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Zusammenfassung

In der Zellbiologie werden konfokale, Laser-Raster-mikroskopische
Aufnahmen vom Aktin-Filament humaner Osteoblasten erstellt um
den Fortschritt der zellulären Entwicklung zu beurteilen. Das Aktin-
Filament kann als geometrisch eingebetteter Graph von Graten im
Bild-Relief modelliert werden. In der Literatur ist der Ansatz über
morphologische Skelettierung einer kumulativen Niveaumenge gut do-
kumentiert. Der Gegenstand dieser Arbeit ist ein verfeinerter Ansatz,
um genauere quantitative Aussagen über die Menge von Graten im
Bild-Relief und damit über das Aktin-Filament in seiner Erscheinung
in konfokalen Mikroskopieaufnahmen zu gewinnen. Dazu spielen auto-
matische Vorverarbeitung, Markierung und Quantifizierung zusammen
um insgesamt die Fähigkeit des menschlichen Betrachters anzunähern,
die Filamente intuitiv richtig zu erkennen. Die erreichte Genauigkeit
ist durch numerische Experimente mit mehreren Zufallsmodellen der
Daten und mit Anwendungsdaten zu bereits bestätigten Hypothesen
belegt.



Abstract

In cell biology confocal laser scanning microscopic images of the
actin filament of human osteoblasts are produced to assess the progress
of cellular development. The actin filament can be regarded as a ge-
ometrically embedded graph of bright ridges in the image relief. The
approach using skeletonization of a cumulative level set is well docu-
mented in the literature. This thesis aims at an advanced approach
for more accurate quantitative measurements about the morphology
of the bright-ridge set of microscopic images and thus about the actin
filament in its appearance in confocal laser scanning microscopic im-
ages. Therefore automatic preprocessing, tagging and quantification
interplay to approximate the capabilities of the human observer to in-
tuitively recognize the filaments correctly. The achieved accuracy is
proven by numerical experiments with random models of the data and
with application data for already confirmed hypotheses.
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1 Introduction

Interdisciplinary work needs a common language. Proverbial a picture is
worth a thousand words. Image processing can provide a common platform
for collaborative efforts of distinct scientific disciplines. The situation is as
follows. Cell biologists are interested in facilitating the survey of cultured
cells. Mathematicians are in the need of examples for employable and aes-
thetic theory. Hence, there is mutual benefit in improving the foundation
of biological research by finding automatic techniques for the evaluation of
microscopic image data.
The data is a multitude of digital images. They expose prominent fibers
forming a filament. This filament consists of actin, an important struc-
tural protein in eucaryotic cells, abbreviated as F-actin, which is selectively
fluorescence stained before image acquisition. For automatic analysis the fil-
ament is modelled as a geometrically embedded graph, which is subsequently
evaluated for biologically meaningful parameters. The greater challenge is to
identify and implement suitable image analysis tools which define the feature
as accurate as necessary to be able to derive biological parameters properly.
Furthermore, these tools must be flexible and applicable for different modal-
ities of image acquisition like contrast, noise and blur.
Cyto-skeletal actin is relevant for formation, migration and signal propaga-
tion in most eucaryotic cells. It can be observed thanks to selective stain-
ing and microscopic techniques. This allows image acquisition with strong
contrast and adjustable focus. Actin often forms a well defined filament,
which is as a network of interconnected and interwoven fibers within the
cell body. The morphology of the filament is a strong indicator for the cellu-
lar adherence progress and thus of particular interest in biomaterial research.
Providing appropriate techniques for automatic quantification of morpholog-
ical parameters describing mainly the actin filament of cells observed with
confocal laser scanning microscopy is the main goal of this thesis.

1.1 Interdisciplinary Question

Confocal laser scanning microscopy is an image acquisition technique with
the appealing capability to collect data from a thin focal plane. This renders
it especially suitable for studying cells on biomaterial surfaces. Osteoblastic
cells are monitored for studies about the deterministic part of their behavior
in relation to well defined environmental situations, like in a biomaterial
surface of certain microstructure. The microscopic technique is based on
laser-light focussed on single spots in the specimen which is fluorescence
stained to highlight the cytoskeleton. The final state of the cytoskeleton is
a textural network, which is inaccessible for a filament-wise quantification.
The focus of this thesis is the developmental phase in which the filament is
yet existent but not yet as dense as a texture.
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The emphasis of this work is the accurate and efficient determination of
parameters which describe expensive data. The cost of a measurement is
assumed to be great enough, that nonlinear image processing is appropriate.
This is the case for any research with an interdisciplinary effort for sample
generation, as e.g. cell culture on structured biomaterials with appropriate
cell-lines which develop F-actin. There are different staining techniques and
there will be probably novel techniques in the future. A different stain or a
different medium possibly changes the modalities of the inspected samples.
The feature might be displayed with different perturbations or different mor-
phology. So a technique for automatic quantification must be flexible. This
is the case if it is abstract. The feature is thus only a geometrically em-
bedded graph, which renders the solution not only applicable to different
types of data, but also to different modifications of the samples by novel
interdisciplinary technique. How can biological data be quantified with con-
focal laser scanning microscopy? Ridge detection in such images is already
a challenging endeavor.
This thesis is based on cell images and a qualitative description of the wanted
quantification. There is no ideal result model. This is replaced by a random
model of the provided cell images. This random model is claimed to display
the governing sources of errors to highlight the difficulties of recovering the
ground truth by automatic quantification.

1.2 Innovative Computer Vision

In [14] there is a thorough treatment of bright ridges for a wide range of
applications. Why another treatment for this application? The reason is
accuracy. Image analysis is applied to digital images, but studied in terms of
a deeper model enriched with a-priori knowledge. This is what happens here.
Ridges are not the goal. The goal is the morphology of the set of ridge pixels.
An ad hoc application of the ridge model for twice continuously differentiable
functions to the data at hand does not reach sufficient accuracy for derivation
of high level descriptive parameters. It is a Procrustes-bed for the real world
data. This is illustrated by the analysis of connectivity with the partition
into almost straight trails problem. The point of failure is the assumption
on data smoothness. This assumption is avoided in the preprocesses but
must be introduced for feature detection. There it is reduced to the essential
smoothness perpendicular to the ridge. Consequently the data is unchanged
along the ridge so the feature is more accurately detected. There are other
pragmatic solutions with regard to accuracy for a limited scope of parameters
[2, 26]. This work is replicated and tested against the new model. It turns
out, that the requirements to image quality are stronger in the former models.
Especially the problem of noise is relevant for microscopic data as a result
of the magnification, see [33].
The concepts of the novel model were developed in several stages, see [5, 8,
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9]. The central results concern a discussion of a split approach compared
with the literature, which has innovations in every part. The treatment
of quantification in Section 2 explains a heuristic which paves the way to
new parameters efficiently. The feature detection in Section 3 resolves the
basic problem for quantification with a discrete model under assumptions
which are enforced with preprocessing methods described in Sections 4 and
5. Hence there is progress in working knowledge as well as in classical theory
of mathematical image processing.
The results are presented mainly in the Sections 2, 4 and 6. Section 2 reveals
combinatorial and statistical models, which advance from the state of the art
in a natural way, well motivated by the biological application background.
The extensive Section 4 shows new results about the efficient minimization
of total variation of second order. In Section 6 a selection of numerical
experiments shows the achievement of accuracy constraints of all parts of
the computer vision process proposed here.

1.3 Notation

The subsequent notion of a digital image is the following. For a positive
integer k let [k] = {1, . . . , k} and, for two integers k, � with k ≤ �, let
[k, �] = {k, k + 1, . . . , �} and [k, �]R = {x ∈ R : k ≤ x ≤ �}. Let H = [0, 255].
Let an digital image f ∈ Hν×ν be given. Although f is a matrix it is
not denoted with indices but as a function as a reference to an underlying
continuous image model. A digital image f is interpreted as the sampled
discrete values of a function f̂ : R

2 → R. The value �t� is the greatest
integer not greater than t ∈ R.
Furthermore, let V be a finite set of points in the plane and let E be a
finite set of (straight) segments in the plane with endpoints from V . Thus
G = (V,E) can be interpreted as an (undirected) graph that is embedded in
the plane. As usual, the elements of V are called vertices and the elements
of E edges.
Vectors are noted as bold symbols, e.g. v and the Euclidean norm of a vector
is denoted by ‖ · ‖. Canonically the discrete ball with radius r > 0 around a
point v ∈ Z

2 of an infinite grid is noted as

Br(v) := {w ∈ Z
2 : ‖v −w‖ ≤ r}.

For the radius r =
√
2 this ball degenerates to a 3 × 3 square. The pixels

B√
2(v) \ v are called the eight-neighbors of the pixel v. In contrast, the

neighbors NG(v) of a vertex v ∈ V of the graph G = (V,E) is the set
vertices w ∈ V with an edge vw ∈ E. Hence there are two distinct notions
of neighbors if the vertex set of a graph consists of pixels. The correct notion
becomes clear from the context.
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2 Cell-Morphological Parameters

Quantification of cell-morphological parameters has a purpose in cell biology
for revealing biologically relevant effects in complex chemical experiments.
Accuracy on the one hand and flexibility on the other hand motivate the
choice of ridge-tracking with a predictor-corrector approach and preprocess-
ing with mathematical morphology and variational methods. This enables
but also constrains the method to be controlled by input parameters. The
constraint can be lifted by experience with favorable values for a stack of im-
ages with similar modalities. A good start is the experiment with a random
model that simulates the image modalities in a determined setting. To this
end feature detection can be thought of a method to separate image modal-
ities from image content. Then this content is the set of output parameters
with a cell-morphological meaning.
A geometrically embedded graph is both feasible and reasonable for a specific
quantification of a ridge set morphology in microscopic images. For the
greater accuracy the neighborhood of feature elements must be considered.
A computer vision model must suit the purpose of processing a certain type
of image. For example in an optical character recognition setting, there is
a difference between images acquired from postal address fields of letters
or of vehicle registration plates of passing cars. In this case the purpose
is classification. There is also extensive knowledge about the feature to
be detected, a known finite alphabet with coupled specificity. This can be
seen in contrast to quantitative evaluation of biological parameters from
microscopic images. In this latter setting there is greater control of image
acquisition but much less is determined about the feature.
A geometrically embedded graph is a triple G = (V,E, b) of a vertex set V ,
an edge set

E ⊂
(
V
2

)
and a geometrical embedding b : V → Ω, into the computational domain
Ω. Equivalently the embedding is implicitly involved into the vertex set, by
writing the same graph as G′ = (V ′, E′) with

V ′ := {b(v) : v ∈ V }
and

E′ := {b(v)b(w) : vw ∈ E}.
For the sake of brevity the edges without orientation are denoted without
set-symbols. Hence vw = wv ∈ E.
Close at hand the geometrically embedded graph can be thought of a line
process with connectivity. This line process can be analyzed for preferred
alignment to a certain orientation. Furthermore the whole feature graph
with its connectivity can be used to derive partial length information. In the
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setting of actin filaments it is cell-morphologically meaningful to separate
single fibers from each other. They are superposed and branched, which
cannot be determined from the images. Still the resolution of both cases for
a probable one allows for a decomposition of the feature graph into almost
straight trails. These are a representation for single fibers, which are assumed
to be of minimal curvature given the context.

2.1 Input and Output of Feature Detection

Processing the images acquired by microscopic techniques starts with a pre-
process. Most of what can be achieved by that could also be achieved with
modified image acquisition but mostly at a disadvantageous ratio of cost and
effect. To this end preprocessing is theoretically optional. In practice it is
not. As the feature detection is explicitly formulated, without any influence
of randomness or hidden assumptions, it bases on an image model, that has
to be approximately determined for every given digital image.
The first assumption is, that brightness in the image represents the filament
of a biological cell. So this structure has to be stained properly, i.e. ex-
clusively and uniformly. For actin in osteoblastic cells observed by confocal
laser scanning microscopy there is the effect of background illumination of
cells. Within the cell body there is unspecific illumination which might orig-
inate from filaments beyond the focal plane or below the scale of a pixel.
Thus a preprocess which normalizes the background illumination is advis-
able. This is achieved by the top-hat transform presented in Section 5.2.1.
The framework of mathematical morphology would allow for the introduc-
tion of greater a-priori knowledge. But given only that the illumination is a
cloud of sub-pixel brightness or a blurry signal from outside the focal plane,
the knowledge is limited. A disc-structuring element

g : Br(0) → R

which is zero everywhere is a compromise close to both disturbances.
The top-hat transform filters the loss of details by morphological opening of
the digital image. These details are bright extensions into dark background
which do not contain the domain of this structuring element. Filaments are
assumed to be elongated and equally thin. The thickness is at the same scale
as the noise. The latter is addressed by the subsequent denoising method.
The input parameter for the top-hat transform is simply the radius r > 0
of the structuring element domain. It has to exceed the width of the widest
filament but should be as small as possible to be effective.
Denoising is no greater effort. A fidelity parameter λ > 0 for the weight of a
total variation of second order noise penalizer has to be chosen, see Section
4.3. As a rule of thumb this value has to be greater, the more intense the
noise is. In confocal laser scanning microscopic images a dominant noise phe-
nomenon is shot-noise, which originates from the error in counting a small
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number of photons emitted by the laser excited stain binding the filament.
Theoretically this noise is rather modelled by the Poisson distribution than
by the normal distribution. Still variational methods based on total varia-
tion, of which total variation of second order is a modification, appears to
be suitable for Poisson noise as well, see [33].
On the image thus prepared for ridge tracking the assumption of an im-
age with exclusively brightness from stained filament holds. The remaining
modality is the unequal contrast of filaments along their course. Therefore,
the ridge-tracking algorithm allows for setting criteria for the contrast of
vertices and edges of a graph, where a relaxed edge criterion lets edges over-
come gaps of straight filaments with improper contrast. The whole method
presented in Section 3.2 has several input parameters.
The blobness criterion for vertices and the ridgeness criterion for graph edges
are defined by threshold parameters �0 < 0 and r0 > 0 respectively. The
edge length must be restricted to an interval between [ρ0, ρ1]R for compu-
tational efficiency. For the desired loop-free graph ρ0 > 0. The greatest
possible graph edge-length ρ1 is a system variable to define the greatest gap
of stain luminance along a single filament to be bridged. The shortest pos-
sible length ρ0 determines which curvature of filaments is still captured, a
greater curvature needs a smaller value. A lower bound for ρ0 should be
the last parameter α > 0 which is the thickness of the filament model used
for the determination of a ridgeness-measurement. So far it is a fixed input
parameter. Nonetheless, it could be automatically determined by testing the
ridgeness for a finite set of distinct α and choosing the greatest resulting rid-
geness as the appropriate model for the graph edge in question. This option
is not discussed in this thesis as the direct use destabilizes the tracking of
filaments.
Given these 7 values for preprocessing and ridge tracking, the techniques
described in Sections 3 to 5 produce a geometrically embedded graph. This
feature model is evaluated for output parameters.
The cell-morphological parameters as output parameters of the quantifica-
tion method should serve as a source for statistically resilient figures which
represent a good approximation of what observers could detect manually.
The most obvious observations concern parallel alignment and length of fila-
ments. Mathematically this can be captured by the analysis of the empirical
distribution of orientation weighted with length and by a decomposition of
the edge set of the feature graph into curves representing the single filaments.
The latter would then allow for an analysis of the empirical distribution of
filament lengths, although the greatest length that occurs is already a mean-
ingful parameter.
All parameters involve meaningful angles of feature measurements. In the
determination of length, the decision, which part of the graph belongs to one
filament depends on the angles between edges of the graph. Furthermore
the global analysis of orientation behavior of the inner phenotype of the cells
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requires accurate measurements of orientation. The data, however, is given
in terms of brightness information on a regular lattice. In this lattice there
are preferred orientation inherent, which superpose with any information
given by the data. So the feature detection must be invariant to this bias.
The feature must be defined independent from the grid, though applicable
to grid-bound data.

2.2 Partial Lengths

In the feature graph, all detected filaments are joined. A vertex of degree
greater than 2 can denote a junction or a crossing of filaments in the focal
plane. A vertex of degree 1, however, denotes the end of a filament. From
the biochemical behavior of F-actin, the molecule forming the filament can
be modelled as a stiff almost straight fiber. In the following model for F-
actin all vertices of degree greater than 2 are counted as crossings. For the
graph this means, that all paths of neighboring edges with an almost straight
course are distinct filaments. Vertices of degree 2 must be distinguished by
their angle. A threshold criterion allows for the decision whether a path is
possibly formed by a single filament, or it is the contact point of the ends
of two distinct filaments. For a distinction of such paths one can define the
PAST-problem for geometrically embedded graphs.
Let

β(u,v,w) := arccos

(
(u− v)T(w − v)

l{uv}l{vw}

)
be the angle enclosed by two neighboring edges uv,vw ∈ E. Let γ be a
parameter derived from β by a threshold criterion

γ =

{
β if β ≥ β0,
0 otherwise.

