5 research outputs found

    Guest Editorial Special Section on Advanced Signal and Image Processing Techniques for Electric Machines and Drives Fault Diagnosis and Prognosis

    Full text link
    © 2017 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works[EN] With the expansion of the use of electrical drive sys- tems to more critical applications, the issue of reliability and fault mitigation and condition-based maintenance have consequently taken an increasing importance: it has become a crucial one that cannot be neglected or dealt with in an ad-hoc way. As a result research activity has increased in this area, and new methods are used, some based on a continuation and improvement of previous accomplishments, while others are applying theory and techniques in related areas. This Special Section of the IEEE Transactions on Industrial Informatics attracted a number of papers dealing with Advanced Signal and Image Processing Techniques for Electric Machine and Drives Fault Diagnosis and Prognosis. This editorial aims to put these contributions in context, and highlight the new ideas and directions therein.Antonino-Daviu, J.; Lee, SB.; Strangas, E. (2017). Guest Editorial Special Section on Advanced Signal and Image Processing Techniques for Electric Machines and Drives Fault Diagnosis and Prognosis. IEEE Transactions on Industrial Informatics. 13(3):1257-1260. doi:10.1109/TII.2017.2690464S1257126013

    Non-Invasive Real-Time Diagnosis of PMSM Faults Implemented in Motor Control Software for Mission Critical Applications

    Get PDF
    This paper presents a non-intrusive, real-time, online Condition Monitoring and FaultDiagnosis system for Permanent Magnet Synchronous Machines. The system utilizesonly the motor drive's built-in sensors, such as current and voltage sensors, to detectthree types of faults: inter-turn short circuit, partial demagnetization, and staticeccentricity. The proposed solution adopts a hardware-free approach, utilizingcurrent/voltage signature analysis to optimize cost-effectiveness. It requires a smallmemory and short execution time, allowing it to be implemented on a simple motorcontroller with limited memory and calculation power. The system is designed forcritical mission applications, and therefore, computation load, code size, memoryallocation, and run-time optimization are key focuses for real-time operation. Theproposed method has a high detection accuracy of 98%, is computationally efficient,and can accurately detect and classify the fault. The system provides immediateinsights into motor health without interrupting the drive operation

    NOVEL METHODS FOR PERMANENT MAGNET DEMAGNETIZATION DETECTION IN PERMANENT MAGNET SYNCHRONOUS MACHINES

    Get PDF
    Monitoring and detecting PM flux linkage is important to maintain a stable permanent magnet synchronous motor (PMSM) operation. The key problems that need to be solved at this stage are to: 1) establish a demagnetization magnetic flux model that takes into account the influence of various nonlinear and complex factors to reveal the demagnetization mechanism; 2) explore the relationship between different factors and demagnetizing magnetic field, to detect the demagnetization in the early stage; and 3) propose post-demagnetization measures. This thesis investigates permanent magnet (PM) demagnetization detection for PMSM machines to achieve high-performance and reliable machine drive for practical industrial and consumer applications. In this thesis, theoretical analysis, numerical calculation as well as experimental investigations are carried out to systematically study the demagnetization detection mechanism and post-demagnetization measures for permanent magnet synchronous motors. At first a flux based acoustic noise model is proposed to analyze online PM demagnetization detection by using a back propagation neural network (BPNN) with acoustic noise data. In this method, the PM demagnetization is detected by means of comparing the measured acoustic signal of PMSM with an acoustic signal library of seven acoustical indicators. Then torque ripple is chosen for online PM demagnetization diagnosis by using continuous wavelet transforms (CWT) and Grey System Theory (GST). This model is able to reveal the relationship between torque variation and PM electromagnetic interferences. After demagnetization being detected, a current regulation strategy is proposed to minimize the torque ripples induced by PM demagnetization. Next, in order to compare the demagnetization detection accuracy, different data mining techniques, Vold-Kalman filtering order tracking (VKF-OT) and dynamic Bayesian network (DBN) based detection approach is applied to real-time PM flux monitoring through torque ripple again. VKF-OT is introduced to track the order of torque ripple of PMSM running in transient state. Lastly, the combination of acoustic noise and torque is investigated for demagnetization detection by using multi-sensor information fusion to improve the system redundancy and accuracy. Bayesian network based multi-sensor information fusion is then proposed to detect the demagnetization ratio from the extracted features. During the analysis of demagnetization detection methods, the proposed PM detection approaches both form torque ripple and acoustic noise are extensively evaluated on a laboratory PM machine drive system under different speeds, load conditions, and temperatures
    corecore