
Improving Trust in Deep Neural Networks
with Nearest Neighbors

Ritchie Lee∗

Stinger Ghaffarian Technologies, NASA Ames Research Center, Moffett Field, CA 94035

Justin Clarke†

University of Massachusetts Amherst, 140 Governor’s Dr., Amherst, MA 01003

Adrian K. Agogino‡, Dimitra Giannakopoulou§
NASA Ames Research Center, Moffett Field, CA 94035

Deep neural networks are used increasingly for perception and decision-making in UAVs.
For example, they can be used to recognize objects from images and decide what actions the
vehicle should take. While deep neural networks can perform very well at complex tasks,
their decisions may be unintuitive to a human operator. When a human disagrees with a
neural network prediction, due to the black box nature of deep neural networks, it can be
unclear whether the system knows something the human does not or whether the system is
malfunctioning. This uncertainty is problematic when it comes to ensuring safety. As a result,
it is important to develop technologies for explaining neural network decisions for trust and
safety. This paper explores a modification to the deep neural network classification layer to
produce both a predicted label and an explanation to support its prediction. Specifically, at test
time, we replace the final output layer of the neural network classifier by a k-nearest neighbor
classifier. The nearest neighbor classifier produces 1) a predicted label through voting and 2) the
nearest neighbors involved in the prediction, which represent the most similar examples from
the training dataset. Because prediction and explanation are derived from the same underlying
process, this approach guarantees that the explanations are always relevant to the predictions.
We demonstrate the approach on a convolutional neural network for a UAV image classification
task. We perform experiments using a forest trail image dataset and show empirically that
the hybrid classifier can produce intuitive explanations without loss of predictive performance
compared to the original neural network. We also show how the approach can be used to help
identify potential issues in the network and training process.

I. Introduction
Deep neural networks have demonstrated impressive ability to solve complex perception and decision-making tasks

including image classification [1], speech recognition [2], playing video games [3, 4], and playing board games [5].
Consequently, there is strong interest in applying deep neural networks to perception and decision-making tasks in
self-driving cars [6] and unmanned aerial vehicles (UAVs) [7, 8]. Among other benefits, using deep neural networks
and computer vision for perception reduces hardware cost by allowing cameras to replace more expensive sensors as the
primary sensing modality. Deep neural networks also hold the promise to make better high-level decision-making than
existing approaches.

However, robustness and trust remain key challenges that face deep neural networks, especially in safety-critical
applications where failures can result in loss of life and property. At its core, the challenge is that the manner in which
the neural network model derives its output is unintuitive to a human. That is, while a human can follow the mechanics
of how a neural network derives its output, the computation process does not provide the necessary intuition for a human
to have a deep physical understanding. As a result, deep neural networks are largely treated as black boxes.

∗Researcher, Robust Software Engineering Group, AIAA Senior Member, ritchie.lee@nasa.gov
†Graduate Student, College of Information and Computer Sciences, jclarke@cs.umass.edu
‡Research Scientist, Robust Software Engineering Group, adrian.k.agogino@nasa.gov
§Research Computer Scientist, Robust Software Engineering Group, dimitra.giannakopoulou@nasa.gov

https://ntrs.nasa.gov/search.jsp?R=20200000328 2020-03-11T13:29:37+00:00Z

Viewing the model as a black box is problematic for various reasons. During development, it hinders the ability
of the engineers to thoroughly understand the system, notice poorly trained models, provide safety guarantees, and
effectively debug issues. During deployment, human operators that monitor the system can have difficulty distinguishing
between correct and incorrect behavior. Human monitoring is important for safety-critical systems given the gravity of
failures and that the system cannot be made perfect. Moreover, many studies have shown the existence of adversarial
examples in deep neural networks, where small, often imperceptible, perturbations in the input can lead to drastic
mispredictions with very high confidence [9]. These studies show that neural networks can not only be quite brittle but
also fail without warning.

Explainability has been proposed as a key component to solving these issues [10, 11]. The idea is to have machine
learning models return not only a prediction, but also some accompanying explanation that justifies its prediction to a
human. Based on the explanation, the human can decide whether to trust the model prediction. A variety of approaches
have been proposed to explain deep neural networks, including visualizations [12], attributions [13], and class activation
maps [14, 15]. However, whether these methods produce explanations adequate to convince a human is quite subjective
and highly task-dependent. Many methods, due to their origins, tend to work better for image recognition tasks where
an object can be localized in the image rather than more abstract tasks such as predicting action directly from image.

In this paper, we take the approach of explanation by example, where, given an unseen example, the most similar
examples in the training dataset are used as explanation. Our approach relies on intercepting the neuron outputs of an
intermediate layer in the network. These intermediate vectors are known to form semantically relevant representations
of the data and distances in the representation can be used for similarity [16]. Rather than making predictions by
propagating through all layers of the neural network, we use the intermediate representation to feed a k-nearest neighbor
classifier based on the training dataset. The k-nearest neighbor classifier uses the most similar examples i.e., the nearest
neighbors, in the training set to vote for the prediction. The prediction process is made transparent to the user by
returning the nearest neighbors involved. Because the nearest neighbors correspond to concrete examples in the dataset,
they are semantically meaningful when presented to a human.