In these terms, the PAST-problem is to find a partition E =
⋃̇k

j=1Ej such
that

k∑
j=1

∑
{uv},{vw}∈Ej

γ(u,v,w) → max

and for all j = 1, . . . , k the j-th trail

Ej = {v1v2,v2v3, . . . ,vkj−1vkj}

visits distinct vertices v1, . . . ,vkj ∈ V . There is a polynomial deterministic
algorithm for finding the solution. It can be provided by a distinction of cases
for the graphs with bounded maximal degree or by a matching approach for
graphs with arbitrary degrees.
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The information content of the decomposition allows for a quantification of
the longest filament. Furthermore there is a filament number k ∈ N and a
process (tj)

k
j=1 with estimated filament lenghts

tj :=
∑

uv∈Ej

luv.

Experimentally this process produces empirical distribution which seem to
be almost Pareto distributed, i.e. for the random variable X the probability

P (X > x) =

{(
x0
x

)κ if x ≥ x0,
1 otherwise

with parameters κ > 0, x0 > 0. The lower bound x0 is technically provided
by the system variable ρ0, defined in Section 3.2.3. Furthermore a dominance
of short filaments is in line with the biological process of permanent formation
and degradation of F-actin, that proposes a pool of fragments to nurture a
few longer filaments.
The next Sections 2.2.1 to 2.2.3 are devoted to a slightly more generalized
version of this problem in a precise graph-theoretical language, developed in
collaboration with Konrad Engel, see [7].

2.2.1 Feature Decomposition

A trail is a sequence T = (e1, . . . , ek) of pairwise distinct edges such that
there are vertices v0, . . . , vk with ei = vi−1vi for i ∈ [k]. The edge set of T
is denoted by E(T ) and the set of inner points of T , i.e. {v1, . . . , vk−1}, by
V̂ (T ).
Let e, e′ be two adjacent edges, i.e. e, e′ have a common endpoint v. Then
∠(e, e′) denotes the angle that is spanned by the segments e, e′ in the plane.
This angle is considered as non-oriented and taken from the interval [0, π].
Let an increasing function z : [0, π] → R+ be given. In the following three
types of such functions are close at hand, depending on a threshold β0 ∈
[0, π]:

z1(β) :=

{
β if β ≥ β0,

0 otherwise,
z2(β) :=

{
sin(β/2) if β ≥ β0,

0 otherwise,

and

z3(β) :=

{
max{0,− cos(β)} if β ≥ β0,

0 otherwise.

Note that the choice in Section 2.2 is γ = z1. An angle β0 helps to forbid
that two segments e, e′ with a common endpoint v are two parts of one
larger segment if ∠(e, e′) < β0. Therefore, β0 is chosen near to π in concrete
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applications. Moreover, in the case ∠(e, e′) ≥ β0, the value z(∠(e, e′)) may
be interpreted as a quantitative measure for the combination of e and e′ to
a larger segment. If the two other endpoints p, p′ of e and e′ lie on a unit
circle around v, then z1(∠(e, e′)) gives the distance between p and p′ on the
circle, z2(∠(e, e′)) the half of the Euclidean distance between p and p′ and
z3(∠(e, e′)) the length of the projection of e′ onto the line containing e if
β0 ≥ π/2. Of course, other examples for z are possible. A function z which
leads to the switching property introduced in Section 2.2.3 is sufficient.
With each trail T = (e1, . . . , ek) a weight w is associated as follows:

w(T ) =

k∑
i=2

z(∠(ei−1, ei)).

This weight can be interpreted as a measure of “straightness” of the trail.
The Partition into Almost Straight Trails problem, abbreviated as PAST-
problem, is the following:
Find a partition of G into trails T1, . . . , Tc, more precisely E = E(T1)∪̇ . . .
∪̇E(Tc), such that

∑c
j=1w(Tj) is maximal.

Note that the trail T = (e1, . . . , ek) can be partitioned in the case ∠(ei−1, ei) <
β0 into two subtrails T1 = (e1, . . . , ei−1) and T2 = (ei, . . . , ek) with w(T ) =
w(T1) + w(T2). Hence w.l.o.g. it can be assumed that all trails T =
(e1, . . . , ek) from the partition have the property ∠(ei−1, ei) ≥ β0 for i ∈
[2, k].
For illustration two examples with z = z1 are studied. First consider a reg-
ular n-gone, see Figure 1. Then each angle has value n−2

n π and hence the n-
gone can be decomposed into only one trail, the whole n-gone, if n−2

n π ≥ β0,
i.e. if n ≥ 2π

π−β0
, and has to be decomposed into n trails (edges), otherwise.

In the first case the value of the objective function is (n−1)(n−2)
n π and in the

second case it is 0. Now consider a regular n-star, see Figure 2, where n is
odd. The largest angle is n−1

n π. So the star can be decomposed into n−1
2

trails of two edges and an additional trail of one edge if n−1
n π ≥ β0, i.e. if

n ≥ π
π−β0

, and has to be decomposed into n trails (edges), otherwise. In

the first case the value of the objective function is (n−1)2

2n π and in the second
case it is 0.

2.2.2 Reduction to matching problems

Let Ev be the set of edges having v as endpoint and let Kv be the complete
graph with vertex set Ev. Let e, e′ be any two vertices from Kv. The edge
{e, e′}, in brief ee′, is weighted in Kv with

f(ee′) = z(∠(e, e′)).

Thus a weight function f is given on the edge set of Kv.
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(a) (b)

Figure 1: A PAST of a regular n-gone for n = 3 and n = 9 and β0 =
4π
6 .

(a) (b)

Figure 2: A PAST of a regular n-star for n = 3 and n = 9 and β0 =
5π
6 .
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Recall that a matching in a graph is a set of pairwise non-adjacent edges.
Let for a matching M in Kv

f(M) =
∑

ee′∈M
f(ee′).

Given a partition of G into trails T1, . . . , Tc, a matching Mv in Kv is obtained
for each v ∈ V as follows:

Mv = {ee′ : e, e′ ∈ Ev and
∃j ∈ [c] such that e, e′ are consecutive edges in Tj}.

Conversely, given matchings Mv in Kv for all v ∈ V , a partition of G into
trails is obtained as follows: The auxiliary graph H is considered on the
vertex set E where e, e′ are joined by an edge if ee′ belongs to Mv for some
v ∈ V . Then the vertex set of each connected component of H is the edge set
of a trail in G. Thus a bijection between partitions of G into trails T1, . . . , Tc

is given together with families of matchings Mv in Kv, v ∈ V , so it is possible
to construct the trails algorithmically if the matchings are given.

Lemma 1. The following formula holds:
c∑

j=1

w(Tj) =
∑
v∈V

f(Mv).

Proof. For an inner point v of a trail T let ev,T be the set of the two edges e
and e′ of T having v as an endpoint. Note that ev,T is an edge in Kv. With
this notation it follows

Mv = {ee′ : ∃j ∈ [c] such that ee′ = ev,Tj}.
Note that there cannot be two different j1 and j2 such that ee′ = ev,Tj1

=

ev,Tj2
. Moreover, if ee′ = ev,Tj , then v ∈ V̂ (Tj). Changing the order of

summation gives the asserted identity:
c∑

j=1

w(Tj) =
c∑

j=1

∑
v∈̂V (Tj)

f(ev,Tj )

=
∑
v∈V

∑
j∈[c]:v∈̂V (Tj)

f(ev,Tj )

=
∑
v∈V

∑
j∈[c]:v∈̂V (Tj)

∑
e,e′∈Ev :ee′=ev,Tj

f(ee′)

=
∑
v∈V

∑
e,e′∈Ev

∑
j∈[c]:ee′=ev,Tj

f(ee′)

=
∑
v∈V

f(Mv).
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Obviously, the sum of the LHS of the identity in Lemma 1 is maximal if
and only if f(Mv) is maximal for each v ∈ V . Thus the PAST-problem
can be solved by |V | independent matching problems and the subsequent
construction of the trails as described before. Though polynomial, matching
algorithms in arbitrary graphs are sophisticated. Note that the deletion of
edges of weight 0 from Kv may still result in a graph that has arbitrarily
long odd holes, i.e. cycles without chords. But for the concrete geometric
situation there is an essentially easier and faster matching algorithm which
will be presented now.

2.2.3 The matching algorithm in angle graphs

For a single Kv, a new geometric embedding is considered. A Cartesian
coordinate system is fixed in the plane and an orientation on the unit circle
C around the origin o. The original graph G in the plane my be translated
such that v becomes the origin. Then each edge vv′ from Ev uniquely defines
a point p′ on C, namely the intersection of C with the ray whose origin is
v = o and whose direction is given by the vector

−→
vv′. Note that for two edges

e′ = vv′ and e′′ = vv′′ and the corresponding points p′, p′′ on C, it follows
∠(e′, e′′) = ∠(op′, op′′). Thus each edge e′e′′ from Kv can be represented by
p′p′′ and the weight can be carried over:

f(p′p′′) = f(e′e′′) = z(∠(op′, op′′)).

For the matching problem edges of weight 0 and isolated points may be
deleted.
Consequently, the following problem must be solved: Let P = {p1, . . . , pn}
be a set of points on the unit circle C which are w.l.o.g. consecutive with
respect to the given orientation. Let

Q = {pipj ∈ P : ∠(opi, opj) ≥ β0}

and let A = (P,Q) be the corresponding graph, where it is assumed that it
does not contain isolated vertices. Such a graph is called an angle graph. Let
f : Q → R+ be the weight given by

f(pipj) = z(∠(opi, opj)) for pipj ∈ Q.

A maximal weighted matching in the angle graph A should be determined.
By elementary geometric reasons, the graph A has the following density
property : If pi, pj , pk are three different points from P such that pipj , pipk ∈
Q and if p� is a point from P lying on the circle segment between pj and pk
that does not contain pi, then also pip� ∈ Q, see Figure 3. Further, the angle
graph A has the following switching property : If pi, pj , pk, p� are four different
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pj

p�

pk

pi

Figure 3: density property of the angle graph

pj

pk

p�

pi

Figure 4: switching property of the angle graph

points from P such that the straight-line segments pipj and pkp� as well as
pip� and pjpk do not intersect and if pipj , pkp� ∈ Q then also pipk, pjp� ∈ Q,
see Figure 4. If, moreover,

f(pipj) + f(pkp�) ≤ f(pipk) + f(pjp�),

then it is said that the weight function f has the switching property. Recall
from Section 2.2 that for z = z1 the weight f(pipj) is the length of the
shorter arc between pi and pj on C and for z = z2 it is equal to the half of
the Euclidean distance between pi and pj . An elementary geometric analysis
shows that in these two cases f has the switching property. Also, if z = z3
and β0 ≥ π/2, f has the switching property which can be verified either
geometrically or by using the fact that the function cos(x + β) − cos(x) is
increasing for π/2 ≤ x ≤ x+ β ≤ 3π/2.
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Theorem 1. If f has the switching property then there is a maximal weighted
matching M in the angle graph A such that any two members of M intersect
as straight-line segments in the circle.

Proof. Let M∗ be a matching from the set of all maximal weighted match-
ings, for which the number of non-intersecting unordered pairs {q, q′} of
members of M∗ is minimal. It is sufficient to show that this number is 0.
Assume the contrary and let pipj and pkp� be two non-intersecting mem-
bers of M∗. W.l.o.g. also the straight-line segments pip� and pjpk do not
intersect. Let

M ′ = (M∗ \ {pipj , pkp�}) ∪ {pipk, pjp�}.
By the switching property of A and f , M ′ is a maximal weighted matching
in A, too. Moreover, it is easy to check that the number of non-intersecting
unordered pairs of members decreases after this switching by at least 1, a
contradiction to the choice of M∗.
A matching M in A is said to be intersecting if any two members of M
intersect. By Theorem 1 it is sufficient to determine a maximal weighted
intersecting matching. First a more specific problem should be considered:
For a fixed edge q ∈ Q, find a maximal weighted intersecting matching
containing the edge q. Using a suitable rotation it can be assumed w.l.o.g.
that q = p1ph with 2 ≤ h ≤ n. Further let

I = [2, h− 1] and J = [h+ 1, n].

A matching M in A is called an I − J− matching if all members have
one endpoint in I and the other endpoint in J . A maximal weighted I −
J− matching can be found e.g. by the Hungarian algorithm applied to
the corresponding bipartite graph and this gives the solution to the specific
problem: only the edge q has to be added. This matching is perhaps not
intersecting, but it is known that there must be an intersecting matching of
the same maximal weight by Theorem 1. The property of being intersecting
is only a tool for the algorithmic treatment, it is not really needed for the
original problem.
The determination of a maximal weighted I − J− matching can still be
accelerated using the concrete geometric situation. As before, it is sufficient
to consider only intersecting I − J− matchings. For i ∈ I let Ni = {j ∈ J :
pipj ∈ Q}. By the density property, each Ni, i ∈ I, is an interval Ni = [�i, ri]
where h + 1 ≤ �i ≤ ri ≤ n. Moreover, the switching property of the angle
graph A implies

�i ≤ �i+1, ri ≤ ri+1, �i+1 ≤ ri + 1, for all i ∈ I \ {h− 1}.
A dynamic programming approach is presented in Algorithm 1. The idea
is to iteratively determine a maximal weighted intersecting I − J−matching
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having only endpoints in [2, i] and [h+ 1, j], where j ≤ ri. Note that edges
having one endpoint in [2, i] have the other endpoint in [h+ 1, ri].
Let the edges pipj with i ∈ I and j ∈ J be lexicographically ordered by

p2p�2 , . . . , p2pr2 , p3p�3 , . . . , p3pr3 , . . . , ph−1p�h−1
, . . . , ph−1prh−1

and denote them by q1, q2, . . . , qm where m =
∑h−1

i=2 ri − �i + 1. Iteratively
the algorithm stores for each i, j the weight νj of the actual matching, the
last added edge qk in form of a label ej = k and its predecessor pred(ej), i.e.
the label of the last added edge that is not adjacent to qk. Further the old
numbers νj , ej are stored which were obtained for i− 1 in form of numbers
ν ′j , e

′
j .

Algorithm 1 The matching algorithm for bipartite angle graphs
for all k = 1, . . . ,m do
pred(k) := −1,

end for
for all j = h, . . . , n do
νj := 0, ej := −1,

end for
k := 1,
for all i = 2, . . . , h− 1 do

for all j = �i − 1, . . . , ri do
ν ′j := νj , e′j := ej ,

end for
for all j = �i, . . . , ri do

if νj < νj−1 then
νj := νj−1, ej := ej−1,

end if
if νj < f(pipj) + ν ′j−1 then
νj := f(pipj) + ν ′j−1,
ej := k, pred(k) := e′j−1,

end if
k := k + 1,

end for
end for
e := erh−1

,
M := ∅,
while e �= −1 do
M := M ∪ {qe},
e := pred(e),

end while.

Theorem 2. Algorithm 1 determines a maximal weighted intersecting I−J−
matching in time O(|Q|) and νrh−1

equals this maximal weight.
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Proof. For clarity, upper indices are added. So let νij be the corresponding
values which are given after the step which is given by j in the inner loop
and by i in the outer loop. For brevity, the convention νij = 0 is used if
j < �2.
The statement on the time complexity is trivial. For the correctness proof
subgraphs are considered which contain only the first k edges from the order-
ing of the edges, k = 0, . . . ,

∑h−1
i=2 ri−�i+1. Let Qk = {p2p�2 , . . . , pipj} be the

set of these first k edges. Let Ik = [2, i], Jk = [�2, j] and Ak = (Ik ∪ Jk, Qk).
By induction on k it is proven that the application of Algorithm 1 to Ak pro-
vides the maximal weight νij of an intersecting Ik −Jk− matching in Ak and
a matching M i

j of weight νij . Taking in the end e = ej instead of e = erh−1
.

The cases k = 0, 1 are trivial. Now the induction step from numbers smaller
than k to k is considered. Let μi

j and μi
j be the maximal weight of an in-

tersecting Ik − Jk− matching in Ak containing pipj and not containing pipj ,
respectively. Clearly, max{μi

j , μ
i
j} is the maximal weight of an intersecting

Ik − Jk− matching in Ak. By the induction hypothesis,

μi
j = max{νi−1

j , νij−1},
μi
j = f(pipj) + νi−1

j−1.

The algorithm indeed determines νij as

νij = max{νi−1
j , νij−1, f(pipj) + νi−1

j−1},

i.e. the actual maximal weight. If the maximum is attained for νi−1
j or νij−1

the last added edge was not changed and hence, by the induction hypothesis
M i

j has weight νij . If the maximum is attained for f(pipj) + νi−1
j−1 it follows

that M i
j = M i−1

j−1 ∪ {pipj} and, again by the induction hypothesis, M i
j has

weight νij = f(pipj) + νi−1
j−1.

