29 research outputs found

    Autonomous Optimization of Swimming Gait in a Fish Robot With Multiple Onboard Sensors

    Get PDF
    Autonomous gait optimization is an essential survival ability for mobile robots. However, it remains a challenging task for underwater robots. This paper addresses this problem for the locomotion of a bio-inspired robotic fish and aims at identifying fast swimming gait autonomously by the robot. Our approach for learning locomotion controllers mainly uses three components: 1) a biological concept of central pattern generator to obtain specific gaits; 2) an onboard sensory processing center to discover the environment and to evaluate the swimming gait; and 3) an evolutionary algorithm referred to as particle swarm optimization. A key aspect of our approach is the swimming gait of the robot is optimized autonomously, equivalent to that the robot is able to navigate and evaluate its swimming gait in the environment by the onboard sensors, and simultaneously run a built-in evolutionary algorithm to optimize its locomotion all by itself. Forward speed optimization experiments conducted on the robotic fish demonstrate the effectiveness of the developed autonomous optimization system. The latest results show that our robotic fish attained a maximum swimming speed of 1.011 BL/s (40.42 cm/s) through autonomous gait optimization, faster than any of the robot's previously recorded speeds

    Advanced Mobile Robotics: Volume 3

    Get PDF
    Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective

    Optimal design and control of stationary electrochemical double-layer capacitors for light railways

    Get PDF
    The optimisation algorithm has been further investigated to understand the influence of the weight coefficients that affect the solution of all the optimisation problems and it is very often overlooked in the traditional approach. In fact, the choice of weight coefficients leading to the optimum among different optimal solutions also presents a challenge and this specific problem does not give any a priori indications. This challenge has been tackled using both genetic algorithms and particle swarm optimisations, which are the best methods when there are multiple local optima and the number of parameters is large. The results show that, when the optimal set of coefficients are used and the optimal positions and capacitances of EDLCs are selected, the energy savings can be up to 42%. The second problem of the control of the storage has been tackled with a linear state of charge control based on a piece-wise linear characteristic between the current and the voltage deviation from the nominal voltage of the supply at the point of connection of the storage. The simulations show that, regardless of the initial state of charge, the control maintain the state of charge of EDLCs within the prescribed range with no need of using the on-board braking resistor and, hence, dissipating braking energy. The robustness of the control algorithm has been verified by changing the characteristics of the train loading and friction force, with an energy saving between 26 - 27%

    Proceedings of the 7th Sound and Music Computing Conference

    Get PDF
    Proceedings of the SMC2010 - 7th Sound and Music Computing Conference, July 21st - July 24th 2010

    Performance analysis for wireless G (IEEE 802.11G) and wireless N (IEEE 802.11N) in outdoor environment

    Get PDF
    This paper described an analysis the different capabilities and limitation of both IEEE technologies that has been utilized for data transmission directed to mobile device. In this work, we have compared an IEEE 802.11/g/n outdoor environment to know what technology is better. The comparison consider on coverage area (mobility), throughput and measuring the interferences. The work presented here is to help the researchers to select the best technology depending of their deploying case, and investigate the best variant for outdoor. The tool used is Iperf software which is to measure the data transmission performance of IEEE 802.11n and IEEE 802.11g

    Performance Analysis For Wireless G (IEEE 802.11 G) And Wireless N (IEEE 802.11 N) In Outdoor Environment

    Get PDF
    This paper described an analysis the different capabilities and limitation of both IEEE technologies that has been utilized for data transmission directed to mobile device. In this work, we have compared an IEEE 802.11/g/n outdoor environment to know what technology is better. the comparison consider on coverage area (mobility), through put and measuring the interferences. The work presented here is to help the researchers to select the best technology depending of their deploying case, and investigate the best variant for outdoor. The tool used is Iperf software which is to measure the data transmission performance of IEEE 802.11n and IEEE 802.11g
    corecore