To make our discussion more concrete, we study an image classification task for a UAV navigating in a forest. In
the scenario, the task is to decide, based on image input, the discretized heading of the UAV relative to a navigable
forest trail. The forest trail can be in front, to the right, or left of the UAV. We study the utility of our approach via a
number of experiments in this scenario. We show empirically that the predictive performance of the hybrid classifier
is comparable to the original neural network classifier and we show that the nearest neighbors can make viable and
meaningful explanations to a human. Furthermore, we show how our approach has helped identify certain issues in the
training process and highlight interesting examples of the neural network classifier.

The remainder of this paper is organized as follows. Section II describes related work in explainability for machine
learning. Section III reviews convolutional neural networks and k-nearest neighbor classifiers, which are fundamental
concepts used in the paper. The section also describes the UAV forest trail navigation task on which we base our
experiments. Section IV describes the construction and training of the hybrid classifier. Section V describes an
adjacency issue encountered in our initial experiments and a train-test splitting procedure used to address it. The section
also contains a sequential analysis of the forest trail data. Finally, Section VI presents the results of applying our hybrid
classifier to analyze the forest trail dataset.

II. Related Work
Explainability in machine learning is an active area of research [11]. A variety of approaches have been proposed. A

general approach, applicable to black box classifiers, is to learn an interpretable model that approximates the input-output
behavior of the black box model. The interpretable model is then used to interface with the human. Rule-based models,
such as decision trees [17], grammar-based decision tree (GBDT) [18], decision sets [19], Bayesian rule lists [20], are
inherently interpretable and can be used in this way. Another approach, called locally interpretable model-agnostic
explanations (LIME) [21], learns a locally valid linear classifier centered about an individual data point. Explainability
has also been explored for planning and control, where sequences of states and actions need to be considered [22].

Deep neural network-based methods can make use of the available gradient information in the network. Attribution
methods, such as integrated gradients [13] and layer-wise relevance propagation (LRP) [23], produce saliency maps that
highlight the input dimensions that contributed most to the prediction. However, because saliency is computed per input
dimension and spatial correlations are not captured, the resulting saliency maps can be very discontinuous, especially
with high-dimensional inputs such as images. Saliency methods can also be unreliable as they are not invariant to
simple transformations of the data [24]. Class activation map (CAM) [14] and gradient-weighted class activation

2

map (Grad-CAM) [15] use the spatial information from the convolutional layers of convolutional neural networks to
produce more locally smooth heatmaps highlighting the most relevant parts of the input space. These methods have
been shown to work well for object recognition tasks, where they can approximately localize the objects within an image.
However, it is unclear how helpful they can be for more abstract tasks where there may not be a single object to be
identified, as is the case in our forest trail application.

Visualization is another approach to understanding deep neural networks, which has been heavily investigated for
image data. Neuron activation maximization [25] finds the image that maximally activates a particular neuron in the
network, and activation atlases [12] produce two-dimensional visualizations of the representation space of the hidden
layers. Representation learning models, such as β-variational autoencoder (β-VAE) [26] and information maximizing
generative adversarial network (InfoGAN) [27], learn generative models with disentangled neurons that can generate
novel examples where key characteristics of the image can be controlled through specific neurons.

Scene understanding considers images that can contain many objects and where objects need not necessarily occupy
a large portion of the image. These approaches don’t directly produce explanations, but can give other information to
aid the user. For example, fast region-based convolutional neural network (R-CNN) [28] and mask R-CNN [29] return
the predicted class and a bounding box that localizes the identified object; scene graphs extract explicit relationships
between identified objects [30]; and instance segmentation [31] provides pixel-level segmentation of the image providing
precise outlines of objects. These methods generally require additional detailed annotations of the images.

Our work takes a different approach to explainability where, for a test image, we provide the most similar examples
from the training set. To compute the nearest neighbors, we create a hybrid model that combines a deep neural
network with a k-nearest neighbor classifier. Neural networks and k-nearest neighbor classifiers have been explored in
previous work [32–34], most notably the work of Papernot and McDaniel on deep k-nearest neighbors [32]. In deep
k-nearest neighbors, nearest neighbors are computed at all intermediate layers and the final prediction is generated
via a hypothesis testing procedure. Our work takes a considerably simpler approach feeding the representation from
the penultimate layer into the k-nearest neighbor classifier. This simpler approach is arguably more intuitive due to
the simpler decision-making process. But more importantly, explanations make the prediction process completely
transparent to the user, since predictions and explanations are derived through the same underlying process.

