, which represent the most similar examples from the training dataset. Because prediction and explanation are derived from the same underlying process, this approach guarantees that the explanations are always relevant to the predictions. We demonstrate the approach on a convolutional neural network for a UAV image classification task. We perform experiments using a forest trail image dataset and show empirically that the hybrid classifier can produce intuitive explanations without loss of predictive performance compared to the original neural network. We also show how the approach can be used to help identify potential issues in the network and training process

    Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram

    Full text link
    Experiments under laboratory conditions were carried out to study the ordering in bidirectional pedestrian streams and its influence on the fundamental diagram (density-speed-flow relation). The Voronoi method is used to resolve the fine structure of the resulting velocity-density relations and spatial dependence of the measurements. The data show that the specific flow concept is applicable also for bidirectional streams. For various forms of ordering in bidirectional streams, no large differences among density-flow relationships are found in the observed density range. The fundamental diagrams of bidirectional streams with different forms of ordering are compared with that of unidirectional streams. The result shows differences in the shape of the relation for {\rho} > 1.0 m-2. The maximum of the specific flow in unidirectional streams is significantly larger than that in all bidirectional streams examined.Comment: 9 pages, 9 figures, 3 Table
    corecore