Now a maximal weighted matching in the angle graph can be determined
as follows. Choose an edge q for which the sum of degrees of its vertices is
minimal and consider the set Q′ of all edges that are adjacent or equal to
q. Obviously, a maximal weighted matching contains at least one edge from
Q′. So Algorithm 1 is applied to all edges q′ ∈ Q′. This gives |Q′| maximal
weighted intersecting matchings Mq′ containing the corresponding edges q′.
By Theorem 1, the matching Mq∗ with

f(Mq∗) = max{f(q′) : q′ ∈ Q′}

is the desired matching. Let δL be the minimum degree of the line graph of
A, i.e. the size of Q′ \ {q}.
Corollary 1. A maximal weighted matching in the angle graph A = (P,Q)
can be determined in time O((δL + 1)|Q|).
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(a) (b)

Figure 5: PAST of a random planar graph with angle threshold 3π/4.

Note that the time complexity O(|P ||Q| + |P |2 log |P |) could be achieved
with the fastest matching algorithms for arbitrary graphs, see [25]. But
these algorithms are very involved and very difficult to implement.
An artificial example illustrates the PAST-coloring of a random graph and
a graph from application in image analysis. The colors indicate different
trails. The subgraph of a Delaunay-triangulation of a point-process in the
unit-square in Figure 5 shows the behavior of the decomposition at vertices
of maximal degree 7. Figure 6 shows the coloring for a microscopic image.

2.3 Length and Orientation

Statistics on the circle are not sufficiently studied to have a thorough treat-
ment of the following model [16, 28]. However it can be found as an heuristic
generalization and restriction of statistics on the circle.
Concerning length and orientation parameters the connectivity within the
feature graph plays a minor role. Only when considering a decomposition
selecting the filament of a single cell in an image showing several cells this
would be relevant. Under the assumption that the feature graph represents
the filament of a single cell, its alignment can be studied at the corresponding
line-process. The orientation is measured by means of the angle of a vector
with the horizontal axis of the image. Therefore, the arcus tangens function
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(a) (b)

Figure 6: PAST of a planar graph detected in a microscopic image of the
actin-filament of a human MG-63 osteoblast provided by B. Nebe (AB Zell-
biologie, Rostock) with angle threshold arccos(−0.9).
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on the pointed plane with two arguments

arctan2(x, y) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

arctan
( y
x

)
if x > 0,

π + arctan
( y
x

)
if x < 0, y ≥ 0,

−π + arctan
( y
x

)
if x < 0, y < 0,

π
2 if x = 0, y > 0,
−π

2 if x = 0, y < 0,

is used. Let G = (V,E) be the feature graph with V ⊂ Ω ⊂ R
2 vertices in

the plane. Then the corresponding line-process is

L := {(luv, ϕuv, xuv, yuv) : uv ∈ E} ,

i.e. the set of all lines represented by the edge set embedded with the vertices,
denoted by length

luv := ‖u− v‖,
orientation derived from the double angle representation adopted from [18]

ϕuv :=
1

2
arctan2

(
(u1 − v1)

2 − (u2 − v2)
2, 2(u1 − v1)(u2 − v2)

)
,

and horizontal and vertical center coordinate

(xuv, yuv) :=
1

2
(u+ v).

The parameter T > 0 for the total length of feature lines is then

T :=
∑
uv∈E

luv.

It facilitates to quantify the overall expression of F-actin, i.e. the cytoskeletal
feature to quantify the overall progress of cellular settlement by means of
the images. For quantification of the assumption of a preferred alignment a
fitting of a unimodal distribution on the half-circle is suitable.

2.3.1 Angles on the half circle

The mere orientation vector ϕ = (ϕuv)uv∈E can be tested for preferred
orientations by the maximum-likelihood estimators κ, μ of a von Mises dis-
tribution. Let the functions Iν(x) be the modified Bessel functions of first
kind. The density property of the von Mises distribution uses the following
fact from [42, p.181]

Iα(x) =
1

π

∫ π

0
exp(x cos θ) cos(αθ)dθ − sin(απ)

π

∫ ∞

0
exp(−x cosh t− αt)dt

(1)
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Definition 1. Let Φ : [−π/2, π/2] → R be a random variable. The random
variable Φ is said to be von Mises distributed, if

P (Φ ≤ ϕ0) =

∫ ϕ0

−π
2

1

πI0(κ)
exp (κ cos(2ϕ− 2μ)) dϕ.

The parameter κ > 0 is called concentration and μ ∈ [−π/2, π/2] is called
mean of this distribution. The value

δ =
1

2

√
1− I1(κ)

I0(κ)

is called the angular deviation of this distribution.

The angular deviation is proposed in [45, p.617] and [28]. In Definition 1
the value ranges from 0 to 1

2 rad. Note that the range differs by a constant
factor in the literature. This presentation adheres to [28].

Lemma 2. The function f(ϕ|κ, μ) = 1
πI0(κ)

exp (κ cos(2ϕ− 2μ)) is a proba-
bility density function.

Proof. This immediately follows from equation (1) and I0(x) > 0 if x >
0.

Lemma 3. The equations

cos(2μ) =
1

n

n∑
i=1

cos(2ϕi) (2)

sin(2μ) =
1

n

n∑
i=1

sin(2ϕi) (3)

define a maximum-likelihood estimator for μ, given realizations ϕi of n i.i.d.
random variables Φi with von Mises distribution.

Proof. The log-likelihood function is

l(μ) = log

n∏
i=1

f(ϕi|κ, μ) = κ

n∑
i=1

cos(2ϕi − 2μ) + C

with a well defined constant C in μ. With the estimator equations it follows
that

l′(μ) = −2κ
n∑

i=1

sin(2ϕi − 2μ) = −2κ
1

n

n∑
i=1

n∑
j=1

sin(2ϕi − 2ϕj) = 0.
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An addition theorem for the sine of the sum of angles is used in the second
equation. Note also that the summand is zero for i = j and of alternative
sign for (i, j) and (j, i). If not both right-hand sides vanish, the system of
equations (2) and (3) can be analytically solved by

μ =
1

2
arctan2

(
1

n

n∑
i=1

cos(2ϕi),
1

n

n∑
i=1

sin(2ϕi)

)
. (4)

Lemma 4. The equation

I1(κ)

I0(κ)
=

1

n

n∑
i=1

cos(2ϕi − 2μ) (5)

defines a maximum-likelihood estimator for κ, given μ by equation (4).

Proof. The log-likelihood function is

l(κ) = log

n∏
i=1

f(ϕi|κ, μ) = κ
n∑

i=1

(cos(2ϕi − 2μ)− log(I0(κ))) + C.

With the estimator equations it follows that

l′(κ) =
n∑

i=1

(
cos(2ϕi − 2μ)− I ′0(κ)

I0(κ)

)
=

n∑
i=1

(cos(2ϕi − 2μ))− n
I1(κ)

I0(κ)
= 0.

Equation (5) can be solved approximately by a piecewise rational function
with limited error

κ = h

(
1

n

n∑
i=1

cos(2ϕi − 2μ)

)
with

h(s) :=

⎧⎪⎨⎪⎩
2s+ s3 + 5s5/6 if 0 < s < 0.53,
−0.4 + 1.39s+ 0.43/(1− s) if 0.53 ≤ s < 0.85,
1/(s3 − 4s2 + 3s) if 0.85 ≤ s < 1

as proposed in [16]. Note that the angular deviation

δ =
1

2

√
1− I1(κ)

I0(κ)
=

1

2

√√√√1− 1

n

n∑
i=1

cos(2ϕi − 2μ)

does not depend on an explicit solution of equation (5).
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2.3.2 Length-weighted angles on the half circle

A generalization of Definition 1, which is similar to a model discussed in [23],
is the following.

Definition 2. Let (Φ, L) : [−π/2, π/2]× [0, 1] → R be a random variable. It
is called length-weighted von Mises distributed if

P (Φ ≤ ϕ0, L ≤ �0) =

∫ l0

0

∫ ϕ0

−π
2

1

πI0(lκ)
exp (lκ cos(2ϕ− 2μ)) dϕdl.

Given realizations (ϕi, �i)
n
i=1 of n i.i.d. random vectors (Φi, Li), the param-

eters κ and μ can be estimated similar to the non-weighted case in Section
2.3.1. A line-process with arbitrary lengths fits into this model by normal-
ization of all lengths by division by an upper bound for the length of a line.
Figure 7 shows the graph of the density.

Lemma 5. The equations

cos(2μ) =

n∑
i=1

�i cos(2ϕi) (6)

sin(2μ) =

n∑
i=1

�i sin(2ϕi) (7)

define a maximum-likelihood estimator for μ.

Proof. The log-likelihood function is

l(μ) = log

n∏
i=1

f(ϕi, �i|κ, μ) = κ

n∑
i=1

�i cos(2ϕi − 2μ) + C.

With the estimator equations it follows that

l′(μ) = −2κ
n∑

i=1

�i sin(2ϕi − 2μ) = −2κ
n∑

i=1

n∑
j=1

�i�j sin(2ϕi − 2ϕj) = 0.

If not both right-hand sides vanish, the system of equations (6) and (7) can
be solved analytically by

μ =
1

2
arctan2

(
n∑

i=1

�i cos(2ϕi),

n∑
i=1

�i sin(2ϕi)

)
(8)

Lemma 6. The equation
n∑

i=1

�i
I1(�iκ)

I0(�iκ)
=

n∑
i=1

�i cos(2ϕi − 2μ) (9)

defines an estimator for κ, given μ by equation (8).
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Figure 7: Density of the length-weighted von Mises distribution for μ = 0
and κ = 1.
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Figure 8: Graph of the function t �→ I1(t)
I0(t)

.

Proof. The log-likelihood function is

l(κ) = log

n∏
i=1

f(ϕi, �i|κ, μ) = κ
n∑

i=1

(�i cos(2ϕi − 2μ)− log(I0(�iκ)))) + C.

With the estimator equations it follows

l′(κ) =
n∑

i=1

�i cos(2ϕi−2μ)−�i
I ′0(�iκ)
I0(�iκ)

=
n∑

i=1

�i cos(2ϕi−2μ)−�i
I1(�iκ)

I0(�iκ)
= 0.

The existence and uniqueness of κ follows from the observation that

t �→ I1(t)

I0(t)
: R ↔ (−1, 1)

is a continuous, sigmoid, monotone increasing bijection, see Figure 8. How-
ever the solution of equation (9) is only determined numerically in the scope
of this presentation. However, a length-weighted angular deviation can be
defined accordingly such that κ is not needed explicitly

δ :=
1

2

√√√√ n∑
i=1

�i

(
1− I1(�iκ)

I0(�iκ)

)
=

1

2

√√√√ n∑
i=1

�i (1− cos(2ϕi − 2μ)).

This is found to be a generalization of the von Mises distribution with the
choice of a fixed value 1/n for all n realizations of L. As an example for the
weighted von-Mises distribution applied to features of microscopic images
see Figure 9.
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Figure 9: Illustration of parameter estimation for filament alignment in con-
focal laser scanning microscopic images provided by C. Matschegewski (AB
Zellbiologie Rostock). The angular deviations δ are 25.7◦for part (a), 22◦for
part (c) and 14.2◦for part (e). The stepped line at the polar plots (b), (d)
and (f) indicates the length-weighted histogram of edge orientation. The
dash-dotted line represents the density function with the estimated param-
eters.
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3 Straight Ridge Tracking

Ridge tracking is finding ridges under the assumption that the data only
consist of ridges. This can be provided approximately by the preprocessing.
A more selective preprocess comes at cost of contrast. Still the quantification
by means of the PAST is very sensitive for errors in the connectivity. Thus
the following proposals lead to a contrast stable and connectivity maximizing
method. The stability is possible under the assumption of small curvature
within single filaments, which also plays a role for the PAST.

3.1 Review of Literature

Ridges are object to ongoing research since their first explicit treatment as a
sole feature in [19]. A milestone in this research is the extensive treatment of
ridge localization by local differential geometric properties of an interpolated
image, see [14]. It is introduced with a phenomenological note: “. . . I[David
Eberly] have hiked many times in the Rocky Mountains of Colorado. Cer-
tainly I could point out to you the peak of a mountain from a distance.
Certainly I could point out to you the ridge of a mountain from a distance.
But could I recognize a ridge if I were standing on one? I would like to think
so, but the answer to this question is profoundly philosophical!”
The need to believe in the argument for a positive answer to this question
is avoided. In all evidence of the differential geometric rationale data with
clearly observable ridges still slip from the hands of a strict definition. One
reason might be the minimalist treatment of the surrounding of ridge points.
This loss of context is reduced in the scale space approaches of [27] for ridge
and also for image edge detection. In this the notion of scale space is still
limited to linear filtering. Closer to application and with less support from
analytical preliminaries this introduction of context is replaced by nonlinear
filters here. The motivation builds a closed line to the former work. So far
this can be thought of as suitable predictors in the sense of the predictor-
corrector approach. The corrector must be more accurate and it must benefit
from the predictor. An example well suitable for straight ridges will be the
major innovation of the following algorithm.
A less phenomenological philosophy is behind this. Tagging automatically
what the human observer can tag with his implicit knowledge of all in-
formation lost in the imaging process can be an efficient purpose of com-
puter vision. This thesis is guided by an argument illustrated in [22, p.138]:
“Wahrnehmungssysteme haben sich entwickelt, damit sich ein Lebewesen in
Bezug auf die gegebenen Umweltbedingungen angemessen verhalten kann.
Mit Verhalten sind dabei im Wesentlichen motorische Aktivitäten, wie Fort-
bewegungen unterschiedlichster Art, Greifen oder anderweitiger Glieder- und
Körperbewegungen gemeint.” This is to say, perceptional systems had evolved
such that organisms could behave appropriately in relation to their environ-
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ment. Behavior, in this, consisted mainly of motor activities like movement
of different kinds, grasping or other gestures of the body. So tagging some-
thing individually is an activity that the computer vision system should
realize automatically. For hikers ridges are an efficient path to move from
peak to peak.
The article [27] takes a very general point of view on ridge and also im-
age edge detection. Scale space techniques are greatly emphasized. They
are useful to overcome weaknesses of former approaches in application to
macroscopic scene classification. In this case the feature model is not refined
beyond a pixel set.
Closer to application to microscopic images, the monograph [14] forestalls the
scale space idea in that a spline interpolation of arbitrary order is proposed.
Furthermore the feature model is refined to a graph on adjacent inter-pixel
vertices with a discrimination of cases for the introduction of the edge set.
The link to medial axis features is set, with medialness measurements. This
can be refined if the medialness is equipped with prior knowledge from the
surrounding given by reasonable rules behind the real world object and a
weak estimation in advance. This decomposition into two steps allows for a
combination of different medialness-measurements with declined impact of
noise in the final result.
The article [2] is very close to the application of ridge detectors for quantifica-
tion in microscopic images. There the image is acquired via scanning electron
microscopy, which allows for quite accurate segmentation by thresholding
without great sorting out of data. This coarse feature detector is refined by
morphological operations which result in a thin-line pixel set. By adjacency
criteria and geometric post-processing this is transferred into a geometrically
embedded graph representing the homotopy of the ridge-network.
Recent articles like [32] and [44] illustrate the topicality of automatic quan-
tification of filaments in microscopic images. The work of [44] is based on
the local ridge model in [14], where the false detection is improved by an
extensive, adaptive post-process. This is limited to reasonable criteria for
meaningful results of feature detection. The bias by a post process can well
be analyzed in relation to the result of feature detection. However, the ap-
proach is reported to limit the application to a low density of filaments. The
density tolerance of filament quantification for cell biology is an important
criterion for an automatic approach. Actin filaments change in density and
the range of observation by automatic quantification is limited by the failure
in the final high density state, where the filament becomes a texture with
the visible parts of the filaments as textons, see [24]. The work [32] is very
close to the approach of the feature detection part of this thesis. The fil-
ament is tracked by local cross-correlation of an ideal cross-section model
with the image. But notably the filter for cross correlation is sensitive to
low contrast, as it only takes the absolute brightness and not the extremal
nature of ridge into account. In conclusion there are drawbacks which are
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claimed to be less significant for the following approach, at the expense of
higher cost for combinatorial look-up and with system variables which must
be chosen carefully.