III. Background

A. Notation
The following notation is adopted throughout the paper. A dataset D is a sequence of n input-label pairs

[(x1, y1), (x2, y2), ..., (xn, yn)], where xi ∈ Rd , yi ∈ L, and L is the set of possible discrete class labels. For convenience,
we define X to denote the sequence of inputs [x1, x2, ..., xn] and Y to denote the sequence of labels [y1, y2, ..., yn].
Function operators on single inputs are extended with broadcast semantics such that they operate element-wise when
presented with multiple inputs, e.g., f (X) , [f (x1), f (x2), ..., f (xn)].

B. Deep Neural Network Classifier
A (feedforward) deep neural network f maps an input x to an output y via a sequence of L computational

transformations, called layers [35]. The data is transformed into increasingly more abstract representations of the data
as it passes through the layers of the network. The input of a layer indexed by ` (where ` ∈ 0..L − 1) is the output of the
previous layer at ` − 1. A layer consists of smaller computation units, called neurons, that compute one dimension of
the layer’s output. The non-linear transformations at each layer f` are parameterized by weights w` , which are learned
during the training process using backpropagation and stochastic gradient descent. A common non-linear function, or
activation function, is the rectified linear unit (ReLU), which computes max(0, u) for a scalar input u [35]. The final
output layer of a classification network typically consists of a dense fully-connected layer with a softmax activation
function given by

σj(u) = eu j∑m
p=1 eup

where j is the neuron index and u ∈ Rm. The softmax function produces the predicted probabilities of each class as
the final output of the neural network. A loss function based on the cross-entropy between predicted probabilities and
ground truth is used to generate the error signal for training. Overall, given an input x, the neural network performs the

3

following computation to predict a class y:

y = f (x) = fL−1(fL−2(... f0(x)))
where the weights at each layer are not denoted for brevity.

Convolutional neural network. A convolutional neural network is a deep neural network with convolutional
layers, which have been shown to perform very well on image processing tasks [35, 36]. Convolutional layers learn
translation-invariant filters over its input via a weight sharing architecture. It is common for convolutional neural
networks to alternate convolutional layers with maxpooling layers, which output the value of the maximum element
from a multidimensional input. For a detailed presentation of convolutional neural networks, we refer to the reader to
[35]. The exact mathematical details of these operators are not required to understand the discussion in this paper.

C. k-Nearest Neighbor Classifier
The k-nearest neighbor classifier is a non-parametric classifier that votes on the predicted label using the labels of the

k closest examples in the training set [37, 38]. More precisely, let d be a distance function such that d : Rd × Rd 7→ R.
Then, for a test point x ∈ Rd , the k-nearest neighbor classifier first finds the k nearest neighbors that minimize d(x, xi)
for xi ∈ X , and then returns the mode of the labels of the k nearest neighbors. Ties are broken by selecting the label
of the closest neighbor amongst the ties. “Training” a k-nearest neighbor model with dataset D consists primarily of
storing D in a convenient data structure to enable fast distance searches at prediction time.

For the distance function d, this paper uses cosine distance dcos given by

dcos(u, v) = 1 − u · v
| |u| |2 | |v | |2

where u ∈ Rd, v ∈ Rd, and | | · | |2 is the Euclidean norm. Cosine distance is often used for comparing neural network
representations [16].

D. Forest Trail UAV Navigation Scenario
We analyze a UAV navigation scenario, where the UAV follows a navigable trail in a forest environment based on

image input. The scenario follows that described in [39] and our experiments are based on the image datasets shared
publicly by the authors [40]. The scenario involves a UAV navigating a forest trail based on images from a monocular
camera mounted at the front of the UAV. At each time step, the convolutional neural network uses the image input to
predict the UAV’s current heading relative to the general direction of the forest trail. The output of the neural network is
a discrete class label: left, center, or right. If the output is center, for example, then the UAV is aligned with the forest
trail and should move straight ahead to follow the forest trail. If the output is left, then the UAV’s heading is pointed
left of the forest trail, and the UAV should first turn right to align itself with the forest trail. In other words, the neural
network classifier does not attempt to explicitly identify the trail or objects in the image, but rather directly predicts (the
negative of) the control action to take.

To train the convolutional neural network, the authors collected image data by hiking forest trails with head-mounted
cameras [39]. Three cameras were used, one mounted facing forward and two mounted pointed off-center to the left and
right. As he hiked, the hiker tried to keep the forward camera aligned with the trail even as the trail curved. The data
consists of three sequences of images, one from each camera and collected at 10 Hertz. The camera from which the
image originates—left, center, or right—acts as the class label for the neural network training.

The experiments in this paper focus on datasets 001 and 002, which have the best image quality. The combined
dataset contains 25,868 images in total. The images are resized to 101 by 101 pixels to speed up training. Each image is
labeled 0 for left, 1 for center, and 2 for right.

IV. Dissecting the Neural Network for Trust
We explore a hybrid classification model that combines the representation of a deep neural network with a k-nearest

neighbor classifier. The k-nearest neighbor is a natural choice as a classifier because notions of similarity and voting
are very intuitive, making its decision-making process very understandable by humans. Additionally, the neighbors
that participate in the voting can be presented to the user to explain the decision. However, the k-nearest neighbor
performs poorly when directly applied to high-dimensional input data, such as images, because distance metrics
are less meaningful in the high-dimensional space. Deep neural networks are naturally very effective at mapping

4

high-dimensional inputs to lower-dimensional and more semantically meaningful representations. These representations
are found as the outputs of the intermediate layers, where deeper layers tend to represent higher level and more abstract
features [25]. Consequently, we use the neural network representation at the penultimate layer to feed the k-nearest
neighbor classifier.

The architecture of the hybrid classifier that we propose at train and test time is illustrated in Figure 1. To construct
the hybrid classifier, we first train a convolutional neural network classifier f that maps an input image x to a class
label y, such that y = f (x). We learn the weights of the neural network using the training set Dtrain and standard
backpropagation training methods, such as Adam [41]. Now, we remove the final output (dense and softmax) layer
and consider the representation at the penultimate layer. We denote the new neural network f̂ , which maps an input
image x to a representation z, such that z = f̂ (x). The representations of the training set Ztrain = f̂ (Xtrain) and their
corresponding ground truth labels Ytrain are used to train a k-nearest neighbor classifier g.

To perform inference for an unseen image xtest , we first evaluate its neural network representation ztest = f̂ (xtest),
then evaluate the k-nearest neighbor classifier on the representation to obtain the class prediction, ytest = g(ztest). Our
experiments in this paper set k = 3 and use cosine distance as a measure of neighbor similarity.

Input
x

Intermediate
layer 1

Intermediate
layer 2 Output

(dense+softmax)
layer

Original
predicted class

z

k-NN
Classifier
(Ztrain)

Predicted class y

Explanation
(nearest neighbors)

Training

Inference

Fig. 1 Hybrid deep neural network and k-nearest neighbor classification model.

V. Training with Sequential Image Data
Our initial experiments divided the training and testing sets by uniformly sampling images from the dataset without

regard for their sequential order. We obtained close to perfect accuracy scores and used our hybrid classifier to provide
nearest neighbor explanations. We were surprised to discover that each test image had nearest neighbors in the training
set that were almost identical to it. This observation quickly led us to realize that our test and training sets contained
nearly identical images, which originated from adjacent frames in the original dataset. Figure 2 shows some examples
of these images where the test image and the nearest training image look nearly identical. However, the images are in
fact different and their minute differences can be seen by looking at the numerical difference in their pixel values. An
example of these differences is shown in Figure 3.

Deep neural network training assumes that the training set represents independent and identically distributed samples
of the underlying distribution [35]. However, this assumption is violated in our setting because images from frames of a
video are sequentially correlated. By presenting the nearest neighbors as explanation to the user, our hybrid classifier
exposed this adjacency issue and made it easy to spot. Images that are taken close together in time can appear very
similar, especially at times when the hiker moves slowly or is stationary. For this reason, it is important to pay special
attention when creating training and testing sets from the available data. A naive splitting of the data would result in a
testing set where almost all the images have an almost identical image in the training set. This phenomenon would
artificially inflate testing accuracy and mislead users of the model’s true generalization ability.

5

Fig. 2 Examples of adjacent frames identified using nearest neighbors. The images and their nearest neighbors
appear visually nearly identical. However, they are not identical as differences exist in their pixel values.

Fig. 3 Example of adjacent frames and their pixel differences.

6

To address this issue, when selecting images for training and testing sets, it is critical to ensure that no images in the
testing set are too close in time to an image in the training set. We begin by sorting the data chronologically and then
partitioning the data into chunks of size N . We randomly select approximately 60% of the chunks to be the training set
and the remaining 40% of the chunks to be the testing set. To ensure a gap between all images in the testing and training
sets, we discard the first and last N/4 images and retain only the middle N/2 images for the chunks in the testing set.
This procedure is illustrated in Figure 4. We empirically selected N = 64, which ensures a gap of 16 images between
train and test images. Following this construction method, the training set contains 15,488 images and the testing set
contains 5,184 images. Performance scores in this paper are evaluated on testing sets generated using this method.

All Data: · · ·
Train Train Test Train

N N N

Drop Keep Drop

N/4 N/2 N/4

Fig. 4 Train-test split procedure.

Since the image data is ordered, it is possible to determine approximately which sections of the data are more
difficult for the model to learn and generalize. That is, as the hiker traverses different trail environments, some portions
of the hike will be more challenging to classify for a deep neural network than others. We quantify these variations via
a leave-one-out cross-validation study. First, we split the image data into 10 partitions. For each partition, we train
a classifier using data from all other partitions, then evaluate the accuracy for the current partition. By testing the
generalization accuracy on each partition in turn, we obtain generalization scores for each section of the forest trail
data. Figure 5 shows the result of the cross-validation experiment. The final section of the trail had significantly lower
accuracy, which indicates that the final section may be different and more difficult to predict than other sections of the
trail.

1 2 3 4 5 6 7 8 9 10
Trail Section

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

Ac
cu

ra
cy

Fig. 5 Generalization accuracy by section from leave-one-out cross-validation.