3.2 Feature Specification

Let the unknown of the feature detection problem given an image be a geo-
metrically embedded graph with pixels as nodes. The meaning of an edge is
then a straight part of the bright ridge set of the image. Adjacent edges form
paths which track isolated ridges or lead to bifurcations with other paths.
The embedding could possibly range over the continuous image domain.
However, the restriction to the pixel lattice greatly simplifies the feature
detection process for the benefit of knowledge to be introduced from the
context independent from a fixed interpolation scheme. Still the edge set of
the graph has a geometrical meaning by the embedding. The correspondence
between graph edges and pixels must thus be specified.
Figure 10 illustrates the phenomenon of ridges in images from application.
Sampled over lines perpendicular to their course they are local maxima of
the image relief.
Specifying the feature in the image implies the following argumentation
about its detection. The global point of view is that it is the medial axis of
a given set, e.g. a cumulative level-set of the image, see [2]. This is pixel
accurate and strongly depends on the quality of the segmentation. The local
point of view is that a bright ridge-point is a point in the image domain, with
a negative smallest eigenvalue of the image Hessian and a gradient perpen-
dicular on the corresponding eigenvector, see [14]. This is sub-pixel accurate
if applied to an interpolated version of the digital image. The global point
of view operates on the range with the segmentation threshold and on the
domain with a fix-point criterion for a thinning operator. The local point of
view operates on the function in a neighborhood.
A compromise is the following. A straight-ridge is defined as a line where
the mean of the smoothed perpendicular derivative is significantly negative,
represented by a rectangle with this line as its principal axis. This releases
the local approach from the noise-prone Hessian-eigenvector. The global ap-
proach is equipped with a medialness criterion. The precondition is that the
line is known by its end-points. These can be preselected by the merely local
approach. This is advantageous, because the straight ridge less independent
on contrast loss at the image acquisition process. Furthermore it is stable
against artifacts persistent in nonlinear preprocesses.
The following definition models ridges from a local point of view.

Definition 3. Let f ∈ C2(R2,R). Let λ1 ≤ λ2 be the eigenvalues of the
Hessian ∇2f(x) of f in x. Let v1,v2 ∈ R

2 be the corresponding eigenvectors.
The point x is a ridge point if vT

1∇f(x) = 0 and λ1 < 0. The point x is a
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(a) (b)

(c) (d)

Figure 10: Selecting orthogonal profiles (c) of three ridges in a microscopic
image (a) reveals the extremal nature of ridges. The one-dimensional profile
over orthogonal lines through the ridges show a local maximum for each
one. For a smooth image with proper contrast one could assume that this
is a feasible definition of the feature. In [14] this leads to a strict definition
based only on the first two derivatives of a twice differentiable interpolated
image relief, see part (d).
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valley point if vT

2∇f(x) = 0 and λ2 > 0.

The definition with successive generalizations and the following example with
a nontrivial ridge-set for the case given here can be found in [14]. See also
Figure 11.
Example: Let

f = x1x
2
2

noted without the spatial argument for the sake of brevity. Consequently

∇f =

(
x22

2x1x2

)
and

∇2f =

(
0 2x2

2x2 2x1

)
.

The corresponding eigensystem is

λ1,2 = x1 ∓
√
x21 + 4x22, vT

1 = (λ2,−2x2), vT

2 = (λ1,−2x2).

So the set of ridge points is the set of all (x1, x2) with

vT

1 ∇f = λ1x
2
2 − 4x1x

2
2 = 0 ⇔ (x1 ≥ 0 ∧ x2 = ±

√
2x1) ∨ x2 = 0.

and
λ1 = x1 −

√
x21 + 4x22 < 0 ⇔ x1 < 0 ∨ x2 �= 0.

The set of valley points given by the two conditions

vT

2 ∇f = λ2x
2
2 − 4x1x

2
2 = 0 ⇔ (x1 ≤ 0 ∧ x2 = ±

√
2x1) ∨ x2 = 0

and
λ2 = x1 +

√
x21 + 4x22 > 0 ⇔ x1 > 0 ∨ x2 �= 0.

This leads to a feature that is in practice not properly conveyed into junc-
tions. Furthermore it strongly depends on a preprocess that eliminates false
positives from greater scales or it fails to select the apparent feature. This
is why this definition is at most a good predictor for accurate quantitative
ridge feature analysis.
The twice continuously differentiable function f in Definition 3 has to be
an approximation to apply for digital images. In practice B-splines are pro-
posed, which is close to isotropic diffusion for small time. The B-spline
approximation allows for evaluation of derivatives directly from the poly-
nomial coefficients. An alternative are smoothed derivatives evaluated with
linear filtering.
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(a) (b)

Figure 11: Ridges in (a) and valleys in (b) of the function f(x1, x2) = x1x
2
2

near the origin as white lines on the surface, see Example 11.

With uncertainty assumed for the microscopic data, it is inaccurate to evalu-
ate the Hessian both with B-spline interpolation and with smoothed deriva-
tives. Small perturbations of the sampled image intensities can greatly influ-
ence the eigenspaces which are essential in Definition 3. This can lead to a
loss of ridge points which would be critical for quantification of connectivity-
based parameters. To stabilize connectivity, skeletonization approaches are
equipped with criteria of homotopy preservation. This is only useful if the
homotopy is properly represented in the segmentation in the first place. This
does not have to be assumed here. The feature specification thus must be
sensitive for context information. A scale-space approach proposed in [27]
introduces context from all directions equally.
With a coarse segmentation of the feature, with possible loss of connectiv-
ity, the course of straight ridges is not totally random. It must be close
to lines between points from the segmentation. Given the course of a pre-
dicted straight ridge in advance greatly eases the decision, whether it really
is one. All along the line there must be a strong negative second directional
derivative of the image function perpendicular to the line. So the burden
of principal direction estimation is lifted and an important part of the con-
text is considered. This is also easily extendable to an optimization of the
thickness in feature specification.

3.2.1 Definition of a Vertex-Superset

The problem of finding suitable end points for straight ridges and selecting
the most characteristic ones does not really benefit from the local ridge-
finders. There are more simple and thus more stable criteria to select a set,
that comprises the end-points of straight ridges. The most simple predictor
would be absolute brightness. But this has the disadvantage that it strongly
depends on local contrast. So an advanced choice is a blob-detector based
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(a) (b)

(c)

Figure 12: Second order term of Taylor-series of an sufficiently smooth image
function. The cases are a negative definite Hessian (a), a positive definite
Hessian (b) and an indefinite Hessian (c).

on the image Laplacian after preprocessing similar to the Marr-Hildreth-
Operator. This blobness shows a strong response to the inherent shot-noise
of confocal laser scanning microscopic images, so the argument against blob
detectors in [27] applies. This however can be avoided by a proper preprocess.
The digital laplacian Lf ∈ Z

ν×ν of f is defined by

(Lf)(x) = f(x1 + 1, x2) + f(x1, x2 + 1)

+ f(x1 − 1, x2) + f(x1, x2 − 1)− 4f(x)

for x ∈ [ν]× [ν] with the conventions

f(0, x2) = f(1, x2),

f(ν + 1, x2) = f(ν, x2)

f(x1, 0) = f(x1, 1)

and
f(x1, ν + 1) = f(x1, ν)
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(a) (b)

Figure 13: Second order term of Taylor-series at points selected by Laplacian
thresholding. The cases are a negative definite Hessian (a) and an indefinite
Hessian with dominant negative eigenvalue (b).

for off-boundary values. Thresholding with a negative value selects pixels
with local curvature like in Figure 13 from all possible cases, see Figure 12.
In [27] there is a more accurate notion of a predicted ridge point, which is
less prone to select blobs. The selection of blobs is treated in the following
Sections 4 and 5 as a nonlinear denoising problem. This is possible, because
greater blobs are ignored after top-hat transform. The whole procedure
of preprocessing is nonlinear bandpass filtering which accentuates ridges.
An alternative would be coherence enhancing diffusion proposed in [43] and
applied in [26]. The drawbacks are the difficult choice of parameters and the
loss of connectivity at junctions of ridges.

3.2.2 Ridge Criteria

There are several ways to define ridgeness models in the setting, where the
end-points are provided. A relaxation from Definition 3 is the use of the
second derivative and the replacement of the first derivative with the prior
knowledge. The direction perpendicular to the ridge can be directly assessed
for one-dimensional concavity. Hence, the second directional derivative must
be negative. This opens the degree of freedom to assign this criterion for
every point on the segment xy to the whole. It must be considered that this
semi-discrete definition must make sense in a fully discrete setting. Thus
an mean concavity of equidistant points along the segment seems suitable.
The median experimentally does not seem appropriate. It has a tendency to
overestimate the ridgeness of a suspected ridge, which crosses background
after an ending with full contrast.
Let ridgeness of edges be measured with a change of coordinates. It requires
potential end-points and represents the mean concavity of the image along
the line. For given end-points x,y of a line in the computational domain let
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(a) (b)

Figure 14: Avoidance of blob sensitivity of Laplacian thresholding by a non-
linear preprocess of successive white top-hat and total variation of second
order minimization, without preprocessing (a), with preprocessing (b). The
data is Figure 6(a).

Tx,y be the unique affine transformation with positive determinant, which
maps x to the origin and y to (0, �‖y−x‖�). Brightness outside of the image
domain is padded with zeros. Furthermore let

gα(s) := exp

(
− s2

2α2

)
be a Gaussian function with inflection points at ±α. Its second derivative

hα(s) := g′′α(s)

serves as a filter to approximate the second derivative of the smoothed image
profile perpendicular to the ridge orientation, which is a measurement for
concavity in case of negative values. Thus the ridgeness measurement rx,y
for ridges of effective width 2α in the image f along a line between pixels x
and y is given by

rx,y = −
∑�‖y−x‖


ξ2=0

(∑
ξ1∈Z f̂(T

−1
x,y(ξ1, ξ2))h

√
2α(ξ1)

)
�‖y − x‖�∑ξ1∈Z |h√2α(ξ1)|

with f̂ the bilinear interpolated image f , see [35]. The change of sign lets a
great ridgeness indicate bright ridges with strong contrast at scale α. Note
that t =

√
2α maximizes

∫
R
ht(s)gα(s)ds for t > 0. So the filter is chosen

to fit the ridge cross-Section model gα in the sense of optimal response. A
normalization with respect to the absolute sum of the one-dimensional filter
h√2α renders the value less dependent on the absolute brightness.
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3.2.3 Ridge Tracking Algorithm

Let �0, r0, α > 0 be tuning parameters. The ridge supergraph is a weighted
graph G′ = (V ′, E′) where V ′ is the set of pixels x with −Lf(x) ≥ �0 and E′

is the set of pixel pairs xy from V ′ with length between ρ0 > 0 and ρ1 > ρ0
weighted with their ridgeness rx,y, see Section 3.2.2. For x ∈ V ′ let N(x)
be the neighborhood in the supergraph. For three points ξ,x,y ∈ [n] × [n]
let pr(ξ;x,y) be the orthogonal projection of ξ onto the line xy. Moreover,
let the distance ρ of ξ to xy be defined as

ρ(ξ;x,y) =

{
‖ξ − pr(ξ;x,y)‖ if pr(ξ;x,y) ∈ xy,

∞ otherwise,

see Figure 15. The representing strip Sx,y of the line xy is defined as the
pixel set

Sx,y := {z ∈ [n]× [n] : ρ(z;x,y) < ρ2}.

ρ = 2

ρ = 1

x

ρ = ∞

y

ρ = ∞

ρ = 1

ρ = 2

Figure 15: Rectangular distance from a segment

The following Algorithm 2 determines a subgraph (V,E) of G′ represent-
ing the ridges of f as trails. The basic concept is a sequential search for
an extension of a component by brightest vertices and longest edges first.
Redundancy is avoided by bookkeeping of the pixels already represented by
edges collected in the forbidden set Q. A pixel is assigned as represented
by an edge xy if it is contained in the representing strip Sx,y. Edges xy
and their end-points are added if the ridgeness rx,y exceeds r0. As an ex-
ception, edges with sufficient ridgeness and a representing strip that touches
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the current vertex set are not added for symmetry reasons. For the sake of
simplicity, the width ρ2 of the representing strip and the minimal length of
edges ρ0 are chosen dependent on the width of the cross-section model as
2
√
2α.

Algorithm 2 Ridge tracking
Q := V := E := ∅.
while V ′ \Q �= ∅ do

Choose ξ ∈ V ′ \ Q as the lexicographically first pixel with maximal
image matrix entry.
L := {ξ}.
while L �= ∅ do

Choose x ∈ L as the lexicographically first pixel with maximal image
matrix entry.
Q := Q ∪ {x}, L := L \ {x}.
while N(x) ∩ (V ′ \Q) �= ∅ do

Choose y ∈ N(x)∩ (V ′ \Q) as the lexicographically first pixel with
maximal distance from x.
if w(xy) ≥ r0, V ∩ Sx,y = ∅ then
L := L ∪ {y}.
V := V ∪ {x,y}.
E := E ∪ {xy}.
for all z ∈ Sx,y ∩ (V ′ \Q) do
Q := Q ∪ {z}.
if z ∈ L then
L := L \ {z}.

end if
end for

end if
end while

end while
end while

The tracking algorithm starts a new component with the selection of the
first brightest vertex. This component is then extended sequentially. In each
step a starting point of potential ridges is selected from the end-points of the
component and possibly connected to either an open end of the component
or a point from the segmentation that is not represented by a ridge of the
current graph. The end-points are chosen by distance from the starting point,
the greatest distance first so that the greatest possible context is considered.
The condition that the representation of a new edge is far from all current
vertices ensures that ridges are not repeatedly represented. For example a
bright point in the middle of a straight ridge could otherwise be chosen as
a starting point for edges to both ends of the ridge. Then the component
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would be completed with a graph edge that connects these end points, so
that the ridge would be represented twice. This is thus avoided. Assembling
the loops, however, is necessary for capturing a graph with circles properly.
At the choice of pixels ξ,x and y the lexicographical order is a resort in case
the ordering by brightness or distance does not select uniquely. This renders
the method not rotationally invariant. The complexity of the algorithm
is proportional to |V |(ρ21 − ρ20). In the worst case all vertices are visited
once and all vertices in the ring of inner radius ρ0 and outer radius ρ1 are
tested as end-points with the time-critical evaluation of ridgeness. Hence,
the adaption of the length constraints allows for tuning the performance at
cost of context consideration at the ridgeness criterion.
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4 Denoising

Straight ridge tracking will only be effective if the image is of sufficient qual-
ity. Mostly it is possible to acquire images with a good signal to noise ratio.
However, an automatic method benefits from stabilization against perturba-
tions. Methods for restoring the images to allow a processing independent of
details of the acquisition procedure are useful and help to keep the further
procedure simple.
At this point of presentation the mathematical terminology has to overcome
an ambiguity. The Euclidean norm is used for discrete representations of
the data, local continuous features and distances within the computational
domain. In the following, the notion of convexity and saddle point is abstract
and no longer of geometrical meaning for the image relief. Nevertheless the
abstraction is not equipped with a new set of symbols here, as the meaning
is clear from the context.

4.1 Image Restoration with the Model of Rudin, Osher and
Fatemi

For image restoration linear filtering is the method both fast to implement
and with a wide range of applications. This, however, comes at the expense of
quality in the resulting image. Linear filtering can be introduced in different
ways, e.g. as solution of a diffusion equation, as a variational problem or
as spline interpolation problem. After all it is a global filter that introduces
context information for each pixel at cost of inter-pixel contrast. This loss
of information is hard to avoid totally. The model proposed in [34] gives
an answer for edge-preserving restoration of images degraded with Gaussian
white noise. This has inspired a continuing discussion about total variation
penalizers in variational methods for image restoration, see e.g. [4, 11, 29,
40, 46].

Definition 4. Let f ∈ L1([0, n]R). If

TV[f ] := sup
0=x0<x1<···<xm=n,

m∈N

m−1∑
i=0

|f(xi+1)− f(xi)|

is finite, this value is called total variation of f . The function f is said to
be of bounded variation.

Definition 4 defines a functional on the space of absolutely integrable func-
tions. It catches the overall fluctuation of monotonicity and does not need
to be finite. This leads to a generalization in a different formulation to ar-
bitrary dimensional arguments. For image processing the two-dimensional
case is most important. The geometrical meaning of first order total varia-
tion is expressed in the coarea formula as the product of the height of jump
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(a) (b)

Figure 16: Image function sketches for a univariate function with maximum
1 and minimum -1 in Figure 16(a) with total variation of 6 and for a bivariate
function on a square of side-length 1 in Figure 16(b) with total variation of
π
2 , which is a consequence of the coarea formula for total variation, see [12,
p. 54]

with the length of the discontinuity, see Figure 16. A similar result for the
second order case would be appealing.
Rudin, Osher and Fatemi proposed to penalize total variation of a function
degraded by Gaussian white noise in order to reconstruct the original signal,
see [34]. A continuous formulation as an unconstrained optimization problem
is

1

2

∫
Ω
(u(x)− f(x))2dx+ λTV [u] → min

u

for some fixed λ > 0. This can be extended to higher dimensional data
and to higher order total-variation type penalizers. The purpose remains,
the reconstruction of a function degraded by noise, while preserving promi-
nent features such as image edges, ridges and valleys. A general discrete
formulation is to find some vector u ∈ R

n as a solution of the unconstrained
minimization problem

min

{
1

2
‖u− d‖2 +

p∑
i=1

‖PiAu‖
}
,

with a problem matrix A ∈ R
m×n and orthogonal projectors Pi ∈ R

m×m, i =
1, . . . , p which form a decomposition of unity

∑p
i=1 Pi = Im with PiPj =

0 (i �= j). Note that this implies P 2
i = Pi and Pi symmetric for all i. This

problem is subsequently referred to as GEN.
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4.2 Numerical Realization

The non-smooth problem GEN cannot be treated directly by any stan-
dard optimization method. For finding a minimizer numerically, parabolic-
equations and duality approaches are popular. Duality approaches can be
very efficient and accurate, because they do not need a regularization of pe-
nalizers. In the following two algorithms derived via duality observations are
briefly presented.