7

VI. Application to Forest Trail UAV Navigation Scenario
In this section, we discuss observations made from the application of our approach to the Forest Trail UAVNavigation

Scenario discussed in Section III-D. During training of the neural network, we apply on-the-fly data augmentation to
help generalization of the trained model. Specifically, we apply a set of small random transforms to the image prior to
presenting the image for training: rotation, up to ±18◦; shear, up to ±20%; and zoom, up to ±20%. We use a batch
size of N = 64 (see Section V) and train using the Adam optimizer [41]. Appendix A shows a summary of the neural
network used for the experiments. For nearest neighbors, we use the balltree algorithm from the scikit-learn library [42].

We depict results obtained from our hybrid classifier as follows (see Figure 6, Figure 9, and Appendix B, for
example). The leftmost column shows images from the testing set. The ground truth label and predicted label are
indicated above each test image. The color of the test image title indicates whether the ground truth label agrees with
the predicted label. Green indicates a correct classification, whereas red indicates a misclassification. The remaining
columns show the three nearest neighbors from the training set. The ground truth label and distance to the test image are
indicated above each nearest neighbor image. The color of the nearest neighbor title indicates whether the ground truth
label of the nearest neighbor matches that of the predicted class. Green indicates that they match whereas red indicates a
mismatch.

A. Explaining Predictions
The primary motivation for our approach is to be able to generate explanations that can help a human understand and

gain confidence in the model’s predicted output. We show that nearest neighbors present viable intuitive explanations
for a user. Figure 6 shows various classification examples from the hybrid classifier. The hybrid classifier has high
prediction accuracy, so the vast majority of classifications are correct. We also found that in most cases, the nearest
neighbors voted unanimously. These properties are seen in Figure 6. We present an analysis of the nearest neighbor
voting categories in Section VI-C.

Figure 6 shows examples of classifications and explanations from each class. In each case, we see that the test image
and the nearest neighbors are visually very similar. They show scenes with similar foliage, rocks, geometries, and
lighting. The visual similarity helps a human intuitively connect the nearest neighbor labels with the predicted label of
the classifier, thus increasing the confidence of the model prediction. Conversely, a lack of visual similarity can be used
as a basis for distrusting the predicted label.

B. Performance Evaluation
We compare the classification performance of the hybrid nearest neighbor classifier to the original neural network

classifier by evaluating the accuracy of the two models on the testing set. The results are shown in Table 1. We find that
the hybrid classifier has a slightly higher accuracy than the original neural network, despite adding the ability to explain
predictions. In our experiments, we have observed comparable classification performance between the two models with
minor variations between training runs.

Table 1 A Comparison of Prediction Accuracy on the Testing Set.

Model Accuracy

Original network 89.1%
Hybrid classifier 89.8%

C. Nearest Neighbor Voting in Hybrid Classifier
The hybrid classifier uses nearest neighbor voting to make classification predictions. Our experiments use votes

from the three nearest neighbors and choose the mode as the prediction. We break three-way ties using the closer
neighbor. Because we have three class labels and three nearest neighbors, there are a number of ways the vote can result.
Intuitively, we consider unanimous voting, where all the neighbors agree, as the most confident prediction. We can also
have the converse where all three neighbors disagree. We consider these predictions as the least confident. We also
consider the case where the first two neighbors disagree as this is a strong sign of contention in the voting.

8

Fig. 6 Hybrid model predictions and nearest neighbor explanations. Each row presents a test image followed
by its three nearest neighbors in the training set. Ground truth label, denoted gt, and predicted label, denoted
pred, are indicated for each test image. Ground truth label and neighbor distance, denoted d, are indicated for
each neighbor. Labels are 0 for left, 1 for center, and 2 for right.

9

Figure 7 shows the counts of these three categories for the testing set broken down by classification correctness. We
see that when the classifier makes a correct prediction, the voting is unanimous the vast majority of the time. Correct
classifications rarely result from disagreements between the first two neighbors or disagreements between all three
neighbors. On the other hand, the majority of misclassifications are also unanimous. However, the ratio of unanimous to
other categories is not as high. Unfortunately, these results generally imply that confidence cannot be used as a reliable
indicator of prediction correctness. Appendix B shows some examples of classifications from each voting category.

0 1000 2000 3000 4000
Number of Cases (Out of 4653 Correctly Classified, 5184 Total)

Unanimous

First 2 Disagree

All Disagree

4287

216

4

Test Set Correct Classifications by Category

0 50 100 150 200 250
Number of Cases (Out of 531 Misclassified, 5184 Total)

Unanimous

First 2 Disagree

All Disagree

261

181

14

Test Set Misclassifications by Category

Fig. 7 Number of correctly classified and misclassified cases by voting category on the testing set.