4.2.1 Degrees of freedom

The projectors Pi must be chosen with respect to the discretization matrix A.
All components of Au can be selectively associated by the projectors Pi. The
Euclidean norms of associated components build terms of the penalizer. The
important examples so far are diagonal matrices Pi, where every diagonal
entry is equal to 1 at exactly one Pi and vanishes in all others. That means
the penalizer is the sum of Euclidean norms of a decomposition into subsets of
components of Au. Obviously the case of total variation is that the Euclidean
norm of the vertical and the horizontal finite difference is associated by
projection. The Frobenius-norm of the Hessian can be modelled by the
Euclidean norm of second finite differences, see [40]. For the introduction of
anisotropy the 1-norm of a subset of components is modelled by projectors
on only one component, such that their absolute value is penalized.
Fortunately the following efficient numerical treatment in Section 4.2.2 allows
for more. An example shows that the models in use are extended nontrivially.
Let n = 1. For m = 1 the only non-zero projector is (1) ∈ R

1×1. There is
already a non-trivial example for m = 2. First for p = 1 the only projector is
the identity matrix I2. For p = 2 it is known that Pi = PT

i and P1+P2 = I2,
so

P1 =

(
a b
b c

)
, P2 =

(
1− a −b
−b 1− c

)
.

Solving the system P1P2 = 0 leads to

P1 =

⎛⎝1
2 +

√
1
4 − b2 b

b 1
2 −

√
1
4 − b2

⎞⎠
and

P2 =

⎛⎝1
2 −

√
1
4 − b2 −b

−b 1
2 +

√
1
4 − b2

⎞⎠
with 0 ≤ b ≤ 1

2 . The extremal cases are

P1 =

(
1 0
0 0

)
, P2 =

(
0 0
0 1

)
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and

P1 =
1

2

(
1 1
1 1

)
, P2 =

1

2

(
1 −1
−1 1

)
Higher dimensional projectors can be found directly by solving an associ-
ated non-linear system of equations or by means of the following Structure
Lemma.

Lemma 7. Let P1, . . . , Pp and Q1, . . . , Qp be projectors for GEN with m =
m1 and m = m2 respectively. Note that zero-matrices are also admissible.
Let Π be a permutation matrix of dimension m1. Then the row-column per-
muted matrices

{ΠTPiΠ : i = 1, . . . , p}
are projectors for GEN with m = m1, the block-diagonal matrices

{diag(Pi, Qi) : i = 1, . . . , p}
are projectors for GEN with m = m1 +m2 and the Kronecker-product ma-
trices

{Pi ⊗Qj : i, j = 1, . . . , p}
are projectors for GEN with m = m1m2.

Proof. As a sketch of the proof, the first claim follows with

PiPj = 0 ⇔ ΠTPiΠΠTPjΠ = ΠTPiPjΠ = ΠT0Π = 0.

and
p∑

i=1

ΠTPiΠ = ΠT

(
p∑

i=1

Pi

)
Π = ΠTIΠ = I.

The second claim follows by the conclusion from the blocks to the block-
diagonal matrix. The third claim uses the distributivity of the Kronecker-
product.
A meaningful model with m = 3, p = 2 exemplifies the consequences. Let

H =

(
ai bi
bi ci

)
be a symmetric matrix feature for the pixel i, like a consistently discretized
Hessian, generated by A as

(Au)i,i+n,i+2n =

⎛⎝ai/
√
2

bi
ci/

√
2

⎞⎠ .

Then the penalizer-term of GEN ‖PiAu‖+ ‖QiAu‖ with

Pi =
1

2

⎛⎝ 1 0 −1
0 2 0
−1 0 1

⎞⎠⊗ eie
T

i
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and

Qi =
1

2

⎛⎝1 0 1
0 0 0
1 0 1

⎞⎠⊗ eie
T

i .

is the spectral radius of H where ei is the canonical unit vector in R
n, see

also Definition 6. This penalizer can be used to solve variational methods
involving the total variation of second order.

4.2.2 Duality and algorithmic approaches

In the setting established above there is a general duality theorem. It is a
generalization of the argument in [11] and a special case of the argument in
[40]. The proof is inspired by [46, 47].

Theorem 3. Let d ∈ R
n. Let A ∈ R

m×n be a nonzero matrix. Let Pi ∈
R
m×m be orthogonal projectors onto linear subspaces which decompose the

identity on R
m, i.e.

I =

p∑
i=1

Pi

with PiPj = 0 (i �= j).
Then for each optimal solution xT ∈ R

m of

(Q) min
1

2
‖ATx− d‖2, s.t. ‖Pix‖ ≤ 1, i = 1, . . . , p,

the vector uT = d−ATxT is an optimal solution of

(P ) min

{
1

2
‖u− d‖2 +

p∑
i=1

‖PiAu‖
}
.

Proof. The non-differentiable part of the objective function of (P ) is a so-
called support function

p∑
i=1

‖Piy‖ = max
‖Pix‖≤1,
i=1,...,p

xTy,

as it is an upper bound of xTy such that ‖Pix‖ ≤ 1 for all i because

xTy =

p∑
i=1

xTPiy ≤
p∑

i=1

‖Pix‖‖Piy‖ ≤
p∑

i=1

‖Piy‖,

and
x :=

∑
‖Pjy‖>0,

j=1,...,p

Pjy

‖Pjy‖
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is a corresponding maximizer. Indeed, on the one hand

‖Pix‖ =

∥∥∥∥∥∥∥Pi

∑
‖Pjy‖>0,

j=1,...,p

Pjy

‖Pjy‖

∥∥∥∥∥∥∥ =

{
1 if ‖Piy‖ > 0,
0 otherwise

and thus
‖Pix‖ ≤ 1

for all i = 1, . . . , p, and on the other hand

xTy = yT

∑
‖Pjy‖>0,

j=1,...,p

Pjy

‖Pjy‖ =
∑

‖Pjy‖>0

‖Pjy‖ =

p∑
j=1

‖Pjy‖.

Consequently Problem (P ) can be reformulated as a minimax problem

min
u∈Rn

{
1

2
‖u− d‖2 +

p∑
i=1

‖PiAu‖
}

= min
u∈Rn

max
‖Pix‖≤1,
i=1,...,p

{
1

2
‖u− d‖2 + xTAu

}
.︸ ︷︷ ︸

=:l(u,x)

Theorem 4.3.1 in Chapter VII of [20] provides the existence of saddle-points
of the objective function l. This implies that the order of minimization and
maximization does not matter. Four conditions are sufficient to apply the
Theorem.

H1: R
n is a closed, convex set.

H2: l(u,x) is convex in u and concave in x.

H3: For x = 0, which is admissible, the objective function l(u,x) → ∞ as
‖u‖ → ∞.

H4: The set of all admissible x is bounded.

Since H1-H4 are fulfilled, there exists a non-empty set of saddle-points of l.
Problem (P ) can be reformulated as

max
‖Pix‖≤1,
i=1,...,p

min
u∈Rn

{
1

2
‖u− d‖2 + xTAu

}
.

There is an explicit solution to the inner problem. The objective function is
strictly convex in u and thus a vanishing gradient is necessary and sufficient
for a minimizer, i.e.

u− d+ATx = 0.
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Hence the variable u can be replaced by d−ATx. As a result, the objective
simplifies to

max
‖Pix‖≤1,
i=1,...,p

{
1

2
xTAATx+ xTA(d−ATx)

}

= − min
‖Pix‖≤1,
i=1,...,p

{
1

2
xTAATx− xTAd

}

= − min
‖Pix‖≤1,
i=1,...,p

{
1

2
‖ATx− d‖2 − 1

2
‖d‖2

}
.

The constant 1
2‖d‖2 and the sign of the objective value both do not interfere

with the minimizer. Thus a solution xT of (Q) can be completed to a saddle-
point (d − ATxT,xT) of l, of which the first component uT = d − ATxT is
a minimizer of (P).
With the Duality Theorem in mind, a semi-implicit steepest descend algo-
rithm can be derived, referred to as SISD. Suppose that A = ΛB with a
parameter matrix Λ =

∑p
i=1 λiPi and λi > 0 for all i. Note that Λ−1 =∑p

i=1 λ
−1
i Pi. The factorization of A is helpful to improve the convergence

of SISD, because the maximal step-size of the iteration must be not greater
than one over the squared spectral-norm of B, see [11] and [40]. Problem
(Q) can be rewritten as

(R) min ‖BTy − d‖2, s.t. ‖Piy‖ ≤ λi, i = 1, . . . , p

of which the optimal x is recovered as Λ−1y. The Lagrangian of (R) with
squared constraint inequalities is

L(y,α) = ‖BTy − d‖2 +
p∑

i=1

αi(‖Piy‖2 − λ2
i ).

The weak Slater assumption is fulfilled because 0 = ‖Pi0‖ < λi for all i.
Thus the Karush-Kuhn-Tucker conditions are necessary and sufficient for
optimality. The existence of some αi ≥ 0 such that

αi(‖Piy‖2 − λ2
i ) = 0 (i = 1, . . . , p) (10)

is provided and, at the optimal y, the gradient vanishes:

∇yL(y,α) = 2B(BTy − d) +

p∑
i=1

2αiPiy = 0. (11)

A distinction of two cases shows that

αi =
‖Piz‖
λi

(12)
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with z = B(BTy − d) : Indeed, if αi > 0 then ‖Piy‖ = λi can be concluded
from (10). Furthermore after multiplication with Pi equation (11) results in

Piz = −αiPiy

and thus
‖Piz‖ = αi‖Piy‖ = αiλi.

If, alternatively, αi = 0 the result is Piz = 0 from (11). Thus in this case

αi = 0 =
‖Piz‖
λi

,

too. Hence the semi-implicit steepest descent Algorithm 3 (SISD) in line
with [11] is proposed.

Algorithm 3 Semi-implicit steepest descent algorithm for GEN (SISD)
Input: Data vector d ∈ R

n, problem matrix A = ΛB, parameter-matrix
Λ =

∑p
i=1 λiPi, fidelity parameters λi > 0, discretization matrix B ∈

R
m×n, step-size τ > 0, step-count N ∈ N.

y0 := 0 ∈ R
m.

for k = 0, . . . , N − 1 do

zk := B(BTyk − d).

yk+1 :=

(
Im + τ

p∑
i=1

‖Piz
k‖

λi
Pi

)−1

(yk − τzk).

end for
Output: simplified data vector u := d−BTyN ∈ R

n.

The semi-implicitness is in the descent direction −∇yL(y,α(y)), which in
the k-th step partly depends on the (k + 1)-th step. This results in the
matrix-inversion at the y update. All Lagrange-multipliers αi are chosen as
a function of y using (12).
The algorithm SISD can be proven to converge, see [11], but its performance
is inferior to current algorithms for total variation denoising. Thus the model
GEN is transferred into a more efficient algorithm (PDHG), which however
lacks a convergence result in this formulation. Following the lines of [46] the
algorithm is applied to the minimax-problem

min
u∈Rn

max
‖Pix‖≤1,
i=1,...,p

l(u,x)

for
l(u,x) =

1

2
‖u− d‖2 + xTAu.
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The objective l appears in the Duality Theorem 3 as an intermediate step,
which leads to a rewritten problem with an analytical solution to the max-
imization. Similar to the proposal in [46] for a special case of GEN this
step is replaced by an approximation now, which experimentally benefits the
convergence, see [6]. A dual step for the inner maximization is switched with
a primal step for the outer minimization. In every dual step the constraints
are enforced by projection of the iterate onto the feasible set. The steps
themselves are explicit gradient-ascent for the primal and gradient-descent
for the dual optimization. The primal step can also be regarded as a weighted
average of the current primal iterate uk and the primal counterpart of the
current dual iterate xk. Briefly this can be formulated as Algorithm 4.

Algorithm 4 Primal-Dual Hybrid Gradient Algorithm for GEN (PDHG)
Input: Data vector d ∈ R

n, problem matrix A, step-count N ∈ N, series
(τk)Nk=1, (θk)

N
k=1 of dual and primal step-sizes.

x0 := 0 ∈ R
m.

u0 := d.
for k = 0, . . . , N − 1 do

yk+1 := xk + τkAuk

xk+1 :=

p∑
i=1

1

max{1, ‖Piyk+1‖}Piy
k+1

uk+1 := (1− θk)uk + θk
(
d−ATxk+1

)
end for

Output: simplified data vector uN .

A key ingredient for this to work is the series of step-sizes. A fixed choice of
this series allows for sufficient experimental results. In [46] the proposal is

τk =
1

5
+

2

25
k

and
θk =

1

τk

(
1

2
− 5

15 + k

)
.

In [38] a convergence claim is formulated without proof. The condition τθ ≤
1/‖A‖2 was sufficient for convergence. As ‖ATV1

‖ = 2λ and ‖ATV2
‖ = 4λ

these step-widths allow for λ ∈ [0, 1/2] for total variation of first order and
λ ∈ [0, 1/8] for total variation of second order. However, convergence is
observed already for τθ < 1/‖A‖.
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4.2.3 Finite Differences

Finite differences allow for discretization of differential operators, which are
consistent for dense sampling. The error is quantified by the step-width order
of the leading error term in the polynomial approximation at a sampling
point. For a univariate function f ∈ C3(R) the first derivative f ′(x) can be
approximated by the following rationale. The Taylor-expansion of f in x±h
for positive h is

f(x± h) = f(x) + hf ′(x) +
h2

2
f ′′(x) + O(h3)

for h → 0. By rearrangement of these equations one can conclude that

f ′(x) =
f(x+ h)− f(x)

h
+ O(h)

and
f ′(x) =

f(x)− f(x− h)

h
+ O(h)

are first order and

f ′(x) =
f(x+ h)− f(x− h)

2h
+ O(h2)

is a second order finite difference approximation to the first derivative of f .
For image processing usually the grid is fixed and thus the step-width h
can be defined as 1. In this setting the approximation can be more easily
denoted as a matrix-vector product. Therefore, the sampling of the function
f on the interval [0, n]R given by the data is modelled as a vector f =
(f(ih))n−1

i=0 , with a natural number n. Notably this means fi+1 = f(ih). So
the differences D+fi := fi+1−fi approximate the first derivative of f in ih for
some i = 0, . . . , n−2. For differences across the boundary one must consider
the continuous problem to be discretized. For variational methods in image
processing Neumann boundary conditions are a natural way to model that
the image is thought to be smooth across the boundary, so the differences
vanish. Thus a natural choice would be e.g. D+fn−1 := 0.
Hence let

F :=

⎛⎜⎜⎜⎜⎜⎝
−1 1

−1 1
. . . . . .

−1 1
0

⎞⎟⎟⎟⎟⎟⎠ ∈ R
n×n

be a finite differences discretization matrix. Obviously

FTF =

⎛⎜⎜⎜⎜⎜⎝
1 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 1

⎞⎟⎟⎟⎟⎟⎠ .
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This leads to a definition of discrete total variation of first and second order
for one-dimensional data.

Definition 5. Let f ∈ R
n. The discrete one-dimensional total variation for

step-width h = 1 of f is

TV1(f) =
n∑

i=1

|(Ff)i| =
n−1∑
i=1

|fi+1 − fi|.

The discrete one-dimensional total variation of second order for step-width
h = 1 of f is

TV2(f) =
n∑

i=1

|(FTFf)i| = |f1 − f2|+
n−1∑
i=2

|fi−1 − 2fi + fi+1|+ |fn−1 − fn|.

A general treatment of total variation type penalizers for discrete signals,
can be found in [41]. As an interpretation, one can think of the sum of
discretized absolute second derivatives.
In the two dimensional setting, higher order partial derivatives must be dis-
cretized with care. Mostly a choice of all operators with the same order
avoids the introduction of artifacts when solving a problem with finite dif-
ferences. The basic equation for verifying a discretization of first and second
order derivatives is the Taylor-expansion

f(x+ h) = f(x) + hT∇f +
1

2
hT∇2f(x)h+ O(‖h‖3)

of a function f ∈ C4(R2) at a point dislocated by h from the center of
development x. In a similar fashion one can derive second order consis-
tent discretizations of the entries of the Hessian. The second derivative in
horizontal direction is approximated by

∂2f

∂x21
(x) =

f(x1 − h, x2)− 2f(x1, x2) + f(x1 + h, x2)

h2
+ O(h2).