D. Selected Examples
Dataset Issues. While the method of collecting images during a hike using head-mounted cameras is convenient as

it alleviates the need to manually label the data, we note that the dataset does have a number of issues. These issues can
cause confusion in the training as well as the explanation. Figure 8 shows some examples of problematic images in the
dataset. First, a number of images do not show a clearly defined path, which makes the assigned labels seem arbitrary.
Even a human cannot definitively label these images. Some images show obstructions by trees or bushes in the entire
view. Other images show unobstructed, equally plausible terrain in all directions. Some images show an obstruction
in the center and open paths on either side. There are also some rare instances that seem mislabeled altogether. For
example, the first image in Figure 8 is labeled center, but the center of the image is clearly obstructed by trees. A second
issue is lighting and shadowing. Some images are washed out in strong sunlight while others are largely covered in
shadow. Finally, there are also some images polluted by non-stationary objects such as humans and vehicles.

Fig. 8 Some problematic examples in the dataset.

10

Interesting Prediction Examples. Figure 9 presents six interesting examples of predictions from our experiments,
one per row. The first column shows the test image and the remaining columns show the nearest neighbors from the
training set starting with the first nearest neighbor in the second column.

Fig. 9 Some interesting classification examples.

11

In the first and second examples (rows 1 and 2), the classifier thinks, based on color and texture, that the path in the
test image and the rock walls in the neighbor images look very similar. However, the features in these images should
not be confused with each other because they imply very different UAV actions—the UAV should fly towards a path
but turn away from a wall! A human would likely be able to differentiate between the two without problem. Part of
the issue here is that the classifier does not understand depth. As a result, it may be useful in future work to consider
integrating depth estimation techniques [43].

In the third and fourth examples (rows 3 and 4), we see that lighting and shadowing can play a major role in the
classification. In example 3, the neighbors all have darker areas near the bottom of the images and light skies near the
top of the images. This lighting effect plays a strong role in determining similarity by the neural network, whereas a
human might conclude that the third neighbor is very dissimilar to the test image due to the mountainous landscape. In
example 4, the test image contains a shadow of a tree projected onto the path. The classifier views the shadow projected
on the ground as similar to a silhouette of a tree against the sky. A human would likely distinguish between the two
cases. The last two examples (rows 5 and 6) are cases where the similarity distance provided by the neural network
representation is unintuitive to a human. For example, in row 5, the second neighbor seems out-of-place and the third
neighbor seems more visually similar to the test image than the second neighbor. In example 6, it looks like the second
and third neighbors should be considered more similar to the test image than the first neighbor due to the configuration
of the path and trees.

VII. Conclusion
In this paper, we considered the problem of explaining the outputs of a convolutional neural network for a UAV forest

navigation scenario. We explored a hybrid classifier that, for inference, replaces the final output layer of a convolutional
neural network with a k-nearest neighbor classifier trained on the training set. This modification enables the model to
not only make class predictions but also provide the most similar examples in the training set to the user. We argued that
explanations by example are viable and intuitive. Additionally, our experiments showed empirically that the hybrid
model gives comparable classification performance as the original neural network. This approach helped us detect an
adjacency issue in the way we created our testing set. Furthermore, we looked at how the nearest neighbors voted and
found that confidence could not be used a reliable indicator for prediction correctness. Lastly, we discovered some
interesting classification examples where the similarity measure based on the neural network representation can give
unintuitive results. Overall, nearest neighbors increase transparency in the process of classification. Developers can
select specific cases to be flagged for closer inspection in testing and deployment, e.g., inspect cases where voting is not
unanimous.

Acknowledgments
This work was performed in the context of the Autonomy Teaming & TRAjectories for Complex Trusted Operational

Reliability (ATTRACTOR) Project under NASAConvergent Aeronautics Solutions (CAS). We thank the ATTRACTOR
team at NASA Langley for their support.

References
[1] He, K., Zhang, X., Ren, S., and Sun, J., “Deep Residual Learning for Image Recognition,” IEEE Conference on Computer

Vision and Pattern Recognition, IEEE, 2016, pp. 770–778.

[2] Graves, A., Mohamed, A.-r., and Hinton, G., “Speech Recognition with Deep Recurrent Neural Networks,” International
Conference on Acoustics, Speech and Signal Processing, IEEE, 2013, pp. 6645–6649.

[3] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Riedmiller, M., “Playing Atari with deep
reinforcement learning,” arXiv preprint arXiv:1312.5602, 2013.

[4] Jaderberg, M., Czarnecki, W. M., Dunning, I., Marris, L., Lever, G., Castañeda, A. G., Beattie, C., Rabinowitz, N. C., Morcos,
A. S., Ruderman, A., et al., “Human-Level Performance in 3D Multiplayer Games with Population-Based Reinforcement
Learning,” Science, Vol. 364, No. 6443, 2019, pp. 859–865.

[5] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A.,
et al., “Mastering the Game of Go without Human Knowledge,” Nature, Vol. 550, No. 7676, 2017, p. 354.

12

[6] Bouton, M., Nakhaei, A., Fujimura, K., and Kochenderfer, M. J., “Safe Reinforcement Learning with Scene Decomposition for
Navigating Complex Urban Environments,” Intelligent Vehicles Symposium (IV), 2019.