Similarly the second derivative in vertical direction is discretized as

∂2f

∂x22
(x) =

f(x1, x2 − h)− 2f(x1, x2) + f(x1, x2 + h)

h2
+ O(h2).

Finally the mixed derivative must be chosen with care. With the choice

∂2f

∂x1∂x2
(x) =

∑
|h1|=|h2|=h>0 sgn(h1h2)f(x+ h)

4h2
+ O(h2)

the whole eight-neighbors of a pixel x are involved for a discrete symmetric
Hessian and all differences are of the same order of consistency. In order to
apply this formalism to a square digital image f ∈ R

ν×ν let it be thought of
as a column vector f ∈ R

n which is formed by the vertical concatenation of
the columns of the image matrix, so n = ν2. Then the spectral norm of the
Hessian serves for the definition of total variation of second order.
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Definition 6. Let f ∈ R
n. Let

C :=
1

2

⎛⎜⎜⎜⎜⎜⎝
−1 1
−1 0 1

. . . . . . . . .
−1 0 1

−1 1

⎞⎟⎟⎟⎟⎟⎠ ∈ R
ν×ν .

The two-dimensional discrete total variation of second order for step-width
h = 1 of f is

TV2(f) =

n∑
i=1

∣∣∣∣ai − ci
2

∣∣∣∣+ 1

2

√
(ai − ci)2 + 4b2i

with discretized Hessian-matrix entries

ai := ((In ⊗ FTF )f)i,

bi := ((CT ⊗ C)f)i

and
ci := ((FTF ⊗ In)f)i.

Remarkably, every summand of the total variation of second order sum can
be interpreted as the spectral radius of the Hessian matrix at the corre-
sponding pixel. This definition of a regularizer of higher order differs from
the literature, see [36, 40]. Still the use of the spectral norm, which is iden-
tical to the spectral radius in the case of the symmetric Hessian, occurs to
be the natural choice.

4.3 Higher Order Regularization

In [27] the link between ridge-feature and the following preprocess is moti-
vated. A ridgeness-measurement is defined by the maximal absolute eigen-
value of the Hessian. This is by definition the spectral radius. So a preser-
vation of this local image feature, a great spectral radius of the Hessian, is
worth being preserved while reducing noise that interferes with the predictor
part of feature detection. Figure 17 illustrates the effect which was initially
studied in [41]. This figure shows the minimizers of a one-dimensional total
variation regularization problem

1

2
‖u− f‖2 + λTV1(u) → min

and of a one-dimensional total variation of second order regularization prob-
lem

1

2
‖u− f‖2 + λTV2(u) → min
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for data f ∈ R
256, which is either a step signal or a hat signal with additive

Gaussian white noise and fixed parameter λ > 0. These optimization prob-
lems are special cases of GEN. Remarkably the location of the peak of the
hat-signal, a zero-dimensional ridge, is well restored with total variation of
second order penalizer. Note the similarity of Figure 17(b) with the features
of the profiles in Figure 10(c).
It seems that this also applies for two-dimensional signals and thus for the
restoration of ridges or valleys where the maximal principal curvature is sig-
nificant. A heuristic argument for this is that the total variation penalized
model restores image edges, where the discrete gradient has great length.
The total variation of second order penalizes ridges and valleys with a signif-
icant spectral radius of the Hessian, so they are preserved at noise reduction.
In [27] one proposal for a local ridgeness measurement, which is in fact also a
valleyness measurement, is the maximal absolute eigenvalue of the Hessian.
Hence total variation of second order minimization seems to be suitable for
problems of denoising signals with prominent ridges and valleys. This pro-
poses it as an appropriate technique for preprocessing microscopic images
for the detection of well defined fibers of unknown spatial distribution. As
shown in Section 4.2.2 the implementation can be done efficiently. So the
preprocess proposed for denoising of two dimensional signals is

1

2
‖u− f‖2 + λTV2(u) → min,

where f is a column-wise reshaped square digital image with TV2 formulated
in Definition 6.
To illustrate the two-dimensional case, a numerical example is presented, see
Figure 18 for the result. Let f be a digital gray-value image degraded by
noise. Then a minimizer u ∈ R

ν×ν of the discretized problem

ν∑
x1,x2=1

(u(x)− f(x))2 + λ
ν∑

x1,x2=1

(Ru)(x) → min (13)

for λ > 0 is to be found. Hereby, the operator (Ru)(x) evaluates the spec-
tral radius of the Hessian by finite differences with homogeneous Neumann
boundary conditions and is given by

(Ru)(x) = 1
2 |(Dxxu)(x) + (Dyyu)(x)|

+ 1
2

√
((Dxxu)(x)− (Dyyu)(x))2 + 4(Dxyu)(x)2 ,

where the linear operators Dxx, Dxy, Dyy provide approximations of the en-
tries of the Hessian. The discrete differential operators can be chosen as
second order consistent, see e.g. [21] for details. For inner points and grid-
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Figure 17: One-dimensional denoising of a piecewise constant and a piecewise
linear signal. Parts (a) and (b) are the originals, parts (c) and (d) are
respective degraded versions of the originals, parts (e) and (f) are restored
by one-dimensional minimization of total variation and parts (g) and (h) are
restored by minimization of total variation of second order.
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width h = 1 this is realized with

(Ru)(x) =
1

2
|4u(x)− u (x1 − 1, x2)− u(x1 + 1, x2)

− u(x1, x2 − 1)− u(x1, x2 + 1)|
+

1

4

(
4(u(x1 − 1, x2) + u(x1 + 1, x2)

− u(x1, x2 − 1)− u(x1, x2 + 1))2

− (u(x1 + 1, x2 + 1) + u(x1 − 1, x2 − 1)

− u(x1 + 1, x2 − 1)− u(x1 − 1, x2 + 1))2
) 1

2
.

To calculate a solution of (13), Algorithm 4 is used.
Note that it is natural to use the spectral norm instead of the Frobenius
norm of the Hessian, because the spectral norm is the matrix norm induced
by the Euclidean norm for the first order case.
This method leads directly to another theoretical question related to current
research about scale space. The notion of ridges is extended with regard
to scale in [30]. An automatic scale selection allows for accurate results
with lower requirements on image quality and prior knowledge. So far only
Gaussian scale space is addressed. The scale space formed by total variation
of second order might be well suited for a new practical notion of ridges.
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(a) (b)

(c) (d)

(e) (f)

Figure 18: Illustration of ridge preserving image restoration with a total
variation of second order penalizer. The artificial image (a) with intensity
range [0.0, 1.0] has a digital ridge-set shown in (b) by application of Definition
3 with a finite difference approximation of derivatives. The same procedure
leads to a meaningless result (d) for a version (c) of (a), which is degraded
with pseudo-random Gaussian white noise of standard deviation 0.25. Part
(e) shows the minimizer of problem (13) with (c) as f and λ = 1.0. The
corresponding ridge set (f) is then similar to the original, which might be
unknown in applications.
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5 Mathematical Morphology

Mathematical morphology is a fundamental area of visual computing devoted
to the analysis of spatial structures. The basic phenomena modelled are
shape and form. That explains the term morphology, which sets a link to
the study of shape and form in biology for example. The greater strength of
the theory is that it is founded on few mathematical axioms, which do not
loose their diversity for long sequences of concatenation. For this, a basic
morphological operator and the data it is applied to have exchangeable roles.
A recent treatment of a broad range of applications can be found in [39].
Two leafs from the tree of morphological operations are of special interest for
ridge detection. There is the medial axis transform, which provides a notion
of a centerline of a given subset of the Euclidean plane. This is important
when thickness of elongated structures in networks is negligible. The medial
axis is the state of the art for quantification based on ridge detection, see
e.g. [2]. This has the disadvantage of spurious ridges that do not reflect sub-
stantial information contained in the image. There are approaches to prune
discrete medial axes or skeletons, but this involves additional parameter-
tuning to this end. Skeletons are meant to present the state of the art and
its short-comings here. A similar approach has been used for classification
in [26].
Furthermore there is the top-hat transform which allows for the extraction of
details from images in disposing brightness variation on a coarse scale relative
to the structuring element of the operator involved. The top-hat transform is
a method of gray-scale morphology. At the occurrence of uneven background
illumination this nonlinear operation is suitable for a reduction of this effect,
see [17]. This allows for a preprocessing step that stabilizes the subsequent
feature detection.

5.1 Basic Operations

Mathematical morphology describes morphological operations for binary,
scalar and even matrix-valued images. The goal is the extraction of rele-
vant structures by exploring the data-set with structuring elements. These
allow for the introduction of a-priori knowledge about the feature in their
degrees of freedom. The notion of a structuring element is best introduced
for binary images. These are the result of any kind of prior segmentation
of image objects leading to bounded subsets of the image domain, e.g. the
segmentation of a cumulative level-set by a brightness criterion in a digital
image. Equivalently, a binary image can be described by either a digital im-
age f : Ω → {0, 1} or its one-set X = {x ∈ Ω : f(x) = 1}, where Ω ⊂ Z

2 is
the computational domain. In the set representation a structuring element
can be described in the same manner, as a bounded subset Y ⊂ Z

2 of the
infinite grid. In this setting the basic operations of Erosion and Dilation can
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be expressed in terms of set-theory, thus forming the whole bandwidth of
morphological operations.

5.1.1 Erosion and Dilation

The application of a structuring element Y is based on its shift by x into
the image-domain (x + Y ) ∩ Ω. For the sake of simplicity the intersection
with Ω is not included in the subsequent formulas. An Erosion � then tests
for each pixel x of the image-domain, whether the structuring element Y
shifted there fits into the set-representation X. In terms of set-theory this
can be expressed by:

X � Y := {x ∈ Ω : x+ Y ⊂ X}.
Dilation ⊕ is then a test, whether the structuring element hits the set-
representation of the binary image:

X ⊕ Y := {x ∈ Ω : (x+ Y ) ∩X �= ∅}.
Erosion and Dilation are dual in the sense of the set-identity

(X � Y )c = Xc ⊕ (−Y ).

The effect of both operations can be studied by considering Y = Br(0) a
ball of radius r > 0 around the origin. Then the erosion X�Br(0) shifts the
boundary of X orthogonally to its interior. Dilation is an orthogonal shift
of the boundary to the outside of the set, see Figure 19.

5.1.2 Opening and Closing

Concatenation of erosion and dilation defines further basic operations. Ero-
sion not only removes details from a binary image. Also coarse structures
are reduced. Morphological opening ◦ is successive erosion and dilation with
the same structuring element:

X ◦ Y := (X � Y )⊕ Y.

This reverses the effect of the structuring element on the coarse structures,
which are still represented in the eroded binary image. Details of the object
boundary extending into the background which do not fit the structuring
element are not represented in the eroded binary image and are thus removed
by opening. To achieve the same effect for the background of the binary
image, for closing • the order of dilation and erosion is exchanged:

X • Y := (X ⊕ Y )� Y.

The notion is that thin links and gaps of the set X are disconnected and
linked respectively by applying a structuring element that does not fit in
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between. Furthermore small blobs are filtered out. The duality of erosion
and dilation is conveyed into opening and closing as:

(X ◦ Y )c = Xc • (−Y ).

5.1.3 Morphological Skeletonization

Based on mathematical morphology one can define discrete realizations of the
medial axis. There are several medial axis definitions, which lead to similar
features in the continuous setting. In contrast, there are several different
notions of skeletons in the discrete setting implementing the main properties
of the medial axis. A popular illustration of the concept has been introduced
in [10]. A subset of the plane is thought of as a lush dry prairie which is
ignited all around its boundary. Gradually the fire fronts are propagated into
the inner of the grassland with locally equal speed. The medial axis is then
the set of all spots where the firefronts from different parts of the boundary
meet and extinguish. This is formalized by the maximal disk definition

M(X) :={x ∈ X : ∃y1,y2 ∈ ∂X,y1 �= y2 :

‖x− y1‖ = ‖x− y2‖ = min
y∈∂X

‖x− y‖}

for a bounded set X ⊂ R
2. So there exist at least two points of the boundary

with the same Euclidean distance to the medial axis point, which is in passing
the minimal distance to the boundary. This can be thought of in terms of a
maximal disc around the medial axis point, which is totally contained in X
and has at least two distinct contact points with the boundary.
The book [37] provides an implementation for the discrete setting, X ⊂ Z

2,
in terms of basic morphological operations. For this, an iteration of erosion
is defined as

X � kY := [[. . . [X � Y ]� Y ] · · · � Y ]� Y︸ ︷︷ ︸
k times

.

The skeleton pixels as discrete implementation of the medial axis are defined
as the loss of details extending into the background at the successively eroded
set:

Sk(X) := (X � kY ) \ ((X � kY ) ◦ Y ).

The skeleton itself is the union of all losses of detail before cancellation by
erosion

S(X) :=
m⋃
k=0

Sk(X)

with m such that

X �mY �= ∅, X � (m+ 1)Y = ∅.
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(a)

(b) (c)

(d) (e)

Figure 19: Effect of disk structuring element B5(0) on a binary image (a)
with the silhouette of a leaf, erosion (b), dilation (c), opening (d) and closing
(e).
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(a) (b)

Figure 20: Morphological skeletons by accumulated loss of details at succes-
sive erosion, X ⊂ Z

2 in black, S(X) ⊂ X in white. The structuring element
used is Y = B√

2(0). Note the incomplete connectivity of the branches.

The resulting pixel set for a disk structuring element is close to the medial
axis of a continuous set with its interpolated boundary, see [37]. Still the
property of the medial axis that it forms a network of continuous curves, is
lost, see Figure 20.

5.2 Specialized Operations

Binary images are very limited in representing features in degraded images.
The segmentation of a foreground set is mostly an unnecessary loss of infor-
mation in an image that is already an abstraction from real world scenes.
Still given a good segmentation the morphological medial axis can be strongly
improved. Furthermore mathematical morphology conveys into scalar valued
images with few complications and allows for nonlinear filtering techniques
to facilitate feature preserving image improvement. The presentation follows
the lines of [39].

5.2.1 Nonlinear Filtering

In transfer of morphological operators to scalar valued images

f : Ω → R

also the operators can be generalized

g : Y → R.

Then the basic operations can be defined as convolutions in the tropical
algebra

[f � g](x) := min
y∈Y

{f(x− y) + g(y)}

62



for the erosion and

[f ⊕ g](x) := max
y∈Y

{f(x+ y)− g(y)}

for the dilation. This is consistent with the binary case in the notion of a
binary image as

f(x) := 1X(x) :=

{
1 if x ∈ X,
0 otherwise

and a binary structuring element with

g ≡ 0.

Then erosion is comprised as

f � g = 1X�Y

and dilation as
f ⊕ g = 1X⊕Y .

This is similar to the median-filter in that it selects its value from an ordered
list of brightness values in a neighborhood, but the first and the last respec-
tively instead of the central element. Opening and closing are defined in the
same manner as in the binary case. The opening

f ◦ g := (f � g)⊕ g

denotes the loss of bright details. The closing-operator

f • g := (f ⊕ g)� g

denotes loss of dark details. With the top-hat transform

Tg(f) := f − (f ◦ g)

this allows for extraction of bright details and thus negligence of varying
background illumination. For an example of a confocal laser scanning mi-
croscopic image, see Figure 21.

5.2.2 Homotopic Skeletons

The book [39] points out that there is a single medial axis but a multitude
of morphological skeletons: “Several formal definitions for the skeleton of a
Euclidean set are available. Fortunately, they all lead to similar thin lines.
However, their extension to discrete sets has lead to a wide variety of skele-
tons. Moreover, the properties of the resulting discrete skeletons are not all
identical to those of their continuous counterpart.” The following treatment
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(a) (b)

Figure 21: Morphological top-hat transform applied to a confocal laser scan-
ning microscopic image of the actin filament of a human MG-63 osteoblast
in Figure 6. Parts (a) and (b) show the opening and the top-hat transform
of this microscopic image with a disc structuring element of radius 8 pixels
centered at the origin.

is lead by [13] which is a strict evaluation of different skeletons of discrete
sets. Two of these illustrate the argument.
The medial axis or skeleton of a Euclidean set, can be e.g. alternatively
defined for X ⊂ R

n as

M(X) := {x ∈ X : #(sup
r
{Br(x) ⊂ X} ∩ ∂X) > 1}.

Despite of the disparity of notation this leads to the same set as the defini-
tion in Section 5.1.3. Recently the medial axis is used for computer graphics
applications where the set X ⊂ R

2 is defined as a polygonal bounded body.
For the application to binary images one must concentrate on properties of
the medial axis to transfer into a discrete setting. A method both compu-
tationally efficient and capable of preserving the homotopy bases on parallel
thinning. This consists of criteria applied to the boundary pixels of the dis-
crete set for whether they can be removed without loss of connectivity or
branches. Formally

R(X) := {x ∈ X : x irrelevant boundary pixel}, X ⊂ Z
2,

is defined without regard to the ordering of the pixel set. The operator

A(X) := X \R(X)

implements a thinning of the current set and the skeleton is then the m-th
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R A

Figure 22: Scheme of parallel thinning algorithms. For visualization of the
effect on boundary pixels, the lower and the right image are the accumulation
of four subsequent applications of the operators.

iteration

S(X) := Am(X), such that Am−1(X) �= Am(X) = Am+1(X).

The result strongly depends on the notion of the operator R. Figure 22 illus-
trates the scheme. Typically the notion of relevance involves the preservation
of the homotopy, i.e. in 2 dimensions the number of holes in the skeleton is
the same as in the original set. Also the preservation of significant branches
is part of the notion of relevance of a pixel. This is where there are obvious
differences in the methods proposed in the literature.
In [13] there are several approaches compared with regard to similarity to the
medial axis and homotopy preservation, ordered by publishing authors and
year of publication: Pavlidis ’81, Chin et al. ’87, Holt et al. ’87, Hall ’89, Guo
& Hall ’92, Jang & Chin ’93, Eckhardt & Manderlechner ’93 and Bernard
& Manzanera ’99. Figure 23 shows two examples with different branching
behavior. The method proposed by Guo and Hall 1992 (GH ’92) is reported
to perform well and thus chosen for the coming Section as a substantiation
of the state of the art, which was published without a requirement on the
exact algorithm to be used.

5.2.3 Ridge Detection by Skeletonization

This Section defines an alternative to the method described in Section 3.2.3.
The data is assumed to be preprocessed, such that all brightness information
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(a) (b)

(c) (d)

Figure 23: Morphological skeletons by parallel thinning approaches, the orig-
inal set X ⊂ Z

2 in black and the skeleton S(X) ⊂ X in white. Parts (a), (b)
result from the application of Pavlidis ’81, parts (c), (d) from Guo & Hall
’92. The results differ in that lines are not always one pixel thin and there
are more branches with Pavlidis’ approach.
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can be assumed to be determined by the feature. A segmentation X, e.g.
by brightness thresholding or other methods, must be processed with the
methods described in Section 5.2.2 such that a binary mask feature S(X) is
given. Furthermore this binary mask must be one pixel thin except for line
crossings, i.e. only crossing pixels have more than 2 eight-neighbors. With
this input the following algorithms proposed in [2] are reproduced here for a
presentation of the state of the art. The output is a geometrically embedded
graph, to be quantitatively described with the methods introduced in Section
2.
Algorithm 5 defines a subgraph to the grid-graph of the given skeleton, i.e.
the graph with edges between 8-neighbors of the skeleton. A subgraph is
found by a combinatorial optimization with a geometrical and a technical
objective.
Let vertices of degree greater than 2 in the grid graph be denoted as cluster
vertices. Most cluster vertices should loose all superfluous edges while paths
between non-cluster vertices which visit only cluster vertices in between are
possibly longer but not broken. For this, clusters are defined as connected
components of the subgraph of the grid-graph induced by vertices of degree
other than 2. These clusters are reduced to spanning trees of the graph
induced by the cluster vertices and their neighbors. Among all spanning
trees, the one with the greatest objective function of the PAST is selected,
see Section 2.2.1. This is a choice, which is not proposed in the literature, but
which obviously optimizes the result for the quantification conducted in the
application of this thesis. In case of non-uniqueness, the lexicographically
first graph is selected as follows. Let v,w ∈ Z

2 be distinct vertices. Then
v < w, if and only if v1 < w1 or v1 = w1 and v2 < w2. Let e = vw,
e′ = v′w′ be distinct edges with v < w and v′ < w′. Then e < e′ if v < v′

or v = v′ and w < w′. As the vertex set does not vary, the ordering of
edges is sufficient for sorting graphs. Let G = (V,E) and G′ = (V,E′) be
two distinct graphs. Then G < G′ if min{E \ E′} < min{E′ \ E}.

Algorithm 5 Graph from Segmentation
V := S(X).
E := {vw ∈ V × V : max{|v1 − w1|, |v2 − w2|} ≤ 1}.
G := (V,E).
VC := {v ∈ V : deg(v) �= 2}.
for all connected components G′ = (V ′, E′) of G[VC ] do
V ′′ := V ′ ∪⋃

v∈V ′ NG(v).
G′′ := G[V ′′].
Let G′′′ := (V ′′′, E′′′) be the lexicographically first spanning tree of G′′

with maximal objective function value of the PAST.
G := (V, (E \ E′′) ∪ E′′′).

end for
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Algorithm 6 simplifies the graph by joining vertices of degree other than 2
with weight-bounded shortest paths and deleting short cycles with exactly
one crossing point by a length criterion with a tuning parameter ρ1. In [2]
the value ρ1 = 8 pixel is proposed. This can be taken as a value, which less
depends on the scale of objects displayed by the image and rather from the
result of skeletonization algorithms dependent on the pixel grid.
Pairs of vertices of degree other than 2 are sorted by shortest path length
in the Euclidean length weighted graph. The lexicographically first, closest
pair is joined and the procedure is repeated until no pair has distance less
than ρ1. After all joining operations short cycles are deleted. For this, all
cycles with only one vertex with degree greater than 2 are deleted if their
length with Euclidean weighting is less than ρ1. The resultant graph is then
a meaningful representation of filamentous objects. However, connectivity
which is missing in the segmentation, is also missing in the result. The
complexity strongly depends on the size of clusters for which spanning trees
are enumerated. There might be reasonable heuristics for restriction of this
complexity. However, a worst case analysis would require more information
about the skeleton in terms of forbidden 8-neighborhoods. This is out of the
scope of this presentation.

Algorithm 6 Graph Simplification
G := (V,E).
repeat
VC := {v ∈ V : deg(v) �= 2}.
γ : E → R+, γ(vw) = ‖v −w‖.
Let v,w ∈ VC be the lexicographically first pair of vertices with a
shortest path not longer that the one between every other pair. Let γ0
be the weight of this path.
if γ0 ≤ ρ1 then
G := (V \ {v,w} ∪ {(v +w)/2}, (E \ ({v} ×N(v) ∪ {w} ×N(w)) ∪
{(v +w)/2} × (N(v) ∪N(w)))).

end if
until γ0 > ρ1
VC := {v ∈ V : deg(v) �= 2}.
for (v0, v1, . . . , vm, v0) is a cycle in G with v0 ∈ VC , m ≥ 1 and
v1, . . . ,vm ∈ V \ VC do

if γ({v0v1, . . . ,vmv0}) ≤ ρ1 then
G := G[V \ {v1, . . . , vm}].

end if
end for

68



6 Experimental Validation

At this point the problem has been seen from different perspectives in the
field of mathematical image processing. Numerical experiments are necessary
for novel developments in all of these fields. They show both the relevance
of the theories and reflect the bias of their viewpoint. Usually, there is no
improvement of the state of the art without any disadvantages concerning
computational complexity, stability or systematic errors.
The tools for the numerical experiments were a Win32 application FilaQuant,
which is an implementation of parameter estimators described in Section 2
based on ridge detection proposed in Chapter 3 with a preprocessing de-
scribed in Sections 4 and 5. The experimental implementation is compiled
with Embarcadero R© C++ Builder 2010 R©. It is applied to images stored in
uncompressed TIFF files. The preparation of the statistics was done with
Matlab R2008b. For the execution, a Microsoft Windows XP Professional,
Version 2002, Service Pack 3 system was used. For statistical evaluation the
Analyse-it plug-in for Microsoft Office Excel 2007 was used as an implemen-
tation of the U-test and the T-test.

6.1 Qualitative Consistency

The parameters for the description of the actin filament of cells grown on well
understood surfaces serve as a benchmark for the quantification. In [31, 15]
there are qualitative results concerning cellular response to stochastic bioma-
terial surfaces. The sample images of these studies are used with FilaQuant
and the quantitative results are qualitatively assessed by statistical tests with
and without distribution assumptions.
A necessary condition for sufficient quantitative accuracy is consistency with
established qualitative results. Therefore a set of sample data from qualita-
tive research about the influence of chemically treated biomaterial surfaces
on the actin filament of MG-63 osteoblasts is used. There are 3 to 7 images of
each population. The established observations concern maximal length and
number of filaments. The filament was automatically tagged in the images
and decomposed by the software FilaQuant.
Two hypotheses are tested for small sets of routinely generated images. The
images have been selected for representation of the actin filament pheno-
type. Note that results of quantitative imaging will require less selected
data. FilaQuant is capable of processing stacks of images, each in a time
proportional to the pixel number. The images must be acquired with a fila-
ment width of at least one pixel. This selection of images and the selection
of evaluation parameters about contrast, filament width, filament curvature
are manual input so far. The one-sided student T-test, see Table 2, and the
Mann-Whitney U-Test, see Table 3, are applied. Table 1 shows the char-
acterization of the data. For the use of these statistical methods see e.g.
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Table 1: Characterization of the samples with populations sizes n1, n2 and
the corresponding variances of the estimated parameters σ1, σ2. The naming
convention for the data stems from the application for which the images were
acquired and qualitatively assessed for a confirmation of the hypotheses.

Data n1 n2 σ2
1 σ2

2

number Col30 vs. CD30 5 4 7843.7 1174.92
length Ti180 vs. Ti30 7 3 5556.95 241.48

Table 2: One sided T-test of hypotheses about length and number of fila-
ments. They can all be accepted with a probability of first kind error less
than 0.01. The values μ1, μ2 are the sample means. The length is given in
μm.

T-test H0 : μ1 > μ2 μ1 μ2 p-value
number Col30 vs. CD30 27.63 4.18 0.0089
length Ti180 vs. Ti30 27.71 8.25 0.002

[45].
It is clear that the small sample size and the great variance are not suffi-
cient for valid statistical results. Also there are arguments against the use
of the T-test for hypotheses about integer random variables. The U-test is
closer to practical application for this kind of data. However, the sample
size is proposed to be equal and greater than the examples here. Still, these
examples show, that FilaQuant is accurate enough to be applied to greater
data-sets without violation of well-known qualitative behavior of actin fila-
ments imaged through confocal laser scanning microscopy.

Table 3: One sided Mann-Withney U-test of hypotheses about length and
number of filaments. They can all be accepted with a probability of first
kind error less than 0.05. The values m1,m2 are the sample medians. The
length is given in μm.

U-test H0 : m1 > m2 m1 m2 p-value
number Col30 vs. CD30 209 13.5 0.0159
length Ti180 vs. Ti30 167.5 55.2 0.0083
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6.2 Random Model

For the verification of an accurate result, images with known ground truth
are required. They are provided by a random model, which randomly defines
a geometrically embedded graph and defines a corresponding image. Hence,
the result of the ridge tracking algorithm, see Section 3, can be checked
against the true graph. The model could be defined arbitrarily realistic.
The following models are restricted to ridges with fixed width and contrast,
thus the optimal α is known in advance. Application images are degraded by
noise, uneven background illumination and varying contrast. The random
models, see Figure 24, verify the performance of the ridge tracking algorithm
both after perfect elimination of noise and after a preprocess.
There are different random models for tessellation features in an experimen-
tal state, see [3]. Ideas for graph features are adopted with the extension
that the image domain is not fully decomposed by the feature lines. The
first model, EDGE, is the random choice of m ∈ N pairs of pixels from the
greatest digital disc fitting the image domain and their connection by an
edge. The second and the third model, TRAIL and ELLIPSE, are based
on the Delaunay-triangulation, see [1], of a 3m-pixel random point-process
in a digital ellipse. Recall that the Delaunay-triangulation of these pixels
is defined as their connection by edges to a maximal planar triangle graph
with the triangles chosen such that their circum circles enclose no vertex
from the pixel-set except for the triangle corners. The center of gravity of
the ellipse is at the center of the image. One semi-axis is one half of the
row number of the image. The other semi-axis is of equal length for TRAIL
and of half the length for ELLIPSE respectively. Subsequently, 3m pixels
are drawn from the ellipse with equal probability. The triangle graph by the
Delaunay-triangulation is decomposed into almost straight trails, see Sec-
tion 2.2, of which one is chosen with equal probability. This procedure is
m times repeated so that m curved trails are defined. Given a trail Ej , the
corresponding image is defined by

f(x) = �128 max
vw∈Ej

max{gα(ρ(x;v,w)), gα(‖x− v‖), gα(‖x−w‖)}�.

with

gα(s) := exp

(
− s2

2α2

)
.

This means, the brightness is modelled with Gaussian function decay with
distance from edges and vertices of the graph from half the maximal gray
value. The images of all m edges in the EDGE model and the trails in the
TRAIL and ELLIPSE models are added and cut above 255, so crossings
are brighter than isolated trails. A fourth model, noisy ELLIPSE, has a
modification of trail superposition. Let f be the image of the ELLIPSE
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model. Then the noise model f̂ is given by

f̂(x) =
1

100
X

(⌊
100

(
1

3
+

2

3
f(x)

)⌋
,x

)
,

where X(t,x) is a Poisson distributed random number with parameter t for
every x ∈ Ω. Recall that this means X(t,x) is an nonnegative integer, with
the probability of the realization k ∈ N given by

P (X(t,x) = k) =
tk exp(−t)

k!
.

The image f̂ is cut above 255. This models an illuminated background and
shot-noise as image degradations. For the subsequent calculations α is chosen
1.5 pixels and the PAST-threshold β0 is arccos(−0.9).
In order to assess the performance of the proposed algorithm the random
model is used for elementary error statistics. For this, 100 sample images
are drawn from the random models for each experiment. All images are
automatically processed with certain tuning parameters substantiating Al-
gorithms 2, 5 and 6. The error is measured relative to the true value for the
total length, greatest length and angular deviation. The number of filaments
which is expected to be close to m is given as the total value. The preferred
orientation is given as an absolute angular error. The distribution of errors
over the population of 100 samples are given by the quartiles. For EDGE
and TRAIL images with 10, 20, 30 and 40 trails are assessed for density in-
fluence. Another experiment highlights the influence of tuning parameters.
Furthermore there is a comparison of the proposed method with a state of
the art technique with TRAIL, ELLIPSE, each with and without noise.

6.2.1 EDGE

Table 4 shows the error quartiles for the EDGE model. Each parameter
error has three rows with the average of 25-th and 26-th, the 50-th and 51-
st and the 75-th and 76-th value in the ascending order. The row "length
error 75%" e.g. reads, the relative error of the total length parameter for
the average of 75-th and 76-th sample in the list ordered by the error in
ascending order, is 2.6% for m = 10, 4.3% for m = 20, 8.4% for m = 30 and
13.0% for m = 40.
Obviously the trail number was overestimated systematically. This is hard
to avoid without post-processing. One reason is that superposition interferes
with the exact reconstruction of ground truth. It might even be impossible,
e.g. for more than two edges with exactly the same end-points. Crossings
with very acute angles over a long distance can reduce the response of the
ridgeness along a line such that one or both edges are not properly detected.
The effects of superposition increase with the number of trails. The param-
eter choice was (�0, r0, ρ1) = (16, 60, 512). The greatest edge length ρ1 was
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(a) (b)

(c) (d)

Figure 24: One realization of the random models for microscopic images
showing superposed fibers which mimic biological variation, part (a) by the
EDGE model, part (b) by the TRAIL model, part (c) by the ELLIPSE model
and part (d) by the NOISE model.
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Table 4: EDGE model with increasing density

trail-number truth 10 20 30 40
trail-number 25% 10 20 32 46
trail-number 50% 10 21 33 49
trail-number 75% 10 22 38 54.5
length error 25% 0.8% 2.5% 4.8% 8.3%
length error 50% 1.6% 3.3% 6.1% 10.3%
length error 75% 2.6% 4.3% 8.4% 13.0%
error longest 25% 0.6% 0.5% 0.5% 0.5%
error longest 50% 0.7% 0.7% 0.6% 1.3%
error longest 75% 0.8% 3.6% 3.5% 5.0%

as great as possible. This implies a great computational burden because the
cost-dominating straight ridge criterion is not fulfilled for most end-points
selected from a large neighborhood. The ridge criterion for lines was more re-
strictive than the pixelwise blob criterion because more information is given
by the context.