[7] Julian, K. D., Kochenderfer, M. J., and Owen, M. P., “Deep Neural Network Compression for Aircraft Collision Avoidance
Systems,” AIAA Journal on Guidance, Control, and Dynamics, Vol. 42, No. 3, 2019, pp. 598–608.

[8] Mern, J., Julian, K. D., Tompa, R. E., and Kochenderfer, M. J., “Visual Depth Mapping fromMonocular Images using Recurrent
Convolutional Neural Networks,” AIAA SciTech, Intelligent Systems Conference (IS), 2019.

[9] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and Fergus, R., “Intriguing Properties of Neural
Networks,” arXiv preprint arXiv:1312.6199, 2013.

[10] Alexandrov, N. M., and Allen, B. D., “Autonomy Teaming & TRAjectories for Complex Trusted Operational Reliability
(ATTRACTOR),” NASA ARMD TACP/Convergent Aeronautics Solutions Project Showcase, Oral Presentation, Sep 2018.

[11] Gunning, D., “Explainable Artificial Intelligence (XAI),” Defense Advanced Research Projects Agency (DARPA), Web, 2017.

[12] Carter, S., Armstrong, Z., Schubert, L., Johnson, I., and Olah, C., “Activation Atlas,” Distill, 2019.

[13] Sundararajan, M., Taly, A., and Yan, Q., “Axiomatic Attribution for Deep Networks,” Proceedings of the 34th International
Conference on Machine Learning-Volume 70, JMLR. org, 2017, pp. 3319–3328.

[14] Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Torralba, A., “Learning Deep Features for Discriminative Localization,”
Conference on Computer Vision and Pattern Recognition, IEEE, 2016, pp. 2921–2929.

[15] Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D., “Grad-CAM: Visual Explanations from Deep
Networks via Gradient-based Localization,” International Conference on Computer Vision, IEEE, 2017, pp. 618–626.

[16] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J., “Distributed Representations of Words and Phrases and Their
Compositionality,” Advances in Neural Information Processing Systems (NIPS), 2013, pp. 3111–3119.

[17] Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A., Classification and Regression Trees, CRC Press, 1984.

[18] Lee, R., Kochenderfer, M. J., Mengshoel, O. J., and Silbermann, J., “Interpretable Categorization of Heterogeneous Time Series
Data,” International Conference on Data Mining (SDM), SIAM, 2018.

[19] Lakkaraju, H., Bach, S., and Leskovec, J., “Interpretable Decision Sets: A Joint Framework for Description and Prediction,”
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), ACM, 2016, pp. 1675–1684.

[20] Letham, B., Rudin, C., McCormick, T. H., Madigan, D., et al., “Interpretable Classifiers using Rules and Bayesian Analysis:
Building a Better Stroke Prediction Model,” Annals of Applied Statistics, Vol. 9, No. 3, 2015, pp. 1350–1371.

[21] Ribeiro, M. T., Singh, S., and Guestrin, C., “Why Should I Trust You?: Explaining the Predictions of Any Classifier,” ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2016, pp. 1135–1144.

[22] Agogino, A. K., Lee, R., and Giannakopoulou, D., “Challenges of Explaining Real-Time Planning,” ICAPS Workshop on
Explainable Planning (XAIP), 2019.

[23] Binder, A., Montavon, G., Lapuschkin, S., Müller, K.-R., and Samek, W., “Layer-Wise Relevance Propagation for Neural
Networks with Local Renormalization Layers,” International Conference on Artificial Neural Networks, Springer, 2016, pp.
63–71.

[24] Kindermans, P.-J., Hooker, S., Adebayo, J., Alber, M., Schütt, K. T., Dähne, S., Erhan, D., and Kim, B., “The (Un) Reliability
of Saliency Methods,” stat, Vol. 1050, 2017, p. 2.

[25] Erhan, D., Bengio, Y., Courville, A., and Vincent, P., “Visualizing Higher-Layer Features of a Deep Network,” Tech. Rep. 3,
University of Montreal, 2009.

[26] Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., and Lerchner, A., “Beta-VAE: Learning
Basic Visual Concepts with a Constrained Variational Framework,” International Conference on Learning Representations,
Vol. 3, 2017.

[27] Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., and Abbeel, P., “InfoGAN: Interpretable Representation Learning
by Information Maximizing Generative Adversarial Nets,” Advances in Neural Information Processing Systems (NIPS), 2016,
pp. 2172–2180.

13

[28] Girshick, R., “Fast R-CNN,” International Conference on Computer Vision, IEEE, 2015, pp. 1440–1448.

[29] He, K., Gkioxari, G., Dollár, P., and Girshick, R., “Mask R-CNN,” International Conference on Computer Vision, IEEE, 2017,
pp. 2961–2969.

[30] Johnson, J., Krishna, R., Stark, M., Li, L.-J., Shamma, D., Bernstein, M., and Fei-Fei, L., “Image Retrieval using Scene Graphs,”
Conference on Computer Vision and Pattern Recognition, IEEE, 2015, pp. 3668–3678.