6.2.2 TRAIL

Table 5 shows the results for the TRAIL model, where the curves are smooth
but not entirely straight, see Figure 24(b). The effects leading to false de-
tection are similar to EDGE. The errors of the longest trail parameter were
greater for small and accordingly overestimated trail numbers. For greater
true trail number, the effects of close parallel trails are reduced. Still the
longest trail length showed greater errors. The parameters were chosen as
(�0, r0, ρ1) = (12, 80, 32). The maximal edge length ρ1 was smaller because
there is no benefit in detecting very long edges. Long edges are unlikely in
the Delaunay-triangulation of a point-process with the given density.
The algorithm depends on a suitable choice of the tuning parameters. Table 6
shows the performance for the TRAIL model with m = 40 and for alternative
choices for the ridgeness and the nodeness thresholds. The insight is twofold.
Table 5 has suitable tuning parameters, because the errors increase in almost
every instance when changing them. Stability is greater for the nodeness
threshold than for the ridgeness threshold.
As a comparison Table 7 shows the results of the state of the art method
based on skeletonization. The errors are generally greater compared with
the ridge tracking results. Especially the longest filament estimation error
strongly increases in m.
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Table 5: TRAIL model with increasing density and Algorithm 2

trail-number truth 10 20 30 40
trail-number 25% 10 21 33 44
trail-number 50% 10 22 36 48
trail-number 75% 12 25 39 51
length error 25% 0.3% 0.7% 0.7% 1.0%
length error 50% 0.6% 1.1% 1.3% 1.5%
length error 75% 1.1% 1.5% 2.2% 2.2%
error longest 25% 0.2% 0.3% 0.4% 0.3%
error longest 50% 0.5% 0.6% 0.7% 0.7%
error longest 75% 0.7% 2.5% 7.6% 8.8%

Table 6: TRAIL model with different tuning parameters

�0 8 16 12 12 12
r0 80 80 60 100 80

trail-number 25% 45 44 60 56 44
trail-number 50% 48 48 65.5 61 48
trail-number 75% 52 52 74.5 66.5 51
length error 25% 1.1% 0.9% 7.8% 3.1% 1.0%
length error 50% 1.6% 1.5% 9.2% 3.7% 1.5%
length error 75% 2.4% 2.2% 10.5% 4.5% 2.2%
error longest 25% 0.4% 0.3% 1.1% 2.9% 0.3%
error longest 50% 1.0% 0.9% 8.6% 15.6% 0.7%
error longest 75% 9.3% 14.5% 22.2% 27.6% 8.8%

Table 7: TRAIL model with increasing density and Algorithms 5 and 6

trail-number truth 10 20 30 40
trail-number 25% 11 24 38 50.5
trail-number 50% 12 27 41 55
trail-number 75% 14 30 44 59.5
length error 25% 3.3% 1.7% 1.3% 1.1%
length error 50% 4.2% 3.1% 2.1% 2.0%
length error 75% 5.0% 4.4% 3.0% 3.1%
error longest 25% 4.3% 6.3% 6.6% 6.7%
error longest 50% 7.1% 14.0% 13.8% 18.2%
error longest 75% 21.0% 24.9% 29.7% 31.1%
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6.2.3 ELLIPSE without and with noise

Tables 8 and 9 show the error quartiles of the former parameters together
with two additional parameters about length and orientation of edges, see
Section 2.3. All eight experiments only use the most complex random models,
namely TRAIL, noisy TRAIL, ELLIPSE and noisy ELLIPSE. Noisy TRAIL
is realized as noisy ELLIPSE with equal semi-axis, which produces the same
spatial distribution of trails as in the TRAIL model. For all four random
models 100 samples with m = 10 trails are drawn. The noisy realizations
are treated with top-hat transform with disk structuring element radius 4.5,
see Section 5.2.1, and total variation of second order weight λ = 0.1 for the
image with intensity pixel-wise normalized to range [0, 1] by division by 255,
see Section 4. Furthermore the tuning parameters of the denoised images are
chosen differently as α = 1.2 and r0 = 25 for the ridges are effectively thinner
at the piecewise linear reconstruction of a gaussian shaped crossection. These
images were then evaluated by the novel ridge tracking method, see Section 3,
for the results in Table 8 and by the state of the art skeletonization method,
see Section 5.2.3, for the results in Table 9. This offers different views on
the accuracy of the quantification compared to the ground truth of random
images. Note that the results for skeletonization are slightly different from
the first column of Table 7 as the sample data is different.
Concerning the different approaches to ridge detection the tables show larger
errors for the skeletonization approach for all parameters in the scope of this
thesis and all random models. The overestimation of the filament number
is common to both approaches. This high level feature is strongly context
sensitive and slightly better quantified with the novel approach. Overall, the
benefit of the novel approach is strongly sensitive for the random model and
hence for the noise level and the orientation distribution.
The total length has a stable error for all models with the skeletonization
approach. For the novel approach there is a cumulative bias due to noise
and elongation. This shows that the error has a disadvantageous tendency
to quantify strongly dissimilar observations with a different accuracy, so that
only the worst accuracy for noisy ELLIPSE can be assumed for application
data. In this respect the benefit of the novel approach is not great for the
total length parameter.
The high level feature of the greatest length of a trail has a smaller relative
error than the total length for the novel approach and noiseless data. With
noise the median is still advantageous, but the 75% quartile reveals a ten-
dency to measurement outliers. This leads to a demand for careful statistical
evaluation of this parameter. With skeletonization this error is more stable
towards directedness but overall on a higher level. The impact of noise is
common to both approaches. The advantages of the ridge tracking for noise-
less and sparse ridges is no surprise. Modelling the feature as a geometrically
embedded graph and extracting with respect to similarity to the impression
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Table 8: TRAIL, ELLIPSE, noisy TRAIL and noisy ELLIPSE models with
m = 10 and Algorithm 2

trail-number 25% 10 10 10 10
trail-number 50% 11 11 10 10
trail-number 75% 12 12 11 11
length error 25% 0.5% 0.6% 0.5% 0.5%
length error 50% 0.8% 1.1% 0.9% 1.0%
length error 75% 1.1% 1.9% 1.4% 1.9%
error longest 25% 0.2% 0.3% 0.3% 0.3%
error longest 50% 0.5% 0.5% 0.5% 0.6%
error longest 75% 0.9% 1.3% 0.8% 1.2%

error dispersion 25% 0.1% 0.1% 0.2% 0.2%
error dispersion 50% 0.3% 0.5% 0.3% 0.5%
error dispersion 75% 0.6% 0.9% 0.7% 0.9%
error mean angle 25% 0.1◦ 0.1◦ 0.1◦ 0.3◦

error mean angle 50% 0.2◦ 0.3◦ 0.4◦ 0.5◦

error mean angle 75% 0.5◦ 0.7◦ 1.1◦ 1.2◦

of a human observer leads to a disadvantage, the more textural the feature
is. It is more dense with ELLIPSE and less separated from the background
with noise. A stabilization of this parameter would require more complex
algorithms.
Figure 25 illustrates the main sources of errors for skeletonization as a basis
for a PAST-coloring. The merging of two trails crossing and the wrong
guidance of a trail are disadvantageous for the longest filament parameter.
Length and orientation are rather low level features, which are also accessible
with less sophisticated feature models. Surprisingly the accuracy does not
benefit from the support for the distribution assumption for the ELLIPSE
models compared to the TRAIL models.
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(a) (b)

(c) (d)

Figure 25: PAST-coloring of line-structures in random image in Figure 24(c)
processed by ridge tracking, see Section 3.2.3, in part (a) and by skeletoniza-
tion, see Section 5.2.3, in part (c). Parts (b) and (d) show the result of ridge
tracking and skeletonization for the noisy ELLIPSE model image in Figure
24(d).
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Table 9: TRAIL, ELLIPSE, noisy TRAIL and noisy ELLIPSE models with
m = 10 and Algorithms 5 and 6

trail-number 25% 11 11 13 12.5
trail-number 50% 12 12 14 14
trail-number 75% 14 14 17 16
length error 25% 2.7% 2.5% 2.2% 2.1%
length error 50% 4.0% 3.8% 3.4% 3.6%
length error 75% 5.1% 4.9% 4.6% 4.7%
error longest 25% 4.7% 5.6% 6.2% 5.0%
error longest 50% 7.2% 9.9% 12.8% 14.1%
error longest 75% 20.6% 20.2% 28.9% 28.3%

error dispersion 25% 2.2% 3.3% 2.8% 3.5%
error dispersion 50% 4.0% 6.0% 4.5% 6.4%
error dispersion 75% 7.8% 8.9% 7.6% 9.5%
error mean angle 25% 0.7◦ 0.6◦ 0.9◦ 0.7◦

error mean angle 50% 1.8◦ 1.4◦ 1.7◦ 1.5◦

error mean angle 75% 3.6◦ 2.8◦ 3.3◦ 3.8◦
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7 Summary and Conclusions

Quantification of ridge features in microscopic images is challenging. An
accurate solution is appreciated, because merely qualitative methods suffer
from great uncertainty and subjectivity. The problem of detecting ridges
with unknown position and connectivity in images is not limited to biological
data. Also material inspection of fabrics, recognition of fingerprints and
surveying of molecules are treated with similar models. The graph-based
approach presented here is little dependent on the image grid by elementary
discretization methods of a simple continuous image model. It is shown
to cope with exemplary application data and with a random model of it.
Additionally this random model highlights the performance of a state of the
art method compared to the novel approach. This comparison reveals an
improvement with the conducted effort. However, it must be noted that the
measurements of accuracy are not identical to the ones in the setting of the
state of the art method. The improvement is supported by a confirmation
of established hypotheses with the automatic methods.
The application problem to quantify the phenotypical response of the actin
filament of osteoblasts produced a fruitful interdisciplinary cooperation, of
which only the mathematical side is presented here. The requirements of
accurate computer vision based on degraded microscopic image data lead
directly to a combinatorial approach for feature detection and indirectly to
appropriate methods from mathematical image processing. Whereas mathe-
matical morphology, which is already well established and used for the state
of the art, its application for the novel approach is limited to a nonlinear
preprocess, the top-hat-transform, to equilibrate the background. Hence,
the reduction of information is less crucial than directly proceeding with a
segmentation. For noise reduction the model of Rudin, Osher and Fatemi is
used in a generalized form and with an efficient numerical realization. The
generalization is revealed to be exceptionally suitable for the computer vi-
sion task conceived as ridge detection. As total variation of first order has
a broad range of applications there is probably a greater potential of the
insights concerning total variation of second order.
These tools then facilitate the derivation of geometrically meaningful pa-
rameters concerning length and orientation. The measurement of the longest
fiber in a network of superposed fibers naturally defines a combinatorial opti-
mization heuristic, which is useful throughout this thesis. The description of
orientation preferences in a line-process leads to problems of circular statis-
tics. The development in this field likely allows for a further development
of the methods of this thesis. A first generalization of the von Mises distri-
bution keeps the statistic closer to the phenomenon and is shown to be still
treatable with efficient estimators.
As a byproduct a software solution entitled FilaQuant was specified to pro-
vide a tool for applied scientists with open access. This software is designed
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to be extendible for the purpose of other research projects with focus on
image data with ridge features. Especially the denoising part might have a
broad field of applications. A special challenge is the generalization to 3d
and the combination with scale-space ridge detectors. Also the theoretical
results can be extended. A continuation of applied mathematical methods
for microscopic images requires more emphasis on statistical parameters, for
which the feature detection is replaced with different models, according to
different image acquisition techniques.
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Thesen zur Dissertation

„Automatic Quantification of the Actin-Filaments

in Microscopic Images“

von Harald Birkholz

1. In der Zellbiologie werden konfokale, Laser-Raster-mikroskopische Auf-
nahmen vom Aktin-Filament humaner Osteoblasten erstellt, um den
Fortschritt der zellulären Entwicklung zu überwachen. Die Aktin-Fila-
mente haben in der frühen Entwicklung die Struktur eines geometrisch
eingebetteten Graphen, der in der fokalen Ebene nahe Biomaterialo-
berflächen kontrastreich abgebildet werden kann.

2. Die Quantifizierung von filamentösen Strukturen anhand von Mikro-
skopieaufnahmen wird bisher durch Segmentierung anhand von Hellig-
keitskriterien und Skelettierung im Sinn der mathematischen Morpho-
logie gelöst, siehe [1, 6, 9]. Dabei spielen verschiedene Parameter des
Bildinhaltes eine Rolle, die sich in den Anwendungen unterscheiden.
Die geschätzten Parameter des Bildinhaltes variieren in ihrer Emp-
findlichkeit für Fehler der Bildgebung, die der menschliche Betrachter
unterbewusst kompensiert. Die Stabilisierung interessanter Parameter
folgt einer Abwägung von Kosten und Nutzen.

3. Die für den menschlichen Betrachter gewonnenen Bilddaten bedürfen
einer Vorverarbeitung für das maschinelle Sehen. Die Aktin-Filament-
Bilder sind gekennzeichnet durch unregelmäßig ausgeleuchteten Hin-
tergrund der Fasern, ein leichtes Poisson-Rauschen, siehe [8]. Die Vor-
verarbeitung kann unter Erhaltung der Fasern ohne vorherige Erken-
nung die Störungen reduzieren. Die Beleuchtung des Hintergrundes
wird klassisch mit der Zylinderhut-Transformation ausgeglichen, siehe
[5]. Das erfordert die Eingabe einer Steuerungsvariablen für die ge-
schätzte Dicke der Filamente.

4. Zur Beseitigung des Rauschens eignet sich in besonderem Maße ei-
ne speziell angepasste Variante des Rudin-Osher-Fatemi-Modells. Die
Formulierung als konvexes Programm mit quadratischem Ähnlichkeit-
sterm f in festem Verhältnis λ > 0 zur totalen Variation zweiter Ord-
nung für glatte Funktionen auf dem Rechengebiet Ω ⊂ R

2 lautet∫
Ω
(u− f)2dx+ λ

∫
Ω
‖∇2u‖dx → min

u
.



Hierbei ist ‖∇2u‖ die Spektralnorm der Hessematrix von u ∈ C2(Ω).
Es ergibt sich ein effizientes numerisches Verfahren. Die numerische
Behandlung des diskreten Problems zur Minimierung der totalen Va-
riation zweiter Ordnung gelingt durch Ausnutzung der Dualität von
konvexen und konkaven Programmen [3]. Das Verfahren eignet sich
besonders für die Reduzierung von Störungen vor der Markierung von
Graten und Tälern.

5. Das maschinelle Sehen ist mit dieser Vorverarbeitung auf das Erkennen
des gefilterten Merkmals zurückgeführt. Dabei schwankt der Kontrast
innerhalb des vorverarbeiteten Bildes, so dass einfache Helligkeitskrite-
rien versagen. Zudem variiert die Dicke der im Bild erhaltenen Grate.
Das Problem mit unbekannte Dicke und gleich bleibendem Kontrast
könnte mit Verfahren der Literatur gelöst werden, siehe [4, 7]. Diese
Lösungen bedürfen einer Nachverarbeitung für die bisher keine Grund-
lage für Aktin-Filamente bekannt ist.

6. Mit der Annahme geringer Schwankungen der Dicke erzeugt ein neu
entwickelter Spurensuch-Algorithmus mit einem Vorhersage-Korrektur-
Schema effizient einen zusammenhängenden geometrisch eingebette-
ten Graphen als Markierung der hellen Grate im Bild. Die Markie-
rung erlaubt eine Quantifizierung von Filamentlänge und Filament-
Ausrichtung mit hoher Genauigkeit.

7. Die Ausrichtungsparameter können unter von Mises Verteilungsan-
nahme gewonnen werden. Dabei kann eine neu erarbeitete Längen-
gewichtete Variante auf dem Halbkreis verwendet werden, aus der die
Parameter durch Maximum-Likelihood Schätzer gewonnen werden.

8. Eine nach anwendungsbezogen sinnvollen Parametern optimale Zerle-
gung in beinahe gerade Pfade des Merkmalsgraphen liefert die Länge
der längsten Faser als stark Kontext-bestimmten Parameter mit hoher
Genauigkeit.

9. Die automatische Quantifizieriung kann qualitative Beobachtungen von
Experten der Zellbiologie anhand kleiner Stichproben bestätigen.

10. Ein Zufallsmodell der Daten gibt die Gestalt der Aktinfilamente so
wieder, dass die gleichen Fehlerquellen auftreten und ein Vergleich von
Wahrheit und Schätzung möglich ist. Anhand des Zufallsmodells kann
der neue Ansatz durch Vorverarbeitung, Spurensuche mittels Vorhersa-
ge und Korrektur [2], und Quantifizierung anhand von Fehlerraten mit
einem Verfahren durch Segmentierung und Skelettierung [1] aus der
Literatur verglichen werden. Der neue Ansatz zeigt experimentell eine
Verbesserung der kontextsensitiven Längenschätzung und eine leichte
Verbesserung der weiteren Parameter.



11. Die gesamte Lösung zur Aktinfilament-Quantifizierung steht der Öf-
fentlichkeit als frei erhältliche WIN32-Anwendung FilaQuant zur Ver-
fügung.
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