[31] Dai, J., He, K., and Sun, J., “Instance-Aware Semantic Segmentation via Multi-Task Network Cascades,” Conference on
Computer Vision and Pattern Recognition, IEEE, 2016, pp. 3150–3158.

[32] Papernot, N., and McDaniel, P., “Deep k-Nearest Neighbors: Towards Confident, Interpretable, and Robust Deep Learning,”
arXiv preprint arXiv:1803.04765, 2018.

[33] Jiang, H., Kim, B., Guan, M., and Gupta, M., “To Trust or Not to Trust a Classifier,” Advances in Neural Information Processing
Systems (NIPS), 2018, pp. 5541–5552.

[34] Wallace, E., Feng, S., and Boyd-Graber, J., “Interpreting Neural Networks with Nearest Neighbors,” arXiv preprint
arXiv:1809.02847, 2018.

[35] Goodfellow, I., Bengio, Y., and Courville, A., Deep Learning, MIT press, 2016.

[36] Krizhevsky, A., Sutskever, I., and Hinton, G. E., “Imagenet Classification with Deep Convolutional Neural Networks,” Advances
in Neural Information Processing Systems (NIPS), 2012, pp. 1097–1105.

[37] Murphy, K. P.,Machine Learning: A Probabilistic Perspective, MIT Press, Cambridge, MA, 2012.

[38] Bishop, C. M., Pattern Recognition and Machine Learning, Springer, New York, 2006.

[39] Giusti, A., Guzzi, J., Ciresan, D., He, F.-L., Rodriguez, J. P., Fontana, F., Faessler, M., Forster, C., Schmidhuber, J., Di Caro, G.,
Scaramuzza, D., and Gambardella, L., “A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots,”
IEEE Robotics and Automation Letters, 2016.

[40] Giusti, A., Guzzi, J., Ciresan, D., He, F.-L., Rodriguez, J. P., Fontana, F., Faessler, M., Forster, C., Schmidhuber, J.,
Di Caro, G., Scaramuzza, D., and Gambardella, L., “On the Visual Perception of Forest Trails,” , 2019. URL https:
//people.idsia.ch/~giusti/forest/web.

[41] Kingma, D. P., and Ba, J., “Adam: A Method for Stochastic Optimization,” arXiv preprint arXiv:1412.6980, 2014.

[42] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R.,
Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E., “Scikit-Learn: Machine
Learning in Python,” Journal of Machine Learning Research, Vol. 12, 2011, pp. 2825–2830.

[43] Pillai, S., Ambruş, R., and Gaidon, A., “Superdepth: Self-Supervised, Super-Resolved Monocular Depth Estimation,” IEEE
International Conference on Robotics and Automation (ICRA), IEEE, 2019, pp. 9250–9256.

14

https://people.idsia.ch/~giusti/forest/web
https://people.idsia.ch/~giusti/forest/web

Appendix A: Neural Network Summary

Model: "sequential_1"

Layer (type) Output Shape Param #
===
conv2d_1 (Conv2D) (None, 99, 99, 32) 896

max_pooling2d_1 (MaxPooling2 (None, 49, 49, 32) 0

conv2d_2 (Conv2D) (None, 47, 47, 32) 9248

max_pooling2d_2 (MaxPooling2 (None, 23, 23, 32) 0

conv2d_3 (Conv2D) (None, 21, 21, 32) 9248

max_pooling2d_3 (MaxPooling2 (None, 10, 10, 32) 0

conv2d_4 (Conv2D) (None, 8, 8, 32) 9248

max_pooling2d_4 (MaxPooling2 (None, 4, 4, 32) 0

flatten_1 (Flatten) (None, 512) 0

dense_1 (Dense) (None, 200) 102600

dense_2 (Dense) (None, 3) 603
===
Total params: 131,843
Trainable params: 131,843
Non-trainable params: 0

15

Appendix B: Classifier Prediction Examples by Voting Category

Fig. 10 Examples of misclassifications where the nearest neighbors voted unanimously. Red title on the test
image indicates a misclassification.

16

Fig. 11 Examples of misclassifications where the first two nearest neighbors disagree.

17

Fig. 12 Examples of misclassifications where all the nearest neighbors disagree. In this case, the nearest
neighbor classifier predicts the label of the first nearest neighbor.

18

Fig. 13 Examples of correct classifications where the first two nearest neighbors disagree.

19

Fig. 14 Examples of correct classifications where all the nearest neighbors disagree. In this case, the nearest
neighbor classifier predicts the label of the first nearest neighbor.

20

	Introduction
	Related Work
	Background
	Notation
	Deep Neural Network Classifier
	k-Nearest Neighbor Classifier
	Forest Trail UAV Navigation Scenario

	Dissecting the Neural Network for Trust
	Training with Sequential Image Data
	Application to Forest Trail UAV Navigation Scenario
	Explaining Predictions
	Performance Evaluation
	Nearest Neighbor Voting in Hybrid Classifier
	Selected Examples

	Conclusion

